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1. Introduction

The term „Ceramics Processing“ describes the process of production of ceramic components 

from natural to synthetic raw materials as well as their disposal. 

Contrary to metals, polymers or glasses, the starting materials for the production of ceramic 

materials are powders. These powders are brought into shape and the components then are 

sintered which is a temperature treatment clearly below the melting point. This technique is 

applied because of the high melting points of ceramic materials which make casting 

impossible or uneconomical. The starting material can be of oxidic or non-oxidic nature; 

some care must be taken in order not to sinter both types of materials in the same furnace. 

Example: silicon nitride would incinerate or combust if sintered in an oxidizing atmosphere. 

Therefore, furnace technology for non-oxidic materials must be different from the one for 

oxidic starting materials. This is the reason why this lecture “Ceramics Processing” can only 

give an overview of the most important materials. The variety of technological procedures is 

so large that it is not possible to describe everything in detail. 

Classification of the most important material groups distinguishes between natural and 

synthetic materials. Natural raw materials are extracted from earth, and these raw materials 

must be further processed. They are blast in quarries, i.e., pieces of rock are exploited and 

worked up to powders (materials) (Fig. 1.1). From these materials pre-products are produced 

by forming or shaping. Metal components can be formed during the process of reshaping 

whereas ceramic components can be produced only by a sintering process. The product in 

later time has to be disposed by recycling or remineralisation.  

Fig. 1.1: Cycle of materials by Ondracek. 
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Synthetic materials are classified into non-metallic materials, semiconductors and metallic 

materials (Fig. 1.2). Non-metallic materials are non-conductors, or insulating materials. 

Metallic materials have a very high electric conductivity; in semiconductors the electric 

conductivity can be found in between. Non-metallic materials are devided into inorganic and 

organic materials. Oxide and non-oxide ceramics as well as glass belong to the group of 

inorganic materials. 

Fig. 1.2: Classification of the main material groups. 

To modify their characteristics ceramic materials are often treated together with organic or 

metallic materials, originating the category of composite materials. From the chemical point 

of view, ceramic materials can be divided into oxides and non-oxides (Fig.1.3). Oxidic 

ceramics can be made of natural or synthetic raw materials. 
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Fig. 1.3: Classification of ceramic materials. 

 

Non-oxide ceramic materials also made of synthetic raw materials are classified into 

carbides, nitrides, borides, silicides. The complete group of metal oxides within the periodic 

system belongs to ceramic materials, mostly made from synthetic raw materials. Silicates are 

made from natural raw materials. In particular within industry, another classification has been 

established which will be discussed on the next topics. 
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Silicates are often divided into coarse clay ceramics and fine ceramics, subdivided into their 

constituents (>1 mm coarse clay ceramics, <1 mm fine ceramics). Further distinction is made 

between porous and dense materials and, depending on the degree of purity of the raw 

materials, for example brightly burning porcelain (almost white) and coloured materials such 

as tiles and bricks (Fig 1.4). 

 

 

Fig. 1.4: Classification of ceramic materials [1]. 

 

Another overview of silicates can be seen from the ternary phase diagram of clay or kaolin, 

quartz and feldspar (Fig. 1.5). Porcelain is a mixture of kaolin, feldspar and quartz. It is 

situated approximately in the middle of this diagram. Stoneware and earthenware can also 

be found here. So, it must have be taken into consideration that a wide range of materials 

with different technological production processes, therefore various procedures, from the 

starting powder to the final product is necessary. 
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Fig. 1.5: Diagram with different ceramic compositions from the system clay or caolin-
feldspar-quartz in dependence of the temperature [1]. 
 

Fig. 1.6 elucidates the reason why ceramic materials are made of powders, which after 

shaping must undergo a sintering process to achieve the final properties and, unlike metallic 

materials, cannot be molten and cast in a mould. This is mainly due to the high melting 

temperatures of these materials, often above 2000°C. Technologically, it is extremely difficult 

to produce molten masses at such high temperatures and cast them into suitable containers. 

In Fig. 1.6 another difference of the ceramics with regard to metals can be seen. Due to the 

nature of the covalent or ionic bonds in the ceramic materials, their electron conductivity in is 

quasi equal to zero. Ionic conductivity is extremely low respectively the specific electric 

resistance is very high. 
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Fig. 1.6: Properties of high-melting oxides [1]. 

 

Uranium compounds with their high density also belong to the ceramic materials (Fig. 1.7). 

Here again, a particular technology, for example for the production of nuclear fuel rods is 

required. 

 

Fig. 1.7: Properties of some Uranium compounds [1]. 
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Refractories are another material group (Fig. 1.8). Mixed oxides of silicon oxide, alumina, 

chromium oxide and magnesium oxide are part of this group as well as refractory bricks and 

chrome-magnesia stones. Refractories present a very high temperature resistivity and a very 

good corrosion resistance and are used in steel, binder or glass industry for kiln lining, 

thermal insulators. 

 

Fig.1.8: Softening temperature of some refractories under load [1]. 

 

Non-oxidic ceramic materials (Fig. 1.9) have extremely high melting temperatures (over 

3000°C) and a very low density. Today, these materials are used for machinery construction 

or electronics, for example, when the emphasis is to achieve low thermal conductivity and 

low specific weight. Movable and abrasion-resistant components are increasingly applied for 

automobile fabrication or aerospace industry where high temperature-resistant materials with 

low specific weight and therefore low inertia masses are needed. 
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a) sublimation 

Fig. 1.9: Properties of some non-oxidic substances [1]. 

 

Fig. 1.9 presents some materials which are not classified among ceramics, for example, 

titanium carbide, zirconium carbide, and titanium nitride or zirconium boride. Despite the fact 

they are produced like ceramics, they show metallic bonds, which means electron 

conductivity.  

Composite materials with different matrixes and reinforcement components have been 

developed in order to combine the advantages of the different material categories (Fig.1.10). 
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Fig. 1.10: Classification of composites. 

 

This variety of materials requires various production technologies. Using the example of a 

carbon brake disc assembled in some classy cars, the following video clip shows how 

complex production technology may be. 

 

  Videoclip: Processing of carbon brake discs 
 

 

Carbon fibres mixed with carbon powder and organic additives are the starting material for 

the production of ceramic brake disks. This fibre-powder-mixture is first put into shape. The 

shaping procedure used here is called uniaxial dry pressing. It is difficult to automate 

processing of fibre materials, therefore production is mostly manually: A plastic model is 

placed into the mould. This will be later burned out; the plastic model geometry then 

generates the cooling channels for the brake disk. Uniaxial pressing is made at slightly 

increased temperatures in order to liquefy the polymer material and facilitate consolidation. 

This almost manual production process makes also clear why brake disks have such a high 

price. A set for the Porsche Carera costs about 7,500 Euro. The organic additives have to be 

burned out after mould release. This is made in an inert gas atmosphere where the plastic 

materials are cracked and the carbon relicts remain in the structure.  
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Burning out of the organic additives has to be made very carefully so that no cracks are 

formed, because it is related to volume expansion. Gas feeding and gas evacuation must be 

extremely well-controlled in order to keep atmosphere constant. After this, the carbon brake 

disk presents a machineable state – like e.g. graphite. However, it is porous and has not yet 

the resistance needed for use in a car.  

This condition is perfect for conventional treatment like boring a hole, cutting, combining the 

cooling channels. After this green machining the carbon disk is infiltrated with silicon 

(element). For this purpose, the disks lying on Si powder are put into a vacuum furnace. 

Temperature is set above the silicon’s melting point – to about 1,500°C, when silicon enters 

the pore channels. Part of the silicon reacts with the carbon to build SiC; part of it remains as 

silicon. So the brake disk consists of carbon fibre, silicon carbide and free silicon.  

The technological processes of porcelain production or fabrication of alumina substrates for 

electronics are different. Therefore it will not be possible to describe in this lecture every 

procedural step, but the most important procedures in ceramic production can be 

demonstrated. 

This brings us to this lecture’s outline: 

We will first take a look on natural raw materials, later on synthetic and organic materials 

needed for shaping. The structure of earth elements and deposits will be discussed in the 

context with natural raw materials. 

Ceramic raw materials have to be prepared for further processing. When quarried out from a 

mine they often appear as pieces of rocks. These have to be milled to a desirable grain size. 

We will talk about this in chapter “Processing of raw materials”. After milling, separating and 

fractionating the raw materials get normally mixed into masses which are no longer subject to 

natural fluctuations, but show uniquely defined profile properties. 

Once the raw materials or masses are accordingly prepared, this must be shaped. 95 % of 

the ceramic powders get in contact with water during shaping. As a start, we will therefore 

concentrate on basic theories, dedicating to the question what happens if powder is 

dispersed in water. What happens on the particles’ surface and how can we modify this 

surface? The intention is reduction of the water content of such suspensions (ceramicists call 

it slurry), because the water has to be removed before sintering starts, and every kilogram of 

water which has to be evaporated, costs money. 
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We will then discuss different forming technologies and differentiate, in particular, fluid, 

malleable and dry procedures. 

Shape forming will be followed by thermal treatment. Water is evaporated during the drying 

process; furthermore organic additives will be burned out. The following sintering process is 

related to a treatment temperature below their melting temperature. We will first talk about 

theoretical basics and then specifically about the silicate ceramic’s firing, about sintering of 

oxide and non-oxide ceramic materials and sintering at elevated pressure. 

At the end of this lecture we will discuss finishing processes and further treatment of ceramic 

materials. With regard to silicate ceramic materials (e.g. porcelain) this means glazing and 

decoration. As for technical ceramic materials cutting, polishing or coating is concerned. At 

the end of these lectures I will once again pick up some typical examples regarding this 

variety of particular technologies and compare procedures at porcelain and brick factories or 

the production of piezoceramics and silicon carbide. 
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2.   Raw materials 

2.1 Structure of the earth 

We first have to learn where the rocks come from which are the basis of ceramic raw 

materials. Then we can understand why these raw materials’ chemical composition is 

fluctuating and what we can do to stop those fluctuations during preparation. 

Fig. 2.1.1 shows schematically the sectional view through the terrestrial body. The inner 

section consists of an iron-nickel core with a radius of 3,500 km. This section is called 

barysphere with a specific weight of 9.6 g/cm³. The oxide-sulphide interlayer has a thickness 

of 1,700 km. We call this layer chalkosphere with a specific weight of 6.4 g/cm³. Lithosphere 

has a thickness of 1,200 km with a specific weight of 3.4 g/cm³. The crust of the earth with 

just a few kilometres thickness has a specific weight of 2.7 g/cm³. 

 

Fig. 2.1.1: Schematic cross section through earth by Suess-Wiechert [2]. 

 

The chemical composition of this earth crust (Fig. 2.1.2) is important for the raw materials’ 

chemical composition. The earth crust consists mostly of oxides. The most important ones 

are SiO2 and Al2O3. Iron oxide is often regarded as a contamination in the raw materials, 

which are commonly undesired once it gives the end product a strong red colour. Magnesium 

oxide, calcium oxide, sodium and potassium oxides are other important components in 

natural raw materials used for the preparation of ceramic products.  
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Fig. 2.1.2: Average Chemical Composition of Earth Crust up to 16 km Depth from Barth, 
Correns, Eskola [2]. 

 

The interior of the earth consists of liquid magma. When it approaches the surface of the 

earth the magma solidifies. Igneous rocks have a so-called calcium-alkaline line and the so-

called sodium and potassium alkaline earth lines. With regard to slow solidification we talk 

about plutonic rocks, such as granite. If magma erupts from a volcano and solidifies very 

quickly, we talk, for example, about quartz porphyries, basalt or diabase, according to their 

chemical composition (Fig. 2.1.3). 

 

Fig. 2.1.3: Geological Tree of volcanic Rocks by Cloos [2]. 
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Chemical composition for example of granite and quartz porphyry is the same, their 

crystallite size is different. Deep inside earth, granite had a long time to crystallise out (big 

grain size), however, quartz porphyry quickly petrified on the surface (small grain size). In 

between there are the so-called dyke rocks, like e.g. quartz. Fig. 2.1.4 describes the types of 

rocks and their mineralogical composition. Chemical composition for typical rocks can be 

found in Fig. 2.1.5. 

 

Fig. 2.1.4: System of magmatic stones with their mineral composition. 

 

 

Fig. 2.1.5: Chemical composition of stones [2]. 
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Fig. 2.1.6 shows the formation of volcanites. Liquid magma is brought very quickly to the 

earth’s surface, crystallising into very fine grains. There is no significant change in its 

chemical composition. Secondary sites can develop from these primary ones. Rocks can 

mechanically weather or chemically change (Fig. 2.1.7), producing chemical or biogenic 

sediments. Mechanical weathering brings water into the rocks, which freezes during winter. 

Stresses occur and the material weathers (Fig. 2.1.8). A rock unit may also weather when 

mineral grains are removed in saline solutions (Fig. 2.1.9). Mechanical sediments are formed 

following mechanical weathering and transport by water or air, chemical or biogenic 

sediments follow chemical weathering (Fig. 2.1.7). This weathered rock in Southern Taiwan 

clearly shows that the processes schematically outlined in nature really occur (Fig. 2.1.10). 

 

Fig. 2.1.6: Formation of Vulcanite. 
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Fig. 2.1.7: Scheme of rock metamorphism via alteration [1]. 

 

 

Fig. 2.1.8: Schematic representation of physical weathering of rocks with multi-mineral 
components. 
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Fig. 2.1.9: Dissolution of mineral grains from rock formation via salt weathering. 

 

 

Fig. 2.1.10: Dissolution of mineral grain from rock formation (South Taiwan, Nov. 2007). 

 

Kaolin develops as a result of weathering of feldspar. Feldspar is a potassium-aluminium-

silicate. There are two different possibilities of weathering: The so-called allitic weathering 

means removal of some of the components from the feldspar structure during millions of 

years, with aluminium hydroxide remaining. Siallitic decomposition means that K2O and 

water leave the system and mineral remains which we call kaolin (Fig. 2.1.11). Weathering 

products can be transported to secondary mineral deposits by water or air (Fig. 2.1.12 and 
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2.1.13). When kaolin is transported and found on secondary deposits, we call it clay. Clay is 

much finer than kaolin, because due to the transport the coarse crystals remain further up, 

the fine ones further down. However, it is more contaminated since in this way metal and 

organic contaminations increase. Transport to the secondary deposits may cause different 

sediment structures (Fig. 2.1.14). When sediments are transported by earth faults into 

deeper regions and come again under pressure, we get, for example, mudstone (Fig 2.1.15), 

lime stone (Fig. 2.1.16), marble or quartzite (Fig. 2.1.17). This hardening is called diagenesis, 

which may also cause chemical changes (Fig. 2.1.15 left). Fig 2.1.18 recapitulates the 

formation of rocks. 

 

Fig. 2.1.11: Allitic and siallitic weathering of potassic feldspar. 

 

 

Fig. 2.1.12: Formation of sediments. 

 



 

21 
 

 

Fig. 2.1.13: Transport and deposition of clastic material. 

 

 

Fig. 2.1.14: Type of sediments: (left) sediments in water – layered -; (right) sediments in 
glacier [Moraine] – unlayered. 

 

Fig. 2.1.15: Diagenesis of clay into clay stone. 
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Fig. 2.1.16: Diagenesis of sand and lime slurry. 
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Fig. 2.1.17: Metamorphosis of lime stone into silica sandstone. 

 

Fig. 2.1.18: Simplified scheme of rock formation by Kukuk [2]. 
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2.2 Deposits 

The feldspar deposit from Fig. 2.2.1 shows besides clear feldspar sections a quartz stock 

and pegmatite sections. The mining waste has to be removed first before exploitation can 

start. Feldspars exist in three pure forms: potassic feldspar, albites and anorthite. In nature 

there are no mixed deposits of anorthites and potassic feldspars. But deposits of albites and 

anorthites, as well of sodium and potassic feldspar can naturally occur (Fig. 2.2.2). 

 

Fig. 2.2.1: Pegmatit from Hagendorf (Oberpfalz) [2].   

 

Fig. 2.2.2: Triangular phase diagram (ternary system) Orthoclase – Albite – Anorthite; 
Variations in the chemical composition of natural feldspars (according to Betechtin).  
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No. Origin SiO2 Al2O3 TiO2 Fe2O3 CaO MgO Loss on 
ignition 

SK 
(PCE) 

  % % % % % % %  

1 Germany 

Siebengebirge 

Wintermühlenhof 97,46 0,46 1,00 traces traces 1,13 -- 

2 Westerwald 

Herschbach 97,94 0,92 0,19 traces traces 0,18 >34 

3 Vogelsberg 

Rainrod 98,42 0,58 0,19 0,20 0,19 0,50 34 

4 Hessische Senke 

Marienrode 97,30 0,65 0,84 0,45 traces traces 0,39 >34 

5 Süd-Hannover 

Kattenbühl 98,30 0,17 0,64 0,69 0,07 traces 0,15 >34 

6 Sachsen 

Glossen 98,39 0,64 0,32 0,20 traces 0,25 34 

7 Italy 97,90 0,36 0,64 0,06 traces traces 0,85 -- 

8 South Africa 94,20 0,29 1,72 0,76 2,01 traces -- -- 

  

Fig. 2.2.3: Analysis of different concrete quartzites. 

 

Quartz is won in quartz dikes. This raw material, as for feldspars, requires intensive milling. 

Quartz deposits have a relatively high purity (Fig. 2.2.3), as there are quartz deposits with a 

SiO2 content >99%. Such raw materials are especially used for the production of glass where 

pure SiO2 grades are particularly demanded. 

Fig. 2.2.4 shows schematically a typical profile of a kaolin deposit. Kaolins developed during 

weathering are normally not much pure. Clays are often found on secondary deposits 

together with brown coal beds. Faults of earth occurred during millions of years cause 

problems to the exploitation of raw materials. Due to earth faults, layers with different 

chemical compositions lay next to each other. Therefore, much care has to be taken with 

regard to the preparation of such raw materials in order to either compensate these 

differences in chemical compositions by mixing or separate them from each other.  
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Fig. 2.2.4: Deposit profiles [3].  

 

 

 

Fig. 2.2.5: SEM (Scanning Electron Microscopy) of clay minerals [2].  
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Grain size of weathered kaolin is extremely small (Fig. 2.2.5). So this raw material does not 

have to be further crushed. But it has to be dispersed, suspended into water. 

Halloysite has a kaolin structure with increased water content. This mineral shows small 

hexagonal kaolinite plates composed of different layers, which curls, since the size of the 

layers varies and chemical bonds between the layers are only possible following geometric 

deformation. This means that the raw material cannot be used for the processing of 

components because its transport in tubes for fully automated industrial facilities is extremely 

difficult. 

The chemical composition of pure kaolin is: 46.6 weight percent (wt. %) SiO2 – 39.5 wt. % 

Al2O3 and 13 wt. % water (Fig. 2.2.6). Its water content can be noticed in Fig. 2.2.6 as loss of 

ignition, which happens when kaolin undergoes thermal treatment, also see detailed 

reviewed in section “Sintering”.  

 SiO2 
% 

Al2O3 
% 

TiO2 
% 

Fe2O3 
% 

CaO 
% 

MgO 
% 

Alkalis 
% 

LOI. 
% 

SK 
(PCE) 

pure kaolonite 
prime quality 

46,6 
46,25 

39,50 
39,28 

0,14 0,64 0,14 traces 0,15 13,9 
13,40 

36 

Kaolin from 
Seilitz  

56,49 30,66 0,57 0,25 0,30 0,96 10,84 -- 

Kaolin from 
Kemmlitz  

56,47 30,58 0,81 0,11 0,06 0,64 11,39 34 

Kaolin from 
Gösen  

52,95 32,65 1,27 0,09 0,61 1,55 10,96 34 

Schnaittenbach's  
raw kaolin  

84,58 11,32 0,52 -- -- 0,24 3,34 33/34 

  

Fig. 2.2.6: Chemical analysis of some kaolins.  

 

As already mentioned clay is more contaminated than kaolin due to transport on secondary 

deposits (Fig. 2.2.7). With regard to sintered products the high content of iron-oxide causes 

massive red coloration (clay bricks).  
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 SiO2 
% 

Al2O3 
% 

TiO2 
% 

Fe2O3 
% 

CaO 
% 

MgO 
% 

Alkalis 
% 

LOI. 
% 

SK 
(PCE) 

Blue clay from 
Saarau  

47,9 36,4 1,8 0,8 0,4 n. b. 12,3 34 

Blue clay from 
Rauske  

50,4 34,8 2,1 0,6 0,5 n. b. 11,4 34/35 

Pot clay from 
Wiesau  

51,3 33,7 1,8 0,9 0,5 2,2 9,7 32 

Premium clay 
from Zinzendorf  

47,6 36,8 1,8 0,03 Spur 0,3 13,4 34 

Clay from Groß-
Saubernitz  

57,0 28,0 3,5 -- 0,6 1,9 9,2 31 

Clay from 
Schwepnitz  

48,8 35,3 1,9 0,03 -- 1,0 12,9 34 

Premium clay 
from 
Hohenbocka  

48,8 34,0 1,3 0,15 0,3 1,8 13,6 33 

Fat clay from 
Großalmerode  

48,1 35,1 1,4 2,2 -- -- n.b. 12,3 33 

 
 

Fig. 2.2.7: Analysis of some selesian, middle German and hessian clays.  

 

With regard to the shifting of rocks the sectional drawing of a magnesite deposit (Fig. 2.2.8) 

makes clear how many efforts are required to exploit these raw materials. Magnesite is used 

for the production of refractory materials for the steel, cement or the glass industry. 



 

29 
 

 

Fig. 2.2.8: Geological Profile through magnesit deposit [3].  

 

Zirconium is a natural zirconium silicate, so a solid solution from zirconium oxide and SiO2.  

 SiO2 
% 

ZrO2 
% 

Al2O3 
% 

TiO2 
% 

Fe2O3 
% 

CaO 
% 

MgO 
% 

Alkalis 
% 

LOI. 
% 

Zircon from 
Madagascar  

33 66 
 

- 

Zircon from Ceylon  33,86 64,25 - - 1,08 - - - - 

Sand from Florida, 
cleaned  

  

- - - - 

Brazilian Baddeleyite  0,70 96,52 0,43 - 0,41 0,55 0,10 0,42 0,39 

Zircon-favas  0,48 97,19 0,40 0,48 0,92 Spur - - 0,38 

Zircon-favas, light 
brown  

15,35 81,64 0,90 0,51 1,10 - - - 0,63 

 

1 

98,5 1,5 

 

Fig. 2.2.9: Analysis of some zirconium raw materials [3].  

 

Raw materials with a high percentage of high alumina are highly attractive materials for the 

production of ceramic components for the electronics and mechanical engineering industries 

and will therefore be separately considered (Fig. 2.2.10). 
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 SiO2 
% 

Al2O3 
% 

TiO2 
% 

Fe2O3 
% 

CaO 
% 

MgO 
% 

Alkalis 
% 

LOI. 
% 

South African sillimanite 14,43 82,97 -- 0,52 0,38 0,16 -- 1,35 

Indian sillimanite  35,13 62,00 -- 0,95 0,17 0,12 -- 1,30 

Indian Cyanite, pre-fired 31,61 67,68 -- 0,35 0,14 0,13 -- 0,05 

French bauxit e 16,50 73,00 -- 1,5 -- -- -- 9,00 
(H2O) 

Upper Hessian bauxite 3,20 50,60 3,0 16,4 -- -- -- 27,10 

Bauxite from Belje Poljjane  24,7 55,7 3,7 0,30 0,40 -- 14,80 

Sintered bauxite from 
Guayana  

4,76 89,72 4,27 0,99 0,05 0,04 0,08 0,29 

Bauxite from Katni, 
Jubbulpure / India  

1,85 59,22 6,46 2,32 0,46 0,05 0,22 29,55 

Diaspore from Missouri  6,56 72,72 3,65 2,37 -- -- 1,00 13,88 

Natural corundum  bis 3 93-98 -- bis 1 -- -- -- -- 

  

Fig. 2.2.10: Analysis of some high-alumina containing raw materials.  

 

This video clip taken at a raw material mine which belongs to the Imerys Group, gives you an 

impression about the size of such a mine. You will see an excavator vehicle collecting 

material from various places in the mine. The mine is a secondary deposit, in other words, 

the material has been already crushed by weathering.  

Videoclip: Deposits 

In the background you see earth-source with various shades of colours. These are raw 

materials with different chemical compositions. The decision for the material’s mixture has 

already to be taken in the mine, in order to get a reasonably constant composition of the raw 

materials to be delivered to the customers.  
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2.3   Natural ceramic raw materials 

2.3.1 Kaolins and clays 

Silicates play an important role within natural materials and therefore their structure and 

characteristics are discussed first. 

Kaolin and clays are essentially composed of SiO4 tetrahedra. Four-free-valence silicon in a 

SiO4 tetrahedron is surrounded by four oxygen ions (Fig. 2.3.1.1). The silicon ion shows a 

positively 4-valence. Eight negative charges show the 4 oxygen ions, meaning that this SiO4 

tetrahedron has, in all, 4-valences negatively charged. For neutralisation, it has either to 

connect to other tetrahedron or saturate these charges with cations. Fig. 2.3.1.1 

demonstrates how these SiO4 tetrahedra can be linked together to form, for example, island, 

ring or chain silicates. If two SiO4 tetrahedra are combined by a corner, which means, by an 

oxygen ion, this construct contains two silicon ions and seven oxygen ions. Consequently, 

this 2-valence-free tetrahedron has a charge of 6-. When a ring is formed, we get the 

chemical formula Si3O9 with also six negative charges. Chain silicates have the formula 

[SiO3]2-. If negative charges are saturated by cations, we get minerals which we find in 

nature. 
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Fig. 2.3.1.1:  Linkage of [SiO4]- tetrahedra (  = Si4+,  = O2-) [1]. 
 
 

Island or 

ring 

silicate 

Chain 

silicate 

Sheet 

Silicate 

Belt silicate 
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[Si4O11]6- or [Si2O5]2- structures are formed, if the SiO4 tetrahedra are linked to sheet or belt 

silicates. They also have negative charges (Fig. 2.3.1.1). To become electrically neutral, 

cations or other positively charged structural components have to attach. Layer silicates, for 

example, show this effect (Fig. 2.3.1.2), when a tetrahedron layer links to an octahedron 

layer consisting of Al, O and OH groups. This construct is called double-single layer, 

because within stacking sequence every third layer shows the same geometric array as the 

first layer. In the lower section, where the three oxygen ions are situated, the tetrahedron 

layer has a negative excess charge, and in the upper section, where just one oxygen ion 

above the 4-valence-freesilicon ion is found, a positive excess charge. These positive excess 

charges in the upper part of the SiO4 tetrahedron are saturated as the octahedron layer with 

negative excess charge attaches to the SiO4 tetrahedron. 

 

 

Fig. 2.3.1.2: Double layered silicates [1]. 

 

 With regard to three-layer minerals a tetrahedron layer attaches to both, the top and the 

bottom of an octahedron layer. These layered minerals form the basis for kaolin and clays 

which in the following are reviewed in detail.  

Water molecules can intercalate between the layers (Fig. 2.3.1.3). This intercalation of water 

molecules influences enormously the processing properties of clays and kaolins. Water 

molecules are attached by hydrogen bonds to the oxygen ions or OH groups of each layer. In 

case of shear stress, this slight bond causes the layers’ shifting against each other. And this 

leads to a certain plasticity (not related to the plasticity of metals) used for plastic forming 

(see chapter forming). 

Double single layers 
Stabilized octahedric 

double layer: (a) kaolinite-

like, (b) mica-like 
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Fig. 2.3.1.3: Orientated layer of water in halloysite [3]. Bottom: Tetrahedra layer; top: 
Octahedra layer from the further unit. 
  

Exchange of silicon atoms in tetrahedron layers or aluminium atoms in octahedron layers 

brings about a variety of minerals. If a 4-valence free silicon ion is replaced by a 3-valence-

free aluminium ion, a cation in the interlayer ensures valence equalisation. This cation is 

highly flexible in the liquid layer and can very easily be exchanged. Here, we talk about ion 

exchange capability (Fig. 2.3.1.4). This exchange capability can, for example, be used for 

water softening, as we will see later on. Anions can also be laid in or be exchanged, if the 4-

valence free silicon ion is replaced by a 5-valence free ion.  

 

Fig. 2.3.1.4: Ion exchange in clay minerals [1]. 
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In addition, the number of water molecules can be varied in the inter-layers. If air humidity 

changes from 90 % to over 96 % to 99 % (Fig. 2.3.1.5), the clay minerals absorb more water. 

Water content increases from 0.4 gram water per gram dry substance at 90 % relative 

humidity up to 1g water/g dry substance at a relative humidity of 99 %. If humidity increases, 

the layer distance also increases (from 9.6 A to 16.2 A, and up to 19.5 A), what leads to a 

chance of the processing properties of these materials. 

 

Relative 
moisture 

[%] 

Total 
adsorption 
in gwater per 

gdry solids 

Average distance d 
[Å] between layer 

packages 

Intermediate 
layer water 

(mean number 
of layers) 

Water amount 
on surface of 

primary particles 
in g per gdry solids 

Observed bulking 

I. 

 

0 0 9,6 
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0 0 

 

no bulking of 
the film      

90 0,40 16,2 2,2 0,18 

II. 

 

      

beginning of 
bulking and 
deformation 

96 0,60 18,5 3 0,30  about 30 % of 
bulking      

 

99 1,00 19,5 3,3 0,80  about 100 % 
bulking 

 
 
 

bulking 
increases up 
to 20 times 
the original 

film thickness 

III. 

A
d

so
rp

ti
o

n
 in
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o

n
ta

ct
 

w
it

h
 w

at
e

r 

 
about 5 

The layer distance 
remains between 

19,4 and 20 Å, 
whereas the (00l)-

reflections 
disappear 

(00l)-reflections 
disappear entirely 

  

 

 

 

Fig. 2.3.1.5: Adsorbed water film between Na-montmorillonite layers with increasing the 
humidity [3]. 

 

As already mentioned, free cations are often exchanged in tetrahedra or octahedral, silicon 

ions in tetrahedron layers, aluminium ions in octahedron layers. The variety of minerals 

which can be found in nature is systematically summarised in Fig. 2.3.1.6. Mixtures of all 

these minerals can also be found in the nature, making their analysis quite complicated. If 3-

valence free aluminium atoms occupy two octahedra each and the third octahedron remains 

empty, this layer succession is called dioctahedral. If 3-valence free aluminium ions in the 

octahedra are replaced by 2-valence-freemagnesium ions, there is a magnesium ion in each 

octahedron and we call this trioctahedral occupation. Than we get the mineral antigorite. If 
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additional water is given to the interlayers, receive the mineral is called halloysite. The 

simplest three-layer mineral is pyrophyllite. If here the aluminium ions are again replaced by 

magnesium ions, we get saponite. If water is added to pyrophyllite, we have montmorillonite. 

 

 

Fig. 2.3.1.6: Structural dependence of most important silicate minerals with layered 
structures [1]. 

 

If in pyrophyllite in the tetrahedron layer the 4-valence-free silicon ions are replaced by 3-

valence-free aluminium ions, we find 1-valence-free cation in the interlayer for valence 

adjustment (muscovite etc.). On a macroscopic level, this layer structure results in flaky 

minerals (Fig. 2.3.1.7). Geological changes by torsion of these platelets result in minerals like 

nakrite or “fireclay”. At this point you can already imagine that the properties of such raw 

materials during transport in a pipeline are different from spherical powder particles. Clays 

and kaolins are very finely grained and normally further grinding is not necessary. They are 

just suspended in water.  
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Fig. 2.3.1.7: Order and disorder in minerals of kaolinite group [3]. 

 

2.3.2  Feldspars 

In tectosilicates the SiO4 tetrahedra are interconnected in a three-dimensional way 

(Fig.2.3.2.1). If 2-, 3- or 4-valence-free chains are linked to the tetrahedra’s corners, 

corresponding networks occur. If in the SiO4 tetrahedra silicon ions are replaced by 

aluminium ions, electrical neutrality is re-established by incorporation of alkali or alkaline 

earth ions on interstitials, and this results in feldspar.  

 

 

Fig.2.3.2.1: Some types of tetrahedral arrangements [1].  
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Fig.2.3.2.2: Half unit cell of lime feldspar projected on (010) [1].  

 

The lattice structure projected on the base level is demonstrated in Fig. 2.3.2.2. The figures 

in this chart are multipliers with the distance from the respective oxygen or silicon ion in the 

basic level. Contrary to the layer minerals on interstitials, the potassium atoms are here firmly 

bound into the structure. 

A selection of feldspars found in nature is summarised in Fig. 2.3.2.3. In microcline a silicon 

ion was replaced in the SiO4 tetrahedron by an alumina ion. A potassium ion ensures valence 

adjustment (potassic feldspar). Its varying crystal modifications have different volumes, which 

may cause cracks during sintering of ceramic masses, as feldspar is used. If valence is 

adjusted with sodium ions or calcium ions, albite (sodium feldspar) and anorthite (calcium 

feldspar), which can also crystallise in different modifications, is formed.  
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Mineral 
Chemical 
formula 

Crystal 
system 

Lattice constants 
Density 
(20 °C) 
[g/cm³] 

Refractive 
index 

n 

n 

n 

Annotations a 
b 
c [Å] 

 
 
 

Microcline K[AlSi3O8] triclinic 8,57 
12,98 

7,22 

90° 41' 
115° 59' 

87° 30' 

2,57 1,514 
1,518 
1,521 

Stable low-tempera-
ture modification, 

ordered 
Sanidine K[AlSi3O8] monoclinic 8,56 

13,03 
7,18 

– 
115° 59' 

– 

2,57 1,521 
1,527 
1,527 

Stable high-
temperature 
modification, 

disordered 

Albite Na[AlSi3O8] triclinic 8,14 
12,79 

7,16 

94° 19' 
116° 34' 

87° 39' 

2,62 1,528 
1,532 
1,538 

Stable low-tempera-
ture modification, 

ordered 
Analbite Na[AlSi3O8] triclinic 8,23 

13,00 
7,25 

94° 03' 
116° 20' 

88° 09' 

2,62 1,527 
1,532 
1,534 

Instable 
modification, 

unordered 
Monalbite Na[AlSi3O8] monoclinic 7,25 

12,98 
6,41 

– 
116° 07' 

– 

 1,523 
1,528 
1,529 

stable high-
temperature 
modification, 

unordered 

Anorthite Ca[Al2Si2O8] triclinic 8,18 
12,88 
14,17 

93° 10' 
115° 51' 
91° 13' 

2,77 1,576 
1,583 
1,589 

ordered 

Celsian Ba[Al2Si2O8] monoclinic 8,65 
13,13 
14,60 

– 
115° 02' 

– 

3,8 1,587 
1,593 
1,600 

 

  

Fig. 2.3.2.3: Properties of some feldspars [1]. 

 

2.3.3 Quartzite and sands 

Quartz also originates from a three-dimensional linkage of SiO4 tetrahedra. The figures 

shown in Fig. 2.3.3.1 describe again the distance from the base level, for example, c axis by 

a factor of 0.33. The SiO4 tetrahedra unscrew themselves spirally from the base level. 

 

Fig. 2.3.3.1: Unit cells of low quartz (a) and high quartz (b) projected on the plan (0001) [1]. 



 

40 
 

 

Fig. 2.3.3.2: Phase transformation of SiO2 with temperature. 

 

SiO2 can be found in different crystallographic modifications (Fig. 2.3.3.2). Low temperature 

modification of quartz (β-quartz) into α-quartz takes place at a temperature of 573° C. Here 

just a marginal shift of silicon and oxygen ions can be observed. The temperature of 870°C is 

known as the high temperature modification of quartz to tridymite. In this case, new bonds 

are formed. Therefore this transformation does not happen very quickly, while the 

transformation from α-quartz into β-quartz is quick and unavoidable. Reconversion of 

tridymite into quartz can be prevented, if it is cooled very quickly, leaving no time for the 

structure to reconvert. Further transformations are related to α-cristobalite at 1,470°C, and 

SiO2 melting at 1,713°C. Such transformations cause tremendous problems for the sintering 

of ceramic products, because they are partly combined with major volume changes. Quartz 

inversion at 573°C leads to a volume expansion of 0.8 %. This expansion of the volume may 

indeed cause cracks in the porcelain during the cooling stages, after sintering. This problem 

is accentuated during the quartz transformation into cristobalite or tridymite. This is 

accompanied by a volume expansion of more than 15 % (Fig.2.3.3.3), which after sintering 

causes stresses in the structure and destructs the components during cooling.  
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Fig. 2.3.3.3: Dependence of the specific volume on the temperature for quartz, cristobalite 
and tridymite [1]. 

 

Transformation temperature may change as chemical impurities are added or when the order 

varies (Fig. 2.3.3.4).  
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Fig. 2.3.3.4: Dilatometer curves of cristobalite with distinct degree of orientation in 
comparison to well-oriented tridymite [1]. 

 

If quartz after adding 5 weight % of feldspar is exposed to a temperature treatment of 

1,300°C and a holding time of 14 hours, a structure which consists of 40 % cristobalite and  

60 % quartz (Fig. 2.3.3.5) can be obtained. If 2wt% CaO is added, at 1,300°C and 14 hours 

holding time, almost 100% of quartz can be found in the sintered product. At 1,400°C and a 

very short holding time, tridymite is formed, and at a slightly higher temperature also 

cristobalite. The situation changes even further if sodium is added. This means that the 

transformation temperature changes depending on the raw material used and their level of 

chemical contamination. Transformation velocities can be influenced by appropriate 

temperature time curves (holding times), so that stresses during cooling can be avoided.  

U = interval of 

transformation 

Δ = hysteresis area 
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Fig. 2.3.3.5: Influence of additives on the temperature and time of quartz transformation [1]. 

 

Materials containing SiO2 are often applied as firing auxiliaries when ceramic materials are 

sintered under increased pressure (hot pressing or hot isostatic pressing). In this case, 

pressure induced crystal transformations (Fig. 2.3.3.6) is expected. These transformations 

are also combined with volume transformations and may cause the components’ damage.  

 

Fig. 2.3.3.6: Pressure-temperature phase diagram for SiO2 [1]. 
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2.3.4  Binary and ternary silicates, high alumina containing raw materials  

Some characteristics of binary silicates are described in Fig. 2.3.4.1. Negative charges of 

SiO4 tetrahedra can be saturated, for example, by magnesium ions (forsterite), iron ions 

(fayalite) or by zirconium ions (zircon). The formation of enstatite takes place if, for example, 

two SiO4 tetrahedra are combined with each other and valence adjustment is made by 

magnesium ions. If silicon ions are replaced by aluminium ions and valence adjustment is 

made with aluminium ions, sillimanite or andalusite/mullite is formed. The systematic 

formation of silicates is presented in Fig. 2.3.4.2. 

Mineral 
Chemical 
formula 

Crystal 
system 

Lattice 
constants 

Density 
(20 °C) 

Refractive 
index 

Linear 
coefficient of 
expansion 
 
[10

-6
 K

-1
] 

a 
b 
c 

pm 
 
 
 [g/cm³] 

n 

n 

n 

Forsterite Mg2[SiO4] orthorhom
bic 

598 
478 
1025 

 3,21 1,636 
1,651 
1,669 

20/1000: 11 

Fayalite Fe2[SiO4] orthorhom
bic 

617 
481 
1061 

 4,35 1,824 
1,864 
1,875 

 

Zircon Zr[SiO4] tetragonal 659 
– 
594 

 4,6 1,94 
1,99 
 

20/1000: 4,5 

Enstatite Mg2[SiO6] orthorhom
bic 

1822 
881 
520 

 3,18 1,650 
1,653 
1,658 

 

Protoenstatite Mg2[SiO6] orthorhom
bic 

925 
874 
532 

 3,10 similar to 
Enstatite 

20/1000: 11 

Clinoenstatite Mg2[SiO6] monoclinic 961 
882 
520 

 
71° 40' 

3,18 1,651 
1,654 
1,660 

20/600: 8,9 

Wollastonite Ca3[Si3O9] triclinic 794 
732 
707 

90° 02' 
95° 22' 
103° 
26' 

2,92 1,620 
1,632 
1,634 

20/800: 12 

Sillimanite Al[AlSiO5] orthorhom
bic 

748 
767 
577 

 3,25 1,657 
1,658 
1,677 

25/300: 3,2 
25/600: 4,6 
25/900: 6,0 

Andalusite Al2[O/SiO4] orthorhom
bic 

779 
790 
556 

 3,14 1,632 
1,638 
1,643 

25/300: 8,7 
25/600: 10,6 
25/900: 11,9 

Kyanite Al2[O/SiO4] triclinic 710 
774 
557 

 3,67 1,717 
1,722 
1,729 

25/300: 8,8 
25/600: 9,2 
25/900: 9,2 

Mullite (3:2) Al[Al1,25Si0,7

5O4,875] 
orthorhom
bic 

754 
767 
283 

 3,16 1,642 
1,644 
1,654 

25/1000: 4,5 

Mullite (2:1) Al[Al1,4Si0,6

O4,8] 
orthorhom
bic 

757 
768 
289 

 3,17 1,650 
– 
1,663 

 

 

 

Fig. 2.3.4.1: Properties of some binary silicates [1]. 
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Type Shape Dimensionality Silicate 

anion 

O /Si 

ratio 

Example 

Name Chemical formula 

Tetrahedrons single 

double 

0 

0 

[SiO4]
4- 

[Si2O7]
6- 

4,0 

3,5 

Forsterite 

Rankinite 

Mg2[SiO4] 

Ca3[Si2O7] 

Rings 3-fold ring, single 

6-fold ring, single 

6-fold ring, double 

0 

0 

0 

[Si3O9]
6- 

[Si6O18]
12- 

[Si12O30]
12- 

3,0 

3,0 

2,5 

Benitoite 

Beryllite 

Milarite 

BaTi[Si3O9] 

Al2Be3[Si6O18] 

KCa2AlBe2[Si12O30]• ½ 

H2O  

Chains single 

double 

1 

1 

[SiO3]
2- 

[Si4O11]
6- 

3,0 

2,75 

Enstatite 

Tremolite 

Mg[SiO3] 

Ca2Mg5[Si4O11]2(OH)2 

Sheets single 2 [Si4O10]
4- 2,5 Kaolinite Al4[Si4O10](OH)8 

Frameworks – 3 [SiO2] 2,0 Quartz SiO2 

 
 

Fig. 2.3.4.2: Systematic formation of silicates [1]. 

 

Mineral 
Chemical 

formula 

Crystal 

system 

Lattice constants 
Density 

(20 °C) 

Refractiv

e index 

Annotations a 

b 

c 

[pm] 

 

 

 [g/cm³] 

n 

n 

n 

Low 

nepheline 

Na[AlSiO4] hexagonal 1001 

841 

 2,62 1,533 

1,537 

at 850 °C  high 

temperature 

modification 

High 

nepheline 

Na[AlSiO4] orthorhombi

c 

1020 

1760 

850 

 2,47  at 1254 °C  high 

carnegieite 

Low 

carnegieite 

Na[AlSiO4] triclinic   2,51 1,509 

1,514 

1,514 

at 690 °C  high 

temperature 

modification 

High 

carnegieite 

Na[AlSiO4] cubic 732  2,34 1,510  

Low leucite K[AlSi2O6] tetragonal 1304 

1385 

 2,47 1,508 

1,509 

at 620 °C  high 

temperature 

modification 

High leucite K[AlSi2O6] cubic 1343  2,47 1,509  

Kaliophilite K[AlSiO4] hexagonal 2706 

861 

 2,60 1,532 

1,527 

metastable 

Kalsilite K[AlSiO4] hexagonal 518 

869 

 2,59 1,542 

1,539 

metastable 

synthetic K[AlSiO4] orthorhombi

c 

901 

1567 

857 

 2,60 1,528 

1,536 

1,537 

stable 

Petalite Li[AlSi4O10] monoclinic 1176 

514 

752 

 

112° 

24' 

2,42 1,504 

1,510 

1,516 

stable only < 900 °C 

Low 

spodumene 

Li[AlSi2O6] monoclinic 952 

832 

525 

 

110° 

28' 

3,15  1,72 at 700 °C  high 

temperature 

modification 

High 

spodumene 

Li[AlSi2O6] orthorhombi

c 

1838 

1061 

1068 

 2,44  1,52  

Low 

eucryptite 

Li[AlSiO4] trigonal 1353 

904 

 2,67 1,572 

1,587 

at 970 °C  high 

temperature 

modification 

High 

eucryptite 

Li[AlSiO4] hexagonal 524 

1113 

 2,33 1,524 

1,520 

 

  

Fig. 2.3.4.3: Properties of some ternary aluminium silicates [1]. 
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In ternary aluminum silicates the silicon atom within SiO4 tetrahedron is replaced by an 

aluminum atom. Valence adjustment occurs by alkali or alkaline earth ions like, for example, 

sodium ions (nepheline) or potassium ions (leucite) etc. (Fig. 2.3.4.3). The feldspars already 

mentioned belong to this group of materials.   

 

Fig. 2.3.4.4: Unit cells of sillimanite (a) and (b) mullite projected on (001) [1]. 

 

 

Fig. 2.3.4.5: Dependence of lattice constants a and b of sillimanite and mullite from Al2O3-
content [1]. 
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Sillimanite and mullite (Fig. 2.3.4.4) are Al2O3-SiO2 mixed crystals which are characterized by 

slight shifts of the lattice spacing in the crystal structure. In Fig. 2.3.4.4 tetrahedral 

coordinated Si atoms and AI ions in octahedral coordination can be found. So that, aluminum 

ions are surrounded by six oxygen ions while Si ions by four. The lattice constant changes 

depending on the content of alumina (Fig. 2.3.4.5). 

 

Mineral Crystal system Specific weight 
before firing 

Increase in 
Volume [%] 

Initial tempera-
ture of mullite-
crystallization 
[°C] 

Cyanite triclinic 3,5 to 3,6 16 to 18 1325 

Andalusite rhombic 3,1 to 3,2 3 to 6 1350 

Sillimanite rhombic 3,23 to 3,25 7 to 8 1530 

 
 

Fig. 2.3.4.6: Transformation of sillimanite group materials into mullite via heating [3]. 

 

 

Fig. 2.3.4.7: Phase diagram for the system SiO2-ZrO2 [adapted from R.F. Geller and S.M. 
Lang]. 
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Further minerals of the sillimanite group are cyanite, andalusite and sillimanite (Fig. 2.3.4.6). 

Zirconia and silica form a peritectic melting compound in zirconium silicate (Fig. 2.3.4.7). 

Peritectic melting point means that above 1,775°C there is equilibrium between a melt and 

solid solutions, in which the melt portion increases by increasing the temperature. Above 

2,600°C the solid solution is completely melted.  

 

Name 
Chemical 
formula 

Amount of Al2O3 
(theoretical)  

[%] 

Amount of water 
(theoretical)  

[%] 

Specific 
weight 

Shrinkage 
[%] 

Transformation 
temperature 

[°C] 

transforms 
into 

Diaspor -Al2O3 • H2O 85,0 15 3,36 – 450 -Al2O3 
Boehmite -Al2O3 • H2O 85,0 15 3,01 33 280 -Al2O3 
Hydrargillite 
(Gibbsite) 

-Al2O3 • 3 H2O 64,5 34,6 2,3 bis 2,4 60 150 Boehmite 

Bayerite Al2O3 • 3 H2O 64,5 34,6 – 60 150 Boehmite 

  

Fig. 2.3.4.8: Properties and heating behavior of hydrated alumina [3]. 

 
Diaspor, boehmite, hydrargillite und bayerite (Fig. 2.3.4.8) belong to these high alumina 

containing raw materials. Al2O3 can be produced from such Al-hydroxides by calcination. 

 

2.4   Synthetic ceramic raw materials  

2.4.1 Silicates 

Depending on the charge, natural raw materials may show slightly differing chemical 

compositions or different grain size distributions. This makes processing in manufacturing 

plants occasionally difficult. And this is the reason for experiments to produce silicates 

synthetically.  

 

Fig. 2.4.1.1: Production of synthetic, amorphous and crystalline sodium dissilicates.  
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Fig. 2.4.1.2: Production of SKS-6 and SKS-6-Co- Granulate at Hoechst. 

 

 

Fig. 2.4.1.3: Structure from amorphous and crystalline synthetic sodium-dissilicate (Hoechst). 

 

For the production of synthetic silicates SiO2 is hydrothermally solubilised with caustic soda 

(Fig. 2.4.1.1 and Fig.2.4.1.2). This leads to an aqueous water-glass solution which is spray 

dried. The result is an amorphous disilicate which after further dewatering is transformed to a 

crystalline disilicate. The crystal structures consist of tetrahedron and octahedron layers with 

water in the interlayers, just like the natural layer silicates (Fig. 2.4.1.3).  
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As these synthetic silicates are stirred in water, calcium ions from the water get integrated 

into the interlayers and the water is softened (Fig.2.4.1.4). Compared to natural layer 

silicates, the pureness of these synthetic materials is an advantage (fig.2.4.1.6). The content 

of alumina and silica is comparable. But there are clear differences with regard to the iron 

content which is particularly responsible for the raw materials’ discoloration. Synthetic kaolins 

could never establish in ceramic industries because of their high production costs. But they 

are used, for example, for water softening within detergents industries. 

 

 

 

 

Fig. 2.4.1.4: Different properties form SKS-6 (Hoechst). 

 

Elements Natural Synthetic 

Al2O3 30,1% 31,7% 

SiO2 47,7% 48,1% 

Na2O 0,08% 0,3% 

K2O 1,2% 0,01% 

MgO - 0,03% 

Fe2O3 0,76% 0,03% 

H2O (110°C) n.d. 5,6% 

Weight loss 14,4% 17,6% 

 

Fig. 2.4.1.5: Chemical composition of synthetic and natural kaolins. 

 

Besides the type of water softening element, the effectiveness of 

the builder in removing these elements is also important. Here, the 

difference in effectiveness especially at higher additions of 

amorphous or crystalline di-silicates. 
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2.4.2 Oxides 

All oxides of the periodic table elements belong to ceramic materials. Fig. 2.4.2.1 shows a 

small selection of the most important oxides which are very attractive due to their field of 

application. Among them we find beryllium oxide, magnesium oxide, calcium oxide, alumina, 

yttria, zirconia as well as hafnium and thorium oxide, which have extremely high melting 

temperatures. Ceramic oxide materials are characterized by their ionic bond and therefore 

show no electronic conductivity. This explains the high specific electrical resistance.  

 

 

a stabilized, only for support 

Fig. 2.4.2.1:  Properties of high-melting oxides [1]. 
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Fig. 2.4.2.2:  Illustration of production of Al2O3 from bauxite according to the Bayer process. 

 

Exemplary for alumina, Fig. 2.4.2.2 shows how this synthetic oxide is made from natural raw 

materials. Bauxite as a natural raw material is the basic material for the production of 

aluminum oxide. Bauxite is a mixture of different aluminum hydroxides, contaminated with 

iron hydroxides, silicates and titanium oxides. First the raw materials are grinded to a grain 

size of < 1 mm. Then they are processed with sodium hydroxide in an autoclave at a 

pressure of 40 bars and a temperature of about 250°C. A sodium aluminate solution is 

formed dissolving the alumina hydrates as aluminates. Iron oxide, titanium oxide and SiO2 

remain undissolved. This so-called red mud (red coloration caused by iron hydroxide) can be 

separated by filtration from the sodium aluminate. Aluminum hydroxide seed crystals are now 

dispersed in the aluminate solution and aluminum hydroxide again crystallizes and can be 

separated by filtration from the sodium hydroxide. This aluminum hydroxide is transformed 

into aluminum oxide by a thermal treatment in a rotary kiln. Because of the sodium hydroxide 

and the high temperatures this is a relatively crucial production process, if aluminum oxide is 

produced in ton sizes. 
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Fig. 2.4.2.3:  Dilatometer curve of ZrO2 [1]. 

 

Zirconia is another interesting oxide. ZrO2 shows particularly problematic properties. 

Depending on temperature, it changes to various crystal modifications, partly causing big 

volume changes (Fig. 2.4.2.3). At slightly above 1,000°C the low temperature modification of 

ZrO2 changes to high temperature modification. This may, for instance, occur during 

sintering. Reconversion happens during cooling. Normally this occurs at slightly lower 

temperatures, and a hysteresis loop is shown. Broadness of the hysteresis loop depends on 

the cooling rate. The enormous volume changes cause stresses and cracks, and this is the 

reason why components cannot be made of pure ZrO2. This crystal transformation can be 

prevented, if almost 20 mol% calcium are added, which causes a solid solution formation. 

Such volume transformations occur in many ceramic materials and have to be considered for 

the production of ceramic products. To achieve a product free from cracks, these crystal 

transformations must be avoided. 
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2.4.3 Non-oxide materials 

Non-oxide ceramic materials comprise the elements silicon, nitrogen, carbon, boron and 

aluminium. The chemical compounds herein are: BN, Si3N4, AIN, SiC, B4C, SiB4(6). The 

elements of which the mentioned compounds result, stand within the periodic table all 

relatively far to the right. This means that their electronic configuration in the outer orbital has 

been already relatively completed. Therefore, the different elements provide each other with 

electrons for covalent bonds without electronic conductivity, what is a typical characteristic of 

the ceramic materials. Further left on the periodic table, the elements like titanium, hafnium 

or zircon which also form carbides with carbon or nitrides with nitrogen can be found. Due to 

the presence of metallic bonds and their electronic conductivity, they are no far considered 

as ceramics. 

 

Fig. 2.4.3.1: Production of carbides. 

 

The raw materials necessary for the production of these ceramic materials are not found in 

nature, but made synthetically. Fig. 2.4.3.1 shows carbides as an example for these 

synthesis pathways. Carbides can be made from the elements, by carbothermal reduction or 

by chemical vapour deposition. With regard to the elements, silicon reacts at appropriate 

temperatures with carbon to SiC. Such production of silicon carbide in ton sizes is too 

expensive. Far more often, SiC is produced by a carbothermal reduction in which quartz 
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powder (sand) reacts with carbon to SiC and CO2. SiC can be then produced in large-scale 

productions. If for scientific purposes there is a need to use high-purity SiC, the SiC should 

be produced from the gas phase by allowing, for example, silicon tetrachloride to react with 

CH4 to SiC and HCl.  

 

Fig. 2.4.3.2: Production of nitrides. 

 

Production of nitrides can be made similarly (Fig. 2.4.3.2): via the elements, by carbothermal 

reduction and from the gas phase. Via the elements: silicon reacts with nitrogen to Si3N4. Via 

carbothermal reduction: quartz powder reacts with ammonia to Si3N4 and H2. From the gas 

phase: silicon tetrachloride reacts with NH3 to silicon nitride and hydrochloric acid 

(SiCl4+NH3-Si3N4+HCl). The same applies for borides and silicides. For shaping processes 

these synthetic materials have to be grinded and crushed, purified and mixed to ceramic 

masses. 
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2.5 Organic raw materials 

Fig. 2.5.1 shows the mechanism of action of different organic additives in ceramic masses. 

More than 95 % of the ceramic materials are processed as suspensions either during their 

preparation or during shaping. In many cases the required solvent is water, but organic 

solvents can be also used. Binders, wetting agent, defoaming or conservation agents are 

normally added to the suspensions. Binders increase the body’s green strength often 

necessary for the transport of the parts after shaping to the kilns. The binders can be 

modified by adding plasticizers or softeners. Releasing and anti-blocking agents reduce the 

friction in compression moulds and increase the powder consolidation. So, normally ceramic 

masses consist of ceramic powders and a large number of organic additives. 

 

Fig. 2.5.1: Function of the different components in ceramic masses. 

 

In Fig. 2.5.2 the variety of organic additives for different shaping processes is shown. Prior to 

the sinter, the additives must be burn out or must be regained by condensation.  
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Dry Pressing Polyacrylates, huminates Dispersants 

Polyvinyl alcohols, tyloses, waxes Binder 

Polyethylene glycols Flow agent 

Slip Casting Polyacrylates, fish oil Dispersants 

Polyvinyl alcohols, modified Binder 

Polysaccharides, polyvinyl butyrals 
 Water, trichlor ethylene, ethanol Dispersing agents 

Tape Casting Oleates, polyacrylates, Fish oil, Dispersants 

Phosphoric acid ester 

Polyvinyl butyrals, polyvinyl alcohols, Binder 

Acrylic resin, plastic dispersions 

Phthalates, polyethylene glycols, Softener 

Phosphoric acid ester 
 Toluol, trichloroethylene, methanol, Dispersion agents 

Ethanol, methyl isobutyl ketone, water 

Injection 
moulding Oleates, polyacrylates Dispersants 

Polyethylene, polystyrene, waxes Binder (Dispersants) 

Polyethylene glycols Flow agents 

Caster Oil 
Porosity inducing 
agents 

Extrusion Polyacrylates Dispersants 

Polyvinyl alcohols, tyloses Binder 

Polyethylene glycols, glycerine Flow agents 

Fig. 2.5.2: Function of organic additives in dependence of the processing technology. 

Fig. 2.5.3 shows additives for aqueous and non-aqueous tape casting. There are different 

binders, plasticizers, condensers and wetting agents depending on the nature of the solvent, 

if organic solvents and water based solvents.  
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Solvents Binders Plasticizers Deflocculants Wetting agents 

Non-aqueous 

Acetone 
Ethyl alcohol 
Benzole 
Bromochlorome-
thane 
Butanol 
Diacetone 
Ethanol 
Isopropanol 
Methylic 
isobutylketone 
Toluol 
Trichlorethylene 
Xylol 

Celluloseacetate 
Butyrate resign 
Nitrocellulose 
Petroleum resign 
Polyethylene 
Polyacrylate ester 
Polymethylmetha-
crylate 
Polyvinyl-alcohol 
Polyvinyl-butyral 
resign 
Polyvinyl-chloride 

Butylbenzylphtalate 
Butylstearate 
Dibutylphtalate 
Dimethylphtalate 
Methylabietate 
Mixed Phtalate 
esters (Hexal-, 
octyldecylalcohol) 
Polyethylenglycol 
Polyalkylenglycol 
Polyalkylenglycol 
derivates 
(Triethylenglycol-
hexoat) 
Trikresylphosphate 

Fatty acids (Glyceryl-
tri-oleate) 
Natural Fish oils 
(Menhaden) 
Synthetics (Benzene 
sulfonic acids) 

Alkylarylpolyether 
alcohol 
Polyethylenglycole-
thylether 
Athylphenylglycol 
Polyoxyethylenace-
tate 
Polyoxethylenesther 

Aqueous 

Water (with 
antifoaming agents 
based on resigns) 

Acrylic polymer 
Acrylic polymer 
emulsion 
Ethylenoxide 
polymer 
Hydroxyethylencel-
lulose 
Methylcellulose 
Polyvinylalcohol 
TRIS. Isocyaminate 
Resign based sliding 
additives 

Butylbenzylphtalate 
Ethyltoluolsulfona-
mide 
Glycerine 
Polyalcylenglycol 
Triethylenglycol 
Tri-N-butylphos-
phate 

Complex vitreous 
phosphates 
Condensed arylic 
sulfoic acid 
Natural sodium salt 

Non-ionic octyl-
phenoxyethanol 

 

 

Fig. 2.5.3: Additives for tape casting of aqueous and non-aqueous slurries. 

 

Generally, binders or plasticizers are used to increase the interval of ignition and avoid crack 

formation during burn out. This makes the whole system very complex and the 

understanding of the ignition products is extremely difficult.  

To understand the coupling behaviour of organic additives on surfaces of oxidic ceramic 

particles, we observe the surface of an aluminium oxide particle (Fig. 2.5.4). Ceramic 

powders normally have a high specific surface and show electric charges in aqueous 

suspensions. Such electric charges may be explained as follows: oxides show unsaturated 

valences at their surface due to the incomplete coordination of atoms. When this oxide 

surface gets in contact with water the surface becomes hydrated. Once these particles are 

linked to air humidity their surfaces hydrate. The number of the developing -OH groups at the 

surface depends on the number of oxygen atoms at the surface, and this in turn depends on 

the crystal structure. With regard to aluminium oxide the oxygen ions are saturated with 

hydrogen at a pH value of 9, this means that at this pH value the particles are electrically 

neutral.  
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Fig. 2.5.4: Creation of a hydrated Al2O3 particle surface and its reaction in acidic and basic 
solutions (schematic).    

 

As the pH value is shifted to an alkaline value (by adding -OH) an OH group combines with a 

hydrogen ion, adsorbs water and a negatively charged surface. When H3O+ is added, water 

regenerates and an additional proton adsorbs onto the surface, therefore a positively 

charged surface is formed. According to the pH value ceramic particles’ surfaces can be 

charged positively or negatively. Organic molecules can be coupled to these positively or 

negatively charged surfaces. In Fig. 2.5.5 oleates adsorbed into an aluminium oxide particle 

surface is shown. These long-chain molecules prevent particles to agglomerate into a 

suspension. This is called steric stabilisation. Fig 2.5.6 shows schematically the steric 

constraint of the powder particles’ approach to a suspension by adsorbing long-chain 

molecules.  
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Fig. 2.5.5: Oleate coupling to Al2O3 surface (schematic). 

 

 

Fig.2.5.6: Steric hindrance due to the approach of powder particles in a suspension by long-
chain molecules settled down (schematic). 
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When negatively or positively charged, surfaces reject each other. It is referred to an 

electrostatic stabilisation (Fig. 2.5.7). Ceramic particles do not sediment in well dispersed 

ceramic suspensions, the so-called stabilized suspension.  

 

                                             (a)                 (b) 

Fig. 2.5.7: Electrostatic (a) and steric (b) stabilisation of colloid dispersions and emulsions  
[G. Lagaly, Universität Kiel]. 
 

In most cases, organic additives are not an exactly defined chemical product. They often 

show a broad distribution of their molecule chain’s length. This can lead to changes during 

processing. Therefore, the so-called di-block copolymers were developed (Fig. 2.5.8); the 

length of the adherent and the stabiliser blocks can be variable and then the characteristics 

could be systematically investigated. Attempts have also been made to understand which 

crack products occur if these additives are burned out under inert gas or oxygen atmosphere.  
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Fig. 2.5.8: Different structures in di-block copolymers. [G. Wegner, MPI für 
Polymerforschung,1996]. 

 

Fig. 2.5.9 and Fig. 2.5.10 show the influence of the additives on the viscosity of slurries and 

the stability of green compacts prepared from this suspensions. If the water content of a 

suspension is low, the costs for drying are also low. After the shaping, any added organic 

has to be burned out. Burning-out times vary considerably according to the process of 

shaping, because different quantities of organics have to be added.  
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Fig. 2.5.9: Change in viscosities of 64.4% commercial available slurries of porcelain mass 
due to the presence of different additives.  
 

1 = without additives 
2 = Cellulose (CMC) (yield stress: 56 Pa) 
3 = Ethylene · vinyl acetate · copolymer (EVAC) 
4 = Polysaccharide (PS) 
5 = EVAC/PS (2:1) 
6 = Polyvinyl alcohol (4-88) 
7 = Polyacrylate 
8 = Polyacrylate dispersion 

Bayceram® VP PN PB 4305 
 

9 = Bayceram® VP PN PB 4305/ 
Bayceram® VP PN PB 4306/ 
Bayceram® VP PN PB 4307 1:1:1 
 

10 = Bayceram® VP PN PB 4305/ 
Bayceram® VP PN PB 4306/ 
Bayceram® VP PN PB 4307 5:1:1 
 

11 = Bayceram® VP PN PB 4305/ 
Bayceram® VP PN PB 4306/ (0,8% additive) 
Bayceram® VP PN PB 4307 5:2:1 
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Fig. 2.5.10: Influence of the humidity content on the green strength of spray dried granulates 
due to the addition of Bayceram®. 

 

Fig 2.5.11 shows a typical curve of the mass loss of organic additives depending on the 

temperature. Maximal burn out rate can range up to temperatures of 800°C and sometimes 

even beyond that. If just one binding agent would be used, and if this burns away at, for 

example, exactly 500 °C, burning-out at this temperature would happen very quickly.  
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Fig. 2.5.11: Dependence of the mass loss of organic additives with the temperature. 

 

During the solid-liquid-gaseous transition, high volume changes occur, what could lead to 

crack formation in the components. Therefore different organic additives are mixed in order 

to conduct to different burning-out temperatures.  

The burn-out of additives added to oxide ceramic materials can take place in air, while in 

non-oxide materials some oxidation at temperatures between 800°C and 900°C can take 

place. Therefore binders are sometimes burned-out in inert gas atmosphere which can be 

observed through a displacement in their burning-out curves. In Fig. 2.5.12, for example, 

polyvinylbutiral, PVB, a binder used for tape casting was burned-out under air and under 

nitrogen. The maximum burn-out rate shifts from about 300°C to about 330°C. In practice, 

holding times are taken at such temperatures to reduce the burning-out velocity.  
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Fig. 2.5.12: Weight loss of polyvinylbutiral during heating under air and nitrogen atmosphere 
[E.Wessely, FH Nürnberg]. 

 

The number and amount of additives to be added varies according to the shaping procedure. 

If for dry pressing the bodies contain 1 vol.% to 10 vol.% of organic additives, injection 

moulding masses contain about 40 vol.% of organic additives.  

A dry pressing article with an organic content of 5 vol.% can be burned-out within a few 

hours. This is often carried out in the aggregates where sintering also takes place. Burning-

out of an injection moulded article with an organic content of 40 vol.% can last up to two 

weeks, depending on the component’s complexity and thickness of its body, and is carried 

out in separate burning-out aggregates (Fig. 2.5.13). 
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Fig. 2.5.13: Weight loss during burn out of organics in dry pressed and injection moulded 
bodies. 

 

2.6 Raw material preparation 

In nature, natural raw materials are not found within a narrow spectrum of grain size and only 

on rare occasions occur as a pure mineral. Grain size distributions are often represented as 

shown in Fig. 2.6.1. In this case, the sum of residues is plotted as a function of the grain size. 

The grain size distribution of kaolin, feldspar and quartz can overlap, showing kaolin the most 

fine grain size, quartz with the coarser grain size and feldspar in between. In case of such 

mixtures, the raw materials have to be separated from each other. In case you succeed to 

separate the grain mixture at about 60 µm, you will get a kaolin and feldspar mixture as well 

as a feldspar and quartz powder mixture.  
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Fig. 2.6.1: Grain distribution of kaolin, feldspar and quartz [2]. 

 

Fig. 2.6.2 shows schematically the selective classing of the ternary mixture kaolin, feldspar 

and quartz powder which can be very often found in nature. The mixture is suspended and 

first separated at 100-200µm. Now we have a mixture of kaolin and feldspar at the left side 

and at the right side a mixture of feldspar and quartz. For the separation of the kaolin-

feldspar mixture we sieve at 20-40 µm. The coarse fraction contains feldspar; the fine 

fraction on this sieve is kaolin. In practice, the mixture usually passes through several stages 

of separation. Feldspar and quartz are separated at 2-4 mm and later again at 200 µm. The 

coarse fraction is quartz sand. The fine fraction is again separated into fine quartz powder 

and a fraction of feldspar.  
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Fig. 2.6.2: Separation of three products via selective separation/ grinding [2]. 

 

Fig. 2.6.3 shows schematically a complete preparation of kaolin. The raw materials are 

charged to the grinding mills and larger stones with diameters within centimetre area are 

separated from the residual material. The screenings are homogenised with water by adding 

dispersants in order to charge the particles’ surface and reduce the water content during 

processing. Coarse fractions are separated from the fine ones in log washers and washing 

mills.  
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Fig. 2.6.3: Kaolin preparation, flowchart of a general wet process [2]. 

 

The fine content is further processed in hydro-cyclones at different stages. Separation grain 

size is about 20-40 µm. Fig. 2.6.4 shows how a hydro cyclone works. This hydro cyclone is 

loaded in radial direction with a suspension. Two flow cycles are formed due to the special 

geometry: the inner flow which in the underflow takes up the coarse fraction and the external 

spiral which discharges the fine fraction at the top. The cyclone’s geometry effects separation 

within a certain grain size area. The more exact grain separation is required, the more hydro 

cyclone series have to be operated in succession.  
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Fig. 2.6.4: Functional scheme of a hydrocyclone [2]. 
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Fig. 2.6.5: Flowchart of a Kaolin preparation plant [2]. 

 

Fig. 2.6.5 demonstrates schematically the multi-stage cyclone separation in a kaolin 

preparation plant. The fines sediment in large slurry tanks, a procedure which we know from 

sewage works. After sedimentation and filtration the material is dried in drying aggregates 

and stored in silos or transported in bags to the customers. 

  Videoclip: Raw material preparation 
 

 
„The material is transported on conveyors from the mine to a preparation hall. The first log 

washer separates the coarse grains from the fine ones. The coarse material sediments on 

the bottom and is transported by bowls to the next step of separation. The fine suspension is 

separated at the other side of the log washer and transported to these cyclones. Before, the 

mixture is cleaned in sieves and the fines are separated from the coarsest grains. In the 

background you see the multi-staged cyclone steps. The coarse material is carried on to 

bunkers and later-on in another video we will pick up the material to get it crushed. But first it 

has to undergo several sieve levels and log washers where the coarse fraction is again 

separated from the finer one.”  
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Fig. 2.6.6: Hydro-separator (classifier and concentrator) [2]. English china clay lovering, 
Pochin&Co.Ltd., Cornwall. 

 

After leaving the hydro cyclones the water has to be separated from the solids. This is made 

in large slurry tanks (Fig. 2.6.6). The coarse fraction mostly consists of a feldspar-quartz-

mixture. 

 

Feldspar and quartz can be separated in electrostatic drum cobbers. For this, the feldspar 

and quartz surfaces have to be charged. Chemical reagents are added attaching to the 

surface. The charging process of feldspar and quartz surface is varyingly strong (Fig. 2.6.7).  
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Fig. 2.6.7: Electric charging of quartz and feldspar versus temperature [2]. 

 

The distinct electrostatic surface charges are used to separate the material, for example, in a 

drum cobber. An electric field is set up on a turning roll. Highly charged material will be 

higher deflected, while less strong charged material will be less deflected. And in this way 

with these drum cobbers quartz and feldspar can be separated. In praxis this separation is 

made in fully automated plants (Fig. 2.6.8). First a sand mixture of feldspar and quartz runs 

into a preheated drum. The surfaces of feldspar and quartz are charged varyingly strong by a 

treatment in HF and the raw materials are separated in multi-staged drum cobbers. 
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Fig. 2.6.8: Flowchart of electrostatic separation of quartz and feldspar [2]. 

 

Flotation is another possibility for material separation. As already discussed, long-chain 

molecules can be docked onto charged surfaces. Docking behaviour varies because the 

materials’ crystal structure is different. This means, for instance, that particles with a higher 

addition of organic additives in a water barrel can be dragged-out to the top. As for quartz, for 

example, relatively few long-chain molecules attach to the surface, but much more with 

regard to orthoclase (Fig. 2.6.9). When a quartz-feldspar mixture is dispersed in water, the 

feldspar particles float towards the top and can be taken off, while the quartz particles 

sediment to the bottom.  
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Fig. 2.6.9: Flotation behaviour of quartz and orthoclase as a function of the pH in HF-acidic 
suspension with Dodecylammonium chloride (500g/t) [2]. 

 

Upward current classification is another possibility for material separation (Fig. 2.6.10). The 

material to be classified is led to a case filled with a liquid and with water streaming in from 

the bottom. A soft water movement from the bottom to the top appears. The coarse particles 

sediment downward and are collected in the first bunker. The fine particles stay longer in the 

suspension phase and sediment in the rear tanks. Prior to further processing the 

suspensions respectively sediments have to be separated into solids and liquids. 
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Fig. 2.6.10: Working principle of multi-chamber upward classifiers (schematic) [2]. 

 

This can be done in different appliances. Planar filters (Fig. 2.6.11), for example, consist of a 

filtration level and an extruding screw which extrudes the material sedimenting on this 

filtration level. The filtrate can be removed from the bottom. Separation of powder and water 

can also be made in so-called rotary dryers where the material is given into a turning drum 

with a slight down-grade (Fig. 2.6.12). The material rotates at a turning drum motion to the 

left, while in the opposite direction hot air is applied to the material which has to be dried.  

 

Fig. 2.6.11: Cross-section of a planar filter for quartz-sand dehydration [2]. 
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Fig. 2.6.12: Rotary dryer [2]. 

 

Another variation is the water jet dryer (Fig. 2.6.13). The compound being charged can first 

be led to a crushing appliance and is then injected into a hot gas path. The fines are 

bunkered in a silo while the coarse fraction falls on a conveyor belt and is again supplied to 

the circulation. 
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Fig. 2.6.13: Water jet dryer [2]. 
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3.   Body preparation 

3.1  Grain size modification 

After the preparation, the raw materials are in many cases still too coarse. Grain sizes within 

micrometer range are required for ceramic components produced by sintering processes, 

because then the number of contact points between the particles during sintering is 

considerably larger. So the raw materials have to be milled, this means that the grain-size 

distribution curve has to be moved towards smaller grain sizes (Fig. 3.1.1). Depending on the 

starting grain size different aggregates are available for milling.  

 

Fig. 3.1.1: Grain size distribution of silica powder as a function of the grinding duration. 

 

Pieces of rock within centimetre range are milled by jaw breakers (Fig.3.1.2). The jaw 

breaker’s left side is fixed while the right side moves oscillating. The desired grain size is 

defined by the gap width which can be adjusted at the jaw breaker. Another variation for 

milling coarse material is the so-called cone crusher (Fig. 3.1.3).  
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Fig. 3.1.2: Jaw breaker [2]. 

 

Fig. 3.1.3: Cone crusher [2]. 
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A turning cone crushes the charging material, and here too, grain sizes lie within centimetre 

range. The roller crusher with blades (Fig. 3.1.4) has rollers equipped with fly cutters which 

turn against each other. The coarse material is filled at the top and the crushing result is 

defined by the gap width, which is the distance between the rollers.  

 

Fig. 3.1.4: Roller crusher with blades [2]. 

 

The width of the gap cannot be of any small size, since the effectiveness of this milling 

process may get lost. Cam roller mills/crushers look quite similar to roller cutter with blades 

(Fig. 3.1.5). Here too, cam-equipped rollers run in opposite direction and the crushing result 

is defined by the rollers’ gap.  
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Fig. 3.1.5: Cam roller crusher [2]. 

 

Impact disc mills (Fig 3.1.6) are typically used at laboratories. In this mill pins get into each 

other, turn and grind, pulverise and smash the material to be crushed. Abrasion of these pins 

is relatively high. Another crushing aggregate for coarse grain ranges is the hammer crusher 

(Fig. 3.1.7). The material to be crushed is filled in at the top and impact crushing is caused by 

a roll’s rotation respectively conjunction with hammers. The so-called Loesche mill (Fig. 

3.1.8) already grinds up to the millimetre range. The material to be crushed is put under big 

granite rollers moving in a circle and the mill material is grinded. 
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Fig. 3.1.6: Impact disc mill [2]. 

 

Fig. 3.1.7: Hammer crusher with sieve and scapular inflow [2]. (1) wave; (2) motor; (3) 
hammer; (4) pins; (5) grid. 
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Fig. 3.1.8: Schematic of a Loesche Mill with hydrocyclone [2]. 

 

Grinding within micrometer range can be made in rotary tumbling millers. The containers are 

filled with milling stones, water and grinding material. The material is crushed or grinded 

between the milling stones. When the mill rotates relatively quickly, the grinding bodies are 

also moved upwards. They drop back to the grinding area and crush the mill material. If 

rotary motion is reduced, a sliding and rubbing movement comes up and the material is 

grinded (Fig. 3.1.9). The ball movement influences the shape of the grain. A splintery grain is 

normally formed during grinding. Rubbing grinding in the majority of cases forms a round 

grain. 
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Fig. 3.1.9: Illustration of the milling aid action in the tumbling mills [2]. 

 

  Videoclip: Comminution in ball mills 
 

 

„We now pick up a feldspar and quartz mixture which has been stocked in this bunker and 

transport it to a ball mill. These ball mills have a capacity for several tons. Their diameter has 

an average up to 2 metres and they are filled with flint pebbles (SiO2). Knowing the 

machine’s input capacity you can make a prediction on the grinding result (see below). The 

diameter of the grinding balls depends on the mill’s size and the grain size you want to 

achieve.” 

If powder of about 100 µm has to be grinded into the 1-5 micrometer range, an attritor mill 

should be used (fig. 3.1.10). Such mills are filled with about 1/3 of grinding bodies, 1/3 of mill 

material to be grinded and 1/3 of water. There are various geometries for these mill types 

(fig. 3.1.11 and 3.1.12). Application of energy can be determined through the input power of 

stirring ball mills and a prediction of the grinding result can be made. 
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Fig.3.1.10: Attritor (schematic). 

 

Fig. 3.1.11: Simplified representation of the grinding chambers in an agitator bead mill 
(Schwedes, TU Braunschweig, 1985). 
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Fig. 3.1.12: Stirrer and stirrer with eccentric wheels in the agitator bead mill. 

 

Fig. 3.1.13 shows the grinding result by varying circumferential speed Vu and solid 

concentration CV. Circumferential speed in m/sec varies between 6.4 and 14.4 m/sec. The 

slip’s solid concentration varies at constant milling time between 10 and 30 %. With this 

variation the medium grain size could be reduced from about 50 µm to about 2 µm. The 

medium specific energy of a mill can be calculated by measuring turning moment, time, solid 

concentration and circumferential speed (Fig. 3.1.14). This curve demonstrates that with the 

material used in this case the application of energy of 103 Jcm-³ causes a particle size 

reduction to circa of 2 µm. This result is also transferable to a whole series of larger mills. It 

means that laboratory results can be transferred to production aggregates.  
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Fig. 3.1.13: Cumulative distribution Q3 versus Stokes diameter xst for different velocities vu 
and solid concentration cv (Schwedes, TU Braunschweig, 1985). 
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Fig. 3.1.14: Average particle size x1.3 versus specific energy Ev for different geometries, with 
variation of processing parameters (Schwedes, TU Braunschweig, 1985). 

 

Fig. 3.1.15 shows that different energy inputs are required depending on the ceramic 

material to be milled. Considerably more energy input is necessary for SiC with a high 

covalent amount of bond compared to ionic bonded Al2O3 or ZrSiO4. 
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Fig. 3.1.15: Specific mass energy required for the milling of different ceramic materials 
(Stehr, Draiswerke Mannheim, 1985). 

 

Fig 3.1.16 shows the impact of the grinding ball size on the grinding result. With a grinding 

body grain size of 1-1.4 mm, the required particle size of 80% < 2 µm is achieved after 315 

min. If after 90 min. the grinding media is replace for a size of 0.6 to 0.8 mm diameter, the 

same particle size is already achieved after 150 min.. Well, it is obvious that in production 

you cannot empty a mill, separate the mill medium from the grinding stock and then restart 

the mill. But you can connect two mill types in series and in this way optimise the grinding 

result. 
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Fig. 3.1.16: Influence of the size of the milling agent on the grinding duration for a desired 
average particle size finer than x80.3=2µm (Stehr, Draiswerke Mannheim, 1985). 

 

All these grinding aggregates have the disadvantage that abrasion of the balls with each 

other as the balls with the mills’ boards are relatively high. Therefore the mill media used for 

stirred media mills is often composed of the same material as the material to be grinded. In 

laboratory scale this is no problem. But as powders are prepared within ton scale, 

inexpensive steel balls or flint pebbles (SiO2 stones) are frequently used. The alternatives are 

to either accept the impurities or to separate the contaminants afterwards by a chemical 

treatment. Abrasion is avoidable in the so-called impact mill where the grinding material is 

accelerated with air and very high pressure and the accelerated particles are shot against 

one another (Fig. 3.1.17). The particles are virtually grinding themselves without leaving 

impurities. However, in this case the shape of the grain is not round like in a ball mill, but 

splintery, because the particles just burst. Compared to round grains such grain morphology 

may influence transport in tubes in a negative way.  
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Fig. 3.1.17: Illustration of an impact  mill (schematic). 

 

3.2  Classification 

After milling, a very wide grain size distribution of the powders is normally available. But in 

order to achieve the defined characteristics for ceramic components after sintering, an exact 

classification of the powder fractions is necessary. 

The easiest procedure for classifying is to sieve (see video clip powder preparation). 

Depending on the mesh size of each sieve, distinct powder fractions can be separated into 

coarser and finer (Fig. 3.2.1). 
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Fig. 3.2.1: Process of sieveing [14]. 

Different kinds of sieves are compiled in Fig. 3.2.2, as compact sieves or grates, drum 

sieves, throw sieves, flat sieves. The grain sizes which can be classified with sieves lie 

between 50 and 100 µm, since production of the sieve meshes are mechanically limited and 

sieves may be blocked by bridging. 

 

Fig. 3.2.2: Overview of equipments and machines used on the classification by sieving 
according to the type of sieve used [14].  
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Finer fractions are separated in so-called air classifiers or air separators (Fig. 3.2.3), in which 

the powder is feed from the top, trickling downwards against an air flow. Following the 

Stoke’s law, finer particles with a certain weight are carried upwards and the coarse fraction 

falls downwards. With this equipment, exact grain sizes cannot be achieved, but various 

series have to be connected to get a reasonably sharp separation. 

 

Fig. 3.2.3: Air classifier [14]. 

 

If separation cannot be performed at dry conditions, but suspensions must be used, the so-

called hydro-cyclones can be used. A suspension is injected into the conic part of the 

cyclone (Fig. 3.2.4). Two different air cyclones occur, moving downward and upward, 

respectively. The downward cyclone picks up the coarse fraction; while the upward cyclone 

the fine ones. Separation effect in a hydro-cyclone is also not exact. Therefore various 

cyclone series with different geometry and thus different separation effects have to be 

connected.  
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Fig. 3.2.4: Schematic illustration and principle of operation of a hydro-cyclone [14]. 

 

Magnetic particles are stronger deflected by rotary motion in a drum cobber than un-

magnetic ones (Fig. 3.2.5) and can be classified in the magnetic field. 
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Fig. 3.2.5: Principle of operation on a magnetic panel [14]. 

 

Powder surfaces can be electrostatically charged and this effect can be amplified by using 

different chemical media (Fig. 2.5.4). An electric field is set up through an earthed roller and 

a backing electrode. Depending on the charge of the powder particles’ surface, the particles 

can be deflected strongly or not by the roller’s movement (Fig. 3.2.6).  

(a) Classification by deflection (magnetic panels orientated 
upwards) 

(b) Classification by excavation (magnetic panels orientated 
downwards) 

(c) Tower classification (magnetic plates) 
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Fig. 3.2.6: Separation model at a electrostatic roller separator [14]. 

 

Another possibility of material separation is flotation. Long-chain molecules can attach at the 

surface of the particles conducting to a float when in a suspension (Fig. 3.2.7). Particles with 

long-chained molecules at the surface float at the top and can be discharged. Particles with 

minor addition or short-chained molecules do sediment downwards.  

A: feed 

W: earthed roller electrode 

B: Brush 

E: Contra electrode 

L: Conductive 

HL: Semi-conductive 

NL: Non-conductive 
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Fig. 3.2.7: Operation principle of the heterogeneous coagulation (a) foam flotation (b) foam 
separation. 

 

After milling and sieving, further steps of the powders’ processing is often difficult due to their 

high specific surface. Moreover the high specific surface can hinder or limit the flowability of 

ceramic powders. In order to facilitate transport of powders, for instance, in moulding 

machines, finest powders have to be granulated.  

 

 

 

(b) 

(a) 

A: Feed 

F: Gravity 

G: Gas (air) 

S: Foam product 

NS: Flotation rest 
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4.   Forming  

This text corresponds to e-book "Introduction to the Principles of Ceramic Forming", ISBN 3-

87264-016-X [4]. 

 

4.1  Introduction 

With the exception of some new developments nearly all ceramic forming processes may be 

classified by three groups, i.e. „casting“, „plastic forming“ or „pressing“. 

In such processes the starting powders are prepared in aqueous or organic solvents in the 

beginning. In case of casting these suspensions are directly processed while plastic forming 

requires partly dewatered feeds and almost completely dry granules are used in the pressing 

process. 

To produce stable suspensions both the surface condition of the powder particles and the 

interaction with the suspension media are of utmost importance. That is why the first chapter 

deals with general principles on this subject and describes the plasticity of ceramic systems 

and the production of granules from suspensions. 

In the second part the individual forming processes will be discussed, laying special stress 

on theoretic principles. Chapter two closes with the description of some new developments 

whose suitability in practical applications is still pending to some extent. Not everyone 

looking for practical help in this introduction will find it. May be this paper serves only as 

basic information for engineers to continue elaborating their own solutions for special 

problems that may arise in practical application. 

 

4.2   General principles 

In almost all forming processes applied for manufacturing ceramic products basically 

powders are dispersed, mixed and homogenized in water or organic solvents. For the further 

treatment of these suspensions it is essential to understand the reactions at the surface of 

the powder particles. 
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4.2.1 Characterisation of suspensions 

4.2.1.1 Particle charging in liquid suspensions 

Ceramic powders normally have a high specific surface to show electric charges in aqueous 

suspensions. Such electric charges may be explained as follows: oxides show unsaturation 

at their surface due to the incomplete coordination of atoms. When these oxide surfaces get 

in contact with water the surface becomes hydrated [1]. 

 

 

Fig. 4.2.1.1.1: Creation of a hydrated Al203 particle surface and their reaction in acidic and 

basic solutions (schematic). 

 

In this process protons from the liquid phase are added to surface oxygen ions and create a 

neutral particle with OH groups at the surface. The surface charges are created subject to 

the pH of the suspension either by absorbing H+ or OH- ions or by dissociating the surface 

charged OH groups. This mechanism can be seen from fig. 4.2.1.1.1. 

The processes appearing at the hydrated surface of an oxide are therefore determined by 

the chemical reactions 
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MeOH(surface) + H3O+
(solution) 

K1  MeOH2
+

(surface) + H2O 

MeOH(surface) + OH-
(solution)        

K2  MeO-
(surface)     + H2O, 

 

where Me is a metal ion at the surface, i.e.  Ba2+, Al3+ or Si4+. By adding H3O+ ions the pH will 

be reduced as the uncharged surface absorbs protons and thus becomes positively charged. 

The addition of OH- ions separates hydrogen from the surface and produces a negative 

surface charge with pH values that are higher than the point of zero charge (PZC) at the 

surface. 

The point of zero charge – frequently also called isoelectric point (IEP) – of the surface 

reflecting the acid-base character is given by the two pKs of the above reactions [2]. 

PZC = 
pK pK1 2

2


. 

 

According to the valence of the cation and the coordination of the oxygen ions the 

number of surface charges will vary and the point of zero charge will be shifted. 

For pure aluminium oxide the PZC lies at pH= 9. For other oxides with varying crystalline 

structures the pH values for the point of zero charge will be different (Fig. 4.2.1.1.2).  

The creation of surface charges in layer minerals like kaolinite has other reasons. In the 

tetrahedral di-silicate layer four-valence silicon ions may be replaced by trivalent aluminium 

ions, in the octahedral gibbsite layer aluminium ions may be replaced by bivalent magnesium 

ions or by other ions of equal valence by incorporating alkali or earth alkali ions into the 

lattice for valence compensation. In case of incomplete valence compensation charges will 

appear at the surface of the kaolinite particles. Moreover, the relatively dissolute alkali or 

earth alkali ions that are incorporated in the intermediate layers of the kaolinite structures 

may be absorbed in aqueous media and create additional negative surface charges (Fig. 

4.2.1.1.3). 
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Fig. 4.2.1.1.2: Point of zero charge (IEP) of different oxides in watery suspensions [2]. 
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Fig. 4.2.1.1.3: Formation of surface charges at clay stacks by liberating alkali ions from the 

intermediate layers (schematic) [2]. 

 

Apart from the cation exchange capacity there is also an anion exchange capacity available 

at the edges of the kaolin particles that give rise to positively charged surfaces. This was 

made visible in an electron-microscope by Thiessen [3] upon the adsorption of negatively 

charged colloidal gold particles (Fig. 4.2.1.1.4). 

 

Fig. 4.2.1.1.4: Adsorption of a negatively charged gold colloid on kaolin particles [3]. 
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4.2.1.2 Electrical double layers on particle surfaces 

In ceramic slurries particles with charged surfaces are surrounded by ions and polar 

molecules. Equally charged ions are repulsed due to the Coulomb force while oppositely 

charged ions and polar molecules are attracted. That is why the concentration of counter 

ions increases at the particle surface and an electric potential is created between the surface 

and the suspension (Fig. 4.2.1.2.1). 

 

Fig. 4.2.1.2.1: Diffuse electric double layer at a solid particle surface in aqueous suspension 

and potential gradient between particle surface and suspension (schematic). 
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At the interface between powder particles and dispersion medium the solid particles are 

surrounded by a layer of absorbed ions that fit relatively tight to the particle surface. 

Helmholtz [4] implied that every negative charge of the particle was saturated by a counter 

ion, but for steric reasons the counter ions will not, as a rule. That is why in the farer 

surroundings of the powder particles a so-called diffuse electric double layer is built up by a 

concentration gradient of counter ions and polar molecules of the liquid (fig. 4.2.1.2.1). The 

potential gradient is no sharp line, as a diffusion of counter ions will be caused by the thermic 

movement of molecules. 

The built-up of this diffuse electrical double layer has been discussed and modified by Stern 

[5] as well as by Gouy [6] and by Chapman [7]. The potential gradient of the diffuse 

interfacial layer can be calculated accordingly both for a continuously charged surface and a 

solution with continuous dielectric constant εr and point charges. Assuming that the charge 

distribution can be described by the Boltzmann equation the result is the concentration of 

counter ions Ni in the diffuse layer compared to the concentration of ions in the solution N i

0
. 

N N
U

k T
i i

i

B

 










0 exp . 

 

The potential energy of the ions Ui is a function of the valence zi of the ion, the electron 

charge e and the electric potential  at the respective position 

Ui = zi e . 

 

For a surface potential 0  100 mV is 

 = 0 exp (- x) 

 

where x is the distance from the particle surface and the Debye constant 















e N z

k T

i i

B

2 0 2
1

2

. 
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The surface potential thus decreases exponentially in the first approximation with the 

distance from the particle surface. When x = -1 is  = 0/2,718 (see fig. 4.2.1.2.1). From the 

ionic strength I = ½ ci zi
2 (ci = ionic concentration in mol/l) results the thickness of the diffuse 

electric double layer as  

2
1

2
1 2000













Tk

INe

B

A




, 

 

where NA  is the Avogadro’s number. For water of 25 °C a thickness of the diffuse electric 

double layer of 9,6 nm is calculated for a 0,001 molar 1:1 electrolytic solution according to 

Horn [8]. 

By modifying the concentration or the valence of the counter ions and by varying the 

dielectric constant εr and the temperature of the liquid the thickness of the diffuse electric 

double layer may be varied which is of decisive importance for the stabilization of ceramic 

slurries. 

 

4.2.1.3 Electrokinetic properties and slip stability 

In an electric field electrically charged particles move with a certain speed, the so-called 

electrophoretic velocity. A part of the diffuse electric double layer passes with the particles 

through the liquid. So a slippage plane is built up within the diffuse electric double layer to 

transport the surface ions or polar molecules through the liquid. In figure 4.2.1.2.1 0 is the 

potential of the particle surface, B the potential of the surrounding liquid, S the potential of 

the Stern layer and * the potential of the hypothetic slippage plane. The potential difference 

between the potential * of the slippage plane and the potential B of the surrounding liquid 

is called electrokinetic potential or zeta potential. The zeta potential can be calculated as 

follows according to Reed [2]. 

,
0 E

f

r

eH




  

 
where η is the viscosity of the electrolyte and νe is the electrophoretic velocity for an imposed 

electric field E. The ratio νe /E is the electrophoretic mobility. 
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The Henry constant fH is equal to 1, when the product of the particle diameter d and the 

Debye constant κ is greater than 100 and 3/2 when d· κ is less than 1. 

The size of the zeta potential depends on the thickness of the double layer D as well as on 

the total charge of the ions settled down on the particle surface. The addition of electrolyte to 

a slip of constant water content leads first to an increase in thickness of the double layer and 

to an increase of the total charge, i.e. the zeta potential grows. 

When the double layer is at it‘s optimum the zeta potential will decrease again, as only the 

potential of the aqueous solution ψB will be increased (Fig. 4.2.1.2.1). This appearance is to 

be observed both at negatively and at positively charged particle surfaces. The pH with a 

zeta potential of 0 is called the isoelectric point (IEP). The schematic course of the zeta 

potential as a function of the pH is to be seen from fig. 4.2.1.3.1. 

 

Fig. 4.2.1.3.1: Zeta potential as a function of the pH of the solution (schematic).  

The increase of the zeta potential both at positively and negatively charged particle surfaces 

corresponds to the increase in thickness of the diffuse electric double layer.  

 

The interaction of two particles with the same surface charge is described in the so-called 

DLVO theory both by Derjaguin and Landau [9] and by Verwey und Overbeek [10]. Van-der-

Waals attractive forces are the driving force for the coagulation of the particles. For small 

particle diameters d and the distance of the particle surfaces h the potential energy for the 

attraction is obtained by the equation 



 

109 
 

 
U

A A d

h
anziehend 

 



2 1

2

24 , attractive 

 

where A1 and A2 are the Hamaker constants for particles and dispersion medium. 

In order to avoid an agglomeration repulsive forces have to react against the particle 

attraction. These repulsive forces may result from the interaction between electric 

double layers. They depend on the size and shape of the particles, the distance h 

between their surfaces, the thickness of the double layer κ-1 and the dielectric 

constant εr of the liquid medium. According to the Coulomb law the potential energy 

of the repulsive forces is calculated as follows for values of d/κ-1 « 1, i.e. for small 

particles with relatively large double layer 

 
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When the particle diameter is much bigger than the electric double layer, as this is normally 

the case for ceramic powder particles in aqueous suspension, i.e. for  

d/κ-1 » 1,  the following equation is applicable 

U
d h
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
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. repulsive 

 

The total potential energy is obtained from the sum of the attracting van-der-Waals potential 

energy and the repulsive potential energy as per 

Utotal = Uattracting + Urepulsive 

 

If the attracting forces between the powder particles prevail in a suspension (Fig. 4.2.1.3.2), 

the particles will coagulate. 

If the repulsive forces prevail because of the formation of electric double layers, suspensions 

may be stabilised as may be seen from Fig. 4.2.1.3.2. 
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Fig. 4.2.1.3.2: Slip stability and potential energy as a result of the surface condition of 

particles in an aqueous suspension. 

 

The addition of longer-chain molecules to a charged particle will moreover result in a steric 

hindrance of the approach of individual particles (Fig. 4.2.1.3.3). 

 

Fig. 4.2.1.3.3: Steric hindrance of the approach of powder particles in a suspension by long-

chain molecules settled down (schematic). 
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The total repulsive potential energy is obtained then from 

Utotal = Uattracting + (U repulsive electrostatic + U repulsive steric) 

The steric repulsion is proportional to the thickness of the adsorbed layer and to the chemical 

composition respectively the concentration of the adsorbed molecules. A particle surface with 

long-chain molecules settled down on it will avoid the direct interaction between two 

neighbour particles especially when the surface charges are partly screened by the polymer 

chains so that the ion concentration around the particles decreases. This corresponds to an 

increase in thickness of the double layer κ-1. 

A good example is the coupling of oleates (that are often used to liquefy ceramic slurries) at 

Al203 surfaces, which is to be seen from Fig. 4.2.1.3.4.  

 

Fig. 4.2.1.3.4: Oleat coupling to a Al2O3 surface (schematic). 

 
Fig. 4.2.1.3.5 shows some dispersing agents often used in ceramic suspensions which may 

couple to powder particle surfaces in a similar way. 

 Videoclip: Coagulation 
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 Inorganic dispersing agents X=Na, K, NH4 

 

 Polysilicates     

 

 Polyphosphates     

 

 Also used: sodium hydroxide, soda 

 

 Organic dispersing agents X=Na, K, NH4; R=CkH2k+1 mit k=0,1,2,3,... 

 

 Polycarbonates   

  

 

Polyacrylates (k=0) and methacrylates 

(k=1,2,3,...) 

 

 Oxalates     

 

 Citrates 

 

 Alcanolamines (Aminoalcohols) 

 

 Also used: Tartrates, phosphonates, styrolene maleics acid copolymerisates,  

           cellulosics, ligno sulfonates. 

Fig. 4.2.1.3.5: Dispersing agents for ceramic suspensions. 
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4.2.1.4 Rheological properties of ceramic suspensions 

The knowledge of the rheological properties of ceramic suspensions is of essential 

importance for their preparation. To know how these slurries react against relatively weak 

outer forces allows understanding the structure of the suspension and the processing 

characteristics required. 

In order to adjust laminar flow in a liquid it is necessary to apply a shear stress. Starting from 

a stationary layer (i.e. the wall of a slip pipe) a velocity gradient dv/dy (Fig. 4.2.1.4.1) will 

build up in the liquid when such a stress (for example pump pressure in a slip pipe) is 

applied. 

 

Fig. 4.2.1.4.1: Model of the viscous flow in a liquid and definition of shear stress, shear rate 

and coefficient of viscosity.  

 

The velocity of the suspension is 0 at the wall of the slip pipe while it is at its maximum in the 

middle of the pipe. The size of the shear rate depends on the shear stress and on the 

material based proportionality factor viscosity η. 
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The viscosity is a measure for the internal friction of liquid molecules counteracting the flow 

of the liquid. If there is a linear relation between shear rate and shear stress we talk about 

Newton‘s liquids (fig. 4.2.1.4.2). 

 

Fig. 4.2.1.4.2: Variation of shear stress with shear rate for different flow behaviour 

(schematic).  

 

If there are large molecules contained in liquids or when suspensions contain lamellar 

particles which repulse each other (i.e. kaolin particles) they can direct themselves in a 

laminar flowing liquid. In addition, in coagulated slurries with high solid yield agglomerates 

may be destroyed when the shear stress increases. Both appearances reduce the flow 

resistance and the shear stress required to increase the shear rate by a certain amount will 

decrease. This behaviour is called shear thinning and may be described mathematically by 

the below mentioned empiric potential law  

 

dv 

dy 
D   

 

 
. 
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D n
1




 
 

η is the apparent viscosity to change with increasing shear strain. In case of shear thinning n 

will be < 1. n > 1 describes stable slurries with high solid yield where the interaction between 

the particles and also the apparent viscosity increases with increasing shear strain. This 

behaviour is called shear thickening. 

In suspensions where molecules or particles build up super structures by mutual interactions 

(i.e. hydrogen bonds or electrostatic effects) they must be destroyed before starting the flow 

processes which is achieved at the yield stress τo. This so-called Bingham behaviour may be 

described by  

   o

dv

dy  
 

The dependence on time of the rheological properties is of great practical importance. So for 

example shear thinning slurries show frequently a decrease in shear stress with time at 

constant shear rate. In other words the viscosity of the slip (slope of the curves in fig. 

4.2.1.4.3) will decrease at constant shear rate with time, the slip becomes more fluid. This 

thixotropic behaviour is often observed for shear thinning suspensions, where super 

structures are decomposed in the course of time. This appearance is reversible, as a rule. 

But in case of a thixotropic slip with yield stress also this value increases sometimes when 

the slip was kept in neutral position because of further super structures that had been built 

up. 

Some materials show an increase in shear stress at constant shear rate with time i.e. the slip 

becomes more viscous with increasing time (Fig. 4.2.1.4.3). 

This rather rare behaviour is called rheopectic and is observed when due to the slip 

movement additional bonds between molecules and particles become possible. 

. 
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Fig. 4.2.1.4.3: Thixotropic and rheopectic behaviour of ceramic suspensions. 

 

The addition of organic additives (binders, deflocculants) to ceramic suspensions may 

considerably change the flow curves. Due to the complicated interactions of the organic 

additives to each other the slip properties are normally empirically optimized in practical use.  

With increasing temperature the viscosity of liquids may be reduced as follows 

 








A

Q

RT
exp

 

where A and Q = const. Normally ceramic slurries are processed at room temperature. But 

small thermal fluctuations may cause enormous changes in processing due to the 

exponential temperature dependence of the viscosity. Moreover, temperatures of 30 to 35°C 

will very quickly lead to the growth of bacteria cultures that may change the properties of the 

organic additives considerably and thus the rheological properties of the slurries. This 

appearance is avoided by adding so-called preservatives.  
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The viscosity of the suspensions is greater than the viscosity of the liquid. The relation of 

both to each other is called relative viscosity ηr. For a suspension with particles without any 

interaction in a Newton’s liquid Einstein calculated the viscosity of a laminar flow as follows: 

p

Liquid

Suspension

r V5,21



  

 

where Vp is the share in volume of the dispersed particles. An empiric enlargement for solids 

concentrations up to 74 vol.% is to be seen from Michaels [11]: 

  


















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,

,

V

V

p

p

 
 

In practical use the correlations between viscosity and solid yield are much more complex, 

but in principle the viscosity will increase with increasing solid yield of the suspension. 

For processing ceramic slurries great effort is made to set high solid yields (low drying rate!) 

and to liquefy the slurries in the optimum way. Fig. 4.2.1.4.4 shows the correlation between 

the zeta potential respectively the formation of a diffuse electric double layer and the 

viscosity on the example of alumina. Graule et al. [12] determined a viscosity minimum in the 

acidic and basic range (Fig. 4.2.1.4.4) in Al2O3 slurries. This correlates to a characteristic 

double layer respectively a high zeta potential in these pH ranges (fig. 4.2.1.4.4). In between 

is a viscosity maximum coinciding with the isoelectric point where the particles develop only 

low repulsive forces. The optimum double layer is built up by varying the defflocculant 

concentration and thus the viscosity minimum for the slip preparation is set. 

. 
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Fig. 4.2.1.4.4: Zeta potential and viscosity of Al2O3 suspensions (from [12], [13]). 

 

4.2.2 Plasticity of ceramic systems 

Plastic behaviour is normally understood as the plastic deformation of a material by means of 

dislocation movements, grain boundary sliding and diffusion processes. In the ceramics 

industry  this term has been transferred to heterogeneous material mixtures with a liquid 

phase that show a permanent deformation after surpassing a yield stress without loosing the 

unity of the body building particles [14]. That is why we also call it plasticity limited by crack 

formation for which maximum stresses and deformations may be specified. 

Although a lot of trials have been run in order to define and mathematically determine the 

terms of plasticity respectively ductility, there is no uniform measuring study available up to 

this date to test this characteristic. The critical point for plasticity evaluation in the main the 

yield stress, measured as load under definite geometric conditions in the beginning of the 

forming process and the maximum achievable deformation up to crack formation. 
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The Pfefferkorn [15] method is still used in many industrial laboratories because of its 

simplicity. In this test, a disk falls on a cylinder manufactured out of a ceramic feed and the 

deformation obtained is the measure for the plasticity of the feed. According to Haase [16] in 

the Pfefferkorn test the kinetic energy of the falling disk is equated with the deformation work 

done. The yield stress f is calculated from the Pfefferkorn values as follows 

 f

m H

V h h


2 0ln ( / )
 

 

m  = mass of the Pfefferkorn disk 

H  = height of the falling disk 

V  = volume of the feed cylinder 

h0, h  = height of the feed cylinder before and after the compressive strain test 

 

If the Pfefferkorn method is applied by considering the compressive strain until crack 

formation under slow and quick test conditions and by taking the penetration velocity of a pin 

under certain conditions as a basis for comparison reasons, you will obtain the plasticity 

figure according to Dietzel [17] with the respective water content. 

In other processes the pressure required to extrude feeds through a die is determined as a 

function of the yield stress. These methods have been described among others by Macey 

[18], Linseis [19] and Czerch et al. [20].  

The extruded body is characterized by its fracture strength. With increasing water content the 

fracture strength passes through its maximum while the deformation pressure decreases 

steadily (Fig. 4.2.2.1). According to Haase [14] the ratio of fracture strength to deformation 

pressure may be used as a criterion for plasticity, as shown in Fig. 4.2.2.2. 
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Fig. 4.2.2.1: Dependence of fracture strength and deformation pressure of a Ca kaolinite on 

the water content according to Czerch et al. [20]. 

 

 

Fig. 4.2.2.2: Evaluation of the curve in Fig. 4.2.2.1 as per the ratio Q = fracture strength 

/deformation pressure. 

 

Various authors, i.e. Händle [21], determine the characteristic of extrudable clay feeds from 

the torque of the Brabender equipment for blend preparation under steady water addition. 

This method is also used for feeds for injection molding whose liquid phase consists of 

molten thermoplastics.  
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According to Norton [22] the influence of the water content on the maximum deformation 

before crack formation may be developed to a function by forming a product with the counter-

influence on the yield stress that passes through its maximum at a water content that is 

characteristic for the feed. But also by this method no hint on the suitability for a certain 

forming process will be obtained, either. 

The behaviour of plastic ceramics feeds under a cyclic deformation standard and the 

observation of the stress-strain curves obtained have been discussed in detail by Astbury, 

Hennicke, Kersting, Kienow and Kobayashi [23-26]. By these torsional cyclic loading tests, 

where the torsional stress varies between +  and -  (in periods of about 1 min.), the elastic 

and plastic deformation is recorded. The area within the stress-strain hysteresis curves is a 

measure for the deformation energy that is converted into heat (Fig. 4.2.2.3). 

 

Fig. 4.2.2.3: Stress-strain curves under cyclic torsion tests according to Astbury [23] (only the 

1st to the 4th and the equilibrium cycles are shown). 

 

Although the plasticity characteristics are not exactly defined their values of influence will 

briefly be discussed here. 

The plastic behaviour of clay based feeds is determined by the quality and quantity of the 

liquid phase, the concentration of dissolved salts, the type of solid phases, their particle size 

distribution and morphology and by the ion concentration on the particles. These correlations 

are described in detail by Moore/Hennicke [27]. 

Water has a great adsorption tendency to oxide surfaces and clay minerals. Only 2 mg per 

gram of kaolin with a specific surface of 13m2/g are sufficient to obtain a mono-molecular 

covering and a particle unity by hydrogen bonds. Thicker layers of disoriented liquid water of 
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more than 10 nm (circa 30 H2O layers) lead to a mechanical movability of the particles with 

still efficient residual forces. The fine solids particles may also be unified by the influence of 

interfacial forces of the water in the small gaps and cavities. In case of still higher water 

contents the feed becomes liquid, usually showing the non-Newtonian behaviour of shear 

thinning and an intensified thixotropic appearance. Thus the water content is of great 

importance for the plasticity of clay minerals and must be optimized for the respective 

forming process. 

With decreasing grain size of the inorganic powder particles both the number of nearest 

neighbours and the probability of a new adhesion after the deformation increase, so that 

plasticity will be improved. Platelets (i.e. kaolinite) show a favourable behaviour towards 

plasticity as they allow sliding over vast areas without loosing their unity [28] when cohering 

in parallel to each other. According to Mostetzky [29] model observations of water layers 

between balls or plates show for the latter a lower shear stress to be overcome which 

explains the positive influence on plasticity. 

The ion exchangeability of clay based raw materials leads to a limited bonding of the clay 

minerals to other solid constituents of the feed like feldspar particles. This bonding capacity 

increases with decreasing thickness of the platelets. According to Hofmann [30] for 

montmorillonite with its coating by Na+ ions this capacity and thus the influence on plasticity 

may be intensified by swelling up the inner crystalline layers. 

If clay based particles are missing in an inorganic powder mixture to make the feed plastic 

(i.e. in oxide or non-oxide ceramic masses), plasticity can be obtained by adding organic 

polymers. Such feeds are used for extrusion and injection molding. The additives used, their 

processability and their function are described in chapters 3.2.2 and 3.2.3. 

 

4.2.3 Granulation 

Pressing techniques with powder mixtures being compressed in almost dry condition are 

preferred for forming ceramic products with appropriate geometries. Ceramic starting 

powders are normally milled down to the micrometer range in order to increase their sintering 

capacity. On the other hand, attractive forces arise at the particle surfaces and lead to 

uncontrolled agglomerations and a bad processability. In order to optimize the flowability and 

to increase both the bulk density and the storing capability of comminuted powders in silos 

and hoppers they are granulated before further processing. 
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4.2.3.1 Production of granules 

Spray drying is the most common thermal granulating process in ceramic production. 

Horizontal fluid bed granulation and spray freeze granulation are also thermal processes but 

have never approached the importance of spray drying. 

Besides fluid bed granulation and compaction the layer agglomeration is quite suited to 

overtake the spray granulation for economic reasons. That is why this method will be 

explained here in detail. An explicit survey on the variety of granulating processes is to be 

seen from Capes [31]. 

 

Spray drying 

In this thermal granulating process a ceramic slip is atomized to create fine spherical shaped 

drops which are dried in a hot gas stream. We have to distinguish in the main between rotary 

and nozzle atomization as they will lead to different distributions of the granule sizes (Fig. 

4.2.3.1.1). 

 

Fig.4.2.3.1.1: Spray driers with different atomizing modes (schematic). 
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In the case of rotary atomizing the suspension is partitioned into little drops by centrifugal 

and gravity forces when it leaves a rotating disk. In case of nozzle atomizing different 

suspensions may be atomized against the hot gas stream through multi-material nozzles. 

After drying in the hot gas stream, the primary particles are bonded by chemical bridging 

(Fig. 4.2.3.1.2), by attraction forces between solid particles and by interlocking as described 

by Rumpf [32, 33]. Due to interfacial and capillary forces of the free liquid surfaces in the 

chemical bridging, adhesion and cohesion forces in not free moving binder bridges play also 

a role. Granules present various amounts of liquid between the primary particles (Fig. 

4.2.3.1.3) depending on their drying condition. By the free fall of the granules against the hot 

gas stream in the spray dryer, with a temperature of circa 300°C, the water in the hollow 

spheres evaporates so that shrinkage and hardening of the granules take place. In order to 

ensure uniform vapour diffusion from inside the granules to their surface, the temperature 

and the falling time in the spray dryer must be selected very carefully to avoid both that the 

granules incrust at their surfaces and that the vapour transport will be hindered. 

 

Fig. 4.2.3.1.2: Model of chemical solid-state bridges, due to the presence of 

Trichlormethylsilane during spray drying [34]. 
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Fig. 4.2.3.1.3: Four stages of agglomerate structures depending on the water content [35]. 

 

In order to achieve sufficient green strength after the shaping process, mostly organic 

binders are added to the suspensions. They enrich at the surfaces on the granules during the 

drying process, due to their higher evaporation temperatures compared to pure water, so that 

further transport of water vapour is hindered and a uniform water transport is no longer 

possible. This leads to cavitation or, in case of high vapour pressure inside the granules, the 

thin granule wall may burst open (Fig. 4.2.3.1.4). Typical granulate shapes after spray drying 

are to be seen from Fig. 4.2.3.1.5. The humidity and binder content of the granules will affect 

their compressibility in the subsequent pressing process and has to be adapted to the 

respective requirements.  
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Fig. 4.2.3.1.4: Drying operation in the spray drying process with different binder contents [35] 

(schematic). 

 

Fig.4.2.3.1.5: Alumina spray granule (SEM). 

 

 Videoclip:Granulation by spray drying 
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Layer agglomeration  

In the case of layer agglomeration fine-dispersed powder particles agglomerate to form 

granules upon addition of water and organic binders while moving in a powder bed. After 

nucleation, where secondary grains are created by the movement (mixing, stirring, fluid bed 

etc.) of the powder bed and by simultaneously adding water and after the agglomeration to 

bigger particles, agglomerates are formed by layer-wise growth of concentric rings (Fig. 

4.2.3.1.6). 

In the nucleation range, the growth rate of the granules increases considerably and 

achieves a maximum while forming bigger particles (Fig. 4.2.3.1.6). In [36] the 

following law is used to describe the growth rate of discontinuous drum granulation: 

dD

dt
c D c t 1

3

2exp ( )  

ci  = constants 

D  = diameter of granules 

t  = time of rotation 

 

 

Fig. 4.2.3.1.6: Mechanisms of grain size modification and growth rate of granules at different 

revolutions of the pelletizing drum [36]. 
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In the range of layerwise agglomeration the growth rate decreases again, the number 

of primary particles decreases and a further growth can be achieved only by 

agglomerating small secondary particles. A further movement of the granules may 

result in destruction by abrasion again. 

The layer agglomeration of ceramic materials is done in pelletizing disks, mixers or in 

a fluid bed as shown in Fig 4.2.3.1.7. In all these processes the particles are moved 

in relativity to each other and agglomerated by impact, provided that the sticking 

forces are greater than the always existing separating forces. The agglomeration may 

be affected by the initial grain size, the temperature, the drum revolution, the gas 

velocity, the liquid quantity and by the organic binder contents. These values 

influence the further processability of the granules like it is also the case for the spray 

granulation process. 

 

Fig. 4.2.3.1.7: Granulation by layer agglomeration [37]. 
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4.2.3.2 Characterization of granules 

Flowability 

The two essential characteristics of granulates with regard to their processability are 

flowability and compressibility. For the filling of pressing molds and the behavior in silos and 

hoppers, mono-disperse spherical granules with smooth surfaces and high fracture strength 

would be favourable. Granules consisting of ceramic primary particles, agglomerated by 

spray drying or layer agglomeration however, have a relatively wide grain size distribution 

and rough and porous surfaces. Moreover, they contain residual humidity and interfacial 

active organic additives which affect their flowability. The flowability is often determined by 

measuring the time required to pour granules out of standardized vessels or by determining 

the angle of response when pouring out powders. The influence of adhesion forces on the 

flowability may be better understood when observing a granule rolling over an uneven 

surface, as described by Frisch et. al. [38], the uneven surface consisting of compressed 

granules of the same type. 

According to fig. 4.2.3.2.1 a granulated grain rolls down if the moment MI is somewhat 

greater than MII. Under equilibrium conditions the following applies 

      KHr1 =  (KN + KA) r2 

   resp. G sin r1 = (G cosr + A AA ) r2  

 

where 

KH  = rolling force 

KN  = normal force 

KA  = adhesion force 

σA  = adhesion stress 

G  = mass of the granule 

α  =  angle of inclination 

r1  = radius of the granule 

AA  = sliding surface 

r2  =  radius of the sliding surface 

 



 

130 
 

According to Frisch et al.:    

sin = 
6 13

2







A f

r
f cos  

where = density of granules and f =
r

r

2

2

1

2
4

. 

 
Despite great deviations the relation between sin α and 1/r1 can be seen from the results 

obtained from silicate ceramics granules (Fig. 4.2.3.2.2). For granules with a diameter of 200 

μm  adhesion stresses were calculated between 0,2 and 0,02 N/mm2 assuming adhesion 

forces of 10-6 to 10-7N, f-values of 10-3 to 10-5 and sliding surface radii of 2 to 3,4 μm. 

 

Fig. 4.2.3.2.1: Granule rolling on an uneven surface (explanations see text [38]). 

 

 

Fig. 4.2.3.2.2: Sinus of the angle of inclination on the surface of a pressed body as a function 

of the reciprocal grain size of the granules [38]. 
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Strength of individual granules 

A further important characteristic of granules both with regard to their flowability and 

their compressibility is their strength. To determine the strength of individual granules 

they are fractured between two stamps in a compression test (Fig. 4.2.3.2.3). 

Assuming the ideal spherical shape and referring the fracture stress to the meridional area of 

the sphere [31], the fracture strength of the granule σg is calculated as follows [40]. 







4
2

F

d

B  

with 

FB  = fracture load 
d  = granule diameter 

 
In practical use the general correlation 

FB  =  const  dn 

is observed with n varying between 1 and 2. 

In [31] these variations are related to either the shell formation (n=1) or to the homogeneous 

distribution of the contact forces between the primary particles over the whole granule cross 

section (n= 2). That means that variations in the granule structure and size distribution result 

in a wide strength distribution of the granules. This can lead to problems during pressing and 

will be discussed in chapter 4.3.3. 

 

Fig. 4.2.3.2.3: Determination of the strength of individual granules in the pressure test 

(Courtesy  of Dr. Rainer Oberacker, Karlsruhe University [39]). 
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4.3 Forming  

During the forming, deflocculated slurries, plasticized materials or granules are 

transformed into green bodies with defined size, shape, density and reproducible 

tolerances. The geometric dimensions required and the quantities to be produced are 

decisive for determining the forming process to be applied. The shrinkage caused by 

the subsequent firing process is subject to the fluctuations of the green density and 

the dimensional tolerances. The reproducibility of these sizes and the avoidance of 

defects that can hardly be cured any longer in the subsequent sintering decide on the 

economy of the respective forming process apart from investment and personnel 

costs. In order to achieve a sufficient green strength for the transport of the parts, but 

also to optimize the processability characteristics of the initial materials for the 

respective forming process, organic additives are added to the ceramic feeds to fulfil 

different functions (Fig. 4.3.1). 

 

Additive    Function 

Ceramic powder   Matrix 

Sintering additive    Densification aid 

Solvent    Dispersion 

Deflocculant                        Control of surface charges and pH, dispersion 

Dispersing agent   Deagglomeration 

Wetting agent    Reduce of the surface tension of the solvent 

Antifoaming agent   Avoidance of bubbles 

Preservative    Avoidance of bacteria cultures 

Binder      Green strength 

Plasticizer     Flexibility 

Softener    Flexibility 

Lubricant     Reduce die and internal friction, mold release 

 
Fig. 4.3.1: Functions of processing additives in ceramic feeds. 
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Depending on the forming process applied, either organic or inorganic additives with 

different molecular weights and chemical compositions are added to obtain the 

processing characteristics required. The interaction of the additives to each other is 

extremely complex so that the concentrations are mainly determined empirically in 

practical use. While ceramic products are dried and further sintered, the organic 

additives will decompose. During this step, extra care must be taken due of the partly 

critical decomposition products arising. The productivity of a forming process is in the 

main subject to the possibility of manufacturing as close to the final contours as 

possible, i.e. to the extension of finishing that may be required. Without any finishing 

the dimensional tolerances of the essential forming processes are within the values 

indicated in Fig. 4.3.2. Especially for structural ceramics often much closer 

dimensional tolerances are required which may be achieved only by expensive 

finishing of the sintered products with diamond tools. Such processing costs should 

be avoided as far as possible both in the green and in the sintered stage as they may 

multiply the other manufacturing charges of a ceramic component. 

 

Forming process Tolerances in % 

Slip casting    ±2,0 to ±3,0 

Injection molding   ±0,5 to ±1,0 

Uniaxial dry pressing  ±0,5 to ±1,0 

Isostatic pressing   ±0,2 to ±0,5 

Extrusion    ±1,5 to ±2,0 

Fig. 4.3.2: Tolerances of ceramic components made from Si3N4, SiSiC and Al2TiO5 after 

sintering for different forming processes. 
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4.3.1 Casting processes 

4.3.1.1 Slip casting    Videoclip: Slip Casting    

In the slip casting process, a porous, water absorbing mold (mostly made of gypsum) will 

absorb water from an aqueous suspension so that a solid cast is formed. 

In the drain casting process (Fig. 4.3.1.1.1) the cast copies the inner contour of the 

mold so that very complex component geometries can be manufactured that way.  

In solid casting a slip is being refilled until the dewatered cast fills up the plaster mold 

completely. Both in the drain casting and in the solid casting process only small wall 

thicknesses can be realized as the cast formed will more and more hinder the water 

penetration.  

Assuming a stationary condition without any sedimentation with non-compressible cast the 

increase of the cast thickness dx is calculated as follows: 

dx = 
c

x
 dt 

where the material constant c respects the permeability and the drain volume of the cast as 

well as the solid yield and the viscosity [41]. 

By integration with the initial conditions x = 0 at t = 0 the result is 

x ct 2  

resp. the casting rate 

x

t
const

2

  . 

So in the slip casting process the cast thickness increases proportionally with the square root 

of time. 
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Fig. 4.3.1.1.1: The drain casting process (schematic) [42]. 

 
In order to minimize the drying effort the water content of a slip should be set as low as 

possible (25-35 wt.%). Moreover, the range of deflocculation with minimum viscosity shall be 

as wide as possible so that operational fluctuations will not cause too heavy changes. The 

correlations between the electrolyte content of the slip, the casting rate, the green density 

and the green strength are to be seen from Fig.4.3.1.1.2 on the example of an Al203 slip. 

While the casting rate decreases with increasing electrolyte content, the dependence on t  

of the cast thickness is valid for all concentrations. Optimum (low) viscosity leads to an 

exceeding green density and low shrinkage after subsequent sintering. Green strength 

increases with increasing deflocculant (binder) content. 
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Fig. 4.3.1.1.2: Results obtained when casting an alumina slurry with varying concentrations 

of Na-carboxymethyl cellulose as deflocculant/binder: (top left) slip viscosity and thixotropy, 

(top right) casting rate, (bottom left) density and shrinkage of cast, (bottom right) strength of 

dried casts [43]. 

 

Apart from the time variations in the slip characteristics (thixotropy) the change of the organic 

additives under mechanical stress (i.e. destruction of the molecule chains during pumping) 

and the change in rheological characteristics involved are important for the processing in 

practical use. Bacterial proliferation on slurries after a too long storage or processing time will 

affect the viscosity and thus the casting rate of slurries, conducting to different end 

shrinkages respectively changes in the dimensional tolerances of the components. 

Conserving agents will avoid the growth of bacterial cultures but have to be changed in 

regular intervals as bacteria become resistant with time. Besides the variation of conserving 

agents thorough periodical cleaning of the whole pipe system is of special importance to 

avoid slip alterations, especially in the warmer seasons where bacteria grows quicker. 
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4.3.1.2 Pressure casting 

Pressure casting has first been developed for manufacturing of voluminous thick-walled 

components in sanitary ceramics like for example sinks [44], but later-on this process has 

been transferred to other ceramic materials and components, as well. Applying pressure 

during the casting process will reduce the casting time required and allow for different wall 

thicknesses in the solid casting process (Fig. 4.3.1.2.1). 

 

Fig. 4.3.1.2.1: Pressure casting (schematic). 

 

Fig. 4.3.1.2.2: Cast thickness as a function of t  and pressure [47]. 
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Porous normally non sucking polymers are used as materials for the molds. Upon formation 

of the ceramic cast the porous polymer mold is opened and is rinsed with water from behind 

to release the cast. As the mold material must not be self-drawing it needs not to be dried. 

For pressures up to about 40 bars that are usually applied in pressure casting Frassek [45] 

describes the pressure dependence of the cast thickness x by the following function: 

with 

where  

km  = average permeability coefficient of the formed cast (cm2) 

P  =  pressure difference (Pa) 

t  =   time (s) 

η =   viscosity of the solvent (mPas) 

ns  = cavity factor of the cast (cm3/cm3) 

c  =  solid yield (cm3/cm3) 

According to Akers und Ward [46] the average permeability coefficient is a function of the 

pressure as per the following equation 

km  ko  P
-s 

where s = compressibility coefficient and ko = initial permeability. At s = 0 the cast is 

incompressible, while at s = 1 it is completely compressible. 

 
From the two above equations the casting rate is calculated as follows: 

x

t

k Po

s2 12
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
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For compressible casts (s  1) there is only a small increase of the casting rate with 

increasing pressure. For most of the systems s is between 0,1 and 0,3. Because of the 

varying compressibility of ceramic materials the pressure dependence of the casting rate 

must be determined for each system separately. For a ZrO2 slip with 83 wt.% solid yield the 

pressure dependence of the cast thickness is shown in Fig. 4.3.1.2.2. 

In an up-to-date casting plant several polymer molds are connected to each other so that up 

to ten molds may be filled simultaneously according to the component geometry required. 

The polymer molds allow for up to 20.000 casts subject to the slip quality used. Besides 

closer dimensional tolerances and reduced casting times at variable and higher wall 

thicknesses the essentially increased durability of the molds offers considerable advantages 

compared to the conventional slip casting process at atmospheric conditions. The decision 

for the respective casting process is ultimately subject to the quantities to be produced and 

the economic contemplations involved. Further pressure-supported casting processes that 

are applied for special component and material groups are the pressure filtration (hard 

magnetic ferrites), the vacuum casting (fibre insulation) and the centrifugal casting (high tech 

ceramics). 

 

4.3.1.3 Tape casting    Videoclip: Tape casting   

Tape casting is the process for manufacturing very thin ceramic substrates of large area. 

Tapes with thicknesses from 25 μm to 1,5 mm are used to manufacture capacitors, 

piezoelectrical components, ferrites and substrates for electronic connections [48]. By 

laminating tapes with printed circuit tracks multilayer packages for integrated semiconductor 

circuits are obtained [49]. Catalyst carriers or heat exchangers are created by stacking and 

winding embossed or stamped tapes [49, 50]. 

To produce components from ceramic tapes ceramic powders have to be dispersed first of 

all with binders, deflocculants and plasticizers in organic or aqueous solutions. The 

homogenized and degased slip is poured over a micro-adjustable gate (doctor blade) onto a 

continuous steel belt (partly equipped with carrier films like polyethylenterephthalate, bi-

oriented polypropylene) that is conveyed horizontally over two rollers. During the transport to 

the other end of the casting belt warm air passes over the film in the opposite direction so 

that the solvents will evaporate. According to the binder content used a more or less flexible 

tape may be peeled off to be stamped, laminated or wound up (Fig. 4.3.1.3.1). 
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Fig. 4.3.1.3.1: The tape casting process (schematic). 

 

The tape thickness is in the main subject to the geometric conditions of the doctor blade, the 

belt speed and the rheological characteristics of the slip to be cast. According to Chou, Ko 

and Yan [51] the height H of the sheet is calculated as follows: 

H  =  A Dr h0 (1 + ho
2 P / 6s v L) 

 

A  = constant, dependent on the geometric effects of the doctor blade 

Dr    = ratio of the density of the slurry/density of the dried tape 

h0    = cast thickness at the blade 

L     = length of the cast 

ΔP  = hydrostatic pressure under the blade 

ηs    = viscosity of the slurry 

v     = carrier velocity 
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The thinner the tape and the thicker the viscosity of the slurry(h0/hs is relatively low) the lower 

the influence of the carrier velocity (fig. 4.3.1.3.2). 

 

Fig. 4.3.1.3.2: Tape thickness as a function of the carrier velocity for slurries of varying 

viscosity (viscosity in mPa  s) [51]. 

 

According to the ceramic starting powder used either aqueous solutions or – in case of 

possible reactions between water and ceramic powder – organic solvents must be added. As 

binders, plasticizers, deflocculants and wetting agents may be solved by different agents the 

systems must be exactly adapted to each other. Fig. 4.3.1.3.3 gives a survey on the huge 

choice of possible systems for aqueous and non-aqueous solvents. A detailed view of the 

rheological characteristics and the structure of organic substances for the tape casting 

process are given in [52] and [53]. 

 

 

 

 

 



 

142 
 

Solvents Binders Plasticizers Deflocculants Wetting agents 

Non-aqueous:     

Acetone  

Ethyl alcohol   

Benzole 
  

Bromochlorometh
ane 

Butanol 

Diacetone 

Ethanol 

Isopropanol 

Methylic 
isobutylketone 

Toluol 

Trichlorethylene 

Xylol 

 

Celluloseacetate 
butyrate resign 

Nitrocellulose 

Petroleum resign 

Polyethylene 

Polyacrylate ester 

Polymethylmethacryl
ate 

Polyvinylalcohol 

Polyvinylbutyral 
resign 

Polyvinylchloride 

 

Butylbenzylphtalate 

Butylstearate 

Dibutylphtalate 

Dimethylphtalate 

Methylabietate 

Mixed Phtalateesters 

(Hexal-, 
octyldecylalcohol) 

Polyethylenglycol 

Polyalkylenglycol 

Polyalkylenglycol 
derivates 

(Triethylenglycolhexoat) 

Trikresylphosphate 

 

Fatty acids 

(Glyceryl-tri-
oleate) 

natural Fish 
oils 
(Menhaden) 

Synthetics 
(Benzene 
sulfonic acids) 

 

Alkylarylpolyether 
alcohol 

Polyethylenglycolethyl
ether 

Athylphenylglycol 

Polyoxyethylenacetate 

Polyoxethylenesther 

 

Aqueous:     

Water (with 
antifoaming 
agents based on 
resigns) 
 

Acrylic polymer 

Acrylic polymer 

Emulsion 

Ethylenoxide 
polymer 

Hydroxyethylencellul
ose 

Methylcellulose 

Polyvinylalcohol 

TRIS. Isocyaminate 

Resign based sliding 
additives 

 

Butylbenzylphtalate 

Ethyltoluolsulfonamid 

Glycerine 

Polyalcylenglycol 

Triethylenglycol 

Tri-N-butylphosphate 

 

Complex 
vitreous 
phosphates 

Condensed 
arylic sulfoic 
acid 

Natural 
sodium salt 

 

Non-ionic  
octylphenoxyethanol 

 

 

Fig. 4.3.1.3.3: Some additives for the tape casting processes with aqueous and non-aqueous 

slurries [52]. 
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Criteria for the selection of constituents for the tape casting process are in the main a low 

vaporization point and low viscosity of the solvent. This solvent has to solve the binder and 

the plasticizer as well as the wetting agent and the deflocculant. Solving the ceramic powder 

or reactions with it are however not desired. A combination of solvents will mostly be 

advantageous, as the different organic additives will be solved by different solvents. It is true 

that organic solvents with low vaporization points will prevent the hydration of ceramic 

powders and may easily be burned out again, but they may often require also special safety 

measures with regard to toxicity and inflammability.  

The ceramic powders are ground, mixed and degased together with the additives. Alumina, 

which is used for the production of substrates and multilayer packages for example, is not 

soluble in water nor does it react with it. Therefore an aqueous slip with water soluble 

binders, plasticizers, deflocculants and wetting agents may be produced in this case. A 

typical composition is shown in Fig. 4.3.1.3.4. 

 

Material    Function    wt.%   

Al2O3 powder    Matrix    40 -50 

MgO powder    grain growth inhibitor  0,5 - 3 

Destilled water   solvent    30 - 50 

Polyvinylacetate   binder    5 - 10 

Polyethyleneglycol   plasticizer   0,5 - 3 

Dibutylphthalate   plasticizer   0,5 - 3 

Arylic sulphuric acid   deflocculant   0,1 - 0,3 

Octylphenoxyethanol   wetting agent   0,1 - 0,3 

Fig. 4.3.1.3.4: Composition of an aqueous-Al2O3 slurry. 
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Material    Function   wt.%  

SiC     Matrix   40 - 50 

Trichlorethylen   solvent   15 - 25 

Ethylalkohol    solvent   15 - 25 

Polyvinylbutyral   binder     5 - 10 

Polyethylenglykol   plasticizer  0,5 - 3 

Octylphthalat    plasticizer  0,5 - 3 

Menhaden fish oil   deflocculant  0,5 – 3 

Fig. 4.3.1.3.5: Composition of a non-aqueous SiC slurry.  

 

Many non-oxide ceramic materials cannot be processed in aqueous systems as they will 

frequently react with the separation of hydrogen, so that on the one hand the pH will change 

with time and such slurries have a tendency to form bubbles on the other. That is why stable 

slip characteristics cannot be guaranteed over a protracted period of time. Therefore organic 

solvents with accordingly adapted additives are used. Fig. 4.3.1.3.5 shows a typical slurry 

composition on the example of silicon carbide that is used in the heat exchanger production. 

Especially when the ceramic powder consists of laminar or rod shaped crystallites, 

sedimentation during tape casting will cause texturing within the tapes that will even be 

intensified during sintering (fig. 4.3.1.3.6). 
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Fig. 4.3.1.3.6: Texturing upon the production of alumina substrates (schematic) [54]. 

 

Furthermore in multilayer components the laminated areas are often the weak points 

because of pore formation while the organic constituents are burned out. Both effects will 

lead to a directional dependence of the characteristics perpendicular and parallel to the 

laminates (fig. 4.3.1.3.7). 
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Fig. 4.3.1.3.7: Tensile strength perpendicular and in parallel to the laminating direction of 

SiSiC samples [55]. 

 

A new variation in laminating individual tapes is the use of preceramic polymers as 

laminating paste. Fig. 4.3.1.3.8 shows by the example of polysilazane that - compared to 

conventional binders - during thermal decomposition only a small amount leaves the 

laminating paste as volatile matters while more than 80% of the polymer remains as 

crystalline skeleton in the laminated areas. So in the laminates microstructures may be set 

that correspond to those of the tape in sintered condition or are even superior to them 

according to the characteristics required. Directional dependences are to be avoided by that. 
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(a) 

 

(b) 

Fig. 4.3.1.3.8: a) Burn out behavior of polysilazane from laminating pastes, b) Transition area 

between two silicon nitride tapes in calcined condition (schematic). 
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4.3.2  Plastic deformation forming 

4.3.2.1 Roller tool forming   Videoclip: Roller tool forming   

For manufacturing axially symmetric table ware, roller tool forming is still an important 

process, despite the meanwhile introduced dry bag pressing (chapter 4.3.3.2). In the 

so-called jiggering process a metallic roller tool shapes a section of a de-aired 

extrudate over a mold (mostly made from plaster or polyurethane), while in the 

jolleying process for manufacturing axially symmetric hollow ware the roller tool is 

inserted into the mold (Fig. 4.3.2.1.1). For example, the bottom of a plate is 

embossed by the profile of the roller tool while the top of the plate reflects the upper 

surface of the plaster mold. The outer contour of mugs or cups is shaped by the 

plaster mold, while the roller tool determines the inner contour and the wall thickness 

of the parts. As soon as the roller tool touches the extrudate its shape is changed by 

squeezing. A cut-off device removes the mass squeezed over the edge of the plaster 

mold. Roller tool forming is applied for plastic (ductile) feeds with yield stress, which 

is a precondition for permanent deformation, as otherwise green blanks would 

change their shape due to their own weight. 

 

Fig. 4.3.2.1.1: Schematic of the jiggering process (the bottom of the plate is formed by the 

roller tool) and of the jolleying process (the inside of the mug is formed by the roller tool) [56]. 
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When processing plastic feeds, high deformation velocities are advantageous as porcelain 

pastes will behave like real liquids, so that texturing and crack formation can be avoided as 

far as possible [57]. For that reason, high velocity differences are desirable between the 

roller tool and the spindle supporting the plaster mold, while both turn in the same direction. 

In the jiggering process this requirement is limited by centrifugal forces caused. Typical 

velocity differences of plates and bowls with diameters of 11 to 24 cm range between 80 and 

180 min-1 [57]. They cause tangential speed differences at the outside of the plate of max. 

1,77 m/s (fig. 4.3.2.1.2). The requirement of processing plastic feeds with a high shear rate is 

realized in the best possible way in the jolleying process where velocity differences use to 

range between 1000 and 1200 min-1 [57]. 

 

Fig. 4.3.2.1.2: Distribution of the tangential velocities on the bottom profile of the plate [58]. 
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In order to avoid that the plastic feed sticks to the roller template the roller tools are heated 

so that a vapour film comes up between the roller tool and the extrudate that improves the 

flow behavior additionally.  

In the jiggering process undercuts may be manufactured when a lateral lifting is 

achieved either by a roller tool or by a spindle displacement. A detailed description of 

machine parameters and factors influencing the forming process are described by 

Seegerer [56] and Hülsenberg [57]. 

  

4.3.2.2 Extrusion   Videoclip: Extrusion   

Extrusion of plastic ceramic feeds is used for manufacturing components with defined cross 

sections whose length is determined by cutting an extruded rod. The plastic material is fed 

through a charging hopper and the metering screw into the press. In a vacuum chamber the 

feed is evacuated and fed by the auger to the die (Fig. 4.3.2.2.1). Basic literature on the 

function of auger extruders can be found in [59] and [60]. Depending on the die geometry, 

feeding extrudates are produced to be further process as starting material for the 

manufacturing of isolators and dinner ware or to extrude bricks, tiles, tubes, substrates or 

“honeycomb” structures for catalyst carriers by means of suitable inserts. 

 

Fig. 4.3.2.2.1: Auger extruder (schematic). 

 

In case of clay based feeds the raw materials are plasticized by water and very small 

quantities of deflocculants. Oxide and non-oxide ceramic raw materials are plasticized by 

aqueous and non-aqueous binder systems. Three typical examples of ceramic feeds that are 

suited for extrusion are shown in Fig. 4.3.2.2.2. 
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Fig. 4.3.2.2.2: Composition of extrudable ceramic feeds in vol.% [2]. 

 

For the practical use the mass flow and the pressure course around the die of the extruder 

are important. According to Pels-Leusden [61] the theoretic flow of an auger extruder is 

 sin cosmaxV
D d

D
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Where 


maxV   = max. theoretical flow 

Ds  = auger diameter 

dk  = hub diameter 

  = average auger helix angle  

n  = auger r.p.m. 

 

The fact that in practical use only up to 40% of the theoretical flow are achieved is due to the 

apparent motions between feed and auger resp. cylinder wall and the so caused slip. 

According to Reed [2] the shear stress at the radial position r in the cylindrical part of the 

feed screw for steady state laminar flow is calculated as follows. 

  =  r (P1 - P2) / 2L 

where P/L is the differential axial pressure for a cylinder segment of  length L. The 

maximum shear stress occurs at the cylinder wall, when r = R 

Wall  =  R·P/2 L. 
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So the cross section velocity profile shown in Fig. 4.3.2.2.3 is achieved. In the middle 

of the plug, where the shear stress is lower than the yield strength of the plastic feed 

the plug flow is constant so that no plastic deformation appears. 

 

Fig. 4.3.2.2.3: Cross section velocity profile in the cylindrical part of the auger of an extruder. 

 

Fig. 4.3.2.2.4: Formation of flow textures when reducing the barrel diameter [62]. 

 

The velocity differences between cylinder wall and rod centre increase with reducing the rod 

diameter in the die. 

 

A too sharp reduction of the die diameter will intensify the formation of textures in the feed 

rod (Fig. 4.3.2.2.4) [62]. 
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For an exit speed v of the mass rod a pressure difference P is required that is calculated for 

a circle shaped section as in  [2] as follows: 

P  =  2 ln (D0/D) [b + kb (v /D)n] + (4L/D) [f + kf vm] 

Where   

Do = barrel diameter 

D  = die-land diameter  

b  = internal yield strength of the plastic body 

f  = yield strength of the slippage film on the wall of the die-land 

k'b, kf = velocity constants 

n, m  = shear thinning exponents for the body and the slippage film 

L  = length of the segment in question 

 

At the transition between the auger cylinder and the die, a pressure drop is caused 

that reflects the energy required to deform the material towards the smaller diameter. 

The pressure drop in the die reflects the stress required to overcome the friction 

forces so that the material glides. The pressure drop depends on the rheological 

behaviour of the feed and on the geometric conditions of the extruder. Fig. 4.3.2.2.5 

shows an example of the axial pressure drop for different L/D ratios of a die. 

 

Fig. 4.3.2.2.5: Variation of extrusion pressure for different length/diameter ratios of the die 

[2]. 
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The complex pressure conditions and relative motions inside the extruder cause textures in 

the extruded parts. Especially in clay based feeds micro-textures are built up due to the 

particle alignment. S-shaped macro-textures that warp like a corkscrew (Fig. 4.3.2.2.6) are 

due to the screw rotation and will destroy the components completely in most of the cases 

during the subsequent drying process. That is why for every composition an exact tuning 

between rheological characteristics of the feed and the machine parameters is necessary in 

order to avoid defects of fabrication. 

 

Fig. 4.3.2.2.6: Typical longitudinal (left) and transversal (right) extrusion faults in an extruded 

rod [63]. 

 

4.3.2.3 Injection molding   Animation: Injection Molding   

Injection molding is a process to manufacture small components of complex 

geometries and low wall thicknesses in large quantities. Typical injection molded 

components are cores for metal casting, thread guides, cutting tools, welding nozzles 

and turbocharger rotors. Ceramic powders with binders, plasticizers and lubricants 

are homogenized to plastify the feeds, which is done in heatable mixers or kneaders 

above the melting point of the organic additives. The high shear stresses required for 

mixing and for the dispersion of agglomerates will result in high torques in the mixer 

and often in considerable abrasion of metallic components. Typical binder systems 

for injection molded ceramic feeds are to be seen from fig. 4.3.2.3.1. Detailed 

information on the injection molding process is given in [63-68]. 
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Fig. 4.3.2.3.1: Binder systems for the injection molding process. 

 

The homogenized feed with up to 50 vol.% of organic additives is cooled and granulated 

simultaneously through the screws or sigma rotors. This granulate is fed through the filling 

hopper to the heatable injection molding machine (Fig. 4.3.2.3.2). 

 

Fig. 4.3.2.3.2: Schematic diagram of a screw type injection molding machine. 
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The feed is plasticized in the heated cylinder and injected into the mold by the screw which 

acts both as feeding and pressing device. The temperature zones of the heatable plasticizing 

cylinder are subject to the melting points and the viscosity course of the organic constituents 

used. They range between 440 and 510 K depending on the flow behaviour of the powders 

and the content of organic components. 

The mold temperature is lower than the melting points of the organic materials used so that 

the plastic feed solidifies and may be removed from the mold. It should be adjusted so as to 

maintain the flowability of the feed till the mold is completely filled. High mold temperatures 

may thus avoid press cones and inhomogenities in the sample cross section. On the other 

hand this temperature must be far enough below the melting point of the lowest-melting 

organic constituent so that the formation of bubbles at the sample surfaces will be avoided 

upon removal from the mold. In order to meet this compromise the mold temperatures 

normally range between 310 and 330 K. 

 

Fig. 4.3.2.3.3: (a) Screw tip with sprue, cylinder with open nozzle; (b) Screw top without 

sprue, cylinder with open nozzle. 

 

According to the flow behaviour of the feed screws with different geometries are used. For a 

high organic content and powders with a wide grain size distribution conventional screws for 

thermoplastics with compression zone and sprue may be used because of the good 

flowability of the mixtures (Fig. 4.3.2.3.3 at the top). In the compression zone in the front part 

of the screw the core diameter increases so that an additional homogenizing effect is 

obtained. The sprue prevents back flowing material during the injection process. 

When using powders with a very narrow grain size distribution, or in case of very low organic 

contents in the feed, duromer screws without compression zone and sprue are used because 
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of the bad flowability of the mixtures (Fig. 4.3.2.3.3 down). Thanks to the larger gap between 

screw core resp. screw tip and cylinder wall also bad flowing powders can be injection 

molded.  

Moreover, for feeds with bad rheological behaviour, the injection into the mold will not be 

done perpendicular to the split level of the mold as shown in Fig. 4.3.2.3.2, but the feed will 

be injected directly into the parting line through a vertically installed plasticizing cylinder. This 

arrangement will avoid unnecessary by-pass channels in the mold where the feed may tend 

to separate out. The homogenity of the injection molded samples may in addition be 

improved by optimizing the injection velocity and the injection pressure. 

The torque, the r.p.m. and the geometry of the screw affect the material transport and 

determine the shear stresses required to homogenize the feed. The torque Tx for a special 

screw diameter Dx can be calculated from a known torque To at a given velocity Do [64]. 

    Tx  =  To ( Dx / Do ) 2,7 

The mass flow is in the main subject to the flight depth h of a screw, the flight angle , the 

cylinder diameter D and the r.p.m. N of the screw. 




 cossinhND
2

Q 2
2  

 

while a pressure dependent reverse transport of the feed in the screw cylinder and a certain 

material leakage must be deducted from this flow. 

On the other hand the shear rate, which is important for homogenizing, increases within the 

feed area of the screw according to [64] as follows: 

h

ND
  

 

Where 

  = shear rate 

D  = screw diameter 

N  = screw r.p.m. 

h  = flight depth 
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For materials of low viscosity, as already mentioned, low flight depths (compression 

zone) are selected, while for feeds of higher viscosity higher flight depths 

(duroplastics screws) are required. The influence of the screw geometry on the flow 

and the homogeneity of the injection molded components is described in detail in 

[64]. Moreover, the homogeneity of the injection molded components may be 

improved by optimizing the injection speed and the injection pressure. Fig. 4.3.2.3.4 

shows the parameters influencing the injection molding process. 

 

Fig. 4.3.2.3.4: Optimization parameters for injection molding. 

 

A very decisive process step in manufacturing injection molded ceramic components is 

burning out the organic additives. Up to 50 vol.% of binders, plasticizers and lubricants have 

to be expelled from the green body before sintering. According to the wall thickness involved 

burning out of the additives may take from some hours to several weeks. Under vacuum 

(preferred in the main for nonoxide ceramics) the burn out time is estimated by German [65] 

as follows: 

 
t

H E P G

E D F P Po






22 5 12 2
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, ( )

( )
 

where  

H  = wall thickness of the component 

E  = porosity 
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P  = pressure at the binder/vapour interface  

G  = vapour viscosity 

D  = particle diameter 

F  = ratio of the binder volume in solid and gaseous condition under a pressure P 

Po  = external gas pressure 

 

This equation includes several simplifications, but shows clearly that the burn out time t 

increases parabolically with the wall thickness H of the component.  

 

When burning out liquid organic constituents in a powder bed the velocity of binder loss 

depends on capillary forces. This process is recommendable when low-viscous waxes are 

used, for example. The driving force for expelling the liquid additives is the gravity and 

capillary forces as per [2] 

  P R RLV 2 1 1 2 2  cos / cos /  

where  

LV = surface tension of the organic liquid 

1, 2   = wetting angle of the liquid in the component and in the powder bed 

R1, R2  = pore radius in the component and in the powder bed 

 

The burn out time according to this process has been evaluated by German [65] again as 

follows: 
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where 

Ec  = porosity of the component 

G  = viscosity of the organic liquid 

H  = wall thickness of the component 

Dw  = particle diameter of the powder bed 

W  = binder-vapour surface energy 

Dc  = particle diameter in the component 
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By this method the decomposition of the organics increases faster with increasing porosity in 

the component, and while decreasing viscosity of the binder and wall thickness of the 

components and with increasing difference in the particle sizes of component and powder 

bed. For oxidation sensitive materials the thermal and oxidative decomposition is used to 

expel the organic additives. Here, evaporation, diffusion and flow play a similar part as in the 

ceramics drying process. Mutsuddy [64] describes the oxidation of the polymers as a series 

of chemical reactions according to Fig. 4.3.2.3.5. 

 

Fig. 4.3.2.3.5: Oxidation course of polymers [64]. 

 

In a first reaction, radicals are formed within the polymer by annealing (equation 1) which 

later-on react with oxygen to a peroxide radical (2). This radical in turn forms hydroperoxide 

and an additional radical with hydrogen from other polymer molecules (3). This second 

radical reacts again as per equation (2) and (3). This chain reaction may be repeated 

consecutively. Hydroperoxide is unstable and decomposes into radicales (4) forming new 

branched chains with hydrogen from other molecules (5) and (6). The process is at its end 

when the radicals are consumed by forming inert products. 
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Fig. 4.3.2.3.6: Burn out behaviour of organic constituents from injection molded components.  

 

Part of the binder leaves the porous component through the liquid phase while the 

residual quantity as a gaseous product. Driving forces are pressure differences for 

burning out a liquid binder. For burning out through the gaseous phase driving forces 

are concentration resp. vapour pressure differences which lead to diffusion 

processes. In this case the Knudsen diffusion in capillaries is the rate controlling step 

for the ammount of gaseous reaction products emerging from the porous component. 

Experimental investigations have shown that the pore diameter D obtained after the burning 

out the binder depends on the particle diameter R of the injection molded powders: 

According to Wada und Oyama [66]  

D =  (0,3 - 0,4) R   for silicon nitride 

  D =  (0,2 - 0,3) R   for silicon carbide. 

 

In order to avoid defects during burning out it is essential in practical use that oxidation and 

decomposition of binders, plasticizers and lubricants will not start at the same temperature. 

The weight loss should bridge over a widest possible temperature range.  
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4.3.3  Pressing  

4.3.3.1 Uniaxial dry pressing    Videoclip: Uniaxial dry pressing   

 

The term of dry pressing generally describes the densification of powders or granules 

in axial direction between two stamps in hardened metal molds (Fig. 4.3.3.1.1). 

 

Fig. 4.3.3.1.1: Schematic diagram of the uniaxial dry pressing process. 

 

This process allows only comparatively simple geometries to be manufactured like magnetic 

and dielectric components, alumina substrates, cutting tools, sensors, refractories, grinding 

disks, steatite isolators and tiles. After filling the mold the parts are densified and ejected. 

The densification is generally described by a pressure-density curve and is divided into three 

ranges [69]. In the first range of densification the particles are displaced in the pressing 

direction and densified by sliding and orienting. The sliding processes are favoured by 

organic additives that are normally added to the powders before or during the granulation 

(fig. 4.3.3.1.2). 
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Fig. 4.3.3.1.2: Organic additives for a spray-dried ceramic granulate [2]. 

 

The total concentration of densification aids ranges between 1 and 5wt.%, as a rule. In the 

second range agglomerates are destroyed, in the third plastic deformation is partly obtained. 

The density after pressing increases in the first range almost linear with the operating 

pressure, but shows a highly progression afterall.  Based on the models of Fischmeister and 

Arzt [70] and Helle, Easterling and Ashby [71], Oberacker et al. [40] describing the pressing 

pressure-density curve as follow, taking into account the determination of the individual 

granulate strength: 
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where 

P  =  Operating pressure 

Do  =  starting density of the powder bed referred to the starting density of the individual 

granules  

D  =  actual density of the pressed body at pressure P referred to the starting density of 

the individual granules  

yg  =  pressure dependent yield strength of the granulate obtained from the individual 

granule test  

DB  =  equivalent density at break of the granule 
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For Al2O3 fluid bed sprayed granules with polyvinyl alcohol (PVA) and polyethyleneglycol 

(PEG) as lubricant they showed (once determined with the granule strength g, once with the 

yield strength yg of the individual granules) that the compressibility curve may be pre-

calculated very well from the characteristics of the individual granules assuming certain 

simplifications like for example incompressibility of the individual granules (Fig. 4.3.3.1.3). 

 

Fig. 4.3.3.1.3: Comparison of experimental data with calculations based on the granule 

strength resp. yield strength of individual grains (PVA/PEG = 40/60) [40]. 

 

All these contemplations start from a uniform densification of the component cross 

section. Subject to the diameter/height ratio, however, the obtained density 

distributions (Fig. 4.3.3.1.2) cause a deformation of the components during sintering. 

This non-uniform densification is caused by friction between the grains, friction 

between powder particles and mold as well as by the different displacements of the 

individual granules. In practical use these factors are opposed by changing the 

organic additives and by tuning the movement of the upper and the lower punch. 

Drumm et al. [72] have determined in suitably equipped pressing molds with sensors 

for pressure and displacement both the radial pressures and the hub of upper and 

lower punches. In addition, the elastic relaxation of dry pressed articles in axial and 

radial direction must be taken into account for the mold design. 
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In order to accelerate the mold design today the component fabrication is simulated 

[73] by means of the finite element method combined with suitable material laws for 

pressing and sintering. The knowledge of the green density distribution allows the 

calculation of the distortion during sintering (Figs. 4.3.3.1.4 and 4.3.3.1.5), taking into 

account the mathematical description of the sintering kinetics. The high time 

requirement and the high costs of the trial and error methods can be significantly 

reduced by these techniques. 

 

Fig. 4.3.3.1.4: Density distribution in the upper half of a dry pressed cylinder (axial cross 

section through the middle of the cylinder) [72]. 

 

 

Fig. 4.3.3.1.5: Comparison of the predicted contour of a machined and an unmachined dry 

pressed and sintered cylinder with experimental results [72]. 
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4.3.3.2 Isostatic Pressing 

 Animation: Isostatic wet bag pressing 

 Animation: Isostatic dry bag pressing 

 Videoclip: Isostatic plate pressing 

Products with a large length/diameter ratio of complicated or voluminous kind often 

cannot be dry pressed and have therefore to be isostatically densified. In this process 

the pressure is applied uniformly from all sides on to the granules to be densified. 

Pressure media are liquids, the granules to be densified being separated from the 

pressure medium by an elastic wrap. This wrap (mostly rubber or flexible polymer) 

must transfer the pressure as uniformly as possible. 

In wet bag pressing (Fig. 4.3.3.2.1) flexible molds are filled with granules on vibrating 

tables, frequently evacuated and sealed. Then these molds are densified in a 

pressure vessel filled with liquid under pressures of up to 400 MPa. After the 

pressure relief the densified parts may be removed from the mold. In order to 

manufacture hollow bodies the granules are pressed on round metal rods. Due to the 

elastic relaxation upon pressure relief the metal part shaping the inner contour of the 

hollow body can be pulled out. 

Fig. 4.3.3.2.1: Schematic diagram of wet bag isopressing. 
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In dry bag pressing (Fig. 4.3.3.2.2) the flexible mold is firmly connected with the pressure 

vessel. Thus, the mold is filled by granules within the press, while the pressure of up to 50 

MPa is transferred by the pressure medium and the flexible mold onto the granules to be 

densified. In particular for flat table ware of larger sizes this pressing method approaches the 

dry pressing process very closely. For small articles like spark plugs, grinding balls or fuse 

bodies the isostatic principle is rather realized. A detailed description of the isostatic pressing 

techniques and their variations as well as of the basic densifying mechanisms and 

technological solutions is given by Schulle [74] and Hülsenberg [57]. 

 

Fig. 4.3.3.2.2: Schematic diagram of dry bag isopressing.  

 

For pressures of > 20 MPa the pressure depending densification according to Hechel [75] is 

described for the wet bag process as follows: 
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For the dry bag process Ulrich [76] has modified the Kawakita equation [77], which describes 

the relation between pressure and densification: 
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Vo  = Volume of the unpressed body  

c3, c4  = constants 

p  = pressure 

 

On the example of porcelain feeds this relation could be confirmed up to a pressure of 50 

MPa (Fig. 4.3.3.2.3). Although the pressure distribution is not quite isostatic because of the 

fixing of the mold in the dry bag process it has succeeded in mass production of spark plugs, 

fuses and flat table ware. 

 

Fig. 4.3.3.2.3: Density of porcelain molds as a function of pressure for measured and 

calculated values according to the modified Kawakita equation [76]. 
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4.3.4  New developments 

In the past some forming processes have been developed that show significant advantages 

compared to conventional processes. But nobody knows yet whether they will succeed in 

practical use. 

Thermal spray coating processes have originally been developed to apply ceramic coatings 

on metals in order to protect them against temperature and corrosion. But recently new 

techniques have been developed to manufacture complex components by this process too. 

In the flame spraying process ceramic powders or rods are melted with acetylene, oxygen or 

other combustion mixtures and sprayed onto the cold or slightly preheated roughened 

substrate (Fig. 4.3.4.1). The spray torche works according to the balanced pressure principle 

inserting the spray materials by injection from the reservoir into the burner flame. 

Plasma spraying is applied where materials with very high melting points are used so that the 

temperatures of the flame spraying process are too low to melt the particles. A plasma is 

created between an automatically following rod type carbon cathode and a rotating disk type 

anode, i.e. a dissociated and high-ionised electrically conducting gas that is in case of the 

water plasma burner stabilized in its centre by water rotations. 

 

Fig. 4.3.4.1: Schematic diagram of the flame spraying process. 
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A small portion of the water is evaporated and decomposes into hydrogen-oxygen plasma 

while the main part of the water keeps cooling the plasma. The water plasma burner excels 

by high powder flow and accordingly high spray coating rates. For manufacturing 

components the molten powders are sprayed onto preheated metallic bodies. As the 

coefficient of thermal expansion of metals is normally higher than that of ceramics, they will 

shrink more when they cool down so that at least for simple-shaped components the spray 

coat may be taken off after the cooling process and the parts may be sintered [78]. In order 

to increase the particle velocity and to optimize the yield of energy in the powder to be 

processed the detonation and laser spraying processes have been developed [79, 80]. 

In the Gelcasting process a ceramic slip is used that contains reactive monomers as organic 

additives. Monofunctional acrylamid (C2H3CONH2) is dissolved in deionised water together 

with difunctional methylenebisacrylamid ((C2H3CONH)2 CH2). Under presence of an initiator 

like ammonium persulfate ((NH4)2 S2O8) and a catalyst like tetramethylethylendiamide a vinyl 

polymerisation is caused that results in an elastic hydrogel and thus in a component to be 

easily manipulated. Suitable materials for the molds are glass or simple metal containers 

[81]. After gel formation and removal of the parts from the mold the binder is burned out like 

for conventionally cast components and the products may be sintered. 

Coagulation casting is a process for slurries with solid yields exceeding 60 vol.%. Upon 

feeding the slip into a more or less optional mold material the repulsive forces at the particle 

surface are eliminated in order to coagulate the suspension and to produce a viscoelastic 

solid-state body. In order to minimize the repulsive forces the pH is approached to the 

isoelectric point with the consequences described in chapter 2.1, thus creating a coagulation 

of the particles and forming a viscoelastic solid-state body [82]. The pH may be changed by 

the enzymatical decomposition of a substrate or by the slow self-decomposition of organic 

reagents (Fig. 4.3.4.2). The pH may thus be varied from the acidic to the basic range or vice-

versa. Moreover, the repulsive forces may be influenced by increasing the salt concentration 

which will affect the double-layer thickness at the particle surface. The influence of the pH 

and the salt concentration on the transformation into a viscoelastic body is to be seen from 

Fig. 4.3.4.3. 
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Table 4.3.4.2: Some reactions to change the pH of a suspension [82]. 

 

 

Fig. 4.3.4.3: Coagulation of slurries realized with pH near the isoelectric point and at 

increased salt concentrations (reduction in thickness of the electric double layer at the 

particle surfaces) [82]. 

 

In this process, too, complicated shaped components may be produced in simple metal, 

rubber or glass containers without the necessity of self-absorbing porous mold materials or 

higher pressure, even for components with higher wall thicknesses. 

Pre-ceramic polymers are under discussion as starting materials for the production of non-

oxide ceramic materials in the main. When creating silicon carbide from polycarbosilane (Fig. 

4.3.4.4) shrinkage in volume of more than 50% will be obtained by the polymer-ceramics 

conversion.  



 

172 
 

 

Fig. 4.3.4.4: Structural changes upon the thermal decomposition of a pre-ceramic polymer 

(polycarbosilane) [83]. 

 

Fig. 4.3.4.5: Microstructural changes caused by the polymer-ceramics conversion: (A) 

Polymer pyrolysis without filler showing porosity and shrinkage and (B) Polymer pyrolysis 

with active fillers that compensates the shrinkage by reacting with decomposition products of 

the polymer [83]. 
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Normally, this will lead to micro cracks or porosity formation respectively destroys the 

component. Shrinkage may be reduced by filling the polymer matrix with reactive filler 

particles that expand during the reaction with decomposition products of the polymer to 

compensate the original shrinkage. These conditions are shown in fig. 4.3.4.5 schematically. 

Even if this process is far from being applied in mass production it is expected that 

characteristics profiles of ceramic components may be set starting from pre-ceramic 

polymers that cannot be achieved by other shaping processes. For special applications, the 

polymer pyrolysis will certainly be taken into account in the future. 

For manufacturing prototypes several methods are under development. All those processes 

combine the construction and laminar sectioning of components by a CAD equipment, while 

they vary in the way of constructing the layer and in the way of constructing components 

from these layers. 

 

Fig. 4.3.4.6: Schematic diagram of a laser sintering equipment.  

 

Derived from stereolithography where light-sensitive polymers are polymerized and thus 

stabilized by a laser beam, 3D printing has been enveloped [84]. In this process a 

component is designed layer by layer by gelling aqueous ceramic suspensions. The layer 

manufacturing technique (LMT) uses ceramic tapes [85] to construct components. This 

process is known for decades already in the technical ceramics industry and is the 

elementary production process for ceramic multiplayer packages for electronic applications. 

This technique is the only mold-free manufacturing method that has been developed up to 

mass production. 
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The layerwise construction of ceramic components by extrusion (Shape Deposition 

Manufacturing, SDM) is used to manufacture prototypes from a mixture of ceramic powders 

and organic polymers as they are used in the injection molding process [86]. All the above-

mentioned methods are handicaped by the fact that the organic additives have to be burned 

out before sintering. A very promising promising way for manufacturing complex shaped 

prototypes without adding organic additives to the starting powders has been offered by the 

laser assisted sintering (LAS) [87]. A laser beam controlled by a CAD device is used to sinter 

individual layers in a ceramic powder bed and to construct the component successively that 

way (Fig. 4.3.4.6). This process is best suited for the manufacture of porcelain prototypes as 

it is simulating a biscuit fired body. Components manufactured that way may be 

conventionally decorated and glazed. 

  Videoclip: Rapid Prototyping LSD 
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5.   Thermal processes 

5.1 Drying 

After shaping of the ceramic parts, the parts follow to drying. During drying, the particles that 

have been surrounded by more or less water, depending on the forming techniques get 

closer and the green body smaller, what is called shrinkage (Fig. 5.1.1). Shrinkage is finished 

as soon as the powder particles touch each other. The remaining water now has to leave the 

system through the small pore or channels. In the Bourry diagram (Fig. 5.1.2) the water 

content is plotted versus the drying time. Water content diminishes at the beginning of the 

drying process and the part shrinks. After about 72 hours, water can only be found in the 

pores. Water content further decreases, but shrinkage does not change any more. The dry 

bending strength increases as the green bodies’ water content decreases (Fig. 5.1.3). As a 

result the particles can be handled and, for example, be set on conveyor bands mechanically 

or by hand.  

 

Fig. 5.1.1: Illustration of the drying stages in ceramic compounds [1]. 

 

Fig. 5.1.2: Bourry drying diagram for clay components. 
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Fig. 5.1.3: Dry bending strenght as a function of the drying temperature [1]. 

 
The graphic of the mass loss (Fig. 5.1.4) shows the moisture content as a function of the 

drying time. At the beginning, the reduction on the moisture content is linear. In this case, the 

water has direct access to the surface of the tested pieces. When the water is trapped into 

the pores, the curve deviates from the straight line. The differentiated mass loss graph (Fig. 

5.1.4b) shows the area of constant drying rates even clearer. Drying speed decreases with 

the water’s retraction into the pores. The drying speed in dependence of the moisture content 

(Fig. 5.1.4c) is also a standard presentation in the literature. The diagram has to be read 

from right to the left. If the moisture content is high, the drying speed at first is constant, and 

decreases as the water is trapped into the pores.  

 Mass loss curve differentiated mass loss curve drying curve 

 

Fig. 5.1.4: Drying diagram according to Scholz. 
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Drying rate can be increased by raising drying air speed (Fig. 5.1.5) and temperature (Fig. 

5.1.6). Furthermore, the drying speed is affected by specimen geometry and density of the 

components (Fig. 5.1.7). If the total porosity is high (decreasing density), the water can leave 

the system relatively quickly. At very low moisture degrees we see again a deviation in the 

curve. This is the point at which only OH groups are found at the surface. Now, if 

temperature is further increased, drying speed is again reduced and the OH groups leave the 

surface of the test sample. This is the third drying stage which, however, is not relevant in 

practice. 

 

Fig. 5.1.5: Drying curve for clay minerals, two-stage drying of samples with thickness of 3 
cm, in a air humidity of 53.7% and temperature of 25°C according to Kamei. 

 
Fig. 5.1.6: Drying velocity of granulates used for floor-ware tile compounds according to 
Schrader. 
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Fig. 5.1.7: Drying curves of different samples of brick tiles according to Schmidt. 

 

Several drying plants will be presented in the following. When the drying process begins the 

relative moisture is high. As the drying process proceeds and water starts to get trapped into 

the pores, temperature is increased and humidity reduced (Fig. 5.1.8). These complex 

correlations are discussed in detail in other lectures and shall not be further explained in this 

one.  
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Fig. 5.1.8: Variation of the air humidity and temperature in a drying chamber according to 
Krause. 

 

Transitions in a real furnace aggregate are more sliding (Fig. 5.1.9). In a progressive tunnel 

dryer, the ware is brought in from the right side. Temperature is relatively low at the 

beginning while humidity is high. In the course through the furnace, temperature increases 

and humidity decreases. Therefore, an almost constant drying speed can be adjusted for the 

complete drying process.  

 

Fig. 5.1.9: Combined contra and parelell air current in a tunnel dryer according to Krause. 
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Porcelain articles are sometimes dried together with the plaster form used for shaping. 

Plates, cups or bowls still lying on their plaster forms are, for example, directly blown on and 

dried at the same time (Fig. 5.1.10). 

 

Fig. 5.1.10: Principle of the blowing dryer. 

 

Bricks are dried in big chamber dryers by blowing the air directly between the bricks (Fig. 

5.1.11). Chamber dryers are discontinuous aggregates.  

 

 cross-section  top view 

 

Fig. 5.1.11: Rotomixair (according to Thoma). 

 

A roller dryer (Fig. 5.1.12) can perform the drying continuously. In a flat chamber, the 

temperature across the whole channel can be maintained constant. For example, tiles are 

transported on the rollers without firing support. This drying process is particularly qualified 

for mass production. 
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Fig. 5.1.12: Roller dryer (Heimsoth). 

 

 

5.2 Sintering 

Drying is followed by a further thermal treatment, considerably below melting point of the 

ceramics, the so-called sintering. Sintering promotes consolidation combined with further 

shrinkage. Now the ceramic products get their typical structure and their characteristics.  

 

5.2.1 Sintering of porcelain, silicate and oxide ceramics 

Porcelain is made from the natural raw materials kaolin, feldspar and quartz (50:25:25 

weight-%). Before chemical reactions between these raw materials take place, some 

physical and chemically bonded water is dehydrated (Fig. 5.2.1). Furthermore, some phase 

transformation can happen, which is in most of the cases related to volume changes. This 

may cause stresses during cooling and, if the temperature is inappropriately adjusted, lead to 

cracks in the components.  
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Fig. 5.2.1.1: DTA analysis of a kaolin [1]. 

 
When quartz is used as raw material, at 573°C there is the low to high quartz temperature 

modification. This is combined with a volume expansion. At 870°C the formation of tridymite 

which at 1470°C is transformed into cristobalite. Both transformations are combined with 

volume changes. Tridymite can be transformed during cooling into its low temperature 

modification, as well as cristobalite (Fig. 5.2.1.2). To avoid stresses or crack formation, 

threshold times are adjusted in the T-t program during cooling.   

 

Fig. 5.2.1.2: Phase transformation diagram in the SiO2-system with the temperature. 



 

188 
 

Crystal transformations and also chemical reactions may occur during the sintering of 

porcelain. After the water dehydration, kaolin reacts with quartz to build mullite. The mullite 

content grows as the temperature increases (Fig. 5.2.1.3). Part of the quartz disperses in the 

melted feldspar, therefore the quartz content of the structure decreases as the temperature is 

increased (Fig. 5.2.1.4). Depending on the sintering temperature, different contents of 

feldspar, quartz, mullite and rest glass phase can be found in the structure of porcelain (Fig. 

5.2.1.5).  

 

______________  kaolin 

- - - - - - - -  kaolin-feldspar mixture (2:1 in weight) 

 

Fig. 5.2.1.3: Dependence of the final mullite content in different kaolin mixtures on the time 
and temperature of sintering [1]. 
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Medium quartz grain size: 

__________________________  13,2 µm 
_____ _____ _____ _____ _____   6,42 µm 
- - - - - - - - - - - - - - -  27,5 µm 

Fig. 5.2.1.4: Dependence of the final quartz solubility in different mixtures on the time and 
temperature of sintering [1] (Kaolin: Feldspar : Quartz ratio = 50 : 25 : 25). 

 
__________________________   measured 
_____ _____ _____ _____ _____  calculated 
- - - - - - - - - - - - - - -    calculated  

Fig. 5.2.1.5: Phase composition of a porcelain after sintering at different temperatures 
(Kaolin:Feldspar:Quartz ratio = 40:30:30 wt.%) [1]. 
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Porcelain is sintered normally at about 900°C – 1400°C in gas-heated furnaces with reducing 

atmosphere, but also with CO excess. The reason is simple: natural raw materials contain 

certain portions of iron oxide. When Fe2O3  is sintered at oxidizing atmospheres and at high 

temperatures, Fe3O4 is built. Contrary to Fe2O3 which appears white, greenish or blue, Fe3O4 

leaves brown or black spots. Therefore, at temperatures over 900°C a carbon monoxide 

atmosphere is adjusted to avoid iron transformation (Fig. 5.2.1.6). If, by mistake, there is CO 

excess already at temperatures slightly below 900°C, carbon monoxide according to the 

Boudouard equilibrium transforms to CO2 and carbonate (Fig. 5.2.1.7). This has to be 

avoided, since carbonate also produces black spots in the porcelain. The same may happen 

if silicon monoxide appears. It can develop if firing supports made of SiO2 are used. SiO can 

react to SiO2 and Si, developing black spots, too.  

 

Fig. 5.2.1.6: Glost firing of porcelan. 
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Boudouard equilibrium CO2 + C  2 CO 

 
Fig. 5.2.1.7: Temperature dependence at the Boudouard equilibrium.  

 
Porcelain is continuously fired in tunnel kilns (Fig. 5.2.1.8 and Fig. 5.2.1.9) or discontinuously 

in bogie hearth kilns (Fig. 5.2.1.10). In a tunnel kiln the ware is continuously shifted through 

preheating zone, firing zone and cooling down zone. This furnace aggregate is particularly 

qualified for mass production. Today, burning time in modern firing aggregates is below 10 

hours (Fig. 5.2.1.11).  

 

1 exhaust linear, 2 burner, 3 injector, 4 main burner, 5 recuperator, 6 air duct 

Fig. 5.2.1.8: Illustration of a tunnel kiln with preheating, sintering and cooling zones.  
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Fig. 5.2.1.9: Kiln aggregate in a sanitary ceramic industry. Tunnel aggregate with long 
sintering times. 

 
Fig. 5.2.1.10: Kiln aggregate in a sanitary ceramic industry. Bogie hearth kilns with shortened 
sintering times. 



 

193 
 

 

Fig. 5.2.1.11: Optimized sintering program for porelain (A) and (B) bricks (C) according to 
Mörtel (A), Holmström (B) and Schmidt (C), 

 

Due of the high number of influencing factors, the control of the temperature with thermal 

elements or pyrometers is supported by observation of Seger cones. Seger cones soften 

according to their chemical composition at different temperatures (Fig. 5.2.1.12). Contrary to 

thermal elements and pyrometers, Seger cones also consider the influences of the gas 

atmosphere and time. By now, it represents a reasonable completion for temperature 

measurement. 
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Fig. 5.2.1.12: Average softening temperature of Seger cones (in °C). 

  Videoclip: Roller furnace 
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In the roller kiln, the charge is transported on rollers through this continuous furnace. The gas 

feed lines supply gas to the burners. The reducing gas atmosphere is adjusted with these 

burners. With this adjustment you may realize that more firing ware is heated than can be 

sold. Therefore the energy input is very high. The rollers are made from recrystallized silicon 

carbide and continuously transport the ware through the furnace. As already mentioned, it is 

qualified for mass ware to be transported through the kilns in big quantities and, if possible, 

with always the same geometries. If different masses are processed which need various T-t 

curves, flexible bogie hearth kilns are frequently used to sinter the ware.  

  Videoclip: Bogie hearth kiln 
 

  Videoclip: Elevator kiln 
 

 

Here at the Riedhammer technical center we see a bogie hearth kiln in a small scale and in 

an elevator kiln.  

Oxide ceramic catalyst carriers are sintered for the automobile industry. The relatively 

complicated gas feeder system also allows for adjustment of different gas atmospheres. The 

next chart shows an electrically heated elevator kiln for ferrite sintering.  

 

5.2.2 Sintering of non-oxide ceramics  

To avoid oxidation, non-oxide ceramic materials have to be heat treated in vacuum or in inert 

gas atmosphere. Fig. 5.2.2.1 shows one example of infiltration of SiC with liquid Si at 

1600°C. Silicon carbide powder is first mixed with carbonate and a carbon-containing binder. 

This mixture is homogenized and then shaped with different techniques. After debinding, the 

porous pre-product is infiltrated in vacuum with liquid silicon. The inert gas furnace is 

equipped with graphite heating elements and graphite isolation. The components are set on 

boards equipped with silicon powder. Silicon is sucked through the pores above the Si 

melting point, because the wetting behaviour for SiC by silicon is very good. Carbon reacts 

with liquid silicon to secondary SiC and we get a product consisting of 80% SiC and 20% 

silicon.  
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Fig. 5.2.2.1: Process route for infiltrated Si-SiC according to Gugel. 

   Videoclip: Silicon infiltration 
Break discs from Porsche (SGL) 
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5.2.3 Pressure sintering 

Silicon nitride is often sintered at higher nitrogen pressure. The higher the nitrogen pressure, 

the higher the decomposition temperature and the higher the sintering temperature must be 

reached in order to increase diffusion activities. In this case, sintering is carried out in 

pressure sintering ovens (Fig. 5.2.3.1). The gas in the furnace chamber is increased by 

compressors to pressures up to 200 MPa, allowing that the temperature can be increased 

from 1800°C to 2100°C. 

 

Fig. 5.2.3.1: Pressure sintering oven. 
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5.2.4 Microwave sintering  

During conventional sintering in electrically or gas heated furnaces, ceramic components are 

slowly heated from the outer region to the interior. In large components, the sintering process 

sometimes have been already initiated at the surface, while in the middle parts nothing has 

happened. This leads to stresses up to crack formation. Conditions during microwave 

sintering are completely different (fig. 5.2.4.1). There is no heating in materials which are 

transparent for microwaves. If the material is opaque and the microwave cannot enter, the 

material is also not heated. However, the material gets heated, if microwaves are absorbed 

and the electrons are stimulated and brought to oscillation. Heating is carried out evenly 

throughout the complete cross-section of the component.  

 

Fig. 5.2.4.1: Interaction of the microwave with different materials [8]. 

 
Fig. 5.2.4.2 shows schematically the difference between conventional and microwave 

heating. 
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Fig. 5.2.4.2: Heating patterns in conventional and microwaves furnaces [8]. 

Consistent application of energy produced by stimulation of the electrons is followed by 

significant increase of the sintering speed at the same temperature (Fig. 5.2.4.3). Therefore, 

by microwave sintering, densification of a material at constant temperature can be reached 

considerably faster as by conventional sintering (Fig. 5.2.4.4).  

 

Fig. 5.2.4.3: Apparent activation energy for Al2O3 sintered by microwave and conventional 
processes [9]. 



 

200 
 

Despite these advantages, microwave sintering, for economic reasons, could not be 

established for large-scale production yet. However, microwave drying is state of the 

technology for mass productions like the porcelain industry. 

 

 

Fig. 5.2.4.4: Density versus temperature of microwave (28 GHz) and conventionally sintered 
Al2O3 [9]. 
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6. Finishing and post processing 

6.1 Glazing 

Unglazed porcelain surfaces are relatively mat and rough which, for example, is very 

unpleasant at drinking. Therefore, porcelain is glazed to seal the surface. After glazing the 

articles are often decorated and color prints are applied on the surface.  

During glazing, the articles, first fired at 900°C (biscuit firing), are dipped in a glass powder 

suspension. The glaze can be applied either by immersion or by spraying. For small amounts 

of parts, glazing is performed manually (Fig. 6.1.1), while for large amounts automatically 

(Fig. 6.1.2). After drying, sintering occurs at about 1450°C to consolidate and seal the 

surface.  

 

Fig. 6.1.1: Manual glazing by imersion of the porcelain in a glazing tank.  
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Fig. 6.1.2: Glazing process for dishes (schematic). 

 

 Videoclip: Glazing 
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Large-sized components, like for example high-voltage insulators or stoneware pipes, are 

turned in big glaze tubs, attached to carrier belts (Fig. 6.1.3), or dipped (Fig. 6.1.4) and then 

sintered. In case the parts are very complicated, spray robots are used to apply the glaze 

(Fig. 6.1.5).  

 

 

Fig. 6.1.3: Glazing procedure for insulators (schematic). 
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Fig. 6.1.4: Automatic immersion glazing tank for pipelines. 

 

 

Fig. 6.1.5: Illustration of a spray robot (schematic). 
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Melting temperatures and coefficients of expansion are adjusted between the clay bodies 

and the glaze by varying the chemical composition (Fig. 6.1.6). Details referring to the 

formation of glass by network formers and modifiers are discussed in lecture “Principles of 

Glass”. 

950 °C e.g. for earthen ware  
 0.2 K2O 

0.2 Na2O 
0.3 CaO 
0.3 PbO 

 

0.3 Al2O3  2.1 SiO2 
0.5 B2O3 

1200 °C e.g. for stone ware  
 0.3 K2O 

0.1 MgO 
0.5 CaO 
0.1 ZnO 

 

0.4 Al2O3  3.5 SiO2 

and 1430 °C for hard porcelain  
 0.2 K2O 

0.2 MgO 
0.6 CaO 

 
1.1 Al2O3  10.0 SiO2 

 

 

Fig. 6.1.6: Chemical composition of glazes presenting different melting temperatures [1]. 

 

If the coefficient of expansion of the glaze is too small (Fig. 6.1.7), the ceramic body shrinks 

more than the glaze during cooling. This may sometimes be the intention, since compression 

stress may occur in the glaze and glasses resist much better to compression stresses than to 

tensile stresses. If the stress becomes far too strong, parts of the surface may chip off.  

 

Fig. 6.1.7: Illustration of the coefficient of expansion from the glaze smaller than the one from 
the ceramic body (schematic). 
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In case the glaze’s coefficient of expansion is too big, the glaze shrinks quicker than the clay 

body during cooling and crack formation may appear in the glaze coat (Fig. 6.1.8). 

Modification of the coefficient of expansion caused by crystal transformations in the ceramic 

body may suddenly lead to compression stress instead of the expected tensile stress, and 

vice versa (Fig. 6.1.9). Therefore, knowledge about temperature-dependent modifications in 

the structure is of significant importance for the evaluation of crack formations.  

 
 

Fig. 6.1.8: Illustration of the coefficient of expansion from the glaze bigger than the one from 
the ceramic body (schematic).  
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Temperature 

___________  Contraction of the body glazing 
------------  Contraction of the glazing 

 
Fig. 6.1.9: Illustration of the volumetric changes in a glazed quartz containing body (A) and in 
one cristoballite containing body (B) during the cooling. 

 

As already mentioned, the expansion properties of glazes can be influenced by variation of 

the chemical composition (Fig. 6.1.10).  
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Glazing 1 0.25 K2O 
0.25 Na2O 
0.25 CaO 
0.25 PbO 

 

0.35 Al2O3  2.5 SiO2 
0.5 B2O3 

Glazing 2 0.095 K2O 
0.095 Na2O 
0.545 CaO 
0.265 PbO 

 

0.376 Al2O3  2.74 SiO2 
0.19 B2O3 

Glazing 3 1.0 CaO 
 

0.2 Al2O3  2.0 SiO2 
0.6 B2O3 

 

 

Fig. 6.1.10: Expansion curve of a stoneware body (Clay: Feldspar: Quartz = 50: 8,5: 41,5 
wt.%) and three distinct glazes [1]. 

 

Fig. 6.1.11 shows the amplitude of tested glazed parts with glazes 1, 2 and 3. The Steger 

voltmeter presents a positive amplitude for the glazes 2 and 3 (Fig. 6.1.11) which have a 

smaller CTE than the clay body. The glazes show compression stresses in the surface.  
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Fig. 6.1.11: Steger voltmeter (schematic). 

 

Fig. 6.1.12: Voltage tests according the Steger method in the glaze and the body [1]. 
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These stresses can be calculated by means of the equation shown in Fig. 6.1.13. We know 

today from empirical experience that the difference of the CTE of body and glaze must not be 

higher than 0.3.10-6. If the difference is higher, the stresses increase and then cracks occur.  

 

T : temperature difference; Tg: glass transition temperature; µ: Poisson constant; E: young 
modul; d: layer thickness. 

Fig. 6.1.13: Calculations of the stresses in glazes and body. 

 

6.2 Decoration 

Colors can be applied in the porcelain by different application techniques. Direct techniques 

include, for example, a rubber tampon dipped in a color. Following, the tampon presses the 

color on the surface of the plate. Colors may also be spayed on the base of the body or 

directly applied by screen printing. Concerning indirect print methods the colors are first 

processed as pictures and then applied on the porcelain article (Fig. 6.2.1). 

 

Fig. 6.2.1: Overview of the different decoration processes in ceramic (according to Huber).  
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If the decoration is applied on the clay body right after biscuit firing, followed by glazing and 

sintering afterwards, we talk about under-glaze decoration. The colours must resist a glost 

firing temperature of about 1450°C which limits the range of colour possibilities. 

It called on-glaze or in-glaze decoration, if the colours are applied after the glost firing being 

heat treated by moderate temperatures (Fig. 6.2.2).  

Firing Porcelain Bone China Stoneware 

Overglaze 800…840°C 750…820°C 750-820°C 

Inglaze 1150…1250°C   

Underglaze 1350…1450°C   

 
Fig. 6.2.2: Range of firing temperatures for different decoration techniques for glaze and 
body (according to Huber). 

 

Fig. 6.2.3 shows some decoration tools for manual decoration. Decals consist of a support 

paper, a dextrin layer, the real colour body and a coating solution (Fig. 6.2.4). The method to 

produce this decal is screen printing. Such pictures are applied on the article to be decorated 

either by hand (Fig. 6.2.5) or fully automatically (Fig. 6.2.6). With regard to automatization, a 

rubber tampon picks up the complete picture from a printed screen, moves downwards on 

the plate, applies the print and moves back to the screen which in the meantime received 

again the colours. This is followed by decoration firing (Fig. 6.2.7).  

 

Fig. 6.2.3: Decoration tools. 
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Fig. 6.2.4: Decal methods. 

 

Fig. 6.2.5: Manual application of a decal. 

 

Fig. 6.2.6: Decoration machine for thermal decal application. 
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Fig. 6.2.7: Firing of ceramic decoration. 

Caution should be taken if multi-coloured on-glaze decoration is applied. Lead or cadmium 

oxides are frequently used to lower the firing temperature and therefore amplify the colour 

spectrum. When vnegar is used (for example in salad bowls), the heavy metals are dissolved 

and can be brought into the human body (Fig. 6.2.8).  

 

Fig. 6.2.8: Average values of the release of Pb and Cd from the glaze and from decoration 
colours in dependence of the pH for different aliments. 
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7. Special technologies 

Using the examples of porcelain, clay brick, silicon carbide and piezoceramic production, the 

common characteristics and differences of production techniques shall finally be pointed out.  

 

7.1 Porcelain production 

The raw material kaolin is dissolved in water. Quartz and feldspar must be normally grinded 

(Fig. 7.1.1). The suspensions made of kaolin and grinded feldspar and quartz have to be 

mixed, sieved, cleaned and transported to a filter press. The filter cakes are evacuated in a 

de-airing pug mill and with this consistency used to shape the plates or cups (today, to a 

large extend this method has been replaced by compression moulding techniques). Such 

suspensions can also be used for casting. 

After shaping the articles are fired at about 900°C (biscuit firing). Decoration of the pieces 

made after this firing and before glazing is called under-glaze decoration. Decoration made 

after glost firing at about 1400°C is called on-glaze decoration. Those parts of the porcelain 

pieces which had been in contact with firing auxiliaries are polished after firing.  
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Fig. 7.1.1: Illustration of the processing route for porcelain (schematic). 
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7.2 Brick production 

Today, bricks are to a large extent produced in fully automated processes (Fig. 7.2.1). 

Preparation of the mass (homogenization of the raw materials) is followed by extrusion 

shaping. The extruded parts are brought to a dryer and then set on kiln cars, which are 

transported through the tunnel kiln. The kiln cars are automatically discharged, the bricks 

fully automatically stacked and carried away. Modern brick factories produce about 300t/day.   

 

Fig. 7.2.1: Brick production (courtesy Keller). 

  

7.3  SiC production 

Non-oxide ceramic materials are sintered in vacuum or inert gas atmosphere, partly at 

increased pressure (fig. 7.3.1). This is normally made in discontinuously working furnace 

aggregates. For hot pressing of silicon carbide SiC powder is mixed with sinter additives and 

densified at high temperatures and increased pressure in a hot press machine consisting of a 

graphite cylinder and graphite dies. In a resistance heated hot press densification happens at 

over 2000°C and pressures of about 30 MPa. However, only relatively simply shaped 

components can be produced with this method.  
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Abb. 7.3.1: Process route for notpressed silicon carbide. 
 

 

7.4  Piezoceramics production 

Fig. 7.4.1 shows the production of piezoceramic materials. Again, the raw materials are first 

mixed, homogenized and shaped. The components are metallized after sintering. High 

voltage is applied for polarization of the parts. Ferroelectric domains adjust to the electric 

field providing the polycrystalline component with piezoelectric properties.  
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Abb. 7.4.1: Processing route for piezo ceramics. 

7.5  Laser sintering 

 Videoclip: Laser sintering of SiO2 crucibles 

Ultra pure SiO2 crucibles for waver processing in the semiconductor industry can be sintered 

without any impurities by a laser beam.
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