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Abstract

Avulsion of one or more ventral roots from the spinal cord leads to the death of the majority of 

affected motoneurons.  In this study we investigated whether immortalized clonal neuroectodermal 

stem cells applied to the injured cord in various ways impart neuroprotection on motoneurons 

otherwise destined to die.

The lumbar 4 (L4) ventral root of Sprague-Dawley rats was avulsed and reimplanted ventrolaterally 

into the injured cord. Clonal neuroectodermal murine stem cells (NE-GFP-4C) were placed in fibrin 

clot around the reimplanted root, were injected immediately following avulsion into the reimplanted 

ventral root or directly into the L4 segment.   Three months after the primary surgery the L4 

motoneuron   pool   was   retrogradely   labelled   with   Fast   blue   and   the   numbers   of   reinnervating 

motoneurons were determined. Functional recovery was tested biweekly through the use of the 

CatWalk automated gait analysis system.

Transplantation of neuroectodermal stem cells into the reimplanted root or into the L4 spinal 

segment resulted in similarly extensive regeneration of the motoneurons (671 ± 26 SEM vs 711 ± 

14   SEM   L4   motoneurons,   respectively).   In   these   groups   significant   functional   recovery   was 

achieved. The negative controls and animals with perineural stem cell treatment showed poor motor 

recovery and reinnervation (42 ± 10 SEM vs 65 ± 2.5 SEM, respectively). 

This study provides evidence that neuroectodermal stem cell transplantation into the reimplanted 

ventral root  induces as successful regeneration of injured motoneurons as stem cells grafted into 

the spinal cord.
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Introduction

Adult motoneurons survive if injury to their axons is inflicted relatively far from the cell body. 

However, axonal injury applied close to the cell body, such as avulsion of one or more ventral roots 

induces   the   death   of   the   vast   majority  of   affected   motoneurons   (Carlstedt   et   al.   1993,   2000, 

Koliatsos et al. 1994, Nógrádi and Vrbová 2001, Nógrádi et al. 2007).   Reimplantation of the 

lumbar   ventral   roots   without   auxillary   treatment   results   in   poor   survival   and   regeneration   of 

motoneurons (Carlstedt et al. 2000, Eggers et al. 2010, Nógrádi and Vrbová 1996, 2001).  However, 

reimplantion of the avulsed root combined with treatment with the anti-excitotoxic compound 

riluzole  (2-amino-6-trifluoromethoxybenzothiazole)  rescued  the  majority  of  the  injured 

motoneurons otherwise destined to die (Nógrádi and Vrbová 2001, Nógrádi et al. 2007, Pintér et al. 

2010).  Earlier studies have shown that riluzole not only prevented the death of the damaged lumbar 

and cervical motoneurons but enabled them to regenerate their axons into the reimplanted ventral 

root and thus provide functional reinnervation for the denervated limb musculature (Nógrádi et al. 

2007, Pintér et al. 2010).

Several recent attempts, other than therapeutic efforts to reduce excitotoxicity to the damaged 

motoneurons have been made to rescue adult motoneurons following avulsion injury, including 

therapy with neurotrophic factors (Blits et al. 2004; Eggers et al. 2008,  Haninec et al. 2003, 

Novikov et al. 1995; Wu et al. 2003), and progenitor and stem cell therapy (Hell et al. 2009, Su et 

al. 2009).  In general, there are a great number of stem and progenitor cells that can be used in the 

CNS to induce neuronal survival, axon regeneration or replace missing cells.  While many of these 
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cell   treatment   strategies   apply   stem   cells   that   bring   little   or   not   significant   improvement   in 

morphological restoration and in function, there are few therapeutic approaches where the applied 

cells are proven to be safe and effective at long term (Bottai et al. 2010, Steinbeck et al. 2011, for 

review see: Ruff et al. 2012).

Recent   experiments   performed   in   our   lab   oratory   provided   evidence   that   clonal   murine 

neurectodermal stem cells, grafted into the injured rat spinal cord immediately after ventral root 

avulsion and reimplantation are able to promote the regeneration of approximately 65% of the 

injured motoneurons (unpublished data).  The neuroectodermal stem cells (NE-GFP-4C cell line, 

ATCC  No.: CRL-2936) were originally isolated from the forebrains of p53-deficient E9 mouse 

embryos and thoroughly characterised both in vitro and in vivo (Schlett et al. 1997, Hádinger et al. 

2009). While the survival and differentiation of the grafted cells and the therapeutic mechanism 

how motoneurons are rescued and their regeneration is promoted, are described in detail (submitted 

manuscript, Pajer et al. 2012), it is not known whether neuroectodermal stem cells applied at 

locations other than into the spinal cord may be able to effectively rescue neurons otherwise 

destined to die.  Transplantation of stem cells into a damaged spinal cord may further augment the 

extent of injury caused by the avulsion of one or more ventral roots and therefore it would be 

advantageous   to   find   alternative   routes   of   stem   cell   grafting   which   may   provide  favourable 

conditions for the morphological restitution of the damaged spinal segment.

The aim of the present study was to compare the therapeutic potential of the transplanted NE-GFP-

4C cells applied in topically different transplantation paradigms.

Materials and methods

Maintenance of NE-GFP-4C stem cells 
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The clonal neuroectodermal stem cells were isolated from 9-day-old forebrain vesicles of embryos 

of transgenic mice lacking the tumor suppressor gene p53 and they were made to produce eGFP as 

previously described (Schlett et al. 1997). The NE-GFP-4C stem cells (ATCC No.: CRL-2936) were 

maintained on nuncloned petri dishes (Invitrogen, Austria) in High glucose Dulbecco Modified 

Essential Medium (H-DMEM, Sigma, Austria) supplemented with 10% fetal calf serum (FCS, 

Gibco BRL) at 37 °C and 5% CO 2.  Floating cells appeared after 3 days and were passaged every 2 

days using trypsin digestion and mechanical dissociation. Medium was changed every day. All cell 

cultures underwent at least two but no more than five passages before transplantation.

Ventral root avulsion-reimplantation and transplantation of NE-GFP-4C stem cells

All together 48 female Sprague-Dawley rats (Animal Research Laboratories, Himberg, Austria, and 

Animal Facilities at the Faculty of Medicine, University of Szeged, weighing 180-220 g body 

weight) were used. Twenty-four animals were used for short-term survival studies (5 and 10 days of 

survival, 4 animals in each group, except control group), 20 rats survived for 3 months following 

the original operation (n=5 in each group) and 4 intact animals were used to determine the number 

of motoneurons in the intact L4 segment.

All   the   operations   were   carried   out   under   deep   ketamine-xylazine   anaesthesia   (ketamine 

hydrochloride: 90 mg/kg body weight, Ketavet, Pharmacia & Upjohn Co.; xylazine: 5 mg/kg body 

weight,   Rompun,   Bayer   Co.)   and   sterile   precautions.   To   maintain   the   body   temperature   at 

37.0±0.5°C, the rats were kept on a heating pad during the surgery.  Laminectomy was performed at 

the level of T13–L1 vertebrae, the dura was opened and the left L4 ventral root was pulled out 

leaving the dorsal roots intact. Then the cut end of the ventral root was inserted into the lateral part 

of the spinal cord. To avoid damage to the cord, a small hole was created on the lateral surface of 

the cord, and the avulsed root was inserted into the hole using a watchmaker’s forceps (Dumont, 
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Switzerland, No. 5). Special care was taken to avoid damage to the cord, including its motoneuron 

pool, or to the reimplanted root (Fig. 1A-B). Animals in group 1 served as controls: their L4 ventral 

root   was   avulsed   and   reimplanted   but   they  received   no   stem   cells.     In   group   2   animals   the 

reimplanted root was surrounded by 3 x 10 5 stem cells applied in a loose fibrin matrix (Baxter Ltd, 

Vienna, Fig. 1B).  Group 3 animals received 3 injections of stem cells (5 x 10 4 each) along a 3 mm 

length of the reimplanted root (Fig. 1C). The proximal injection was applied immediately at the re-

established ventral root-spinal cord junction zone, the second and the third injections were applied 

approx 1.5 mm from the junction zone and form the second injection site, respectively.    Animals in 

group 4 (intraspinal grafting of stem cells) had 3 x 10 5 stem cells injected into the caudal part of the 

L4 segment (Fig. 1D)..   The spinal cord was covered with the remaining dura, the wound was 

closed and the animals were allowed to recover  (Nógrádi and Vrbová, 1996, 2001).   Animals 

survived for 5 or 10 days or for 3 months.  The experiments were carried out with the approval of 

the Animal Protocol Review Board of City Government of Vienna and with that of the Committee 

for Animal Experiments, University of Szeged and rules regarding the care and use of animals for 

experimental procedures were followed.   All the procedures were carried out according to the 

Helsinki Declaration on Animal Rights.  Adequate care was taken to minimize pain and discomfort.

Retrograde labelling 

Operated animals that survived for 3 months (n=5 in each group) and intact animals (n=4) were 

deeply reanaesthetized as described above. On the left side the ventral ramus of the L4 spinal nerve 

was sectioned and the proximal stump of the nerve covered with few crystals of Fast Blue (FB; 

Illing Plastics GmbH, Breuberg, Germany). Five days after the application of the fluorescent dye 

the animals were reanaesthetized and perfused transcardially with 4% paraformaldehyde in 0.1 M 

phosphate buffer (pH=7.4).
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Immunohistochemistry

Twenty-five µm thick transverse spinal cord sections and twenty  µm thick longitudinal sections of 

the operated roots were cut on a cryostat (Leica CM 1850, Leica GmbH, Germany) and mounted 

onto gelatin-coated glass slides. Nonspecific binding sites were subsequently blocked with 1% milk 

powder solution. Primary antibodies were incubated overnight at 4 °C, washed, and then incubated 

with  fluorescent-conjugated   secondary antibodies  for  1  h  at   room  temperature.  The   following 

primary antibodies were used: chicken polyclonal anti-green fluorescent protein (GFP; 1:2000, 

Millipore-Chemicon, Temecula, USA), rat monoclonal anti-mouse astrocyte surface antigen and rat 

anti-mouse neuronal surface antigen (M2 and M6, respectively, both from DSHB, Iowa University, 

USA, 1:100), mouse anti-murine stage-specific antigen-1 (SSEA-1, DSHB, Iowa University, USA, 

1:100)   anti-neurofilament   200kD   (NF200,   Abcam   Ltd,   1:200,   Cambridge,   UK).   Secondary 

antibodies were used as follows: Alexa Fluor 488 goat anti-chicken, Alexa Fluor 594 donkey anti-

rat, Alexa Fluor 546 rabbit anti-mouse, Alexa Fluor 405 goat anti-rabbit (all from Life Technologies 

Corporation,  1:400).   Sections  processed  for  choline-acetyltransferase  (ChAT) 

immunohistochemistry were preincubated in 3% normal goat serum for 1 h, then treated with a 

polyclonal goat anti-ChAT antibody (Millipore-Chemicon, Hofheim, Germany, 1:100) overnight at 

4◦C. The immune reaction was completed by using the avidin-biotin technique (reagents were 

purchased from Vector Laboratories, Burlingame, CA), and finally were tyramide-amplified with 

the Alexa Fluor 546 TSA kit (Tyramide Signal Amplification; Life Technologies). Fluorescent 

signals were detected in an Olympus FX51 epifluorescence microscope equipped with a DP70 

digital camera (Olympus Ltd, Tokyo, Japan). Confocal microscopic images were obtained by using 

an Olympus FluoView® FV10i compact confocal microscope.   Digital images were resized and 

their contrast and brightness were adjusted.
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Cell counts

The number of retrogradely labelled cells was determined. To avoid double counting of the same 

neuron present in two consecutive sections, the retrogradely labelled neurons were mapped with the 

aid of an Olympus (Olympus Ltd, Tokyo, Japan) drawing tube, and their locations were compared 

to those of labelled neurones in the previous section (Nógrádi et al. 2007, Pintér et al. 2010).  All 

sections from the L4 motoneurone pool were used.

Analysis of locomotion pattern – CatWalk gait analysis

To   determine   and   analyze   the   parameters   of   the   forelimb   movement   pattern,   the   'CatWalk' 

automated quantitative gait analysis system was used (Noldus Ltd, version 7.1; Wageningen, The 

Netherlands). Animals were pre-trained before surgery and the pre-training values are included in 

the diagrams. This computer-assisted method of locomotor analysis made it possible to quantify 

several gait parameters, including duration and speed of different phases of the step cycle and print 

areas detected during locomotion length (Hamers et al., 2001, 2006). The following parameters 

were taken into account during the analysis:

the print area (expressed in mm2): total floor area contacted by the paw during the stance phase,

the print intensity (expressed in arbitrary units): the mean pressure exerted by one individual paw 

during the floor contact

the print width (expressed in mm): parameters describing the width of the print area,

the stance duration (expressed in s): the stance duration is the time of the stance phase

the swing speed (expressed in m/s): the swing speed is computed from swing duration and stride.
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the base of support of the hind limbs  (BOS, expressed in mm): The base of support of the hind 

limbs is the distance between the two hind paws of the rat. 

Statistical analysis

The t-test and the two-way measurement analysis of variance (ANOVA) computed using Tukey’s 

all pair-wise multiple comparison procedures, were used to compare the group data. The tests were 

used according to the nature of the data.

Results

General observations, functional improvement, CatWalk gait analysis system

Behavioral analysis was started two weeks after surgery and the first signs of functional recovery 

were observed 4-5 weeks after reimplantation of the ventral root.  Control (group 1, reimplantation 

only) and group 2 animals (periradicular application of stem cells) showed minimal improvement, 

i.e. their affected hind limb was placed laterally with minimal dorsiflexion of the ankle joint and the 

spreading reflex was minimal or completely missing. In contrast, animals that received grafts into 

the L4 ventral root (group 3) or into the spinal cord (group 4) developed a movement pattern closely 

similar to that of the intact hind limb.  Movements of the ankle joint, especially dorsiflexion was 

extensive and toe spreading was present.   Quantitative gait analysis obtained from the CatWalk 

automated gait analysis system showed that the earliest differences in functional recovery between 

these groups appear from week 6 and these differences became significant by week 8- to 10 (Fig. 

2).  Improved footprint parameters (print area, intensity, print width, stance duration) in groups 3 

and 4 indicated an improved stability of foot placing while parameters characteristic of the step 

cycle (swing speed and base of support of the hind limbs) showed improved movement pattern in 
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group 3 and 4 animals (Fig 2), too.  Interestingly, animals that received intraspinal or intraradicular 

stem cell grafts did not show significantly different gait parameters.

Retrograde labelling studies, number of reinnervating motoneurons in various grafting protocols

The number of retrogradely labelled motoneurons, i.e those motoneurones that were able to send 

their axons into the vacated endoneural sheaths of the reimplanted ventral root correlated with the 

functional data.  Control animals that had their ventral root avulsed and reimplanted but received no 

stem cell graft had very few reinnervating cells (42 ± 10 SEM).  Similarly, in the spinal cords of 

group   2   animals   which   received   a   periradicular   stem   cell   graft,   more   retrogradely   labelled 

motoneurons were found (65 ± 2.5 SEM) but no significant difference was found between these two 

groups (Fig. 3).  On the other hand, grafting of NE-GFP-4C cells into the reimplanted root (group 

3) or into the spinal cord (group 4) produced similarly good results: the numbers of reinnervating 

cells   were   671   ±   26   SEM   and   711   ±   14   SEM,   respectively   (Fig.   3).     It   is   noted,   that   the 

reinnervating cells in these two groups comprised 58 and 61% of the intact L4 motoneuron pool 

(1158 ± 14 SEM), suggesting a very effective rescuing mechanism.

Differentiation and location of grafted neuroectodermal cells

The early differentiation and migration of the grafted cells was studied 5 and 10 days after grafting 

in   animals   that   received   stem   cells   intra-   and   periradicularly.    The   differentiation   pattern   of 

intraspinally grafted cells has been earlier described in our laboratory (submitted manuscript by 

Pajer et al.), therefore only brief details are given here.  

Rats that received stem cell grafts embedded in fibrin clots and placed around the reimplanted 

ventral root, formed a well-defined tissue cuff around the reimplanted ventral root 5 days after 

grafting (Fig. 4A-D).  The stem cells expressed the stage-specific embryonic antigen-1 (SSEA-1), 

10



an early murine stem cell marker (its expression is known to cease with differentiation) and most of 

them maintained their GFP expression.   However, by 10 days after grafting most of the cells 

became dispersed and only few of them were found around the reimplanted root (Fig. 5A-B).  At 

this stage of development, these cells expressed the M2 and M6 antigens, characteristic of mouse 

glial   and   neuronal   phenotypes,   respectively,   but   morphologically  they   remained   rounded,   and 

undifferentiated (Fig. 5A-B).  In the animals that received intraradicular stem cell grafts, numerous 

NE-GFP-4C cells were found within the L4 ventral root 5 days after grafting (Fig. 4E-H).  The cells 

formed clusters at the sites of injections and most of them were still able to express GFP.  On the 

other hand, stem cells that expressed SSEA-1 displayed a decreased or faint GFP expression, 

suggesting that the GFP expression pattern decreases with differentiation (Fig. 4G-H).  Ten days 

after grafting we found fewer grafted cells at the sites of microinjections and while most of the stem 

cells expressed SSEA-1, many of them were already able to differentiate to glial or neuronal 

phenotypes (M2+ astrocytes and M6+ neurons, Fig. 5D-E).   Interestingly, those intraradicularly 

grafted cells that were placed close to the spinal cord were able to migrate closer to, but not into the 

injured cord via the reimplanted ventral root and started to differentiate morphologically, too (Fig. 

5D-E).  The intraspinal grafts formed a large cluster of cells that first expressed the SSEA-1 antigen 

and then further differentiated to M2+ astrocytes and M6+ neurons, respectively.  Five days after 

grafting mainly SSEA-1+ cells were found in the graft (Fig. 4A-D), whereas by 10 days after 

grafting the presence of murine astrocytes and neurons was overwhelming (Fig. 5G-H).  Parallel 

with the differentiation process the grafted cells ceased expressing GFP.

The first signs of axon outgrowth was also observed 10 days after reimplantation in these samples: 

few regenerating axons visualized by neurofilament (NF-200 kD) immunostaining were seen in the 

reimplanted root of animals that received intraradicular or intraspinal grafts of stem cells (Fig. 5F 

and 5I), while such regenerating neurites were infrequently seen in the reimplanted ventral root of 

animals with periradicularly grafted stem cells (Fig. 5C).  Interestingly, several regenerating axons 
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were found in this latter group among the derivatives of stem cells close to the reimplanted root 

(Fig. 5B).

Three months after grafting in the periradicularly treated animals (group 2) only few stem cell-

derived neurons and astrocytes were sporadically seen along the initial segment of the reimplanted 

root, typically in the dorsal angle between the reimplanted root and the lateral surface of the spinal 

cord (Fig. 6A-B).  Greater numbers of stem cell-derived neurons and axons were found in the spinal 

segments of animals with intraradicular grafts (group 3).  These cells were located mainly at the 

periphery of the root, not in close contact with the regenerated axons (Fig. 6D-E).  Interestingly, a 

number of M2+ astrocytes and M6+ neurons appeared to have migrated into the ventral horn of the 

damaged   L4   segment   where   these   cells   were   located   around   the   reimplanted   root   and   the 

reinnervating motoneurons (Fig. 6D-E).  Although many cells expressed M2 and M6 antigens on 

their membranes, only those cells appeared morphologically differentiated which settled in the 

spinal   cord.     The   cells   that   stayed   in   the   reimplanted   root   remained   rounded   and   appeared 

morphologically undifferentiated while they expressed murine surface antigens characteristic of 

mature cells  (Fig.  6D).   In the spinal cords  of animals  that received stem cells  intraspinally, 

relatively well-differentiated derivatives of stem cells were found, scattered throughout the L4 

segment (Figure 6C).

Discussion

In  this study we have provided evidence, that grafted embryonic neuroectodermal stem cells are 

able to rescue the vast majority of damaged motoneurons otherwise destined to die.   However, 

rescue of injured motoneurons by grafted stem cells was only successful if the stem cells were 

placed into the affected segment of the spinal cord or into the reimplanted ventral root of animals 

whose L4 ventral root was avulsed to bring about motoneuron death.
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Adult motoneurons survive if their axons are damaged far from the cell body, but most of them die 

if the axonal injury is inflicted close to their soma.  This latter type of injury is manifested in case of 

human brachial plexus injuries, where one or more ventral roots suffer traumatic avulsion due to 

harsh physical forces (Carlstedt 2008).  Ventral root avulsion injuries can successfully be modelled 

in experimental animals and several experimental approaches have been reported to rescue 

motoneurons whose axons were avulsed.  These experimental strategies are of outstanding 

importance as rescued motoneurons can be reconnected to their peripheral targets and this way 

improved reinnervation of denervated muscles can be achieved (Carlstedt and Cullheim 2000, 

Carlstedt 2008).

Earlier studies from have shown that stem or progenitor cells grafted into the spinal cord following 

avulsion and reimplantation of one or more spinal ventral roots are able to rescue damaged 

motoneurons (Hell et .2009, Su et al. 2009).  Furthermore, it has also been shown that embryonic 

spinal cord grafts containing neural progenitors induce the survival of the injured motoneurons and 

also promote the growth of the regenerating motor axons into the reimplanted ventral root and then 

further along the peripheral nerves until motor fibres reach the skeletal muscles and produce 

functional reinnervation (Nógrádi and Szabó 2008, Nógrádi et al. 2011).

Grafting stem cells into the spinal cord or into the reimplanted ventral root resulted in equally good 

survival of injured motoneurons and functional reinnervation.  It appears obvious that stem cells 

placed into the spinal cord are able to rescue motoneurons as they are very closely related to the 

motor pool of the affected segment and the paracrine mechanisms exerted by the graft have a direct 

effect on the affected ventral horn.  On the other hand, transplanted cells in the reimplanted ventral 

root are not in the direct vicinity of the motor pool.  It can be argued, however, that the amount of 

molecules secreted by the grafted stem cells was able to reach the intraspinal axon segment and the 

cell body of the injured motoneurons.   The immunhistochemical analysis  of the location and 

differentiation of the intraradicularly grafted cells showed that large numbers of stem cells were 
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present 5 and 10 days after injury in the reimplanted root, closely related to the spinal cord and 

regrowing axons that were already present 10 days after avulsion.   It could be noted that the 

distance between intraspinal grafts and the rostralmost part of the rescued L4 motoneuron pool is in 

fact not greater than that of an intraradicular graft and the rostral L4 motoneurons.  It is thought that 

the diffusible factors produced by the grafts may reach the furthermost parts of the L4 segment, no 

matter whether they are secreted by an intraspinal or intraradicular graft.  It has been reported that 

motoneurons after avulsion injury are responding to rescuing strategies if treatment starts within 10 

days following avulsion (Nógrádi et al. 2007).  Therefore it appears likely that appropriate numbers 

of stem cells located in the reimplanted ventral root were able to exert a motoneuron-rescuing effect 

similar to that found in the case of intraspinally grafted stem cells.  Moreover, the stem cells did not 

migrate into the spinal cord within the first 10 days after grafting, thus their effect was exerted from 

their original location.   It was a surprising finding, that stem cells grafted periradicularly (i.e. 

around   the   reimplanted   root   in   a   fibrin   clot)   induced   as   little   reinnervation   as   spontaneously 

regenerating surviving L4 motoneurons in the control animals without receiving stem cells.  The 

immunhistochemical analysis of the location of periradicularly placed stem cells showed that the 

stem cells and their derivatives were always in the close vicinity of the ventral root and and the L4 

spinal segment but likely not close enough to the injured motor pool, therefore they could not exert 

a direct effect on the injured motoneurons, and/or injured motoneurons were not able to induce the 

paracrine secretion of of these cells.  This view is further strengthened by results of the mapping of 

the stem cell-derived astrocytes and neurons in the treated spinal cords 3 months after grafting. 

While few hundreds of stem cell-derived glia- and neuron-like cells were found in the L4 segment 

of animals that received intraspinal and intraradicular stem cell grafts, no such cells could be 

located in animals treated with periradicular grafts.  These findings suggest that stem cells were not 

able to migrate into the spinal cord from a periradicular location and as a consequence they were 

not close enough to the injured spinal motoneurons in the critical period of the first 10 days after 
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avulsion and no satisfactory communication between the injured motor pool and the stem cell graft 

was established.

Transplantation of stem or neural progenitor cells (Hell et al. 2009, Su et al. 2009) producing 

neurotrophic factors or viral-based overexpression of BDNF or GDNF in the spinal cord or in the 

reimplanted ventral root (Blits et al. 2004, Eggers et al. 2008) induced prominent survival of 

damaged motoneurons with avulsed axons, but these rescued motoneurons were unable to send their 

axons into the reimplanted roots due to the enormous sprouting of regenerating axons.  While the 

possible mechanisms of action are not discussed here, our preliminary data strongly suggest that the 

NE-GFP-4C stem cell line secretes factors that do not belong to the family of neurotrophic factors 

(our unpublished results). 

In conclusion, it can be stated that stem cells that are able to rescue the vast majority of injured 

motoneurons destined to die following transplantation into the injured spinal cord segment are also 

able to induce the same effect if they are grafted into the reimplanted ventral root, close to the axons 

of the injured motor pool.   These results suggest that the diffusible factors that modulate the 

environment of injured motoneurons are able to reach the ventral horn form more remote positions 

provided they are located still within the boundaries of the spinal cord and related spinal roots.
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Figure legends

Figure 1.  Schematic drawing depicting the various experimental paradigms

Three experimental surgical approaches are shown: After avulsion of the L4 ventral root (A) 3x10 5 

stem cells were mixed in fibrin clot and applied around the reimplanted root (B, group 2).  In other 
experimental groups stem cells were injected at three locations into the reimplanted root (5 x 10 4 

cells at each site, group 3, in  C) or 3x10 5  cells were grafted into the spinal cord along with 
reimplantation of the avulsed root (D, group 4). 
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Figure 2.  Results of the CatWalk automated gait analysis

The   gait   analysis   revealed   significant   differences   between   groups   1,2   and   3,4.   The   earliest 

significant differences in functional recovery between these groups appeared from week 8 in case of 

some parameters.   Both the parameters indicating improved stability of foot placing (print area, 

intensity, print width, stance duration) and that of improved step cycle (swing speed and base of 

support of the hind limbs) suggested significant functional reinnervation in group 3 and 4 animals. 

Note that the improved parameters of animals in groups 3 and 4 approached the pre-training levels. 

Asterisks   indicate   significant   differences   between   groups   1,2   and   3,4   by   using   the   two-way 

measurement analysis of variance (ANOVA) computed according to Tukey’s all pair-wise multiple 

comparison procedures, p < 0.05.
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Figure 3. Bar chart showing the results of retrograde labelling studies from the L4 spinal nerve. 
Transplantation of stem cells into the reimplanted ventral root (group 3) or into the spinal cord 
(group 4) resulted in equally high numbers of retrogradely labelled motoneurons in the L4 segment 
(no significant difference was found between these groups).   Transplantation of the stem cells 
around the reimplanted root (group 2) induced as limited reinnervation as reimplantation of the L4 
root only (group 1, control animals). * = significant difference between groups 1, 2 and groups 3, 4, 
p < 0.01, t-test.
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Figure 4.  Location and differentiation of grafted stem cells in various experimental paradigms.

A-D  shows differentiating NE-GFP-4C cells 5 days after transplantation around the reimplanted 
ventral   root.    The   cells   appear   as   a   tissue   mass   outside   the   epineurium.   E-H displays 
intraradicularly grafted stem cells just under the epineurium (not labelled) and  I-L  indicates the 
location and gene expression pattern of intraspinally grafted stem cells, in both cases 5 days after 
grafting. Note that the grafted GFP+ cells in all experimental paradigm express SSEA-1, a murine 
stage-specific stem cell marker.  A-H are confocal images.  Scale bar in A,E and I = 100 µm, in the 
rest of the figures = 20 µm.
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Figure 5.  Outgrowth of regenerating axons from the ventral horn of the injured cord into the 
reimplanted root 10 days after grafting.

A shows a hemicord that received a periradicular stem cell graft (group 2, Neurofilament 200kDa 
immunohistochemistry - blue).  Insets enlarged in B and C show the location of the M6+ grafted 
cells (red) within the ventral horn and the few NF200+ regenerating axons (arrows), respectively. 
Note the few axons (arrows) terminating around the surviving stem cells in B.  In D a section of a 
spinal cord is displayed with the reimplanted root, into which the stem cells were grafted (NF200 
kDa, group 3).  E  and  F  show the proximal injection site in the reimplanted root (E, M6 mouse 
neuronal marker, red), and the site of reimplantation with numerous regenerating axons (arrows in 
F, NF200 kDa immunohistochemistry).   In G- to I microphotographs taken form intraspinally 
grafted animals are presented.  Differentiating (M6 positive) stem cells (red) are located within the 
cord, at the end of the reimplanted ventral root (G and H).  Numerous NF200kDa+ axons (blue and 
indicated by arrows) entered the reimplanted root. Scale bar in A,D and G = 100 µm, in the rest of 
the figures = 20 µm.
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Figure   6. Localization   of   the   derivatives   of   the   grafted   stem   cells   in   various   experimental 
paradigms

A and B show sections of the spinal cord (group 2, periradicular grafting) taken at the level where 
the   reimplanted   root   (RI-VR)   is   closely  apposed   to   the   cord.    The   few   retrogradely  labelled 
motoneurons (arrows, Fast Blue+, FB) colocalise with the numerous surviving ChAT+ motoneurons 
(green) in the ventral horn.  Few surviving undifferentiated cells (arrowheads, M6+ neurons in A 
and M2+ astrocytes in  B) settled in the dorsal angle between the reimplated L4 root and the 
dorsolateral surface of the cord.  C shows surviving (ChAT+, green) and reinnervating (Fast Blue+, 
blue) motoneurons (arrows) in the ventral horn and stem cell-derived -like cells in the dorsal 
funiculus of an animal that received intraspinal stem cell graft (group 4).   Inset provides high 
magnification view of the M6+ cells.  D and E display sections taken from intraradicularly grafted 
animals (group 3).  Note the greater numbers of retrogradely labelled motoneurons (arrows)within 
the pool of surviving motoneuron pool (ChAT+, green), Stem cell-derived rounded astrocytes and 
neurons are present in the reimplanted ventral root (RI-VR, see inset for higher magnification in D), 
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however,   many   of   these   cells   migrated   into   the   affected   ventral   horn   and   took   up   a   more 
differentiated morphological phenotype (arrowheads, M6+  and M2+ cells shown in  D  and  E, 
respectively). Scale bar  = 200 µm.
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