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Article

Physico-mechanical properties of
chemically treated polypropylene rice
straw bio-composites

M. Bassyouni1, I. Taha2, Shereen M.-S. Abdel-hamid3

and L. Steuernagel4

Abstract

Rice straw is causing in many countries severe environmental problems in terms of black clouds caused by the

incineration process. Hence, among other reasons, the incorporation of ground rice straw as a filler and reinforcement

material for polymers is of advantageous. In this study, Egyptian rice straw was used to reinforce commercial

polypropylene and laboratory prepared maleic anhydride-grafted PP with the fill grades between 5 wt% and 30 wt%.

Rice straw PP composites show an improved Young’s modulus at increased fill grades, against a decrease in tensile

strength. The addition of 1% maleic anhydride per 1 g of rice straw as a compatibilizing agent caused further amelioration

of the fiber/matrix bonding leading to improved mechanical behavior, which was also assessed using scanning electron

microscopy. Additional assessments were made via thermographic analysis and density measurements.

Keyword

biocomposites, maleic anhydride, rice straw, thermal degradation

Introduction

By no doubt, the issue of using natural fibers as
reinforcement for polymer composites has been stand-
ing in the limelight of research in the past decade.1

Their power to compete with the widely spread syn-
thetic fibers derive from their specific properties,
price, health advantages, sustainability and renewabil-
ity. The natural origin of the fibers, does however not
only contribute to quality improvement of the final
product, but also allows for the reduction of hazards
during production, which is expressed in terms of lower
pollution levels, reduced energy consumption, and neu-
tralizing CO2 emissions (amount of CO2 emitted during
production does not exceed that neutralized by the
plant during growth).2–5 Moreover, the use of natural
fibers in certain countries where it is of common prac-
tice to incinerate vegetable waste, the integration of
these fibers as fillers, or reinforcement of polymer com-
posites brings along an added value in addition to
further environmental salvation. This is a burden that
is especially faced with rice straw as a vegetation side
product. However, literature does not often cite
research on the use of rice straw as a natural reinforce-
ment of polymer composites.6

The use of natural fibers, however, involves several
obstacles. Generally, lignocellulosic fibers are incom-
patibles with hydrophobic polymers, due to their inher-
ent hydrophilic nature, developed from the presence of
hydroxyl groups ready to form hydrogen bonds with
water molecules.5,7,19 Even if a successive bonding
could be achieved, the high water absorption of the
cellulose fibers would cause swelling and in turn dimen-
sional instability that would promote poor processabil-
ity and the development of cracks and herewith poor
mechanical properties of the composite. In order to
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overcome these drawbacks, next to the physical
(corona, plasma) and chemical treatments (acetylation,
isocyanation) of the fiber’s surface, grafting, and the
addition of compatibilizing agents to the polymer
matrix are common techniques.8,9 A strong adhesion
at the interface is herewith warranted, allowing for
proper stress transfer and load distribution between
the two phases.

Especially, the use of fiber-grafted polymer chains
and block copolymers as compatibilizing agents
appear to offer the greatest promise, as has been dem-
onstrated with maleic anhydride grafted polypropylene
(MAPP). This copolymer is capable of reacting with the
hydroxy functionality of the wood surface while,
according to Sherif et al.,1 co-crystallizing with the
polypropylene matrix.

Accordingly, the use of MA-grafted PP was used in
this study to achieve the desired bonding between rein-
forcing rice straw fibers and commercial polypropylene.

Experimental work

Material

Rice straw was directly obtained from the fields of El-
Sharkeya governorate in Egypt. The fibers where then
ground in a ball mill at 250 rpm for 4 h. Homopolymer
PP developed for thin wall high speed injection molding
is used as the host matrix, and is supplied by DOW
GmbH (melt flow rate¼ 52 at 230�C/2.16 kg and spe-
cific density of 0.9). MA (M625 powder) and peroxide
90% ‘Luperox 101’ are supplied by Sigma–Aldrich.
Trimethoxyvinylsilane (molecular wt¼ 148.23 g/mol)
and AA (molecular wt¼ 72.06 g/mol) are both supplied
by Merck Schuchardt.

MAPP was prepared according to George et al.,8

where the compatibilizer MAPP is prepared by
mixing PP with maleic anhydride in a weight ratio of
98:2, and then 1% of the peroxide catalyst is added.
The mixture is dry blended and fed through the
hopper at 5 kg/h. The mixture is extruded at 180�C
and 200 rpm. Effective extruder cylinder length is
40mm to cylinder diameter 16mm. The output material
is water cooled and pelletized.

Matrix preparation and composite production

The prepared pellets of the prepared MAPP are
mechanically mixed in a rotating vessel with PP in
1% (w/w) MAPP for each 10 grams of rice straw.
Composites are developed by means of a PolyLab
system kneader from Thermo Haake (Rheomix 600P),
where the polymer is first melted and homogenized
at 50 rpm for 5min, then further kneaded after the
addition of ground rice straw (1.5–2mm in length)

for another 25min up to constant torque, to ensure
homogeneous fiber dispersion in the matrix.
The compound is then shredded and injection molded
according to the processing parameters given in Table 1
using Allrounder 220C 600-250, Arburg, Lossburg,
Germany.

Test methods

Density measurements. The Archimedean principle was
applied for determining the specific gravity of ten
20� 12mm2 injection molded rice straw polypropylene
(RPP) and rice straw maleic anhydride-grafted poly-
propylene (RMAPP) samples. The samples were
weighed in air (W(a)) and in degassed distilled water
(W(H2O)), and the density (�) calculated according to
Equation (1), where � (H2O) is the water density:

� ¼
WðaÞ � �ðH2OÞ

WðaÞ �WðH2OÞ
ð1Þ

Water absorption. Water absorption tests according to
DIN 53495 by immersing five samples in distilled
water at 23�C for 24 h, where RPP and RMAPP sam-
ples were taken out every 60min, surface water droplets
are removed using a fine tissue, weighed, and returned
into the distilled water within 1min. Weight percent
change was then recorded with respect to time.

Thermogravimetric analysis. Thermogravimetric measure-
ments were carried out on RPP and RMAPP injection
molded composite samples using a Hi Res TGA 2950
thermodynamic Analyzer from TA Instruments under
nitrogen flow. Measurements were performed at a heat-
ing rate of 5�C/min from room temperature to 800�C.

Mechanical testing. Matrix and composites are character-
ized for tensile and impact behavior, applying DIN EN
ISO 527–2/5A/2 and EN ISO 179–1, respectively.
Tensile tests are conducted on a Zwick Universal
Testing Machine at a crosshead speed of 2mm/min.

Table 1. Main injection parameters (optimum conditions

according to own trials)

Injection pressure (bar) 800

Holding pressure (bar) 80% of injection pressure

Mold temperature (�C) 40

Barrel zone temperature (�C) 30–170–175–180–190

Injection speed (ccm/s) 22

Feeding volume (ccm) 3

Cooling time (s) 10
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The reaction force and displacement are recorded
and the stress, strain, and Young’s modulus are
determined.

Scanning electron microscopy. Samples were mounted onto
holders using double-sided electrically conducting
carbon adhesive tabs. The specimens were coated with
gold using a Cressington sputter coater at a voltage of
20mA for 100 s and the samples were observed with a
SC44 Camscan scanning electron microscope.

Results and discussion

Density

The density of the RPP composites as a function of
fiber content is illustrated in Figure 1. As anticipated
by the Rule of Mixtures (ROM), the density linearly
increases with increasing fiber content, ranging between
0.9 and 1.01 g/cm3 for pure PP and 30% filled RPP
composite, respectively. The addition of MA as a cou-
pling agent led to increse in the composite density
0.5%. Taking 20% fiber content as an example,
0.975 gcm3 was measured in case of RPP compared to
0.970 g/cm3 in case or RMAPP.

Water absorption behavior

Results of water absorption testing for virgin PP and
RPP composites are presented in Figure 2. It can be
clearly seen that all composites tend to rapidly absorb
water during the initial period of being immersed into
water, whereas the rate of water absorption decreases
with time, until it reaches a saturation limit after

approximately 24 h. A further observation is the
increase in water absorption rate with increased fiber
content. Such observations have also been made by
Djidjelli et al.11 and are related to the water intake of
natural fibers through the hollow central (the lumen),
which gives access to water penetration by capillary
action. This is of course also to be seen in addition to
the general water uptake of natural fibers based on their
hydrophilic nature.1,11,12

The effect of the addition of maleic anhydride on the
water absorption behavior can be observed in Figure 3.
Similar to Chowdhury’s13 observations, RMAPP com-
posites tend to absorb less water, although the water
uptake trend remains obvious. The reason therefore is
the fact that less hydroxyl groups at the fiber cell walls
are available for reaction with water on the one hand,
but the lumen, and herewith the capillary action
remains present, on the other hand. A further consid-
eration is that improved fiber/matrix binding character-
istics eliminate cogitable space between fiber and matrix
that would additionally tend to hold water.

Thermal stability

The results obtained by thermogravimetric analysis
(TGA) are presented in Figure 4. The TGA curve of
rice straw exhibits two mass-loss steps as also observed
by Grozdanov et al.6 The first weight loss takes place
below 100�C and is related to the gradual evaporation
of absorbed moisture. The second weight loss starts at
275�C and continues upon the decomposition of the
major rice straw components (cellulose, hemicellulose
and lignin). The PP matrix on the contrary mainly
undergoes a single weight change step, where degrada-
tion rapidly takes place below 430�C, above which this

Figure 1. Density of RPP composites with varying fiber contents.

Bassyouni et al. 305

 at Universitaetsbibliothek on August 5, 2014jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com/


process occurs rapidly and is completed at around
470�C. According to Grozdanov et al.,6 the thermal
degradation of PP can take place through random
chain scission and a radical chain mechanism.

Figure 4 further shows the evolution of the thermal
stability of the RPP composites by means of TGA
curves, related to the rice straw content. It can be
seen that a change in the thermal behavior of relative
to pure PP occurs upon the addition of natural fibers as
observed by several other studies.6,11 Thermal stability

of composites can be observed up to 275�C, where
thermal degradation of natural fibers starts. However,
compared to the rice straw behavior, the thermal deg-
radation rate of the incorporated fibers is cushioned by
the surrounding PP. Accordingly, at around 430�C, the
composite TGA curves again match with that of pure
PP, where continued degradation takes place until it is
completed at 470�C.

Observing the influence of rice straw content on the
thermal behavior, it can be seen that upon increasing

Figure 3. Water absorption behavior of 20 wt%.

Figure 2. Water absorption behavior of RPP composites with respect to time.
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fiber content, thermal degradation occurs earlier (i.e., at
lower temperatures) on the one hand, whereas the
curves become flattened (i.e., slower degradation rate)
on the other hand. A similar change in the degradation
pattern was also observed by Hujuri et al.6,14 Generally,
however, the increase of fiber content increases the
amount of residues observed above 500�C. RMAPP
composites show a similar thermal behavior related to
the rice straw content, as presented in Figure 5. This is
because the addition of coupling agent does not seem to
have a large influence on the thermal behavior of nat-
ural fiber composites, as can be depicted from Figure 6.

Tensile properties

The results of tensile modulus, as presented in Figure 7,
suggest that rice straw is able to impart greater stiffness
to the composites. The addition of maleated polypro-
pylene (MAPP) to polypropylene (PP) does not seem to
have an influence on the stiffness behavior of the com-
posites. Taha15 suggests that stiffness does not primar-
ily depend on the fiber–matrix interface, but more likely
on the absolute fiber content in tensile loading direc-
tion, as the elastic modulus is determined as a tangent-
modulus at low strain values (0.05–0.25%), where no

Figure 4. Effect of rice straw content on the thermal stability of RPP composites.

Figure 5. Effect of rice straw content on the thermal stability of RMAPP composites.
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interfacial debonding is yet assumed to occur even in
case of poor adhesion. Accordingly, intended improve-
ment in the fiber/matrix bonding would not affect com-
posite stiffness.

It is common to observe that an improvement in
tensile modulus is at the expense of the fracture
strain, as can be depicted in Figure 8 and as cited by
several researchers.15,16 The overlapping curves of RPP
and RMAPP show that the failure strain witnesses a
rapid fall from 500% to 6% upon fiber reinforcement
from 0% to 5% by weight. Additional fiber reinforce-
ment further lowers the failure strain of the composites,
but not in the same rapid rate. Figure 8 illustrates a
continuous decrease down to 0.8% at a fiber weight

fraction of 30%. This behavior is observed for all
fiber matrix combinations, although the rate in reduc-
tion of the elongation at break varied from case to case,
depending on the polymeric matrix. Such behavior of
more brittle fracture upon fiber reinforcement is sup-
ported by the fact that any impurities or voids con-
founding the matrix consistency would lead to
material stiffening.

According to Albano et al.,16 the incorporation of
fillers into a thermoplastic matrix can increase or
decrease the tensile strength of resulting composites.
Figure 9 shows the behavior of tensile strengths of
both RPP and RMAPP composites, where it becomes
obvious that the addition of filling rice straw weakens

Figure 6. Effect of coupling agent on the thermal degradation of RPP composites.

Figure 7. Effect of rice straw content on the stiffness of RPP and RMAPP composites.
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Figure 8. Effect of rice straw content on the fracture strain of RPP and RMAPP composites.

Figure 9. Effect of rice straw content on the tensile strength of RPP and RMAPP composites.

Figure 10. Impact strengths of RPP and RMAPP composites.

Bassyouni et al. 309

 at Universitaetsbibliothek on August 5, 2014jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com/


the matrix. Although several studies state a reduction in
tensile strength at lower (between 0wt% and 10wt%)
and again at higher (beyond 30wt%) both RPP and
RMAPP composites of this study seem to gradually
loose strength upon the increase of rice straw content.
This might be related to the filler shape. The dusty form
of rice straw after grinding might have enhanced the
formation of agglomerates, which can behave as
higher size particles, reducing the adhesion effective
surface,17,18 which in turn implies a poor force transfer

from the surrounding matrix to the reinforcement filler.
Further studies can be made upon the variation of filler
size and shape, as well as on the treatment of the rice
straw itself to remove lignin, which is the main cause of
such agglomeration problems. Taha et al.15 describe the
weakening effect of natural fibers at higher contents
based on the agglomeration theory. A model based
on the rule of mixtures allows the prognoses of reduced
tensile strength based on fiber–matrix interfacial shear
strength and composite processing conditions.

Figure 11. SEM micrographs of RPP (a–c) and RAMPP (d–f).
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Despite the reduced tensile strength, however, the
addition of maleated polypropylene to the matrix
improves the fiber/matrix interface and results in
higher tensile strength behavior of RMAPP compared
to RPP, as illustrated in Figure 9.

Impact properties

Concerning the impact behavior of a composite mate-
rial, there are various factors influencing the amount of
absorbed impact energy. Impact strength of fiber-rein-
forced materials is primarily determined by the energy
dissipated during fiber pull-out. This in turn is gov-
erned by a competition between fiber breakage and
interface failure, and is thus determined both by the
fiber tensile and interfacial shear strength. For natural
fibers, it is to be noted that it is itself to be considered as
a composite, meaning that internal fiber pull-out in
terms of defibrillation as an additional source of
energy dissipation. The results of impact testing reveal
to increasing in impact strength of RMAPP compared
to RPP, as can be depicted from Figure 10.

A sudden drop in impact strength occurs upon the
addition of filling material, after which the strength
level reveals minor changes. Djidjelli10 reported similar
observations and related these to the dilution effect: the
higher the fiber content, the less ductile matrix is pre-
sent in the system, leading to reduced composite
toughness.

Scanning electron microscopy

Tensile fracture surfaces of the composites with
and without maleic anhydride aid are shown in
Figure 11(a–f).

It is observed that without the coupling agents
(Figure 11(a)), rice straw was devoid of PP matrix, indi-
cating a poor interfacial adhesion between the dispersed
phase and the matrix. On the contrary, with the addi-
tion of coupling agents (Figure 11(e)), rice straw was
coated by film layer (coupling agent) that efficiently
increased its affinity to the PP.

It can be also noticed in Figure 11(b) that dispersion
of untreated rice straw in the PP is poor where
lignocellulosic materials tend to form agglomerates
due to the presence of lignin; these agglomerates can
lead to reduce the area of dispersed phase, reducing the
adhesion effective surface.

Debonding of the fiber from the matrix is visible in
Figure 11(c), where Figure 11(d) shows better
interaction between rice straw and PP in the presence
of coupling agent than the composite without process
additives.

Rice straw surface is characterized as hydrophilic by
polar hydroxyl groups and PP as hydrophobic by

polyolefins. In the case of copolymers, which are
maleic anhydride-grafted PPs, the anhydride groups
of these modified PPs can link to the surface –OH
groups of cellulose and its counterpart lignin through
the formation of a block copolymer. This behavior
could result in a higher reinforcing effect. On the
other hand, the content of different amounts of
maleic anhydride could result in significant variations
in the coupling action, and thus influence the mechan-
ical behavior.

Conclusions

The mechanical properties, thermal stability water
absorption, and micromorphology of short rice straw
reinforced PP composites was invistigated in this study.
Here, the combined effect of the MAPP treatment as
the compitilizer improved the interficial properties by
strengthening fiber–polymer interaction, by enhancing
fiber wetting and impregnating at the same time, by
chemically binding the two surfaces. The impact prop-
erties of RMAPP was improved compared to RPP
(between 5% and 10%). MAPP did not show a signif-
cant imrovement in the stiffness and tensile strength.
General speaking, there was a marginal increase in
the values of tensile modulus with increasing fiber con-
tents. RMAPP composites tend to absorb less water
than RPP. Maleic anhydride did not show a large influ-
ence on the thermal behavior of natural fiber
composites.

There are a large scope for research in the field on
natural fiber composites. Here, an effort has been made
to observe the effect of chemical modification using
MAPP on water absroption, thermal stability, and
mechanical properties. In forthcoming communica-
tions, other coupling agents, biodegradability of PP –
natural fiber copmosites will be the focus as the area of
research. There can be a lot of imrovements in the
properties of the composites by optimization of the
fiber length, orientation, treatment procerdure, and
appropriate coupling agents to optimize the interficial
properties.
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