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We propose a method to obtain accurate capacitance-voltage (C-V) curves in the presence of

multiple space charges. This method uses impedance spectroscopy to evaluate individual space

charges separately. The advantage is that the knowledge of the exact equivalent circuit is not

essentially needed. The comparison with other methods to calculate the doping concentration NA

shows that our method is unaffected by series resistances and agrees best with the correct value of

NA. The evaluation of the impedance spectra leads to a more thorough understanding of the

respective Mott-Schottky plots. VC 2012 American Institute of Physics. [doi:10.1063/1.3679380]

Evaluating capacitance-voltage (C-V) curves is a power-

ful tool to determine doping depth profiles of semiconductor

materials1 and other device parameters2,3 like the built-in

voltage Vbi or oxide properties in metal-oxide-semiconductor

structures.1,4 In short, the capacitance C of a reverse-biased

Schottky diode is measured while varying the direct current

(DC) bias voltage VDC. The slope of the 1=C2 vs. VDC plot, a

so called Mott-Schottky-Plot, gives the effective doping den-

sity Nd at the respective bias voltage VDC (Ref. 1)

NdðVDCÞ ¼ 6
2

qere0A2dð1=C2Þ=dVDC

; (1)

with the Schottky contact area A, the electron charge q, and

the dielectric constant of the vacuum e0 and of the semicon-

ductor material er.

Commonly, the capacitance C of a sample is determined

by interpreting a measured impedance Z ¼ Rþ iX using a

suitable equivalent circuit1 which is a combination of resis-

tors Rx and capacitances Cx. The simplest equivalent circuit

which can describe the behavior of a real sample is a parallel

combination RpCp in series with a resistor Rs.
1,5 The RC

combination represents the space charge region and Rs

accounts for contact and bulk resistances.6,7 Unfortunately,

this equivalent circuit cannot be obtained from a single im-

pedance measurement at a fixed frequency. Instead, at least

two measurements at two separate frequencies are needed.8

Then Cp, also called C2f for distinction of this two-fre-

quency-method, can be calculated using the relation

Cp ¼ C2f ¼
1

x2
1 � x2

2

� x2

X2

� x1

X1

� �
; (2)

which is not limited to any frequency range. However, Nara

et al. suggest choosing x1 and x2 with care to minimize the

calculation error in real applications.9 Conveniently, this

procedure is neglected, and a simple series or parallel con-

nection of one capacitor and a single resistor is used instead,

which is called RsCs and RpCp, respectively.1 Although hav-

ing no counterpart in real samples, these equivalent circuits

have the advantage that the capacitance can be calculated

from a one-frequency impedance measurement5

Cs ¼ �
1

xX
; (3)

Cp ¼ �xR2

X
� xX

� ��1

: (4)

Common impedance meters calculate these values automati-

cally, but without additional calculations they can only be

used in a very limited number of cases. Mostly, corrections

have to be made afterwards,10 or the results must be inter-

preted with caution.11,12 For example, see the series resist-

ance correction from Kavasoglu et al.10

As well as this one-frequency method, the previous two-

frequency method only applies if additional space charges

like pn-junctions or Schottky barriers are not present.9

Therefore, great care and extensive efforts are required to

gain reliable data6 and often considerable assumptions and

limitations are applied. This may lead to false results.

Hence, we generalize the two-frequency method for

cases with intentionally present space charges, like a pn-

junction. In such an experiment, the equivalent circuit can be

assumed as a series of RC combinations with an additional se-

ries resistance Rs as shown in Fig. 1 with the impedance ZðxÞ

ZðxÞ ¼ Rs þ
X

n

Rn

1þ x2R2
nC2

n

� i
X

n

xR2
nCn

1þ x2R2
nC2

n

: (5)

The measured impedance depends on 2nþ1 parameters.

Hence, corresponding to the two-frequency measurement,

2nþ1 measured frequencies xn would theoretically suffice,

but such a method would be very impractical and time con-

suming due to extensive data analysis.
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Therefore, we propose a method which uses impedance

spectroscopy. This technique determines the impedance Z as

a function of the AC frequency x and optional other parame-

ters like the DC bias voltage VDC. The resulting spectra RðxÞ
and XðxÞ can be displayed and analyzed in Bode plots.5

The equivalent circuit in Fig. 1 produces for n ¼ 2 a re-

actance spectrum as displayed in Fig. 2. For simplicity, the

negative reactance XðxÞ is used. Each RC combination pro-

duces a maximum in the negative reactance at its characteris-

tic resonance frequency xRi ¼ 1=RiCi as shown by the

dashed and dotted lines in Fig. 2. The peak height equals

Ri=2. This information5 can also be extracted from the real

part of Z, but the reactance has the advantage of being unaf-

fected by the series resistance as can be seen from Eq. (5).

The measured reactance spectrum results from the sum of

each RC combination. This means, in theory, that the values

for each RC combination, thus the capacitance Cn of each

space charge region, can be extracted from one single spec-

trum simultaneously for the whole sample with

Rn ¼ �2XðxRnÞ; (6)

Cn ¼
1

xRnRn

: (7)

It should be noted that an external DC voltage splits in volt-

age drops Vn which can be calculated from the direct current

IDC using the ohmic law Vn ¼ RnIDC. When repeating this

procedure for several bias voltages, the respective C-V
curves CnðVnÞ can be determined.

In practice the measured reactance spectrum can appear

as in Fig. 2, and the peaks are not clearly separated. To

obtain all parameters, this curve has to be fitted, for example,

with a complex nonlinear squares fit (CNLS),5 which can be

difficult due to measurement errors. At this point, the great

advantage of this method is that each RC combination can be

analyzed independently from each other. For example, the

solid curve in Fig. 2 could be the measurement of a semicon-

ductor sample, whose doping profile has to be determined.

Both metal contacts would obviously produce Schottky bar-

riers. Nevertheless, in good approximation, the evaluation of

the major peak yields the correct C-V curve and therefore the

correct doping profile.

To compare our method with conventional methods and

demonstrate its advantages in difficult cases, we intentionally

fabricate a semiconductor sample with two Schottky contacts

by sputter coating 50 nm titanium followed by 150 nm gold

through a shadow mask on top of a boron doped p-type float

zone silicon wafer with a resistivity of 12�15 Xcm as

reported from the manufacturer. The sample is a quarter of a

4 in. wafer with a thickness of 280 lm. The contacts are rec-

tangular with an interface area of 18:6 mm2 and 14:6 mm2,

respectively, and a distance of 4 mm (edge to edge). To

avoid edge effects, the contacts have a distance of at least

10 mm from the sample edges. The impedance is measured

using an Agilent E4980A Precision LCR Meter featuring a

10 mV AC amplitude, medium integration time, ten data

acquisitions per step, and an internal DC bias source. Addi-

tionally, from a second quarter of the same wafer, we fabri-

cate a sample with four annealed indium-zinc contacts in a

van-der-Pauw arrangement for Hall effect measurements as

reference. At room temperature, the current-voltage behavior

is linear up to I ¼ 300 lA, and surface depletion can be

neglected. A resistivity of 12:5 Xcm is calculated which is in

FIG. 1. Equivalent circuit for an arbitrary device with additional space

charges.

FIG. 2. Exemplary reactance spectra of two RC combinations (dashed and

dotted) and their sum (solid).

FIG. 3. (Color online) Reactance spectra of the sample for different DC bias

voltages (voltage step DVDC ¼ 25 mV). For a better comprehension, positive

(VDC ¼ 0…4 V) and negative (VDC ¼ �4…0 V) bias voltage variations are

displayed separately. Dashed arrows indicate the dependence of reactance

peaks on increasing DC voltage.
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good agreement with the manufacturer’s value. The Hall

effect measurement yielded a net doping density of

NA ¼ 1:7260:03� 1015 cm�3.

The resulting reactance spectra are shown in Fig. 3. For

large positive or negative voltages (see dashed arrows in Fig.

3), one Schottky contact is in strong depletion while the other

one is in strong accumulation. Hence, only one reactance

peak is visible. The smaller contact is depleted for positive

voltages and has its resonance frequency at approximately

xR � 400 kHz. The larger contact, however, depletes for

negative voltages and produces a peak around xR � 40 kHz.

Equation (1) indicates that a larger contact interface area

leads to a faster growth of the peak height with increasing

voltages. Therefore, at the same absolute value of DC volt-

age, the peak heights differ by more than one order of magni-

tude. For smaller DC voltages, the contacts are not strongly

depleted or accumulated. Hence, in this region both peaks

can be observed simultaneously. In Fig. 3 this is shown

exemplarily for the thick blue highlighted curve.

To compare the different methods for obtaining C-V
curves, we analyze the spectra from Fig. 3 with each method.

The resulting C-V curves are displayed in Fig. 4. The appro-

priate calculated acceptor concentrations can be found in

Table I. The value from Hall measurements are used as a

reference.

As an example for the one-frequency method, we calculate

Cs using Eq. (3) and the impedance values at 1 MHz. For

strong depletion, the resulting C-V curve is approximately

linear, and a linear fit yields the right order of magnitude for

the acceptor concentration with NA ¼ 2:64…3:48� 1015 cm�3.

For lower voltages jVDCj < 1 V, the approximation of a sin-

gle capacitance no longer applies, and the curve should not

be used for calculating the doping concentration, because it

could easily be interpreted as a false doping profile. In fact,

there are similarities to the C-V curve of metal-insulator-

semiconductor (MIS) structures.9 This would suggest a thin

silicon oxide layer beneath the contacts which adds an addi-

tional RC combination to the equivalent circuit. Essentially,

the theory for the one-frequency method cannot be applied.

For the two-frequency method the choice of the frequen-

cies is crucial. Only under the assumption of a single capaci-

tance the theory works with any frequency. This is not true for

our sample. Therefore, no distinct C-V curve can be calcu-

lated. Here, we used x1 ¼ 1 kHz and x2 ¼ 2 MHz for case A

and x1 ¼ 100 kHz and x2 ¼ 2 MHz for case B to illustrate

the problem. For case A the resulting curve and values for NA

in Table I are nearly identical to the one-frequency method.

However, for case B the acceptor concentration is two orders

of magnitude too small for positive DC voltages. Hence, the

two-frequency method should only be used when additional

space charges can definitely be excluded.

To test our method, we evaluate the reactance spectra

from Fig. 3 by using a simple maximum value algorithm on

the negative reactance. With Eqs. (6) and (7) and the ohmic

law for the DC voltage correction we calculate the corre-

sponding C-V curve in Fig. 4. For strong depletion, the

resulting acceptor concentrations show better agreement

with the reference value than the other methods. Actually,

the acceptor concentration NA ¼ 1:61� 1015 cm�3 for nega-

tive bias voltages is almost identical to the value from the

Hall measurement. Additionally, the knowledge of the whole

impedance spectra allows a better understanding of the C-V
curve for small DC voltages. For decreasing voltages, the

resonance peak of the larger contact in Fig. 3 enters a regime

where the resonance peak we assign to the smaller contact

becomes visible. Due to the shifting dominance, the simple

peak algorithm now takes the smaller contact for the calcula-

tion of the C-V curve. Therefore, a change in the slope in

Fig. 4 occurs at the respective voltage (VDC � �2 V). As

shown by the dashed blue line in Fig. 4, we assume a con-

tinuing linear behavior for the “larger contact” peak. A com-

plete fit of the whole spectra should give the individual C-V
curve of each RC combination.

This comparison of methods proves that our method has

many advantages over the conventional methods, which are

only applicable under special circumstances. Our method

can be applied in any cases where an equivalent circuit can

be assumed as in Fig. 1 which includes the cases for the one-

and two-frequency method.

FIG. 4. (Color online) Mott-Schottky plots calculated from the reactance

spectra using a one-frequency method (circles), the two-frequency method

with two different frequency choices (open and solid squares), and a simple

peak evaluation of the impedance spectra according to our technique (blue

triangles). Deviations from the expected linear behavior around VDC ¼ 0 V

are caused by incorrect capacitance values due to simultaneous impact of

both Schottky contacts. A corrected behavior is estimated due to the react-

ance spectra.

TABLE I. Comparison of resulting acceptor concentrations NA from single-frequency and two-frequency A and B analysis of the impedance and our method

using impedance spectroscopy. All linear fits are performed at higher voltages (jVDCj > 2 V) for positive and negative DC voltages. The value from Hall effect

measurements is used as a reference.

Single-frequency Two-frequency A Two-frequency B Our method Hall effect (reference)

Method NA ð1015cm�3Þ NA ð1015cm�3Þ NA ð1015cm�3Þ NA ð1015cm�3Þ NA ð1015cm�3Þ

VDC < �2V 2:6460:02 2:6560:02 2:8160:02 1:6160:06 1:7260:03

VDC > þ2V 3:4860:02 3:4060:03 0:0460:002 2:7760:01 1:7260:03

042101-3 Guenther et al. Appl. Phys. Lett. 100, 042101 (2012)
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We assume that the investigation of interface states or

defects could be possible. Interface states can produce features

in the impedance spectrum.3,13 This could explain the behav-

ior around VDC ¼ 0 V where the impedance measurement is

most sensitive to low impedance contributions. Alternatively,

the reactance spectra can be interpreted with a MIS structure.

The occurring peak around VDC ¼ 0 V could be associated

with a thin oxide beneath the contacts. This would explain the

resemblance of the resulting C-V curve with the characteristic

behavior of a MIS structure.9 Fortunately, our method can be

applied in both cases. Furthermore, our method may allow

determining built-in voltages more accurately, because an

exact C-V curve is the essential condition.10

In summary, we propose a method to calculate

capacitance-voltage curves from impedance spectra. In

theory, the capacitances of all space charges within a device

can be evaluated simultaneously and independently from

each other. Therefore, an exact equivalent circuit is not

essentially needed but may improve the results. In compari-

son with traditional methods, our method proves to be unaf-

fected by series resistances and gives a more accurate value

for the depletion capacitance in the presence of additional

space charges. We have shown that impedance spectroscopy

is a very powerful tool to understand Mott-Schottky plots in

order to determine correct doping concentration profiles.
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