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In this work a model for the growth of ZnO nanocombs based on the piezoelectric
character of ZnO is presented that explains the periodic growth of nanowire branches
on the polar +(0001) surface of a ZnO nanobelt as a self catalytic growth process.
In this model the perturbation and elasticity theory are applied to approximate the
induced mechanical strain and piezoelectric potential distribution in the nanobelt
under the growth kinetics. To implement a quantitative simulation of the periodic
growth of ZnO nanobranches the induced piezoelectric charges in the ZnO nanos-
tructure are calculated. These are responsible for the structural transformation from
a nanobelt into a nanocomb. A comparison with nanocombs that are synthesized
using the vapor-liquid-solid method shows good agreement between experimental
and theoretical results. C© 2013 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4824616]

I. INTRODUCTION

ZnO with abundant configurations of nanostructures such as nanowires,1–3 nanaohelices,4, 5

nanobelts,4–6 nanoplates,7 nanobridges,8 nanonails,8 nanosails,9 and nanocombs,10–13 is one of the
most important functional semiconductor nanomaterials. Due to its wide direct band gap of 3.37 eV
and a large exciton binding energy of 60 meV,14 ZnO, especially aligned ZnO nanowires have appli-
cations in optoelectronic devices,15, 16 and sensors.17–20 Its unique semiconducting and piezoelectric
properties21, 22 in combination with high mechanical strength make ZnO nanostructures suitable for
the application in nanoresonators23 and nanogenerators.24–27 Recently, ZnO comb-like nanostruc-
tures, in which nanowire branches are distributed in an ordered manner on one or both sides of the
backbone nanobelt, have attracted considerable attention for the application to nanocantilevers,28

UV nanolaser arrays,29 optical nanogratings,11, 30 nanopolarizer,11 and biosensors.31 ZnO nanocomb
structures can be synthesized by a carbothermal reduction process between graphite carbon and ZnO
powder at temperatures higher than 900 ◦C.10, 11, 27–32 In this process a high Zn vapor pressure is
essential. In previous studies mechanisms for the growth of ZnO nanocombs have been proposed,
which relate the formation of nanocombs with the self catalytic effect possibly due to the Zn cluster
at the defective site on the polar +(0001) surface of the ZnO nanobelt10 or the enrichment of Zn
at the growth front +(0001).28 However, these mechanisms cannot explain the growth of parallel
and evenly spaced nanowire branches of a nanocomb on the polar +(0001) surface of the backbone
nanobelt, which may be important to control the growth process of nanocombs and consequently to
develop the nanoscale functional devices based on them.

In this work, we apply the perturbation and elasticity theory to approximate the induced strain
distribution in the ZnO nanobelt under the growth kinetics and explain how the coupling of the
mechanical strain to the piezoelectric field across the nanobelt thickness leads to periodic vertical

aElectronic mail: f.fattahi@pe.tu-clausthal.de.
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FIG. 1. SEM images of two ZnO nanocombs synthesized on Si (111) substrate by VLS method. L is the periodicity of the
nanowire branches grown on the backbone nanobelt. The ZnO nanocombs in (a) and (b) have a different geometry: (a) L̄
= 2.10 μm and (b) L̄ = 2.76 μm. Reproduced with permission from ref. 33. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA, 2013.

displacements along the nanobelt length, which are the preferred places for the self catalytic growth
of the nanowire branches for building a nanocomb structure. Drawing on the example of a real
structure the ZnO nanocomb (Fig. 1(b)) synthesized by the vapor-liquid-solid (VLS) method is
modelled.33

ZnO crystals grow anisotropically due to the different surface energies of different crystal
faces.34–37 The calculated values for surface cleavage energy for the +(0001), −(0001), (11–20) and
(10–10) surfaces are 4.3, 4.3, 2.5 and 2.3 J/m2 respectively.34 This suggests that the polar ±(0001)
surfaces are the least stable faces of ZnO. That is why most commonly the ZnO nanostructures grow
fastest in direction [0001] and have only small polar ±(0001) surfaces. However one can overcome
the barrier of surface energy by controlling the growth kinetics and achieve (0001) surface-dominated
nanostructures e.g. nanobelts and nanocombs.4, 5 The ZnO nanocombs shown in Fig. 1 were grown
by the VLS method in a horizontal three-zone furnace (with Ar as carrier gas) on a Si (111) substrate.
The substrate was coated with 2.5 nm Au as catalyst. The synthesis of these structures are described in
detail elsewhere.33 The synthesized ZnO nanocombs (Figs. 1(a) and 1(b)) have different geometrical
shapes. Our approach to explain the periodic geometrical shape of the ZnO nanocombs is given
below.

II. THEORETICAL SOLUTIONS

A. The perturbation theory

A static piezoelectric system can be completely described with the Gauss equation for the electric
field, the mechanical equilibrium equation, the constitutive equation and the compatibility equation
along with appropriate boundary conditions.38, 39 In order to simplify the analytical solution of these
equations, one can apply the perturbation expansion of the linear equations introduced by Wang
and Gao:40 The different orders of electromechanical coupled effect are achieved by introducing
a perturbation parameter in the constitutive equations. The first two orders of these perturbation
equations are given as follows:40

σ (0)
p = cpqε

(0)
q , (1)

D(0)
i = kik E (0)

k , (2)

σ (1)
p = cpqε

(1)
q − eT

kp E (0)
k , (3)

D(1)
i = eiqε

(0)
q + kik E (1)

k , (4)
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where σ is the stress tensor, ε is the strain tensor, E is the electric field vector and D is the electric
displacement vector, which are related for the first two order as above. Here cpq is the linear elastic
constant, ekp is the linear piezoelectric coefficient, eT

kp is the transpose of the element ekp and kik is
the dielectric constant of the material. For a ZnO crystal with the C6ν symmetry, cpq, ekp, and kik can
be written as

cpq =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0
(c11 − c12)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

ekp =

⎛
⎜⎝

0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎞
⎟⎠ . (6)

kik =

⎛
⎜⎝

k11 0 0

0 k11 0

0 0 k33

⎞
⎟⎠ . (7)

In this work the solutions of the first two orders are considered for the case of a ZnO nanobelt.
For ZnO nanocombs reported in previous studies, the preferred growth direction for the backbone
nanobelts are either [01-10] with the side dominated surfaces being (2-1-10)10, 11, 13, 30 or [2-1-10] with
the side dominated surfaces being (01–10).28 However, for all of them the polar surfaces ±(0001) at
the top and bottom end of the nanobelts, are terminated by Zn2+ and O2− ions. These polar surfaces
(spontaneous polarization) introduce an intrinsic electric field Ek

(0) inside of the nanobelts. For the
case of the thick nanobelt shown in Fig. 1 (with the assumption of the polar surfaces ±(0001) at
the top and bottom end of the nanobelt in reference to the previous studies), we ignore Ek

(0) and its
contribution to the coupling between mechanical field and electric field. Consequently one can take
σ p

(1) = 0, εq
(1) = 0 in Eq. (3). Thus in the free standing ZnO nanobelt, the first two orders of the

perturbation equations become

σ (0)
p = cpqε

(0)
q , (8)

D(1)
i = eiqε

(0)
q + kik E (1)

k , (9)

The zeroth order solution is a purely mechanical deformation depending on the growth kinetics and
the first order solution is the result of the direct piezoelectric effect meaning that the mechanical
deformation in the material induces an electric field in the nanobelt.

B. Theory of elasticity

Because of the small displacement (Because of the small displacement (εz = �h/2H ∼ 3%) (see
Fig. 2 for the definition of �h and H) in the backbone nanobelt shown in Fig. 1(b), the infinitesimal
strain theory is used. Mao et al.41 have reported that for the ZnO nanobelt, which is grown along
the [0001] direction and enclosed by the (01–10), the hardness along [0001] may be higher than
that along [2-1-10]. But to simplify the analytical solution the ZnO nanobelt is approximated as an
isotropic elastic material with Young’s modulus

↪
E and Poisson ratio ν. The strain and stress relation
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FIG. 2. Coordinate system and schematic geometry of the ZnO nanocomb in two dimensions. The black line shows the
primary nanobelt with a thickness of 2H and the dashed line shows the final geometry of the nanocomb. L is the periodicity
of the nanowire branches grown on the top polar +(0001) surface of the nanobelt.

(Hooke’s law) is written as40

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε(1)
x

ε(1)
y

ε(1)
z

γ (1)
yz

γ (1)
zx

γ (1)
xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

↪
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ (1)
x

σ (1)
y

σ (1)
z

τ (1)
yz

τ (1)
zx

τ (1)
xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where σ is the notation for the stress components acting perpendicular to the sides of the nanobelt
parallel to Cartesian coordinate axes x, y, z (normal stress). τ is the notation for the stress components
acting tangential to the sides of the nanobelt (shear stress). The first subscript letter for the shearing
stress indicates the direction of the normal to the side under consideration and the second one
indicates the direction of the stress component. Here ε is the notation for the components of the
normal strain and γ is the notation for the components of the shear strain in the same manner.

To further simplify, we assume that the nanobelt has its edges parallel to two perpendicular axes
of elastic symmetry with a uniform rectangular cross section. The coordinate axes y and z are chosen
as shown in Fig. 2. Because of the small width of the nanobelt in comparison to its thickness (see
Fig. 1) the problem can be treated as a case of the plane stress (σ x

(0) = 0, τ zx
(0) = τ xy

(0) = 0). In the
most general case the distribution of vertical loading along the upper and lower edges of a beam can
be expressed as Fourier series

qupper (y) = a0 +
∞∑

n=1

an cos αy +
∞∑

n=1

a′
n sin αy, (11)

qlower (y) = b0 +
∞∑

n=1

bn cos αy +
∞∑

n=1

b′
n sin αy. (12)
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Here,

α = nπ
/

L,

a0= (1
/

L)
∫ L

0 qupper (y) dy,

b0= (1
/

L)
∫ L

0 qlower (y) dy,

an= (2
/

L)
∫ L

0 qupper (y) cos αy dy,

a′
n= (2

/
L)

∫ L
0 qupper (y) sin αy dy,

bn= (2
/

L)
∫ L

0 qlower (y) cos αy dy,

b′
n= (2

/
L)

∫ L
0 qlower (y) sin αy dy.

(13)

The stress components are then obtained as follows:38

σy = c0 +
∞∑

n=1
cos αy[Anα

2 cosh αz + Bnα
2 sinh αz

+Cnα(2 sinh αz + αz cosh αz) + Dnα(2 cosh αz + αz

sinh αz)] +
∞∑

n=1
sin αy[A′

nα
2 cosh αz + B ′

nα
2 sinh αz

+C ′
nα(2 sinh αz + αz cosh αz) + D′

nα(2 cosh αz + αz sinh αz)],

(14)

σz = f0 −
∞∑

n=1
cos αy(Anα

2 cosh αz + Bnα
2 sinh αz

+Cnα
2z cosh αz + Dnα

2z sinh αz) −
∞∑

n=1
sin αy(A′

nα
2

cosh αz + B ′
nα

2 sinh αz + C ′
nα

2z cosh αz + D′
nα

2z sinh αz),

(15)

τyz = d0 +
∞∑

n=1
sin αy[Anα

2 sinh αz + Bnα
2 cosh αz

+Cnα(cosh αz + αz sinh αz) + Dnα(sinh αz + αz

cosh αz)] −
∞∑

n=1
cos αy[A′

nα
2 sinh αz + B ′

nα
2 cosh αz

+C ′
nα(cosh αz + αz sinh αz) + D′

nα(sinh αz + αz cosh αz)],

(16)

where the constants An, Bn, Cn, Dn, A′
n, B′

n, C′
n, and D′

n can be determined from the boundary
conditions on the upper and lower edges of the nanobelt at z = ±H. From the strain-displacement
relationships and the Hooke’s law, the following equations can be obtained:

↪
EV =

∫
(σy − νσz) dy +

↪
E k0 z + k1, (17)

↪
EW =

∫
(σz − νσy) dz −

↪
E k0 y + k2, (18)

γyz = τyz

G
= ∂V

∂z
+ ∂W

∂y
, (19)

G = ↪
E

2(1 + ν)
. (20)

Here V and W are the displacement components parallel to the coordinate axes y and z, respectively.
k0, k1 and k2 are the constants, which are determined from the known displacements at the ends of
the nanobelt. The constant G is called shear modulus or the modulus of rigidity.

C. Result of the electromechanical coupling in the ZnO nanobelt

By controlling the growth kinetics, ZnO comb-like nanostructures with a variety of periodicity
and geometrical shapes, can be synthesized.10, 11, 30 For each ZnO nanocomb the periodicity of its
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TABLE I. The elastic and electric constants for bulk ZnO.40 k11, k22 and k33 are the dielectric constants of the material. e31,
e33 and e15 are the piezoelectric coefficients.

↪
E is Young’s modulus and ν is Poisson ratio.

Constant Value Constant Value

k11 7.77 e31 −0.51
k22 7.77 e33 1.22
k33 8.91 e15 −0.45
ν 0.349

↪
E (GPa) 129

nanowire branches, the position of the facet at the nanowire-side (Lengths a and e in Fig. 2) and at the
nanobelt-side (Lengths b and d in Fig. 2) determine the appropriate boundary conditions uniquely.
Drawing on the example of a real structure the ZnO nanocomb shown in Fig. 1(b) is considered,
which represents a more general deformation in the crystal structure of the primary nanobelt. In this
case the boundary conditions are taken as follows:

V (0, z) = 0, V (2�, z) = constant,

W (y,+H ) = −h1

�
y, W (2�, z) = −h1,

W (0,−H ) = 0, W (� + d,−H ) − W (e,−H ) = −h′,
W (e,−H ) − W (d,−H ) = W (� + e,−H ) − W (� + d,−H ) ,

W (a,−H ) − W (b,−H ) = W (� + a,−H ) − W (� + b,−H ) ,

W (b,−H ) − W (d,−H ) = W (� + b,−H ) − W (� + d,−H ) .

(21)

From these boundary conditions and equilibrium equations Fy = 0, Fz = 0 for the force
components in y- and z-direction the constants constants An, Bn, Cn, Dn, A′

n, B′
n, C′

n, D′
n, c0, f0,

d0 in Eqs. (14)–(16) and the constants k0, k1, k2 in Eqs. (17) and (18) are derived. Consequently
by substituting Eqs. (14)–(16) into Eq. (10), the strain distribution in the nanobelt is determined.
The values given in Table I for

↪
E and ν are used in our calculations. From the first two boundary

conditions one find that n in the Fourier expansions (Eqs. (14)–(16)) must be an even number.
With taking n = 2 the solution for the first three orders can be approximated. Using the Wolfram
Mathematica 8.0, the strain distribution in the ZnO nanobelt is simulated as shown in Fig. 3. In the
problem of plane stress (σ x

(0) ∼ 0) for the ZnO nanocomb a non zero strain εx
(0) across the width

of the nanobelt is to be calculated (Fig. 3(a)). This is caused by the normal stress components σ y
(0)

and σ z
(0). The positive strain is corresponding to the induced tension and the negative strain to the

induced compression in the nanobelt.
Now by using the perturbation approximation in Eq. (9) one obtains the induced piezoelectric

field Ek
(1) in the ZnO nanobelt. By noting that there is no free body charge in the nanobelt one takes

0 = ∇ · eiqε
(0)
q + ∇ · kik E (1)

k , (22)

in which

∇ · eiqε
(0)
q =

∂

∂y
e15γ

(0)
yz + ∂

∂z
(e31ε

(0)
x +e31ε

(0)
y + e33ε

(0)
z ),

(23)

∇ · kik E (1)
k =

∂

∂x
k11 E (1)

x + ∂

∂y
k11 E (1)

y + ∂

∂z
k33 E (1)

z .
(24)

By using E = –∇ϕ(1) in Eq. (24) one obtains

∇ · kik E (1)
k =

−k11
∂2ϕ(1)

∂x2
− k11

∂2ϕ(1)

∂y2
− k33

∂2ϕ(1)

∂z2
.

(25)
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FIG. 3. Induced strain in the primary nanobelt for the ZnO nanocomb shown in Fig. 1(b). The components of the normal
strain in (a) x-, (b) y-, (c) z-direction and (d) the shear strain in the nanobelt.

Since the ∇ · eiq εq
(0) is independent of x, the induced piezoelectric potential ϕ(1) is uniform in x

direction. In addition, because of the Fourier series expansion of ∇ · eiq εq
(0), one can take ϕ(1) as a

Fourier series expansion, which satisfies the Maxwell’s law ∇ × E(1) = 0 too:

ϕ(1) =
∞∑

n=1

Sn(z) sin αy +
∞∑

n=1

Tn(z) cos αy. (26)

Here Sn(z) and Tn(z) are functions of z. By substituting Eq. (26) into Eq. (25) and solving Eq. (22) for
the electric potential inside the nanobelt and the Laplace equation for the electric potential outside
the nanobelt one obtains the induced piezoelectric potential and consequently the piezoelectric field
in the nanobelt (Figs. 4(a) and 4(b)). The values given in Table I for the constants ekp and kik are
used in this calculation.

Figures 3(a)–3(d) and Fig. 4(a) show that the induced strain and electric potential within the
nanobelt are noticeable only in the first layers under the top and bottom surfaces. A comparison
between the induced electric potential distribution (Fig. 4(a)) and the normal strain distribution in
z-direction in the nanobelt (Fig. 3(c)) indicates that positive and negative electric potentials are
generated in the regions stretched and compressed along the polar axis of the nanobelt, respectively.
The induced piezoelectric field distribution in the ZnO nanobelt is consistent with the mechanical
deflection distribution in the material. This is shown for example in Figs. 4(b) and 4(c) only for the
first layers under the top polar +(0001) surface of the nanobelt.

The red lines in Fig. 4(c) show schematically the expected geometry of the final nanostructure,
which does not match exactly the geometry of the nanocomb shown in Fig. 2. This is because of
the fact that in our calculations only the first three orders in the Fourier expansions (Eqs. (14)–(16))
are taken into account. To obtain a more precise solution one needs to consider higher orders in the
Fourier expansions. Thus more boundary conditions are required. This may be achieved by using
the transmission electron microscopy (TEM) images of a nanocomb, illustrating more details about
the facets at the nanowire-side and at the nanobelt-side.
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FIG. 4. (a) Induced piezoelectric potential distribution in the primary nanobelt. (b) corresponding piezoelectric field distri-
bution and (c) mechanical deflection in the first layers under the top polar +(0001) surface of the nanobelt at z = − H (see
Fig. 2). The red lines show the schematic geometry of the final ZnO nanocomb.

III. MODEL OF GROWTH

ZnO crystallizes in the wurtzite structure without a center of inversion (Fig. 5(a)). That means
by cleaving the crystal perpendicular to the c axis, two polar surfaces on opposite sides of the crystal
are formed. The polar +(0001) surface has only Zn2+ ions and the polar –(0001) surface has only
O2− ions. Such a system may be considered as a “slab” of Zn-O double layers,21, 34 as shown in
Fig. 5(b).

The ∇ · eiq εq
(0) in Eq. (22) can be considered as a body charge density and it means that

actually the divergence of the strain εq
(0) in the material induces a piezoelectric field Ek

(1) in the
nanostructure. We call this body charge density, induced piezoelectric charge density. As shown in
Fig. 6(a) the induced piezoelectric charge is localized in the surface regions and decays to zero in
the middle of the nanobelt. A comparison between the induced piezoelectric charge and deflection
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FIG. 5. Crystal structure of ZnO. (a) Wurtzite structure of ZnO with the top polar Zn-terminated +(0001) surface and the
bottom polar O-terminated –(0001) surface. a and c are the crystal parameters of ZnO. (b) Schematic illustration of Zn-O
double layers in a slab of the material.

FIG. 6. Induced piezoelectric body charge density (a) in the nanobelt (b) in the top surface layer at z = −H (blue line) and
in the bottom surface layer at z = +H (red line).

distribution suggests a rearrangement of charges between the first Zn-O double layers under the top
and bottom polar surfaces of the nanobelt. In the stretched regions of the nanobelt, the Zn-terminated
side gets farther away from the O-terminated side and becomes more positively charged. On the
other hand, in the compressed regions the Zn-terminated side gets closer to the O-terminated side
and becomes less positively charged. It follows that the top polar +(0001) surface (at z = −H) of the
nanobelt has no homogenous Zn2+ ion density (see Fig. 6(b)).This suggests a self catalytic growth
of ZnO nanowire branches on the polar +(0001) surface at the regions with higher positive charge
density and hence more metal content compared to its vicinity. Therefore the nanowire branches
grow periodically on the top polar surface and thus the nanobelt changes into a nanocomb. Similarly,
on the bottom polar –(0001) surface (at z = +H), the O2− ion density is not homogenous too (see
Fig. 6(b)) but this causes no metallic catalyst for the growth of ZnO nanowire branches. Hence the
nanowire branches grow only on the top polar +(0001) surface of the nanobelt.

As mentioned already, the periodicity of the nanowire branches on the nanobelt depends on the
growth kinetic control. In our experiment the Ar flow fluctuation, relatively low zinc vapor pressure
and temperature fluctuation in the growth process may cause different periodicities of the nanowire
branches of the same nanocomb as well their irregular length and width as shown in Fig. 1.

IV. CONCLUSIONS

In summary, we presented a model for the growth of ZnO nanocomb structures based on
the piezoelectric character of ZnO. Applying the perturbation and elasticity theory and using the
Fourier expansion of mechanical stress exerted in the material under the growth kinetics, the induced
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piezoelectric charge in the nanostructure is approximated. The periodic distribution of the induced
piezoelectric charge explains the periodic growth of nanowire branches of ZnO nanocombs on the
polar +(0001) surface as a consequence of a self catalytic growth process.
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