

DOI: 10.14738/tmlai.26.784
Publication Date: 21th December, 2014
URL: http://dx.doi.org/10.14738/tmlai.26.784

Ontological Support for the Evolution of Future Services

Oriented Architectures

1Bilal Gonen, 1Xingang Fang, 1Eman El-Sheikh, 1Sikha Bagui, 1Norman Wilde and 2Alfred Zimmermann
1Department of Computer Science, University of West Florida, Pensacola, FL, USA;

2 Department of Informatics, Reutlingen University, Reutlingen, Germany;

bgonen@uwf.edu; xfang@uwf.edu; eelsheikh@uwf.edu; bagui@uwf.edu; nwilde@uwf.edu;
alfred.zimmermann@reutlingen-university.de;

ABSTRACT

Services Oriented Architectures (SOA) have emerged as a useful framework for developing

interoperable, large-scale systems, typically implemented using the Web Services (WS) standards.

However, the maintenance and evolution of SOA systems present many challenges. SmartLife

applications are intelligent user-centered systems and a special class of SOA systems that present even

greater challenges for a software maintainer. Ontologies and ontological modeling can be used to

support the evolution of SOA systems. This paper describes the development of a SOA evolution

ontology and its use to develop an ontological model of a SOA system. The ontology is based on a

standard SOA ontology. The ontological model can be used to provide semantic and visual support for

software maintainers during routine maintenance tasks. We discuss a case study to illustrate this

approach, as well as the strengths and limitations.

Keywords: Ontology; ontological modeling; services oriented architecture; software evolution; software

maintenance; semantic support.

1 Introduction

Services Oriented Architectures (SOA) have emerged as a useful framework for developing

interoperable, large-scale systems, typically implemented using the Web Services (WS) standards [1].

SOA typically refers to large systems-of-systems in which composite applications are created by

orchestrating loosely coupled service components that run on different nodes and communicate via

message passing [2]. Often an infrastructure layer, sometimes called an Enterprise Service Bus (ESB),

mediates the communication, providing features such as routing, security, and data transformation.

Such systems present several software engineering challenges because they need to orchestrate diverse

services having different owners, and have complex reliability requirements. While developing SOA

applications presents many software engineering challenges, managing the evolution of such systems

presents even greater challenges [3][4].

SmartLife applications are emerging as intelligent user-centered systems that will shape future trends in

technology and communication, including social networks, smart devices, and intelligent cars. The

development of such applications integrates web services, service-oriented enterprise architectures,

cloud computing and Big Data management, among other frameworks and methods [5][6]. SmartLife

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorium und Bibliografie der Hochschule Reutlingen

https://core.ac.uk/display/45359585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 78

systems present even greater software evolution challenges. Such applications exist in complex and

dynamic real-world environments with frequent new functional and interface requirements, rapidly

emerging security issues, partner services that may be withdrawn or modified at short notice, etc.

Software maintainers will need to implement changes rapidly to minimize downtime, yet they will be

dealing with a complex combination of external services and internal legacy code, probably not of their

own writing.

Although ontologies and ontological modeling have been used to support program comprehension, their

integration and application to support maintenance and evolution of complex SOA systems, including

SmartLife systems, is novel. Our research integrates multiple research directions to support the

evolution of services oriented architectures and address the challenges of future SOA systems [7]. First,

we extend a standard SOA ontology to develop a SOA evolution ontology that better supports typical

maintenance tasks. We then use this ontology to develop a model of a SOA system and demonstrate

how such ontological models can be used to provide semantic support for the maintenance of SOA

systems.

In this paper, we present the development and use of ontological modeling methods to address the

emerging challenges of SOA evolution. The next section describes Services Oriented Architectures and

issues involved in SOA maintenance, including background and related work. Section 3 describes the use

of ontologies for modeling SOA systems and specifically for maintenance of such systems. We then show

how a standard SOA ontology can be extended to support maintenance in Section 4, followed by a case

study that demonstrates this approach on an existing SOA application in Section 5. Finally, we show how

such an ontological model can be used in a semantic browser to provide visual support for a maintainer

in Section 6, followed by a discussion of conclusions and future work in Section 7.

2 SOA and SOA Maintenance

Services Oriented Architectures (SOA) is not a specific architecture, but rather an architectural style for

constructing large software systems. Though definitions of SOA vary, these composite applications are

constructed by orchestrating collections of services that run on different nodes and communicate by

message passing. Often the messages are mediated by an Enterprise Service Bus (ESB) that provides

loose coupling by handling routing, fault tolerance, data translation, etc. (See Figure 1). The services

themselves may be heterogeneous, in that they may be implemented using different programming

languages, operating systems and vendor infrastructure. Ideally each service represents some specific

business functionality but services may also be created by wrapping existing legacy software.

To achieve interoperability, implementers of SOA often adopt some of the Web Services standards [1].

In this case each service will publish an interface in Web Services Description Language (WSDL) and the

data contained in messages will be defined in XML Schema Definitions (XSD). In some cases the code will

be written using Business Process Execution Language (BPEL) that is essentially a programming language

encoded in XML for orchestrating interactions among services.

Large corporations have been adopting SOA because it allows them to create components that can be

used across the organization with relatively little inter-divisional coordination. An example is provided

by a major multinational insurance group, which has grown by acquisitions to encompass diverse

http://dx.doi.org/10.14738/tmlai.26.784

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 79

divisions each with their own IT infrastructure. To control costs and improve agility, the group is

developing reusable services for common functions such as claims processing [8].

A great strength of SOA is the flexibility provided by the loose coupling, both between the services

themselves and between the IT organizations that manage them. But this flexibility may create

significant problems when the composite application needs to evolve. Several authors have pointed out

characteristics of SOA that may make such maintenance difficult [3][4][9]. An important part of any

maintenance task is acquiring the knowledge needed to make changes to the software; changes made

based on incomplete understanding may fail with disastrous results. For full comprehension a

maintainer may need to understand many of the technologies that the system uses, including some that

may be not be common within his own branch of the organization. Even if he has the necessary

technical knowledge, not all of the code or documentation may be available to him.

Figure 1: A SOA Composite Application

As to the evolution of future SOA systems with still weaker organizational links, problems of governance

may become increasingly challenging. Changes to requirements may need to be negotiated between

partners who are not accustomed to close collaboration. Security issues may arise at short notice and it

may be difficult to evaluate their impact without knowing details of partners' infrastructure. The mix of

partners may also change quickly as new services are offered and old ones withdrawn.

There has been a moderate amount of research on tools and methods to help the maintainer of a SOA

application. Papazoglou, Andrikopoulos, and Benbernou categorize changes into "deep" and "shallow"

and describe how to perform a "gap analysis" between the existing software and the desired

improvement [10]. To provide a view of how an application operates across multiple nodes, several

authors propose using dynamic analysis, generally starting from some form of log of inter-process

messages. One early proposal was IBM's Web Services Navigator, which provides several visualizations

of message logs [11]. A later paper from the same group identifies correlations between different

messages by looking at values in specific data fields [12]. An interesting problem sometimes addressed

by dynamic analysis is the location of the code that implements one specific "feature" or functionality of

a composite application. One technique computes a component relevance index for each message and

then displays the messages using a Feature Sequence Viewer [13]. In another approach, Yousefi and

Sartipi propose identifying features using an analysis of dynamic call trees from distributed execution

traces [14].

Dynamic analysis techniques are very powerful, but it can be difficult to collect the necessary data since

usually a crafted set of tests needs to be run on a system which is instrumented to allow the collection

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 80

of correlated message logs from the different nodes. Static techniques instead rely only on interface

descriptions, documentation, and possibly some source code. However they often cannot give as

complete results without considerable human input. For example one method recovers concept maps

from the interface descriptions as a starting point for knowledge engineering interviews with system

experts [15]. Another approach uses search methods, enhanced by a rule-based system for extracting

abstractions from the service interfaces [16].

3 Ontological Modeling

In philosophy the concept of ontology refers to the study of things that exist [17][18]. Ontologies define

content theories and representations of concepts as objects, their properties and their relationships.

Ontologies specify terms for describing specific domain knowledge by representing domain facts using a

structured vocabulary of concepts [17]. The body of knowledge describes a specific domain using that

vocabulary as a collection of facts. One most common definition of the term “ontology – as a

specification of a conceptualization” is from [19] and [20]. Current mechanisms for representing

ontologies are closely related and seem to be similar to the object-oriented terminology. A comparison

of ontology terms and meanings in different contexts is in [21]. The ontological terms have object-

oriented correspondences with similar meanings: concept relates to class, individual to instance,

property of object to relationship, property of data-type to attribute, schema or ontology to class model,

and knowledge base to object model.

In our understanding architecture evolution ontologies represent a common vocabulary for software

engineers [21] who need to share their information based on explicitly defined concepts. Ontologies

include the ability to infer automatically transitive knowledge. Our ontological approach has some

practical reasons: share the common understanding of service-oriented architecture domains and their

structures; reuse the architectural knowledge; make architectural requirements, structures, building

blocks explicit; promote reusability of architectural artifacts; separate the architectural knowledge

according to orthogonal architectural domains; and classify, analyze, and diagnose enterprise systems

according to the service-oriented reference architecture.

For our purpose, as in [17], [18], the ontology is a formal and explicit description of shareable and

automatically navigable concepts of our architectural domain. For modeling purposes we use UML class

diagrams to represent concepts, and we describe the attributes as properties (sometimes called roles)

and role or property restrictions as facets. This ontology structure, together with the instances of these

concepts, constitutes the knowledge base. Practically the knowledge base is a growing structure, which

starts with the basic concept structures and is enlarged by more or less an amount of growing number

of instances.

We have developed exemplarily metamodels and related ontologies seeded by a student research

project [22] for the following main architectural domains from the Enterprise Services Architecture

Reference Cube (ESARC) as a starting and extendable set of work results: Business & Information

Reference Architecture, Information Systems Reference Architecture, and the Technology Reference

Architecture. Metamodels are used, as standardized in [23], to define architecture model elements and

their relationships for the reference architectures of ESARC. Metamodels define models of models. In

http://dx.doi.org/10.14738/tmlai.26.784

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 81

our approach for architectural modeling we use metamodels as an abstraction for architectural

elements and relate them to architecture ontologies.

The Reference Model for Service Oriented Architecture of OASIS [24] is an abstract framework, which

defines basic generic elements and their relationships of a service-oriented architecture. This reference

model is not a standard, but provides a common semantic for different specialized implementations.

Reference models are, as in [24], abstract conceptual models of a functional decomposition of model

elements together with the data flows between them. Reference architectures, in [25] and [26], are

specialized models of a reference model. It is a composition of related architectural elements, which are

built from typed building blocks as the result of a pattern-based mapping of reference models to

software elements.

The technical standard of Service Oriented Architecture Ontology from [27] defines core concepts,

terminology, and semantics of a service-oriented architecture in order to improve the alignment

between the business and IT communities. Following stakeholders are potential users of the SOA

ontology, related architecture metamodels, as well as concrete architectural building blocks: business

people and business architects, architects for the information systems and software architecture,

architects for the technological infrastructure, cloud services architects and security architects.

The SOA Ontology in [27] is represented in the Web Ontology Language (OWL) [18]. The ontology

models the core concepts of SOA as classes and properties. The SOA ontology includes additional natural

language description of the main concepts and relationships in UML diagrams, which show graphically

the semantic concepts as classes and the properties as UML associations. The intent of the UML

diagrams are for explanations only, but are helpful constructs for understanding the modeled domain of

SOA architecture and more concise than the more spacious formal descriptions in OWL. The SOA

ontology defines the relationships between semantic concepts, without mentioning the exact usage of

these architectural concepts. To illustrate the SOA ontology the standard uses examples and

descriptions of these in natural language.

The two core concepts of the SOA ontology, as in [27], are: System and Element. These two core

concepts are generic and often used concepts to define a composite structure of systems that have

elements. These abstract meaning of systems and elements is used in different specific architectural

modeling situations. Using the concept “Element” the technical standard associates following core

properties: uses and usedBy as well as the properties representedBy and represents. The technical

standard of SOA Ontology defines additional concepts of the SOA Ontology like HumanActor, Task,

Service, ServiceContract, Effect, ServiceInterface, InformationType, Composition, ServiceComposition,

Process, Policy, and Event.

4 A SOA Evolution Ontology

The starting point for our SOA Evolution Ontology is the Open Group SOA ontology technical

standard [27], developed by the Open Group in order to provide a common understanding of services

oriented architectures and help improve alignment between the business and information technology

community. Compared to other service-related ontologies such as OWL-S, WSDL-S and WSMO that

focus mostly on the application of service discovery and invocation and composition, the Open Group

SOA ontology seems a more appropriate point of departure given the maintainer's need to comprehend

the system at multiple levels. The Open Group Ontology is defined in the web ontology language (OWL)

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 82

and is ready for extension and population for specific applications. In this ontology, 15 classes and 30

object properties are defined. The class hierarchy is shown in Figure 2.

To develop the SOA Evolution Ontology, the Open Group SOA ontology was extended to improve

support for software maintainers. Specifically, the Service class was sub-classed into InternalService and

ExternalService classes to distinguish services owned by the maintainer's organization from those owned

by partners. A maintainer would have much greater information and control for the internal services. A

ProcessingModule class was added as a subclass of Element to model code components that perform

the InternalServices. The software artifacts that perform ExternalServices are out of the SOA system

boundary. A subclass of the top-level Thing class DataItem was added to contain information on every

data item appearing in service input or response messages (InformationType in SOA ontology). Detailed

data items would add a lot of information to help a maintainer trace problems located in message

transmission. The extended class hierarchy is shown in Figure 3. The corresponding object properties

hasDataItem and isDataItemOf were defined between InformationType and DataItem classes.

Figure 2: The Open Group SOA Ontology
Class Hierarchy

Figure 2: The Extended Open Group SOA
Ontology Class Hierarchy

These extensions enhance the ability of the ontology to support software maintenance queries. With

the added classes, much more relevant information for maintenance purposes may be stored as

individuals (the OWL term for class instances) in the ontology and thus be available for future queries.

In a typical populated ontology for a SOA system, the basic building blocks are service clusters with

InternalService or ExternalService individual in the centre with ServiceInterface, InformationType and

DataItem individuals attached directly or indirectly. A service in SOA ontology is different from a service

in a SOA system. In a SOA system a service (as defined in a single WSDL file) may consist of multiple

operations while a service in SOA ontology only represents a single operation to simplify the relationship

between service class (InternalService or ExternalService) individuals and ServiceInterface class

individuals. With service defined as a single operation, only one ServiceInterface individual is attached to

a service, which reduces the complexity and confusion. Thus, each InternalService or ExternalService

individual has a ServiceInterface individual attached to define its interface and each ServiceInterface has

two InformationType individuals correspond to its input and output messages. Each InformationType

individual contains multiple DataItem individuals that represent fields in a message. Service clusters are

http://dx.doi.org/10.14738/tmlai.26.784

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 83

connected by System and ProcessingModule individuals. A System may use multiple services while a

ProcessingModule may perform an InternalService and use multiple services. In this way, all service

clusters are connected to form the complete SOA ontology.

Due to the complexity of a SOA system, the number of instantiated individuals in the extended SOA

ontology is expected to be beyond the capability of manual population. Fortunately, the design of an

ontology is capable of accommodating automatic or semi-automatic populations of ontologies,

depending on the programming language that the SOA system is coded in. In a typical SOA system, most

of information need for the ontology population is defined in standard WSDL, XSD, and optional BPEL

files. Everything in a service cluster can be found in a single WSDL file and its related XSD files. With

these, Services (belonging to InternalService or ExternalService classes) are instantiated to generate

ontology individuals with their related ServiceInterface, InformationType and DataItem individuals. The

individuals of these five classes can be populated from the WSDL and XSD files automatically or semi-

automatically. Individuals belonging to these five classes consist of the biggest portion of the whole

populated ontology. The rest, which is a small portion of individuals, belong to the System and

ProcessingModule classes, will be populated to connect the service clusters. Here, the automatic

population is possible under specific circumstances (for example, a system all written in BPEL), but it will

not be easy because of the relationships that exist in programs written in different programming

languages. So the invocation and dependence of relationships between services have to be manually

extracted from source code to complete the ontology population. Fortunately, it is likely to be only a

small portion of the total number of individuals and relationships.

5 Case Study

To illustrate the use of the SOA Evolution Ontology, we populated it for a small publicly available SOA

composite application called WebAutoParts that has been used in earlier studies [17]. WebAutoParts is a

hypothetical online automobile parts startup that uses an agile development strategy. Instead of writing

large amounts of specialized code, commercial SOA services from well-known vendors are orchestrated

using a relatively small amount of in-house BPEL. This application provides an order processing workflow

in which incoming orders are first checked to confirm that inventory is available, then sales tax and

shipping are computed, and finally the order is stored and a note placed in a message queue to trigger

order fulfillment (packing and shipping).

Vendor services are represented by their real WSDLs and include Amazon's SimpleDB and SQS simple

queue services, a state sales tax service from strikeiron.com, and a shipping cost service from

ecocoma.com. In-house services have XSDs for data types and WSDLs that were generated from BPEL

code. The BPEL itself is stubbed since runnable code would require setting up paying accounts with each

of the vendors. Table 1 lists the sizes of the artifacts that describe WebAutoParts.

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 84

Table 1: Artifacts for WebAutoParts

Most classes of the SOA Maintenance Ontology could be populated automatically by parsing the BPEL,

WSDL and XSD artifacts. However for this small test system the individuals were generated by hand,

with the help of a few special-purpose scripts. The resulting individuals are as shown in Table 2.

Table 2: Populated SOA Maintenance Ontology

One way to think about the contribution of the ontology is that it easily provides the maintainer with

deep knowledge about the individuals in the system, as opposed to the shallow knowledge provided by

simple textual search. For example, while the maintainer could use the find command in an editor to

locate an XML tag containing tax Rate in an XSD, it would be much more informative to locate the

corresponding individual in the ontology. The class of the individual immediately tells the maintainer he

is dealing with a DataItem, and simple transitive queries can show him what Information Types it

belongs to, the interfaces that use them, and the services that have those interfaces.

For each class in the ontology we defined a small packet of deep knowledge that we think would be of

most use to display to a maintainer. We also defined a parameterized query to collect that deep

knowledge (see Table 3).

http://dx.doi.org/10.14738/tmlai.26.784

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 85

Table 3: Suggested deep knowledge for each class in the ontology

To see how the ontology and the deep knowledge queries would be useful, consider three plausible

maintenance scenarios for WebAutoParts:

Scenario A: Some errors have been encountered in the shipping costs computed when WebAutoParts

processes orders. A Software Engineer is trying to understand how WebAutoParts gets shipping costs

and what data is exchanged as part of that operation. Thus he needs to locate where the "shipping"

concept is located in the system. Correct conclusion: Shipping costs are calculated by external service

GetUSPSRate. If there are errors, this would be the service to check.

Scenario B: WebAutoParts has been dealing exclusively within the United States but now plans to enter

other countries. One of the many changes requires understanding how the application uses American

zip codes since Software Engineers will now have to modify the software to handle other kinds of postal

code. The Software Engineer needs to locate where the "zip code" concept is located in the system.

Correct conclusion: WebAutoParts will need to make changes to the way it computes shipping costs

(currently done by external service GetUSPSRate) and to how it calculates local taxes (currently done by

external service GetTaxRateUS).

Scenario C: Amazon is retiring their SimpleDB and replacing it with a new database offering. The

Software Engineer needs to understand how the SimpleDB services are used in WebAutoParts. Correct

conclusion: SimpleDB is used in two places. Its GetAttributes service is used by the

InventoryRespository.bpel processing module while its PutAttributes service is used by the

OrderProcessing.bpel processing module.

For each scenario the relevant individuals in the ontology can be found by a simple text search on

"shipping", "zip" or "SimpleDB" (See Table 4). Then the packaged queries can be applied to each

individual and the correct conclusions can be reached immediately.

For comparison, we asked a Software Engineer with Web Services experience to check how the same

conclusions could be reached by a sequence of conventional searches on the WebAutoParts artifacts.

For each search the Software Engineer used either a Unix "grep" search when he had to scan multiple

files, an editor's search command when he had the problem narrowed down to a single file, or he

scrolled multiple pages in a file when he needed to understand the nesting of XML elements. The

starting points were the same text searches as used on the ontology. The Software Engineer tried to find

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 86

the shortest sequence of searches that would rigorously arrive at a correct conclusion. For each search

he counted the number of places in the artifacts that matched his query and categorized them as:

o Useful, if they either provided him with the information he wanted or with a good starting point

for the next search, or

o Non-useful, if they had to be examined and discarded.

Table 4: Comparison of Ontology and Conventional Searches

The results of the comparison are shown in Table 4. As can be seen, using the ontology drastically

reduces the amount of work needed to arrive at correct conclusions about the software.

6 Ontology-Based Visual Interface for SOA Maintenance

The Semantic Web enables machines to comprehend semantic documents and data, not human speech

and writings [28]. The Semantic Web provides an infrastructure that enables not just web pages, but

databases, services, programs, sensors, personal devices, and even household appliances to both

consume and produce data on the web [29]. Knowledge is represented in ontologies as triples. Triples

consist of Subject, Predicate, and Object. For instance, John Smith likes Florida. “Likes” is a relationship

between the subject John Smith, and the object Florida.

There are 267 triples in our ontology. Some of them are:

AmazonSimpleDB.GetAttributes.Interface – isInterfaceOf - AmazonSimpleDB.GetAttributes.

AmazonSimpleDB.PutAttributes - hasInterface - AmazonSimpleDB.PutAttributes.Interface.

We developed a tool “Semantic Browser” that uses ontologies for annotating documents with semantic

information. The semantic browser tool has three parts: document indexing, annotation, and traversing

documents. For the document indexing, we use some Java classes, i.e., Map, HashMap, HashSet classes

in the Java API. We put all the documents we want to index in a folder. We select this folder from the

Semantic Browser tool. We index these documents with the keywords retrieved from the ontology.

There are 114 individuals in the ontology, e.g., “AmazonSimpleDB.PutAttributes”,

“AmazonSimpleDB.PutAttributes.Interface”, “USPS.GetUSPSRate.In.ZipDestination”. These individuals

are used to index the documents. After the documents are indexed, for a given keyword, the Semantic

Browser tool returns the list of documents in which the keyword occurs.

http://dx.doi.org/10.14738/tmlai.26.784

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 87

Figure 4: A Screenshot of Semantic Browser Tool

The second part of this Semantic Browser tool does the annotation automatically by processing all of the

files in a folder and annotating them. The tool then looks for the individuals from the ontology in the

content of the document. These terms are tagged with an html tag. For instance, the term

“InventoryRepository” in the document becomes:

InventoryRepository.

The third part of the Semantic Browser tool does traversing. Figure 4 shows the traversing component of

the tool. It allows users to search for related information based on knowledge captured by the ontology.

Let's say as a Software Engineer, you are looking for documents containing "GetUSPSRate" and what

interfaces it has.

You do an initial query on "GetUSPSRate" and are offered several files containing the term

"GetUSPSRate" in them. Assume the "OrderProcessing.bpel" file contains "GetUSPSRate", and the user

selects this file. The content of the file appears in the Semantic Browser. The named entities, which we

have in our ontology, appear highlighted and underlined. You click on the "GetUSPSRate" in the text,

and are offered some relationships, such as: "is a", "has interface". You select "has interface"

relationship from the list, and are offered a list of interfaces, which come from the ontology. You select

"USPS.GetUSPSRate.Interface" from the list, and are offered all of the files which contain the term

"USPS.GetUSPSRate.Interface". After clicking one of the file names from the list, the content of the file

appears in the browser.

Consider Scenario C explained in Section 5 let’s see how we reach the same conclusion by using the

ontological model. By a simple text search on "SimpleDB", we find the relevant individuals in the

ontology. We start with the “AmazonSimpleDB.GetAttributes”. By querying the ontology, we retrieve

two triples from the ontology, which have the “AmazonSimpleDB.GetAttributes” as the subject of the

triples. These two triples are:

AmazonSimpleDB.GetAttributes -> usedBy -> InventoryRepository.Module

AmazonSimpleDB.GetAttributes -> hasInterface -> AmazonSimpleDB.GetAttributes.Interface

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 88

We make another query at the document indexing part of the Semantic Browser tool to find in which

document the “InventoryRepository.Module” occurs. As a result, we find that the

“InventoryRepository.Module” occurs in the InventoryRepository.bpel file.

One of the benefits of the Semantic Browser tool is to provide semantic links as opposed to physical

hyperlinks. Although there was no physical links between the documents, after processing the

documents, the documents become linked through the semantic relationships that come from the

ontology.

7 Conclusions

In conclusion, maintenance of SOA systems presents many challenges. In this paper, we argued that an

ontology-based approach could ease the difficulties of maintenance and introduced an extended SOA

Ontology that can be populated with information about any specific SOA-based system. The extensions

provide the maintainer with more knowledge of the system, hence more control over the services,

traceable steps, and the ability to support software maintenance queries. This ontology extends the

Open Group SOA Ontology so it should be compatible with other tools based on this standard. As a first

application of the SOA Evolution Ontology we proposed a Semantic Browser tool to aid a maintainer in

navigating the many artifacts that describe a SOA system. We illustrated the approach by populating the

extended SOA Ontology to model WebAutoParts, an example SOA system.

ACKNOWLEDGMENTS

Work described in this paper was partially supported by the University of West Florida Foundation under

the Nystul Eminent Scholar Endowment, and the SOA Innovation Lab Germany.

REFERENCES

[1]. Nicolai Josuttis, SOA in Practice: The Art of Distributed System Design, O'Reilly, 2007, ISBN: 0-596-

52955-4.

[2]. G. Lewis, E. Morris, S. Simanta and D. Smith, "Service Orientation and Systems of Systems," IEEE

Software, Vol. 28, No. 1, 2011, pp. 58-63. doi:10.1109/MS.2011.15

[3]. Nicolas Gold, Claire Knight, Andrew Mohan, Malcolm Munro, "Understanding service-oriented

software", IEEE Software, Vol. 21, March/April 2004, pp. 71-77, doi: 10.1109/ms.2004.1270766.

[4]. Grace Lewis and Dennis Smith, "Service-Oriented Architecture and its implications for software

maintenance and evolution", Frontiers of Software Maintenance, 2008. FoSM 2008, pp. 1-10, doi:

10.1109/fosm.2008.4659243.

[5]. El-Sheikh, E., Bagui, S., Firesmith, D. G., Petrov, I., Wilde, N., Zimmermann, A., 2013. Towards

Semantic-Supported SmartLife System Architectures for Big Data Services in the Cloud,

http://dx.doi.org/10.14738/tmlai.26.784

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 2 , Issue 6, Dec 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 89

Proceedings of the Fifth International Conference on Advanced Service Computing (Service

Computation 2013), May 27 – June 1, Valencia, Spain, pp. 59-64.

[6]. Zimmermann, A., Pretz, M., Zimmermann, G., Firesmith, D. G., Petrov, I., El-Sheikh, E., 2013.

Towards Service-oriented Enterprise Architectures for Big Data Applications in the Cloud, 17th

IEEE International EDOC Conference (EDOCW 2013): The Enterprise Computing Conference with

SoEA4EE, 9-13 September 2013, Vancouver, BC, Canada, pp. 130-135, 2013.

[7]. G. Lewis, “Is SOA Being Pushed Beyond its Limits?” Advances in Computer Science: an

International Journal, Vol. 2, Issue 1, No. 2, 2013.

[8]. Deb Ayres, Dave Berry, Babic Hosseinzadeh, Conference Presentation, Oracle OpenWorld, Topic:

"Service lifecycle governance", San Francisco, Sept. 21, 2010.

[9]. Nicolas Gold and Keith Bennett, "Program comprehension for web services, International

Conference on Program Comprehension, 2004, doi: 10.1109/wpc.2004.1311057.

[10]. M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, "Managing Evolving Services," IEEE

Software, Vol. 28, No. 3, May/June 2011, pp. 49-55, doi: 10.1109/MS.2011.26.

[11]. W. De Pauw, et al., "Web services navigator: visualizing the execution of web services", IBM

Systems Journal, Vol. 44, No. 4, Oct. 2005, pp. 821-845, doi: 10.1147/sj.444.0821.

[12]. W. De Pauw, R. Hoch, and Y. Huang, "Discovering Conversations in Web Services Using Semantic

Correlation Analysis", IEEE 20th International Conference on Web Services, ICWS'2007, July 2007,

pp. 639-646, doi: 10.1109/ICWS.2007.200.

[13]. John Coffey, Laura White, Norman Wilde, Sharon Simmons, "Locating Software Features in a SOA

Composite Application," ECOWS, pp.99-106, 2010 Eighth IEEE European Conference on Web

Services, 2010.

[14]. A. Yousefi and K. Sartipi, "Identifying distributed features in SOA by mining dynamic call trees",

IEEE International Conference on Software Maintenance (ICSM), Sept. 2011, pp. 73-82, doi:

10.1109/ICSM.2011.6080774.

[15]. J. Coffey, T. Reichherzer, B. Owsnick-Klewe, and N. Wilde, "Automated Concept Map Generation

from Service-Oriented Architecture Artifacts", Proc. of the Fifth Int. Conference on Concept

Mapping CMC2012, Sept. 2012, pp. 49-56.

[16]. Eman El-Sheikh, Thomas Reichherzer, Laura White, Norman Wilde, John Coffey, Sikha Bagui,

George Goehring, Arthur Baskin, Towards Enhanced Program Comprehension for Service Oriented

Architecture (SOA) Systems, Journal of Software Engineering and Applications, Volume 6, Number

9, September 2013, pp. 435-445, doi: http://dx.doi.org/10.4236/jsea.2013.69054.

[17]. B. Chandrasekaran, J. R. Josephson, V. R. Benjamins, “What Are Ontologies, and Why Do We Need

Them?”, IEEE Intelligent Systems, pp. 20-26, 1999.

Bilal Gonen, Xingang Fang, Eman El-Sheikh, Sikha Bagui, Norman Wilde and Alfred Zimmermann; Ontological

Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial

Intelligence. Volume 2 No 6 Dec, (2014);pp: 77-90

URL:http://dx.doi.org/10.14738/tmlai.26.784 90

[18]. D. Gasevic, D. Djuric, V. Devedzic, Model Driven Engineering and Ontology Development, Springer

2009.

[19]. T. R. Gruber, “A translation approach to portable ontology specifications,” Knowledge Acquisition,

Vol. 5, no. 2, pp. 199-220, 1993.

[20]. S. Staab, R. Studer (eds.), Handbook on Ontologies, Springer, 2004.

[21]. K. Schneider, Experience and Knowledge Management in Software Engineering, Springer 2009.

[22]. A. Zimmermann, G. Zimmermann, “Enterprise Architecture Ontology for Services Computing,

“Service Computation 2012 Nice, France, pp. 64-69, 2012.

[23]. OMG, “Meta Object Facility (MOF) Core Specification”, Version 2.0, Object Management Group,

2006.

[24]. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz, OASIS “Reference Model for

Service Oriented Architecture” 1.0, OASIS Standard, 12 October 2006.

[25]. J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, OASIS “Reference Architecture for Service

Oriented Architecture” Version 1.0, OASIS Public Review Draft 1, 23 April, 2008.

[26]. The Open Group, “SOA Reference Architecture”, Technical Standard, 2011,

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=c119

[27]. The Open Group, “Service-Oriented Architecture Ontology”, Technical Standard, 2010,

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=c104

[28]. Tim Berners-Lee, James Hendler and Ora Lassila, "The Semantic Web", Scientific American, May

2001, p. 29-37.

[29]. James Hendler, Tim Berners-Lee and Eric Miller, 'Integrating Applications on the Semantic Web',

Journal of the Institute of Electrical Engineers of Japan, Vol 122(10), October, 2002, p. 676-680

http://dx.doi.org/10.14738/tmlai.26.784

