
Mathematik-Bericht 2011/1

Note on basic features of large time

behaviour of heat kernels

M. Keller, D. Lenz, H. Vogt, R. Wojciechowski

Juli 2011

Institut für Mathematik, TU Clausthal, Erzstraße 1, D-38678 Clausthal-Zellerfeld, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45269794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




NOTE ON BASIC FEATURES OF LARGE TIME
BEHAVIOUR OF HEAT KERNELS

MATTHIAS KELLER1, DANIEL LENZ2, HENDRIK VOGT3,
AND RADOS LAW WOJCIECHOWSKI4

Abstract. Large time behaviour of heat semigroups (and more gener-
ally, of positive selfadjoint semigroups) is studied. Convergence of the
semigroup to the ground state and of averaged logarithms of kernels to
the ground state energy is shown in the general framework of positivity
improving selfadjoint semigroups. This framework includes Laplacians
on manifolds, metric graphs and discrete graphs.

Introduction

The study of the heat equation has a long history. There is a vast amount
of literature devoted to heat kernel estimates under various geometric as-
sumptions. Here, we want to investigate two basic issues concerning long
term behaviour of the heat semigroup, which turn out to be rather indepen-
dent of the underlying geometry. These issues are:

• Convergence of the semigroup to the ground state.
• Convergence of averaged logarithms of the kernels to the infimum of

the spectrum.
In differential geometry these topics have been studied both for compact

and non-compact manifolds. In the compact case the results are well known.
In the general case, the first issue is settled by a result of Chavel and Karp [4]
(see Simon [37] for simplification as well) and the second is known as theorem
of Li after [31], where a statement can be found. (The paper itself does not
seem to contain a proof but rather provides much stronger estimates under
additional curvature assumptions). Corresponding results on heat equations
with an elliptic generator can also be found in Pinchover’s work [34, 35].

In probability theory these points are well known for Markov chains on a
finite state space due to the Perron-Frobenius theorem. We are not aware
of a treatment for general Markov chains on an infinite state space.

Here, we present a new approach to these two issues in the general frame-
work of arbitrary positivity improving selfadjoint semigroups. This frame-
work covers a large array of examples, among them Laplacians on manifolds,
metric graphs and discrete graphs. In particular, we recover the mentioned
results of [4, 31, 37] and provide results for Markov chains on infinite state
spaces. A short way of phrasing our result would be that existence of ker-
nels alone already implies the above long term behaviour (irrespective of the
underlying setting or geometry).
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2 LARGE TIME BEHAVIOUR OF HEAT KERNELS

The crucial new insight for our unified treatment in the mentioned gen-
erality is that any positive function completely controls the bottom of the
spectrum of a positivity improving selfadjoint semigroup. The proof of this
fact is based on the simple observation that for a strictly positive function
h on the measure space (X, m) the set

{u ∈ L2(X, m) : 0 6 u 6 h}
is total in L2(X, m) (see Lemma 2.1 and its proof for details).

As a consequence of our investigations and earlier results of [38, 39] we
can substantially generalize a result of Cabré and Martel [3] on existence
of positive weak solutions of the heat equation with a strongly negative
potential.

We also note in passing that an application of our results to graphs posi-
tively answers a question raised by Weber in [41].

Unlike other basic results of semigroup theory, our results crucially depend
on the selfadjointness of the underlying semigroup. In fact, they become
wrong for general positivity improving semigroups as we show by an exam-
ple below (see, however, [34, 35] for a treatment of certain non-selfadjoint
semigroups in strongly local situations).

We develop our general results in three steps, first discussing general semi-
groups of selfadjoint operators in Section 1, then turning to positivity im-
proving semigroups in Section 2 and finally turning to positivity improving
semigroups with kernels in Section 3. An application to negative pertur-
bations of positivity improving semigroups is presented in Section 4. This
provides the above mentioned generalization of the result of [3]. In Sec-
tion 5 we discuss examples viz Laplacians on manifolds, metric graphs and
discrete graphs. This section contains the answer to the mentioned question
of [41]. The (counter)example proving that selfadjointness is needed for our
considerations is given at the end of Section 2.

The topic of the paper concerns the intersection of various subjects. Thus,
not all readers may be familiar with the general theory of positivity improv-
ing semigroups. For this reason we include an appendix gathering various
basic pieces of that theory.

1. Framework and basic result

In this section we introduce the framework used throughout the paper.
We then present the basic result on convergence concerning the two issues
discussed in the introduction.

We consider a selfadjoint operator L on a Hilbert space H. The inner
product on H is denoted by 〈·, ·〉. The operator L is assumed to be bounded
below. Hence, the operators e−tL, t > 0 form a semigroup of bounded
operators. The behaviour of this semigroup for large t is the focus of atten-
tion in the present work. The infimum of the spectrum of L is denoted by
E0 = E0(L). The projection onto the eigenspace associated to E0 is denoted
by P , i.e.,

P := 1{E0}(L),
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where 1X denotes the indicator function of the set X. Note that P = 0
if E0 is not an eigenvalue. In any case, we speak about E0 as the ground
state energy. The spectral measure of an element f ∈ H with respect to L
is denoted by ρf . It is a finite measure on [E0,∞) with the characteristic
property that

〈f, e−tLf〉 =
∫

[E0,∞)
e−ts dρf (s)

for all t > 0.
The topological support of the measure ρf is given by

spt(ρf ) =
{
E ∈ R

∣∣ ρf (E − δ, E + δ) > 0 for all δ > 0
}
.

The following is a rather immediate consequence of the spectral theorem
(and part (a) is already contained in the considerations of [37]).

Theorem 1.1. Let L be a selfadjoint operator in the Hilbert space H with
infimum of the spectum E0 > −∞, and let P = 1{E0}(L). Then the following
holds:

(a) The operators etE0e−tL converge strongly to P for t →∞, i.e.,

etE0e−tLf → Pf (t →∞)

for all f ∈ H.
(b) For any f ∈ H with f 6= 0 the equality

lim
t→∞

log〈f, e−tLf〉
t

= − inf spt(ρf )

holds.

Proof. (a) The spectral theorem gives

‖(etE0e−tL − P )f‖2 =
∫

[E0,∞)
|etE0e−ts − 1{E0}(s)|2 dρf (s).

Obviously, the integrand is bounded by 1 and tends to zero everywhere.
Hence, the Lebesgue convergence theorem gives (a).

(b) Let Ef := inf spt(ρf ), and let t, δ > 0. The spectral theorem easily
yields

e−(Ef+δ)t‖1[Ef ,Ef+δ](L)f‖2 6
∫

[Ef ,∞)
e−ts dρf (s) 6 e−Ef t‖f‖2.

We can take logarithms in this inequality as

1[Ef ,Ef+δ](L)f 6= 0

by the definition of spt ρf , obtaining

−(Ef + δ)t + 2 ln ‖1[Ef ,Ef+δ](L)f‖ 6 ln〈f, e−tLf〉 6 −Ef t + 2 ln ‖f‖.
After division by t, the desired statement then follows by considering first
the limit t →∞ and then δ → 0. �
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For later use we note that any selfadjoint L which is bounded below by,
say, C comes with a closed form Q defined by

Q(f, g) := 〈(L− C)1/2f, (L− C)1/2g〉+ C〈f, g〉
for f, g ∈ D(Q) := D((L−C)1/2). Note that this definition does not depend
on the actual choice of C, provided that L > C.

2. Positivity improving semigroups

In this section we specialize the framework of the last section to positivity
improving selfadjoint semigroups. This will allow us to strengthen the result
on convergence to the ground state energy of the previous section.

Let H = L2(X, m), where X is a measure space with σ-algebra B and a
σ-finite measure m. A function f on X is called positive if

〈f, f〉 > 0 and f(x) > 0 for m-almost every x ∈ X.

A function f on X is called strictly positive if f(x) > 0 for m-almost every
x ∈ X. The semigroup (e−tL)t>0 is called positivity preserving if e−tL maps
non-negative functions to non-negative functions for each t > 0, it is called
positivity improving if

e−tLf is strictly positive

for any positive f and all t > 0. Note that σ-finiteness of the measure m is
a necessary condition for the semigroup to be positivity improving.

Remark. As is well known, the semigroup is positivity preserving if and
only if the associated symmetric form Q satisfies the first Beurling-Deny
criterium (see e.g. [2, 13]). A positivity preserving semigroup is positivity
improving if it has further irreducibility properties; see Appendix A for
further details.

The following simple lemma on positivity preserving semigroups contains
a crucial new ingredient for the main result of this section.

Lemma 2.1. Let L be selfadjoint and bounded below in L2(X, m) with in-
fimum of the spectrum E0. Assume that the associated semigroup (e−tL)t>0

is positivity preserving. Then

lim
t→∞

log〈f, e−tLg〉
t

= −E0

for all strictly positive f and g in L2(X, m).

Proof. Without loss of generality we can assume that E0 = 0. We will show
two inequalities:

As e−tL is positivity preserving, we have

0 6 〈f, e−tLg〉 6 ‖e−tL‖‖f‖‖g‖.
As E0 = 0, we have ‖e−tL‖ 6 1 for all t > 0 and hence

lim sup
t→∞

log〈f, e−tLg〉
t

6 0
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follows. To show the reverse inequality we need the assumption that f and
g are strictly positive. Thus,

h := min{f, g} satisfies h(x) > 0 for m-almost every x ∈ X.

Therefore,
A :=

{
u ∈ L2(X, m)

∣∣ 0 6 u 6 h
}

is total in L2(X, m) (i.e., the linear span of A is dense). Thus,

0 = E0 = inf
u∈A

Eu, (♣)

where Eu := inf spt(ρu). As e−tL is positivity preserving and obviously

f, g > min{f, g} = h > u > 0

for any u ∈ A, we obtain that

〈f, e−tLg〉 > 〈h, e−tLh〉 > 〈u, e−tLu〉
for any u ∈ A. Combined with (b) of Theorem 1.1 this gives

lim inf
t→∞

log〈f, e−tLg〉
t

> lim
t→∞

log〈u, e−tLu〉
t

= −Eu

for any u ∈ A. By (♣) we obtain the desired inequality

lim inf
t→∞

log〈f, e−tLg〉
t

> 0,

and the theorem is proven. �
The following theorem can be seen as an integrated version of Li’s theo-

rem. It does not require existence of kernels.

Theorem 2.2. Let L be selfadjoint and bounded below in L2(X, m) with
infimum of the spectrum E0. Assume that the associated semigroup (e−tL)t>0

is positivity improving. Then

lim
t→∞

log〈f, e−tLg〉
t

= −E0

for all positive f and g in L2(X, m).

Proof. As e−tL is positivity improving, the functions e−Lf , e−Lg are strictly
positive. Clearly,

〈f, e−tLg〉 = 〈e−Lf, e−(t−2)Le−Lg〉
holds for any t > 2. Now, the theorem follows easily from Lemma 2.1. �

We note the following consequence of the theorem and part (b) of Theo-
rem 1.1.

Corollary 2.3. Consider L as in the previous theorem. Let f ∈ L2(X, m)
be positive. Then

E0 = inf spt(ρf ),

and in particular
1[E0,E0+δ)(L)f 6= 0

for any δ > 0.



6 LARGE TIME BEHAVIOUR OF HEAT KERNELS

Remarks. (1) The corollary is well known if E0 is an eigenvalue. In this
case there exists a (unique) almost-everywhere positive normalized eigen-
function to E0. This eigenfunction has then a non-vanishing inner-product
with any positive f and this easily implies the corollary.

(2) For strictly positive f the corollary will also hold if the semigroup is
only assumed to be positivity preserving (as can be seen from Lemma 2.1).

(3) If the semigroup is only assumed to be positivity preserving, then
the corollary (and the preceeding theorem) will in general be false: consider
the direct sum of two positivity improving semigroups on disjoint sets and
assume that the infima of the spectra of the two generators are different.

Large parts of the basic theory of positivity preserving semigroups do
not depend on the selfadjointness of the generator. For this reason it is
remarkable that our results crucially depend on this selfadjointness: In the
following example it is shown that Theorem 2.2 is not true in general without
the selfadjointness of L.

Example 2.4. Let N = {1, 2, . . .} be the set of natural numbers and
`2 := `2(N) the associated `2 space (with m({x}) = 1 for all x ∈ N). Let L
be the left shift on `2, i.e, Lx = (x2, x3, . . . ) for all x = (x1, x2, x3, . . . ) ∈ `2.
Observe that, as a positivity preserving operator, L generates a positivity
preserving semigroup (etL)t>0 on `2 which, however, is not positivity im-
proving. (Note that here we consider L and not −L as a generator.)

Let µ ∈ (0, 1). Then yµ := (µk)k∈N ∈ `2. We define a bounded positivity
preserving operator L1 on `2 by

L1x := Lx + x1yµ;

then one easily sees that L1 generates a positivity improving semigroup
(etL1)t>0 on `2. For λ ∈ (0, 1), λ 6= 2µ, a straightforward computation
shows that the function f : [0,∞) → `2,

f(t) := eλtyλ +
λ

λ− 2µ
(eλt − e2µt)yµ

satisfies the differential equation f ′(t) = L1f(t) for t > 0, and f(0) = yλ.
Therefore,

etL1yλ = f(t)
for all t > 0.

Now suppose that µ < 1
2 . Then for λ ∈ (2µ, 1) and any positive x ∈ `2

we obtain that

lim
t→∞

log〈x, etL1yλ〉
t

= λ.

In particular, the limit depends on the choice of λ, so no analogue of Theo-
rem 2.2 can be true for the operator L1.

3. Semigroups with kernels

In this section we further specialize the setting of the last section by
assuming existence of (pointwise consistent) kernels. More precisely, we
assume, for f ∈ L2(X, m) and t > 0, that

e−tLf(x) =
∫

X
pt(x, y)f(y) dm(y) for m-almost every x ∈ X,



LARGE TIME BEHAVIOUR OF HEAT KERNELS 7

for a measurable function

p : (0,∞)×X ×X −→ (0,∞)

satisfying

(K1) pt(x, y) = pt(y, x) for all x, y ∈ X,
(K2) pt(x, ·) ∈ L2(X, m) for any x ∈ X and t > 0,
(K3) pt+s(x, y) =

∫
X pt(x, z)ps(z, y) dm(z) for all x, y ∈ X and t, s > 0.

Note that p is positive everywhere and accordingly e−tL is positivity im-
proving.

In this situation we can combine the result of the previous section with
ideas developed in the context of manifolds in [4, 37] to obtain the following
result. In fact, part (a) of the result is a rather direct adaption of the proof
in [37]. Part (b) is then a consequence of (a) combined with Theorem 2.2.
Note that part (b) is a rather general version of Li’s theorem [31] (cf. the
introduction).

Theorem 3.1. Let L be a selfadjoint operator in L2(X, m) with infimum of
the spectrum given by E0 > −∞. Assume that the semigroup (e−tL)t>0 has
a kernel p as above. Then the following holds:

(a) There exists a unique measurable function Φ: X → [0,∞) such that

etE0pt(x, y) → Φ(x)Φ(y) (t →∞)

for all x, y ∈ X. If E0 is an eigenvalue, then the function Φ is a strictly
positive normalized eigenfunction to E0. If E0 is not an eigenvalue, then
the function Φ vanishes everywhere.

(b) For all x, y ∈ X the convergence

log pt(x, y)
t

→ −E0 (t →∞)

holds.

Proof. Note that the uniqueness in (a) follows immediately from the con-
vergence statement and non-negativity of Φ by considering x = y.

Without loss of generality assume that E0 = 0. For any x ∈ X we define
the function gx ∈ L2(X, m) via the kernel at t = 1 by

gx(y) = p1(x, y).

Note that gx is positive everywhere by assumption on p. Moreover, the
assumption (K3) on p immediately gives

pt+2(x, y) = 〈gx, e−tLgy〉. (♠)

We now distinguish two cases:

Case 1: E0 = 0 is not an eigenvalue. As E0 is not an eigenvalue, the
projection P is zero. We set Φ ≡ 0. Then by (♠) and (a) of Theorem 1.1
we obtain that

pt(x, y) = 〈gx, e−(t−2)Lgy〉 → 〈gx, Pgy〉 = 0 = Φ(x)Φ(y)
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as t → ∞, for all x, y ∈ X. This gives (a) of the theorem in this case.
Moreover, (♠) and Theorem 2.2 give

log pt(x, y)
t

=
log〈gx, e−(t−2)Lgy〉

t
→ −E0.

This shows the desired statements in this case.

Case 2: E0 = 0 is an eigenvalue. By general principles (see e.g. Section
XIII.12 of [36]), there exists then a unique normalized eigenfunction Ψ that
is positive m-almost everywhere and satisfies

P = 〈Ψ, ·〉Ψ.

Observe that

Φ(x) := 〈gx,Ψ〉 =
∫

p1(x, y)Ψ(y) dm(y) = e−LΨ(x) = Ψ(x)

for m-almost every x ∈ X, so Φ is a representative of Ψ. Moreover, by the
assumption on p the function gx is strictly positive for all x ∈ X and hence
Φ(x) > 0 for all x ∈ X. Finally, (♠) and (a) of Theorem 1.1 give

pt(x, y) = 〈gx, e−(t−2)Lgy〉 → 〈gx, Pgy〉 = 〈gx,Ψ〉〈gy,Ψ〉 = Φ(x)Φ(y)

for all x, y ∈ X. This proves part (a) of the theorem in this case. Given
strict positivity of Φ, the convergence of the kernels gives easily part (b) of
the theorem in this case. �

Note that the theorem gives a characterisation of whether E0 is an eigen-
value:

Corollary 3.2. Let L be as in the theorem. Let Φt(x) :=
(
e−tE0pt(x, x)

)1/2

Then the following are equivalent:
(i) E0 is an eigenvalue.
(ii) The pointwise limit (for t → ∞) of the Φt is not the zero function

in L2(X, m).
(iii) There exists an x ∈ X such that limt→∞Φt(x) 6= 0.

4. Admissible potentials

In this section we assume that we are given a positivity preserving selfad-
joint semigroup. In this situation one can then try and study perturbations
by potentials V : X → R. Here, two types of perturbations are of partic-
ular interest. These are perturbations that are positive (or more gener-
ally bounded below) and perturbations that are negative (or more generally
bounded above). It turns out that perturbations which are bounded below
are ‘essentially harmless’. Details providing a more precise version of this
statement are discussed in the appendix.

Here, we consider the much more subtle situation of perturbations arising
from negative potentials. Our theorem below generalises a result from Cabré
and Martel [3] for the heat equation on smooth bounded subdomains of
Euclidean space to all selfadjoint positivity improving semigroups. Note
that below the addition of a negative potential is performed by subtracting
a positive potential.
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Let L be a selfdadjoint operator in L2(X, m) that is bounded below, and
assume that the semigroup (e−tL)t>0 is positivity preserving. Let V : X →
[0,∞) be a measurable potential. We then define the “generalised ground
state energy” of L− V by

λ1(L, V ) := inf
{
Q(u, u)− ‖V 1/2u‖2

2

∣∣ u ∈ D(Q), ‖u‖2
2 = 1

}
.

Also, then for every t > 0, the sequence (e−t(L−V∧k)) of positive operators
is increasing, i.e., (e−t(L−V∧k)f) is an increasing sequence in L2(X, m), for
each positive f ∈ L2(X, m). (This is an easy consequence of the Trotter
product formula.) The potential V is called admissible if the strong limits

SV (t) := s-lim
k→∞

e−t(L−V∧k)

exist and form a C0-semigroup, i.e., satisfy
• SV (t + s) = SV (s)SV (t) for all s, t > 0 and
• SV (t) → I strongly for t → 0.

It is well known that admissibility of V follows if the SV (t) are exponentially
bounded. We refer to [38, 39] for the notion of admissibility.

Theorem 4.1. Let L be a selfadjoint operator in L2(X, m) that is bounded
below, and assume that the semigroup (e−tL)t>0 is positivity improving. Let
V : X → [0,∞) be measurable, and let E ∈ R. Then the following assertions
are equivalent:

(i) V is admissible, and ‖SV (t)‖ 6 e−Et for all t > 0.
(ii) There exist M > 0 and positive functions f, g ∈ L2(X, m) such that

〈f, e−t(L−V∧k)g〉 6 Me−Et

for all t > 0 and k ∈ N.
(iii) The inequality λ1(L, V ) > E holds, i.e., the inequality V + E 6 L

holds in the sense that

‖V 1/2u‖2
2 + E‖u‖2

2 6 Q(u, u)

for all u ∈ D(Q).

Proof. Obviously V ∧ k is bounded and nonnegative for any k ∈ N. The
assumptions on L then give that the operator L − V ∧ k is bounded below
and generates a positivity improving semigroup. Thus, if f, g ∈ L2(X, m)
are positive and k ∈ N, then

E0(L− V ∧ k) = − lim
t→∞

log〈f, e−t(L−V∧k)g〉
t

by Theorem 2.2. Therefore, property (ii) holds if and only if E0(L−V∧k) >
E for all k ∈ N, and the latter is equivalent to

(ii’) L− V ∧ k > E in the form sense for all k ∈ N.
Now the equivalence of (i), (ii’) and (iii) is shown in Proposition 5.7 of [38].
There the proof is given for the heat semigroup on Rn only, but literally
the same proof carries over to the general case. This proves the desired
equivalence.

For illustration purposes we actually give a proof of “(iii)⇒(i)” here.
While slightly longer than the proof in [38], our proof seems to be more
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elementary: If (iii) holds, it will also hold with V replaced by V ∧ k for any
k ∈ N. As V ∧ k is bounded, this gives

‖e−t(L−V∧k)‖ 6 e−Et

for all t > 0 and k ∈ N. Since for every positive f ∈ L2(X, m) the sequence
(e−t(L−V∧k)f) is increasing, it follows that the limit in the definition of SV (t)
exists for each t > 0, and ‖SV (t)‖ 6 e−Et for all t > 0. It remains to
show that SV (t)f → f in L2(X, m) as t → 0, for all f ∈ L2(X, m). By
linearity we can assume without loss of generality that f > 0. Note that
0 6 u(t) := e−tLf 6 SV (t)f =: uV (t) for all t > 0. It follows that

‖uV (t)− u(t)‖2
2 = ‖uV (t)‖2

2 + ‖u(t)‖2
2 − 2〈uV (t), u(t)〉 6 ‖uV (t)‖2

2 − ‖u(t)‖2
2

for all t > 0. Moreover, ‖u(t)‖2 → ‖f‖2 as t → 0 (since u(t) → f in
L2(X, m)) and ‖uV (t)‖2 6 e−Et‖f‖2 for all t > 0. We conclude that uV (t)−
u(t) → 0 and hence uV (t) → f in L2(X, m) as t → 0. �

It is possible to reformulate (parts of) the preceding theorem in terms
of solutions of a corresponding abstract Cauchy problem. This is done in
the following corollary. Let ρ ∈ L2(X, m) be strictly positive, and let u0 ∈
L1(X, ρm). We say that u : [0,∞) → L1(X, ρm) is an approximated solution
of the initial value problem

u′(t) + Lu(t) = V u(t) (t > 0), u(0) = u0 (♥)

if there exists a sequence (u0,k) in L2(X, m) such that 0 6 u0,k ↑ u0 m-
almost everywhere, e−t(L−V∧k)u0,k → u(t) in L1(X, ρm) as k → ∞, for all
t > 0, and u(t) → u0 as t → 0. We note that L2(X, m) ⊆ L1(X, ρm) since
ρ ∈ L2(X, m).

Corollary 4.2. Let L be a selfadjoint operator in L2(X, m) that is bounded
below, and assume that the semigroup (e−tL)t>0 is positivity improving. Let
V : X → [0,∞) be measurable. Then λ1(L, V ) > −∞ if and only if (♥)
has an approximated solution that is exponentially bounded in L1(X, ρm)
for some strictly positive ρ ∈ L2(X, m) and some positive u0 ∈ L1(X, ρm).
Moreover, if λ1(L, V ) > −∞, then there exists an approximated solution for
any positive u0 ∈ L2(X, m).

Proof. For the proof of sufficiency, let u be the presumed approximated
solution. Let (u0,k) be the sequence in L2(E,m) approximating u0, with
u0,1 6= 0 without loss of generality, and let M > 0 and E ∈ R such that
‖u(t)‖L1(X,ρm) 6 Me−Et for all t > 0. Then from the monotonicity of
(e−t(L−V∧k)) it follows that

〈ρ, e−t(L−V∧k)u0,1〉 6 〈ρ, u(t)〉 = ‖u(t)‖L1(X,ρm) 6 Me−Et

for all t > 0 and k ∈ N. Since u0,1 is positive, it follows from Theorem 4.1
that λ1(L, V ) > E > −∞.

Necessity is clear: If λ1(L, V ) > −∞, then V is admissible by Theo-
rem 4.1, and (♥) has an approximated solution that is exponentially bounded
even in L2(X, m), for every positive u0 ∈ L2(X, m). �

The previous corollary can be understood as an abstract version of a result
due to Cabré and Martel [3]. This is discussed next.
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Example 4.3. In [3], Cabré and Martel study existence of positive expo-
nentially bounded solutions of the heat equation with a potential in the
following setting: Let X be a smooth bounded subdomain of Rn, let ∆D be
the Dirichlet Laplacian in L2(X), and let L := −∆D. Then −L generates a
positivity improving semigroup on L2(X). Let V : X → [0,∞) be measur-
able, and let u0 : X → [0,∞) be locally integrable. As is discussed in [3],
bottom of p. 976, the initial value problem

∂tu−∆Du = V u, u(0) = u0 (♦)

has an approximated solution if and only if it has a positive weak solution
(and if positive weak solutions exist, then the approximated solution is the
minimal one).

Let now δ ∈ L2(X) be defined by δ(x) = dist(x, ∂X). Then we obtain
the following:

(a) If (♦) has a positive weak solution that is exponentially bounded in
L1(X, δm), for some positive u0 ∈ L1(X, δm), then λ1(−∆D, V ) >
−∞.

(b) If λ1(−∆D, V ) > −∞, then (♦) has a positive weak solution that is
exponentially bounded in L2(X), for every positive u0 ∈ L2(X).

Indeed, we have just recalled the equivalence between existence of approxi-
mated solutions and existence of positive weak solutions. Given this, (a) is
immediate from the Corollary 4.2 and so is (b).

With (a) and (b) we have obtained Theorem 1 of [3] as a special case of
Corollary 4.2.

5. Examples

In this section we want to present some examples for which all the as-
sumptions of Section 3 are satisfied and hence all results of the previous
sections hold.

We emphasize that nonnegative potentials (satisfying some weak growth
conditions) could be added to all the operators L below and the resulting
operators would still generate positivity improving semigroups, see Corol-
lary A.3. In particular, Theorem 2.2 would still be valid.

5.1. The Laplace-Beltrami operator on an manifold. The Laplace-
Beltrami operator on a connected Riemannian manifold gives rise to a posi-
tivity improving semigroup with a continuous (and even C∞) kernel and the
results of the previous sections hold. For this example, validity (a) of Theo-
rem 3.1 had already been discussed by Chavel/Karp in [4] with substantial
later simplifications by Simon in [37]. In fact, as mentioned already, part of
our treatment in Section 3 is a rather direct adaption of these treatments.
Part (b) of Theorem 3.1 has been obtained by Li [31]. We refrain from
discussing further details and refer to the mentioned literature.
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5.2. Laplacians on metric graphs. Laplacians on metric graphs (also
known as quantum graphs) have attracted considerable interest in both
physics and mathematics in recent years (see e.g. the articles [26, 27, 24, 25]
and the conference proceedings [1, 12] and the references therein). While
several variants and notations can be found in the literature, the basic set-
ting is as follows (see [29] for further details and proofs):

Definition 5.1. A metric graph is a quintuple Γ = (E, V, i, j, l) where
• E (edges) and V (vertices) are countable sets,
• l : E → (0,∞) defines the length of the edges,
• i : E → V defines the initial point of an edge, and j : {e ∈ E|l(e) <
∞} → V the end point for edges of finite length.

For e ∈ E we set Xe := {e} × (0, l(e)). Moreover, we set Xe := Xe ∪
{i(e), j(e)} (Xe := Xe ∪ {i(e)} if l(e) = ∞) and X := XΓ = V ∪⋃

e∈E Xe.

Thus, Xe is essentially just the interval (0, l(e)), and the first component
is only added to force mutual disjointness of the Xe’s. Then, Xe can be
identified with [0, l(e)] and this will be done tacitly in the following. For
simplicity, we will assume that all lengths l(e) are uniformly bounded away
from zero.

To introduce a metric structure, we say that x ∈ XN is a good polygon
if for every k ∈ {1, . . . , N − 1} there is a unique edge e ∈ E such that
{xk, xk+1} ⊂ Xe. Using the usual distance in [0, l(e)] we get a distance d on
Xe and define

L(x) =
N∑

k=1

d(xk, xk+1).

Provided the graph is connected and that the degree dv of every vertex
v ∈ V defined as

dv :=
∣∣{e ∈ E

∣∣ v ∈ {i(e), j(e)}}∣∣
is finite, a metric on X is given by

d(p, q) := inf
{
L(x)

∣∣ x is a good polygon with x0 = p and xN = q
}
.

The Laplacian L with Kirchhoff boundary conditions is now defined as
the operator corresponding to the form Q with

D(Q) := W 1,2
0 (X), Q(u, v) :=

∑
e

(u′e|v′e),

where ue := u ◦ π−1
e is defined on (0, l(e)), with πe : Xe → (0, l(e)) defined

by πe((e, s)) := s, and

W 1,2(X) :=
{

u ∈ C(X)
∣∣∣∣ ∑

e∈E

‖ue‖2
W 1,2 =: ‖u‖2

W 1,2 < ∞
}

,

W 1,2
0 (X) := W 1,2(X) ∩ C0(X).

Then Q is a Dirichlet form, and −L generates a positivity preserving semi-
group (see, e.g., [15, 29]; we refer to [19] for more general boundary condi-
tions in the case of finite graphs).
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Proposition 5.2. (Characterisation of positivity improvement) Let Q be as
above, and let L be the associated operator. Then the semigroup (e−tL)t>0

is positivity improving if and only if X is connected.

Proof. It is clear that e−tL cannot be positivity improving if Γ is not con-
nected. The other implication (and much stronger results) follow immedi-
ately from the Harnack inequality presented in [15] for connected graphs. �

Moreover, existence of consistent kernels is known in this situation; see,
e.g., [15, 29].

Proposition 5.3. Let Q be as above, and let L be the associated operator.
If X is connected, then e−tL possesses a kernel p satisfying the conditions
(K1), (K2), (K3) of Section 3.

Given the previous propositions, as a consequence from Theorem 3.1 we
obtain the following result for quantum graphs with Kirchhoff boundary
conditions.

Corollary 5.4. Let Γ be a connected metric graph, and let L be the asso-
ciated operator with Kirchhoff boundary conditions. Then the kernel p of
e−tL satisfies

pt(x, y) → Φ(x)Φ(y) and
log pt(x, y)

t
→ −E0 (t →∞)

for a unique non-negative Φ on X.

5.3. Laplacians on graphs. The study of Laplacians on graphs has a long
history (see, e.g., the monographs [5, 7] and the references therein). In
recent years issues such as essential self-adjointness [18, 42, 40], stochastic
(in)completeness and suitable isoperimetric inequalities for infinite graphs
have attracted particular attention, see e.g. [6, 9, 10, 11, 14, 18, 20, 21, 22,
23, 42, 43, 40] and the references therein. Theses issues can be studied in
various settings. The most general setting seems to be the one introduced
in [21] (see [16, 17] as well), which we now recall:

Let V be a countable set. Let m be a measure on V with full support,
i.e., m is a map on V taking values in (0,∞). A symmetric weighted graph
over V or a symmetric Markov chain on V is a pair (b, c) consisting of a
map c : V → [0,∞) and a map b : V × V → [0,∞) with b(x, x) = 0 for all
x ∈ V satisfying the following two properties:

(b1) b(x, y) = b(y, x) for all x, y ∈ V .
(b2)

∑
y∈V b(x, y) < ∞ for all x ∈ V .

Then x, y ∈ V with b(x, y) > 0 are called neighbors and thought to be
connected by an edge with weight b(x, y). More generally, x, y ∈ V are
called connected if there exist x0, x1, . . . , xn ∈ V with b(xi, xi+1) > 0 for
i = 0, . . . , n and x0 = x, xn = y. If any two x, y ∈ V are connected then
(V, b, c) is called connected. To (V, b, c) we associate the form Qcomp = Qcomp

b,c

defined on the set Cc(V ) of functions on V with finite support by

Qcomp : Cc(V )× Cc(V ) −→ [0,∞)
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Qcomp(u, v) =
1
2

∑
x,y∈V

b(x, y)(u(x)− u(y))(v(x)− v(y)) +
∑

x

c(x)u(x)v(x).

The form Qcomp is closable in `2(V,m) and the closure will be denoted by
Q = Qb,c,m and its domain by D(Q). Thus, there exists a unique selfadjoint
operator L = Lb,c,m in `2(V,m) such that

D(Q) = Domain of definition of L1/2

and
Q(u) = 〈L1/2u, L1/2u〉m

for all u ∈ D(Q). Note that L consists of essentially two parts, viz, a
Laplacian type operator encoded by b and a nonnegative potential encoded
by c.

The form Q is a regular Dirichlet form on (V,m) (and any regular Dirichlet
form on (V,m) arises in this way). Thus, the operator −L generates a
positivity preserving semigroup.

It is not hard to characterise when the semigroup is positivity improving.

Proposition 5.5. (Characterisation of positivity improvement) Let (V, b, c)
be as above, and let L be the associated operator. Then the semigroup
(e−tL)t>0 is positivity improving if and only if (V, b, c) is connected.

Proof. It is clear the the semigroup cannot be positivity improving if the
graph is not connected. The other implication has been shown in [21] (see
as well [40, 42, 8] for earlier results in special cases). �

As the underlying space is discrete, existence of kernels is obvious. Thus,
the results of the previous sections apply. We note in particular the following
consequence of Theorem 3.1.

Corollary 5.6. Let (V,m) be a discrete measure space and (b, c) a graph on
V . Let L be the associated operator. Then the kernel p of e−tL satisfies

etE0pt(x, y) → Φ(x)Φ(y) and
log pt(x, y)

t
→ −E0 (t →∞)

for a unique non-negative Φ on V .

Remark. The result of the corollary positively answers a question of
Weber in [41].

Appendix A. Irreducibility and positivity preserving semigroups

The crucial assumption in our results is that e−tL is positivity improving.
It turns out that this condition is essentially equivalent to irreducibility
combined with preservation of positivity. This allows one to set up a stability
theory for positivity improving semigroups. For semigroups with E0 being
an eigenvalue this is discussed in XIII.12 of [36]. The general case is treated,
e.g., in [30, 33]. For completeness reasons we shortly collect here a few items
from [30, 33] to which we refer for further details and results.

We start with the definition of irreducibility for positivity preserving semi-
groups. Let us emphasize that our definition is the usual one in this con-
text. It differs from the standard definition of irreducibility in the context
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of selfadjoint operators by an additional assumption on invariance under
multiplication by L∞ functions.

Definition A.1. Let L be a selfadjoint operator in L2(X, m), and assume
that −L generates a positivity preserving semigroup (e−tL)t>0. Then L is
called irreducible if any closed subspace of L2(X, m) which is

• invariant under multiplication by bounded measurable functions and
• invariant under the semigroup,

agrees with {0} or L2(X, m).

The following is well known. It can be found in Section C-III.3 of [33]
(see [30, 36] as well).

Theorem A.2. Let L be a selfadjoint operator in L2(X, m) which is bounded
below. Assume that the semigroup (e−tL)t>0 is positivity preserving. Then
the following assertions are equivalent:

(i) e−tL is positivity improving for one (all) t > 0.
(ii) (L + α)−1 is positivity improving for one (all) α > −E0(L).
(iii) L is irreducible.

Given this theorem we can now discuss stability of improvement of pos-
itivity: By the first Beurling-Deny criterium the semigroup (e−tL)t>0 is
positivity preserving if and only if the associated form Q satisfies

Q(|u|, |u|) 6 Q(u, u)

for all u ∈ D(Q). Now, obviously this condition is preserved when Q is
replaced by Q + V with V : X → R measurable and bounded below such
that the domain of definition

D(Q + V ) :=
{
f ∈ D(Q)

∣∣ ∫
X

V |f |2 dm < ∞}
is still dense. In particular, the operator L u V associated to Q + V (the
form sum of L and V ) is minus the generator of a positivity preserving
semigroup.

Now, we can present the following variant of Theorem in XIII.12 of [36]
and its proof.

Corollary A.3. Let L be a selfadjoint operator in L2(X, m) with positivity
improving semigroup (e−tL)t>0. Let V : X → R be measurable and bounded
below satisfying the following:

• D(Q + V ) is dense in L2(X, m).
• There exists a sequence of bounded Vn on X such that L u V − Vn

converges to L in the strong resolvent sense.
Then, L u V is the generator of a positivity improving semigroup.

Proof. Set L1 := L u V . By denseness of D(Q + V ) in L2(X, m) and the
preceding discussion, the semigroup e−tL1 is positivity preserving. By The-
orem A.2 it now suffices to show irreducibility. Let U be a closed subspace
of L2(X, m) invariant under multiplication by bounded functions and e−tL1

for each t > 0. Then, by the Trotter product formula, the subspace U will
be invariant under e−t(L1−Vn) as well for each n ∈ N. Then, by strong re-
solvent convergence, the subspace U will then be invariant under e−tL as



16 LARGE TIME BEHAVIOUR OF HEAT KERNELS

well. As the latter semigroup is positivity improving the subspace U must
be trivial. �

Note that the corollary obviously applies to bounded V (see C-III.3.3 of
[33] for this case as well). Moreover, if D(Q + V ) is a core for D(Q), then
one can apply Proposition 5.8(b) of [38] to obtain that the assumptions of
the corollary are satisfied with Vn = V ∧ n.
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[3] X. Cabré, Y. Martel, Existence versus explosion instantanée pour des équations de
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