

Zinc fingers Nucleases (ZFNs)

Present by : Sanaz Zebardast

Under supervision : Dr.Ahmadpour

30MAY 2016

Zinc finger nucleases (ZFNs)

> Introduction

*History

***Features**

> Components

≻Zf

> Application

> ZFN delivery

> Hydrodynamic delivery method

≻ Novel uses

> ZFNs &sicke cell anemia

≻Cure

➤ conclusion

contents

https://scholar.google.com/(IN 22 APRIL 2016)

- ✤ Diabete
- * Cystic fiberosis
- * Lych nyhan syndrome
- ALS(Amyotrophic Latera Sclerosis)
- * Sickle cell anemia
- * Glioblastoma
- ***** Resistance to apoptosis

application

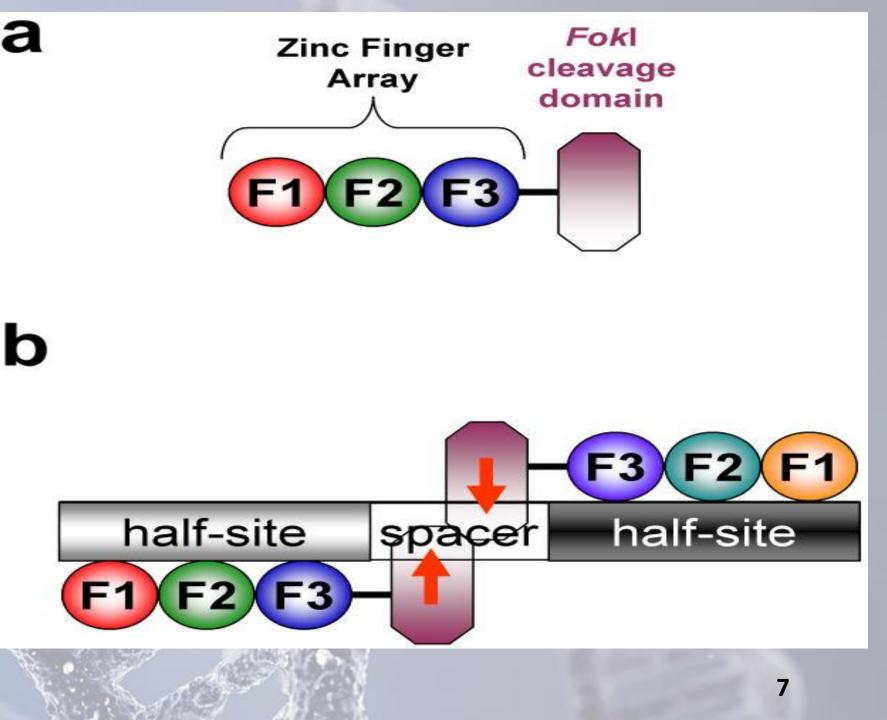
Introduction (1) cont.....

*ZFNS are engineered restriction enzymes designed to target specific DNA

sequences within the genome

They are hybrid proteins

The cleavage domain must dimerize to be active


Each finger contacts primarily 3 base pairs

modify genomic targets in many different organisms and cell types

offer a versatile approach in allele editing & gene therapy

a

Zinc finger nucleases (ZFNs)

Introduction(fok1) (1)

Recognizes a 5bp sequences

Cuts 9&13 bases away with no sequence specificity

Cleavage redirected by nucleases

Components (3)

1.non.sequence.specific cleavage domain

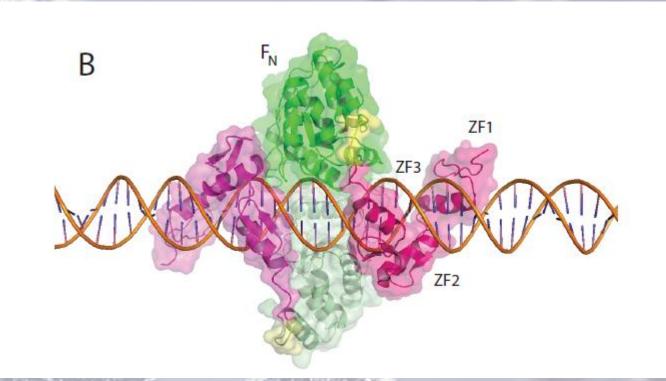
✤2.DNA binding zinc-finger domain

✤3.Peptide linker

ZF(1)

*Discovered in transcription factor III A

Specific DNA binding in Eukaryotic cells


The binding domain alpha-helix into major Groove

• The C2h2 is the most common DNA binding domain

Higher number of zinc fingers increase specificity

GUO & colleagues :

subunit affinity more important than the number of fingers

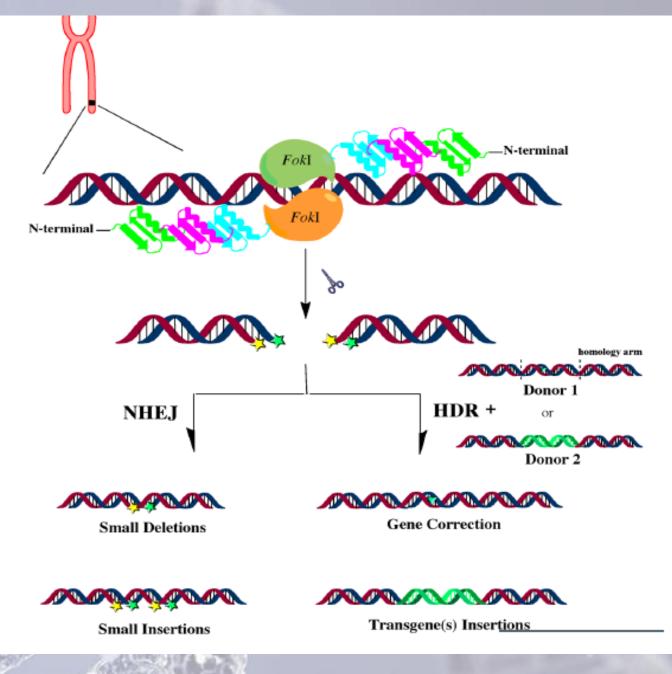
3-dimensional model of a pair of ZFNs on DNA(1)

Functional domains attached to zinc finger proteins. This figure presents a summary of the functional domains that have been demonstrated to be targeted to specific DNA regions by zinc finger proteins.(4)

VP16 ^a	Transcriptional activator
KRAB-A ^b	Transcriptional repressor
Progesterone Receptor and p65	Ligand dependent transcriptional activator
Protein methyl transferase (Suv39H1) ^c	Transcriptional repressor
DNA methyl transferase (M.Sssl) ^d	Transcriptional repressor
DNA endonucleases (Fok1) ^e	DNA cleavage
1000 NO. 20	and the second se

Fusion

Function


Emerging of ZFNs (2)

Efficient method for creating targeted genetic modifications have long been used

using homologus recombination, the efficiency is extremely low!!

ZFNS make double strand breaks at specific sequences

The components and mechanisms of Zinc Finger Nuclease (ZFN) (3)

Zinc finger nucleases (ZFNs)

History (1)

✤is not deep

The production & use of ZFNS represent the merging of several different research threads.

Manipulation & application of ZFNS depend on advances in molecular

technology

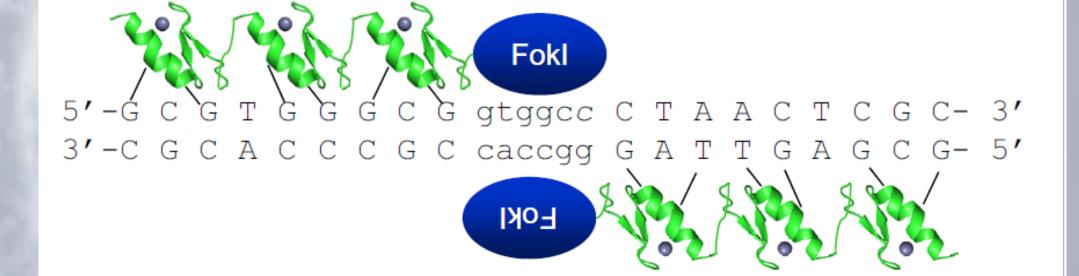
Application (2)

Correct the gene mutation in oncogenes and tumor supressor genes

Knockout of the gene for the HIV-1 coreseptor,ccr5

Genetic disease like lesch-Nyhan syndrome & cystic fibrosis

0


.

Features (2)

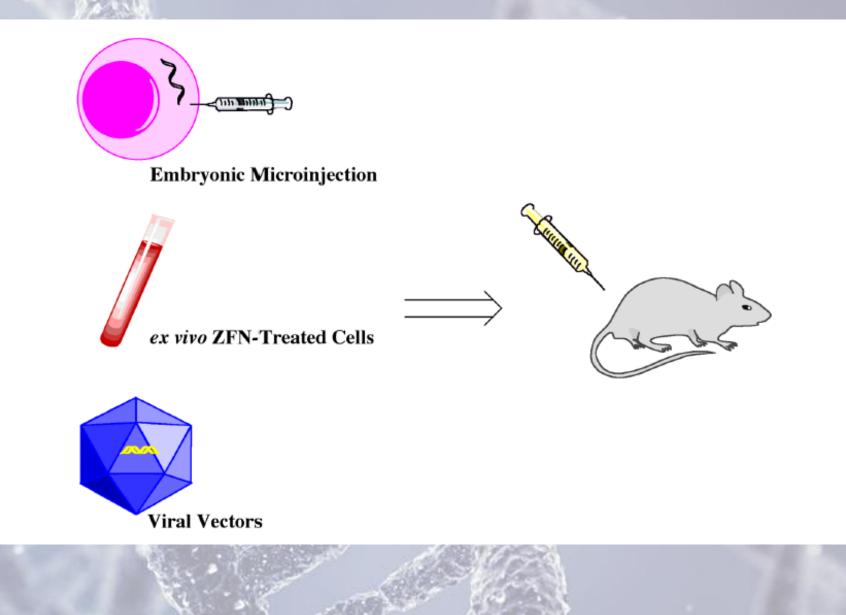
ZFNS have a number of beneficial characteristics

Dimerization is require for cleavage

A tremendous benefit for gene targeting as a monomer is not an active nuclease

heterodimerization of two independently designed ZFNs

(4)


ZFN delivery: (3)

*An efficient transient transfection agent is required

Electroporation has been widely used

Several less frequently : adeno viruses, adeno associated viruses, lentiviruses &

lipofectamine

Therapeutic applications of ZFN

(3)

ZFN-mediated Gene modification In vitro

Cell line	Target gene	Selection	Mechanism	Transfection
CHO cells	DHFR	2 + 2	NHEJ	Electroporation
	BAK/BAX	2 + 2	NHEJ	Electroporation
	DHFR/Gs/FUT8	2 + 2	NHEJ	Electroporation
	FUT8	2 + 2	NHEJ	Electroporation
	GS/BAK	2 + 2	HDR/NHEJ	Electroporation
	<i>IL2R-γ</i>	2 + 2	HDR	Lipofectamine/Electroporation
	ßglobin/IL2R- /CD8	Modular assembly	HDR	Electroporation
	VEGF/HoxB13/CFTR	OPEN	NHEJ	Electroporation
HEK293	CCR5	2 + 2	NHEJ	Electroporation
	CCR5	Modular assembly	NHEJ	Lipofectamine
	erbB2/BCR-ABL/HIV [§]	Context	HDR	Calcium phosphate precipitation
K562	IL2R- y	2 + 2	HDR	Lipofectamine/Electroporation
	VEGF/IL2R- y	OPEN	NHEJ	Electroporation
	IL2R- y	2+2	HDR	IDLV

ZFN-mediated Gene modification In Vitro(3) cont....

Human T cells	IL2R- y	2 + 2	HDR	Electroporation
	CCR5	2 + 2	NHEJ	Electroporation
	CXCR4	2 + 2	NHEJ	Ad5/F35
Human lymphoblastoid cells	IL2R- y	2 + 2	HDR	IDLV
Mouse ESC	H3f3b	2 + 2	HDR	Electroporation
II. DOC	IL2R- YCCR5	2 + 2	HDR	IDLV
	OCT4/AAVS1	2 + 2	HDR	Electroporation
Human ESCs	PIG-A	OPEN	HDR	Electroporation
	CCR5	2 + 2	NHEJ	Electroporation
Human iPSCs	PITX3	2 + 2	HDR	Electroporation
	PIG-A	OPEN	HDR	Electroporation
	AAVS1	2 + 2	HDR	Electroporation
	ßglobin	OPEN	HDR	Electroporation

In vivo				
Organism	Target gene	Selection	Mechanism	ZFN Delivery (Treatment)
	yellow	Modular assembly	NHEJ	Embryonic microinjection
Drosophila	yellow	Modular assembly	HDR	Embryonic microinjection
	rosy/brown	Modular assembly	NHEJ/HDR	Embryonic microinjection
	coil/pask	Modular assembly	NHEJ/HDR	Embryonic microinjection
	kdr	Context	NHEJ	Embryonic microinjection
Zebrafish	gol/ntl	2+2	NHEJ	Embryonic microinjection
	tfr2/dat/telom erase/hif1aa/g ridlock	OPEN	NHEJ	Embryonic microinjection
	actn1¶	CoDA	NHEJ	Embryonic microinjection
	IgM/Rab38	2+2	NHEJ	Embryonic microinjection
Rats	<i>IL2R-γ</i>	2+2	NHEJ	Embryonic microinjection
	Mdr1a/PXR	2 + 2	HDR	Embryonic microinjection

ZFNs delivery: (1)

Hydrodynamic delivery method Efficient for delivery to liver

Non-viral methods may not currently be successful for invivo application

RNAi therapies

Dual targeting

Novel uses (4)

Phase 2 trials for diabetic &ALS(Amyotrophic lateral sclerosis)

Targeted HIV co-receptor CCR5

*AS a therapy for Glioblastoma

Novel uses

Modify the oct4 locus in stem-cells

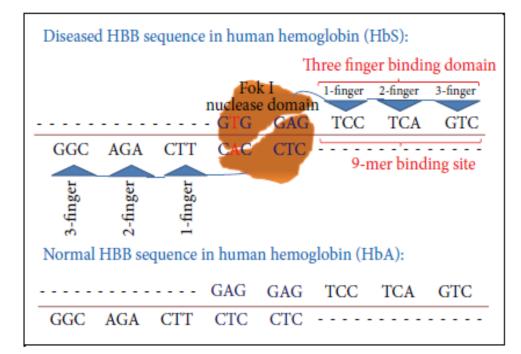
*Delete Bax and Bak from CHO cells

Making resistance to apoptosis

Zfns & sickle cell anemia (4)

**off-target* binding with unacceptable side effects was a problem

Limited cytotoxic effects in engineered zinc fingers


Limited understanding cause slow progress

cure

Ips repaired by a healthy HBB(hemoglobin) gene

Cutting gene at the specific location

Introducing a healthy donor gene

Mutated HBB diseased gene. Normal HbA targetsequence versus single point mutation of diseased HbS gene& target sequence of a three-finger binding domain (1)

Curing with zfns

*zfns bind to the specific DNA sequences

Two nuclease domains at the same location on opposite strands

Successfully in mouse models

Increase specificity with sp1

Ubiquitous transcription factors

Exchange of amino acids in alpha helical region of the 2nd finger of sp1

The EMSA-assay show significant changes in the binding

SP1-binding domain (three fingers)

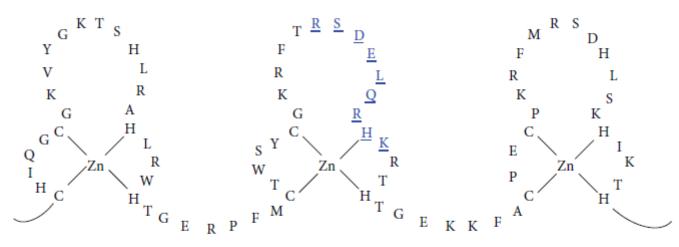


FIGURE 3: Amino acid sequence and structure of the SP1 binding domain.

TABLE 1: List of exchanged amino acids in 2nd finger of SP1.

2nd finger	Amino acids in alpha helical region
SP1 (wild type)	R S D E L K R H K
	Exchanged Amino Acids
CB1	<u>H</u> S <u>SR</u> L <u>I</u> RH <u>E</u>
MR14	R S <u>S T</u> L <u>I Q</u> H K
MQ91	<u>Q</u> S <u>S Y</u> L <u>I K</u> H K
MQ135	<u>Q</u> S <u>SH</u> L <u>IQ</u> HK
MQ151	Q S <u>S Y</u> L <u>T Q</u> H K

(1)

Conclusion(3)

Low frequency of homologus recomibination in cells

The proficiency of precise gene modification, bolestered using of them

♦ In contrast to **<u>RNAi</u>** methods cant be readily used by many lab

Conclusion(3)

Safe and robust viral and non-viral vectors desirable for *in vivo* use

Enable their use on less accessible target cells

Development of improved screening for <u>off target</u> effect and <u>potential toxicity</u>

refrences

- 1. Bach C, Sherman W, Pallis J, Patra P, Bajwa H. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases. Biotechnology research international. 2014;2014.
- 2. Carroll D. Zinc-finger nucleases: a panoramic view. Current gene therapy. 2011;11(1):2-10.
- 3. Chou S-T, Leng Q, Mixson A. Zinc finger nucleases: tailor-made for gene therapy. Drugs of the future. 2012;37(3):183.
- 4. Davis D, Stokoe D. Zinc finger nucleases as tools to understand and treat human diseases. BMC medicine. 2010;8(1):42.
- 5. Shimizu Y, Şöllü C, Meckler JF, Adriaenssens A, Zykovich A, Cathomen T, et al. Adding fingers to an engineered zinc finger nuclease can reduce activity. Biochemistry. 2011;50(22):5033-41.
- 6. Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Molecular Therapy. 2015;23(3):523-32.