
Technical Foundations of the Agent
Contest 2008
Tristan M. Behrens, Jürgen Dix, Mehdi Dastani,
Michael Köster, Peter Novák

IfI Technical Report Series IfI-08-05

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45269755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelli-
gence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)

Technical Foundations of the Agent Contest 2008

Tristan M. Behrens, Jürgen Dix, Mehdi Dastani, Michael Köster, Peter Novák

Abstract
In this document we summarize the technical infrastructure of the Agent
Contest 2008, which is the fourth competition in an ongoing series that
was initiated in 2005. This document is also a collection of the descrip-
tions that we have issued during the contest.

1 Introduction

The Agent Contest is an international competition that has been created in
2005 in order to allow the comparison of agent-based approaches to systems
programming. Benchmarks are provided by letting agent teams solve a co-
operative task in a dynamically changing environment, while they have to
compete against other teams.

The first Agent Contest was held in 2005 in association with the CLIMA
workshop. The scenario was a grid-like world, in which agents had to gather
and store resources facing incomplete-information. The first contest was de-
centralized: the participants had to implement the agents as well as the en-
vironment and did not compete with other teams. In 2006 this has been
changed by introducing the MASSim platform, which has been the funda-
ment of the contest since then. We kept the scenario and let agent-teams
compete for gold. In 2007 we moved to the ProMAS workshop and kept the
scenario. In 2008 we have changed the scenario to the cows and cowboys
scenario that was designed in order to put stress on the cooperation and co-
ordination aspects of agent programming.

In this technical report we will introduce the MASSim platform in the first
section. In the section section we will explain in detail the scenario of the
Agent Contest 2008. The third section will consider the communication
protocol and the fourth one will explain how to create new scenarios. We
will finish with conclusions and future work.

2 MASSim Server

The MASSim (Multi-Agent Systems Simulation) platform is a testing environ-
ment that has been designed in order to evaluate coordination and coopera-

1

MASSim Server

tion approaches of multi-agent systems. To that end we employ round-based
game simulations with the intention to evaluate agent-based approaches by
letting agent teams compete.

Simulator

Java RMI Visualization
Connection

Manager

Simulation
Plug-in

MASSim Platform

Webserver Team 1 Team 2

Figure 1: MASSim Plattform overview.

Figure 1 shows the technical infrastructure of MASSim. The platform con-
sists of these components:

• Core: is the central component that coordinates the interaction of the
other components and implements the tournament schedule.

• Simulation plug-in: describes a discrete game and logically contains
the environment. This component is based on a plug-in architecture
that allows the implementation and use of new scenarios in an elegant
way.

• Agent-server communication: manages the communication between
the server and the agents. The communication relies on the exchange
of XML-messages. The agents receive perceptions and can act in the en-
vironment by exchanging XML-messages with the server (see the pro-
tocol section for details). Not that we do not provide functionality for
inter-agent communication.

• Agent-teams: this is the only external component. Agent teams con-
nect to the server via TCP/IP, and communicate using XML-messages.

DEPARTMENTOF INFORMATICS 2

AGENT CONTEST 2008

The participants of the contest are free to use their own approaches.
The only thing that they have to tackle is the implementation if the
communication protocol. Furthermore we usually provide a dummy
agent that already provides that functionality and that can be use as a
starting point for a more sophisticated implementation.

• Visualization: this component renders each state of the evolution of
the environment to a SVG file. The SVG files can then be viewed in a
manner that resembles videos.

• Web interface: provides online-monitoring functionality. People can
use the web interface to monitor the progress of a tournament, includ-
ing the current tournament results and the ongoing matches and sim-
ulations.

• Debug monitor: is provided for debugging purposes.

3 Scenario

Background Story: An unknown species of cattle was recently
discovered in the unexplored flatlands of Lemuria. The cows have
some nice features: their carbondioxyde- and methane-output is
extremely low compared to the usual cattle and their beef and
milk are of supreme quality and taste.

These facts definitely caught the attention of the beef- and milk-
industries. The government decided to allow the cows to be cap-
tured and bred by everyone who is interested and has the capa-
bilities. Several well-known companies decided to send in their
personnel to the fields to catch as many of them as possible. This
led to an unprecedented rush for cows. To maximise their suc-
cess the companies replaced their traditional cowboys by artificial
herders.

In this year’s agent contest the participants have to compete in an envi-
ronment for cows. Each team controls a set of herders in order to direct the
cows into their own corral. The team with the most cows in the corral at the
end wins the match.

3.1 General Description and Tournament Structure

Before the tournament, agent teams will be randomly divided into several
groups if necessary. In the case of a small number of participating teams,
these will form one single group.

3 Technical Report IfI-08-05

Scenario

Each team from one group will compete against all other teams in the
same group in a series of matches. The winners from these groups form a
new group. Each team in a new group will again play against all other teams
in the group in a series of matches. A single match between two compet-
ing teams will consist of several (odd number of) simulations. A simulation
between two teams is a competition between them with respect to a certain
configuration of the environment.

Winning a simulation yields 3 points for the team, a draw is worth 1 point
and a loss 0 points. The winner of the whole tournament is evaluated on
the basis of the overall number of collected points in all the matches during
the tournament. In the case of equal number of points, the winner will be
decided on the basis of the absolute number of captured cows.

Details on the number of simulations per match and the exact structure of
the competition will depend on the number of participating teams and will
be specified later.

In the contest, the agents from each participating team will be executed
locally (on the participant’s hardware) while the simulated environment, in
which all agents from competing teams perform actions, is run on the re-
mote contest simulation server run by the contest organizers.

The interaction/communication between agents from one team should be
managed locally, but the interaction between individual agents and their en-
vironment (run on the simulation server) will be via Internet. Participating
agents connect to the simulation server that provides the information about
the environment.

Each agent from each team should connect and communicate to the sim-
ulation server using one TCP connection. After the initial phase, during
which agents from all competing teams connect to the simulation server,
identify and authenticate themselves and get a general match information,
the competition will start. The simulation server controls the competition
by selecting the competing teams and managing the matches and simula-
tions. In each simulation, the simulation server, in a cyclic fashion, provides
sensory information about the environment to the participating agents and
expects their reactions within a given time limit.

Each agent reacts to the received sensory information by indicating which
action (including the skip action) it wants to perform in the environment. If
no reaction is received from the agent within the given time limit, the sim-
ulation server assumes that the agent performs the skip action. Agents have
only a local view of their environment, their perceptions can be incomplete, and
their actions may fail. That means that agents can receive incomplete infor-
mation about the environment from the simulation server. The simulation
server can omit information about particular environment cells, however,
the server never provides incorrect information. Also, agent’s action can fail.
In such a case the simulation server evaluates the agent’s action in the simu-
lation step as the skip action.

DEPARTMENTOF INFORMATICS 4

AGENT CONTEST 2008

After a finite number of steps the simulation server stops the cycle and par-
ticipating agents receive a notification about the end of a simulation. Then
the server starts a new simulation possibly involving the same teams.

3.1.1 Preparation Stage and Communication Protocol

Several days before the start of the competition, the contest organisers will
contact participants via e-mail with details of time and Internet coordinates
(IP addresses/ports) of the simulation server. Participants will also receive
agent IDs and passwords necessary for authentication of their agents for the
tournament. Agents communicate with the simulation server using TCP
protocol and by means of messages in XML format. The details about com-
munication protocol and message format will be specified later.

3.1.2 Initial Phase

At the announced start time of the tournament, the simulation server will go
on-line, so that agents from participating teams will be able to connect. After
a successful initial handshake during which agents will identify themselves
by their IDs and receiving acknowledgment from the server, they should
wait for the simulation start. The initial connecting phase will take a reason-
able amount of time in order to allow agents to be initialised and connected
and will not be less than 5 minutes. The details will be announced later.

3.1.3 Team, Match, and Simulation

An agent team consists of 6 software agents with distinct IDs. There are no re-
strictions on the implementation of agents, although we encourage the use
of approaches based on the state-of-the-art tools, methodologies and lan-
guages for programming agents and multi-agent systems as well as the use of
computational logic based approaches.

The tournament consists of a number of matches. A match is a sequel of
simulations during which two teams of agents compete in several different
settings of the environment.

For each match, the server will 1) pick two teams to play it and subse-
quently 2) start the first simulation of the match. Each simulation in a match
starts by notifying the agents from the participating teams and sending them
the details of the simulation. These will include for example the size of the
grid, corral position, the number of steps the simulation will perform, etc.

A simulation consists of a number of simulation steps. Each step consists
of 1) sending a sensory information to agents (one or more) and 2) waiting
for their actions and 3) processing agents’ replies and calculating the next
state of the environment. In the case that an agent does not respond within

5 Technical Report IfI-08-05

Scenario

a timeout (specified at the beginning of the simulation) by a valid action, it
is considered to perform the skip action in the given simulation step.

The (simulated) environment is a rectangular grid consisting of cells. The
size of the grid is specified at the start of each simulation and is variable.
However, it cannot be more than 150 × 150 cells. The [0, 0] coordinate of the
grid is in the top-left corner (north-west). The simulated environment con-
tains two corrals—one for each team—which serve as a location where cows
should be directed to. The environment can contain the following objects in
its cells:

• obstacle (a cell with an obstacle cannot be visited by an agent),

• cow,

• agent,

• corral (a cell to which cows are to be directed in order to earn points in
a simulation).

There can be only one object in a cell, except that an agent or a cow can en-
ter cells containing corral. At the beginning of a simulation the grid contains
obstacles, cows and agents of both teams. Distribution of obstacles, cows and
initial positions of agents can be either hand crafted for the particular sce-
nario, or completely random. At the start of each simulation agents will get
the details of the environment (grid size, corral position, etc.). Agents will
get information about their initial position in the perception information of
the first simulation step.

3.1.4 Perception

Agents are located in the grid and the simulation server provides each agent
with the following information:

• absolute position of the agent in the grid,

• the content of the cells surrounding the agent and the content of the
cell in which the agent currently stands in. Each agent has a view-
ing range that describes a square of visible cells around the agent with
the width which is an odd number and the agent in the center of that
square,

• agents will perceive identifiers of cows in every perception,

• agents will perceive the position of their own corral but not the posi-
tion of the corral of the other team.

DEPARTMENTOF INFORMATICS 6

AGENT CONTEST 2008

If two agents are standing in each other’s field of view, they will be able
to recognise whether they are enemies, or whether they belong to the same
team. The corral position will be made available at the beginning of each
match. Note that all perceptions except for the agent’s and the corral’s po-
sition can be omitted by the server, whereas the server never gives wrong
informations.

3.1.5 Actions

Agents are allowed to perform one action in a simulation step. The following
actions are allowed:

• skip – the agent does nothing,

• north – the agent moves to the north,

• northeast – the agent moves to the northeast,

• east – the agent moves to the east,

• southeast – the agent moves to the southeast,

• south – the agent moves to the south,

• southwest – the agent moves to the southwest,

• west – the agent moves to the west,

• northwest – the agent moves to the northwest.

Note that the [0, 0] coordinate of the grid is in the top-left corner (north-
west).

All actions, except the skip action, can fail. The result of a failed action is
the same as the result of the skip action. An action can fail either because
the conditions for its successful execution are not fulfilled or because of the
information distortion.

The agent can do nothing or move into one of the eight directions of the
compass. The execution of the skip action has no influence on the local
state of the environment around the agent (under the assumption that other
agents did not change it). When an agent does not respond to a perception
information provided by the simulation server within the given time limit,
the agent is considered as performing the skip action. The execution of the
move actions changes the position of the agent one cell to the respective di-
rection. A movement action succeeds only when the cell to which an agent
is about to move does not contain an obstacle and is not outside of the grid.
In the case two agents stand in the adjacent cells and one of them tries to
step into the cell the second agent stands in while the second agent performs

7 Technical Report IfI-08-05

Scenario

e.g. a skip action, the movement action fails. In the case two agents attempt
to enter the same cell, only one of the two movement actions succeeds. Ex-
actly which agent succeeds in entering the cell is determined randomly.

To make matters clearer:

• it is impossible for two agents/cows to swap places,

• a cow/agent can only enter a cell in the next step of the simulation if
the cell is empty in the current step,

• agents can enter their own corral cells and the ones of the other team,

• if two or more agent/cows intend to enter the same empty cell it is left
to chance which agent/cow succeeds.

3.1.6 Cow Movement Algorithm

Cows are simple creatures. They tend to move away from cells that they do
not like and to move towards cells they do like. Cows want to move away
from agents and trees. On the other hand, they are attracted by empty spaces
and they want to stay close to other cows, however not too close. Cows have
the tendency to form herds, which tend to be tighter in times when the ani-
mals are scared by cowboys.

The cows have two fixed visibility ranges. The number rc represents the
width of the visibility-square with the cow in its center. The number rcN rep-
resents the width of the intimacy-square with the cow in the centre. Cows
are attracted to other cows that are in the visibility-square and not in the
intimacy-square and they are repelled by cows that are in their intimacy-
square.

Cows are slower than agents. Each cow only moves every three steps. Our
simulation ensures that all cows do not move in the same step using this
simple algorithm: At the beginning of the simulation each cow is given a
random number ncowID ∈ N. Let s ∈ N be the current step of the simulation.
The cow moves if the equation s mod 3 ≡ ncowID mod 3 holds.

If it is time for a cow to move the following happens: For each cow me
the set Cells is the contents of all the cells in the visibility range (which is a
square with the agent in the centre) of the cow me. The content of a single
cell can be either cow, agent, tree or empty.

Let w : C → Z be a weight-function, that maps each cell to an integer ac-
cording to its contents. A negative number indicates fear of the content and
a positive one indicates attraction. The vectors ~pc and ~pme are the coordinate-
vectors of the cell c and the cow me respectively.

Now the position of a cow in the next simulation step is determined as
follows:

DEPARTMENTOF INFORMATICS 8

AGENT CONTEST 2008

1. Calculate the weighted linear combination

~v :=
∑

c∈Cells

w(c) · (~pc − ~pme)
| ~pc − ~pme |

2. Move me according to the angle of ~v.

Cows do not move if the resulting vector is zero. We use a number preci-
sion of two digits after decimal point without rounding.

Figure 2 shows how the directions of the compass correspond to angles: if
the angle is in the range [−22.5, 22.5) a cow moves east, if the angle is in the
range [22.5, 67.5) the cow moves to the northeast et cetera.

0◦

22.5◦

67.5◦112.5◦

157.5◦

202.5◦

247.5◦ 292.5◦

337.5◦

E

NE
N

NW

W

SW
S

SE

Figure 2: Angles and directions.

There are several constraints for the weights:

• w(empty) > 0, cows are attracted by empty spaces,

• w(cow) > 0, cows are attracted by other cows if these are not too close,

• w(cowprivate) < 0, cows are attracted by other cows if these are too close,

• w(agent) < 0, cows are scared of agents,

• w(tree) < 0, cows are scared of trees,

• w(tree) = −w(empty), cows are scared of trees as much as they are at-
tracted by empty spaces,

• | w(cow) |<| w(agent) |, cows are less attracted by other cows than they
are scared of agents, and

9 Technical Report IfI-08-05

Scenario

• w(corral) = w(empty), cows do not distinguish between corral-cells and
empty spaces.

The weights will be announced soon on the website and on our mailing list.
Fig. 3 shows the contents of the cells that are in the visibility range around

the cow me. In this example cows have the visibility range 3. Note that we
go for bigger values in our simulation and that we just use 3 in this example
for the sake of simplicity. The cell in the northwest of me contains a tree, the
one in the northeast contains an agent and all the other cells are empty.

Let the weights be as follows (they will be slightly different in our simula-
tion):

w(empty) = 1
w(tree) = −1
w(agent) = −2

The weighted sum is as follows:

~v :=
(
− 1√

2

)
·
[
−1
−1

]
+
(
− 2√

2

)
·
[

1
−1

]
+

1 ·
([

0
−1

]
+
[
−1
0

]
+
[

1
0

]
+

1√
2
·
[
−1
1

]
+
[

0
1

]
+

1√
2
·
[

1
1

])
=

(
1√
2

)[
−1
5

]
Determine the direction and move the cow: The angle of ~v is 258◦, thus

the cow moves south.

3.1.7 Final Phase

In the final phase, the simulation server sends a message to each agent allow-
ing them to disconnect from the server. By this, the tournament is over.

3.2 Relation to the Previous Contest Editions

The first two editions were organized in cooperation with the CLIMA work-
shop series, the third one was the first one in cooperation with the ProMAS
workshop series. This scenario is not an extension of the last contests, which
were hunts for gold. Instead it is completely new scenario.

The main differences to the gold-mining scenario are:

• the agents have a wider viewing range,

• the agents have only moving actions, now they can move into eight
directions instead of four, the pushing action has been abandoned,

DEPARTMENTOF INFORMATICS 10

AGENT CONTEST 2008

tree empty agent

empty me empty

empty empty empty

Figure 3: Example for the cow-algorithm.

• cows were introduced that flock and disperse, and

• the goal is to direct as many cows as possible into one of the corrals.

We believe that the new scenario constitutes a new and very interesting
challenge.

3.3 Network Miscellanea

Our simulation server does not provide a facility for inter-agent communica-
tion. Agents from a team are allowed to communicate and coordinate their
actions locally. Based on the number of participants, organisers will decide
whether to run the competition in just one or more rounds.

The continuous connection of agents from the first match to the last one
cannot be guaranteed. In the case of agent-to-server connection disruption,
agents are allowed to reconnect by connecting and performing the initial
tournament phase message exchange again.

Generally, participants are responsible for maintaining connections of their
agents to the simulation server. In the case of connection disruption during
the running simulation, server will proceed with the tournament simula-
tion, however the action of a disconnected agent will be considered as the
skip action. In the case of a serious connection disruption, organizers reserve
the right to consider each case separately.

The agents should inform the simulation server which action they want to
perform within a timeout specified at the beginning of the simulation. The
contest organisers do not take any responsibility for the speed of the Internet

11 Technical Report IfI-08-05

Protocol

connection between the server and participating agents. Timeouts will be set
reasonable high, so that even participants with a slow network connection
will be able to communicate with the server in an efficient way. Simulation
timeouts will not be lower than 2 and higher than 10 seconds per one simu-
lation step.

A ping interface will be provided by the server in order to allow participat-
ing agents to test the speed of their connection during the initial phase of
the tournament. Note, that only a limited number of ping requests will be
processed from one agent in a certain time interval. Details on this limit will
be announced later through our mailing list and posted on our website.

3.4 Technical Support and Organisational Issues

We are running a mailing list for all the inquiries regarding Multi-Agent Pro-
gramming Contest 2008. Feel free to subscribe if you are interested in further
details on the contest. Subscription for participants is mandatory. The list
address:
agentcontest2008-general@in.tu-clausthal.de
To subscribe, please send an e-mail to
agentcontest2008-general-subscribe@in.tu-clausthal.de
The most recent information about the Multi-Agent Programming Contest
2008 can be found on the official web site
http://cig.in.tu-clausthal.de/agentcontest2008/

4 Protocol

An unknown species of cattle was recently discovered in the unexplored flat-
lands of Lemuria. The cows have some nice features: their carbondioxyde-
and methane-output is extremely low compared to the usual cattle and their
beef and milk are of supreme quality and taste.

These facts definitely caught the attention of the beef- and milk-industries.
The government decided to allow the cows to be captured and bred by every-
one who is interested and has the capabilities. Several well-known compa-
nies decided to send in their personnel to the fields to catch as many of them
as possible. This led to an unprecedented rush for cows. To maximise their
success the companies replaced their traditional cowboys by artificial herders.

In this year’s agent contest the participants have to compete in an envi-
ronment for cows. Each team controls a set of herders in order to direct the
cows into their own corral. The team with the most cows in the corral at the
end wins the match.

DEPARTMENTOF INFORMATICS 12

agentcontest2008-general@in.tu-clausthal.de
agentcontest2008-general-subscribe@in.tu-clausthal.de
http://cig.in.tu-clausthal.de/agentcontest2008/

AGENT CONTEST 2008

4.1 General Agent-2-Server Communication Principles

In this contest, the agents from each participating team will be executed lo-
cally (on the participant’s hardware) while the simulated environment, in
which all agents from competing teams perform actions, is run on the re-
mote contest simulation server.

Agents communicate with the contest server using standard TCP/IP stack
with socket session interface. The Internet coordinates (IP address and port)
of the contest server (and a dedicated test server) will be announced later via
the official Contest mailing list.

Agents communicate with the server by exchanging XML messages. Mes-
sages are well-formed XML documents, described later in this document. We
recommend using standard XML parsers available for many programming
languages for generation and processing of these XML messages.

4.1.1 Communication Protocol

Logically, the tournament consists of a number of matches. A match is a
sequel of simulations during which two teams of agents compete in several
different settings of the environment. However, from agent’s point of view,
the tournament consists of a number of simulations in different environment set-
tings and against different opponents.

The tournament is divided into three phases. During the initial phase,
agents connect to the simulation server and identify themselves by user-
name and password (theAUTH-REQUESTmessage). Credentials for each agent
will be distributed in advance via e-mail. As a response, agents receive the re-
sult of their authentication request (AUTH-RESPONSE message) which can
either succeed, or fail. After successful authentication, agents should wait
until the first simulation of the tournament starts.

At the beginning of each simulation, agents of the two participating teams
are notified (SIM-START message) and receive simulation specific informa-
tion:

• simulation ID,

• opponent’s ID,

• grid size,

• corral position and size, and

• number of steps the simulation will last.

In each simulation step each agent receives a perception about its environ-
ment (theREQUEST-ACTIONmessage) and should respond by performing an
action (ACTION message). Each REQUEST-ACTION message contains

13 Technical Report IfI-08-05

Protocol

• information about the cells in the visibility range of the agent (includ-
ing the one agent stands on),

• the agent’s absolute position in the grid,

• the current simulation step number,

• the number of caught cows and

• the deadline for responding.

The agent has to deliver its response within the given deadline. The ac-
tion message has to contain the identifier of the action, the agent wants to
perform, and action parameters, if required.

When the simulation is finished, participating agents receive a notifica-
tion about its end (SIM-END message) which includes

• the information about the number of caught cows, and

• the information about the result of the simulation (whether the team
has won or lost the simulation).

All agents which currently do not participate in a simulation should wait
until the simulation server notifies them about either 1) the start of a simu-
lation, they are going to participate in, or 2) the end of the tournament.

At the end of the tournament, all agents receive a notification (BYE mes-
sage). Subsequently the simulation server will terminate the connections to
the agents.

4.1.2 Reconnection

When an agent loses connection to the simulation server, the tournament
proceeds without disruption, only all the actions of the disconnected agent
are considered to be empty (skip). Agents are themselves responsible for
maintaining the connection to the simulation server and in a case of con-
nection disruption, they are allowed to reconnect.

Agent reconnects by performing the same sequence of steps as at the be-
ginning of the tournament. After establishing the connection to the simula-
tion server, it sends AUTH-REQUEST message and receives AUTH-RESPONSE.
After successful authentication, server sendsSIM-STARTmessage to an agent.
If an agent participates in a currently running simulation, the SIM-START
message will be delivered immediately after AUTH-RESPONSE. Otherwise an
agent will wait until a next simulation in which it participates starts. In the
next subsequent step when the agent is picked to perform an action, it re-
ceives the standard REQUEST-ACTIONmessage containing the perception of
the agent at the current simulation step and simulation proceeds in a normal
mode.

DEPARTMENTOF INFORMATICS 14

AGENT CONTEST 2008

4.1.3 Ping Interface

The simulation server provides a ping interface in order to allow agents to
test their connection to the simulation server. Agent can send a PING mes-
sage containing a payload data (ASCII string up to 100 characters) and it
will receive PONG message with the same payload. As all messages contain
a timestamp (see description of the message envelope below), agent can also
use ping interface to synchronize its time with the server.

15 Technical Report IfI-08-05

Protocol

4.2 Protocol Sequence Diagram (UML like notation)

• Initial phase

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

• Simulation

Server Agent

SIM-START

REQUEST-ACTION

ACTION

SIM-END

loop: Simulation Step Cycle

• Final phase

Server Agent

BYE

DEPARTMENTOF INFORMATICS 16

AGENT CONTEST 2008

• Reconnect

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

SIM-START

• Ping

Server Agent

PING

PONG

4.3 XML Messages Description

4.3.1 XML message structure

XML messages exchanged between server and agents are zero terminated
UTF-8 strings. Each XML message exchanged between the simulation server
and agent consists of three parts:

• Standard XML header: Contains the standard XML document header

<?xml version="1.0" encoding="UTF-8"?>

• Message envelope: The root element of all XML messages is<message>.
It has attributes the timestamp and a message type identifier.

• Message separator: Note that because each message is a UTF-8 zero ter-
minated string, messages are separated by nullbyte.

The timestamp is a numeric string containing the status of the simulation
server’s global timer at the time of message creation. The unit of the global

17 Technical Report IfI-08-05

Protocol

timer is milliseconds and it is the result of standard system call "time" on the
simulation server (measuring number of milliseconds from January 1st, 1970
UTC). Message type identifier is one of the following values: auth-request,
auth-response, sim-start, sim-end, bye, request-action, action,
ping, pong.

Messages sent from the server to an agent contain all attributes of the root
element. However, the timestamp attribute can be omitted in messages sent
from an agent to the server. In the case it is included, server silently ignores
it.

Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

Optional simulation specific data According to the message type, the root
element <message> can contain simulation specific data.

4.3.2 AUTH-REQUEST (agent-2-server)

When the agent connects to the server, it has to authenticate itself using the
username and password provided by the contest organizers in advance. This
way we prevent the unauthorized use of connection belonging to a contest
participant. AUTH-REQUEST is the very first message an agent sends to the
contest server.

The message envelope contains one element <authentication> with-
out subelements. It has two attributesusername andpasswordof type string.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="auth-request">

<authentication username="xteam5" password="jabjar5"/>
</message>

4.3.3 AUTH-RESPONSE (server-2-agent)

Upon receiving AUTH-REQUESTmessage, the server verifies the provided cre-
dentials and responds by a message AUTH-RESPONSE indicating success, or
failure of authentication. It has one attribute timestamp that represents the
time when the message was sent.

DEPARTMENTOF INFORMATICS 18

AGENT CONTEST 2008

The envelope contains one <authentication> element without subele-
ments. It has one attribute result of type string and its value can be either
"ok", or "fail". Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204979083919" type="auth-response">

<authentication result="ok"/>
</message>

4.3.4 SIM-START (server-2-agent)

At the beginning of each simulation the server picks two teams of agents to
participate in the simulation. The simulation starts by notifying the corre-
sponding agents about the details of the starting simulation. This notifica-
tion is done by sending the SIM-START message.

The data about the starting simulation are contained in one<simulation>
element with the following attributes:

• id - unique identifier of the simulation (string),

• opponent - unique identifier of the enemy team (string),

• steps - number of steps the simulation will perform (numeric),

• gsizex - horizontal size of the grid environment (west-east) (numeric),

• gsizey - vertical size of the environment (north-south) (numeric),

• corralx0 - left border of the corral (numeric),

• corralx1 - right border of the corral (numeric),

• corraly0 - upper border of the corral (numeric),

• corraly1 - lower border of the corral (numeric).

Remark: One step involves all agents acting at once. Therefore if a sim-
ulation has n steps, it means that each agent will receive REQUEST-ACTION
messages exactly n times during the simulation (unless it loses the connec-
tion to the simulation server).

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204979126544" type="sim-start">

<simulation
corralx0="0"
corralx1="14"
corraly0="55"

19 Technical Report IfI-08-05

Protocol

corraly1="69"
gsizex="70" gsizey="70"
id="stampede"
opponent="xteam"
steps="10"/>

</message>

4.3.5 SIM-END (server-2-agent)

Each simulation lasts a certain number of steps. At the end of each simula-
tion the server notifies agents about its end and its result.

The message envelope contains one element <sim-result> with two at-
tributes score and result. score attribute contains number of caught in
the corral of the team the given agent belongs to, and result is a string
value equal to one of "win","lose","draw". The element <sim-result>
does not contain subelements.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760356" type="sim-end">

<sim-result result="draw" score="9"/>
</message>

4.3.6 BYE (server-2-agent)

At the end of the tournament the server notifies each agent that the last sim-
ulation has finished and subsequently terminates the connections. There is
no data within the message envelope of this message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760555" type="bye"/>

4.3.7 REQUEST-ACTION (server-2-agent)

In each simulation step the server asks the agents to perform an action and
sends them the corresponding perceptions.

The message envelope of the REQUEST-ACTION message contains the ele-
ment <perception> with six attributes:

• step - current simulation step (numeric),

• posx - column of current agent’s position (numeric),

• posy - row of current agent’s position (numeric),

DEPARTMENTOF INFORMATICS 20

AGENT CONTEST 2008

• score - number of cows caught in the corral of the agent’s team until
the current simulation step (numeric),

• deadline - server global timer value until which the agent has to de-
liver a reaction in form of anACTIONmessage (the same format as times-
tamp),

• id - unique identifier of the REQUEST-ACTION message (string).

The element <perception> contains a number of subelements <cell>
with two numeric attributes x and y that denote the cell’s relative position
to the agent.

If an agent stands near the grid border, or corner, only the perceptions for
the existing cells are provided.

Each element <cell> contains a number of subelements indicating the
content of the given cell. Each subelement is an empty element tag without
further subelements:

• <agent> - there is an agent in the cell. The string attribute type indi-
cates whether it is an agent of the enemy team, or ally. Allowed values
for the attribute type are "ally" and "enemy".

• <obstacle> - the cell contains an obstacle. This element has no asso-
ciated attributes.

• <cow> - the cell contains a cow. The string attribute ID represents the
cow’s unique identifier.

• <corral> - the cell is a corral cell. The string attribute type indicates
whether it belongs to the team’s or the opponent’s corral. Allowed val-
ues for the attribute type are "ally" and "enemy".

• <empty> - the cell is empty.

• <unknown> - the content of a cell is not provided by the server because
of information distortion.

The specific rules on allowed combinations of objects in a cell are provided
in the scenario description.

Example (compare to Fig. 4):

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1205147104629" type="request-action">

<perception
step="0"
posx="13"
posy="35"

21 Technical Report IfI-08-05

Protocol

score="0"
deadline="1205147112629"
id="1">
<cell x="-8" y="-8"><empty/></cell>
...
<cell x="-8" y="0"><agent Type="ally"/></cell>
...
<cell x="-8" y="5"><corral type="ally"/></cell>
<cell x="-8" y="6"><corral type="ally"/></cell>
<cell x="-8" y="7"><corral type="ally"/></cell>
<cell x="-8" y="8"><corral type="ally"/></cell>
...
<cell x="-7" y="5"><corral type="ally"/></cell>
<cell x="-7" y="6"><corral type="ally"/></cell>
<cell x="-7" y="7"><corral type="ally"/></cell>
<cell x="-7" y="8"><corral type="ally"/></cell>
...
<cell x="-6" y="0"><agent type="ally"/></cell>
...
<cell x="-6" y="5"><corral type="ally"/></cell>
<cell x="-6" y="6"><corral type="ally"/></cell>
<cell x="-6" y="7"><corral type="ally"/></cell>
<cell x="-6" y="8"><corral type="ally"/></cell>
...
<cell x="-5" y="2"><cow ID="47"/></cell>
<cell x="-5" y="3"><unknown/></cell>
<cell x="-5" y="4"><cow ID="52"/></cell>
<cell x="-5" y="5"><corral type="ally"/></cell>
<cell x="-5" y="6"><corral type="ally"/></cell>
<cell x="-5" y="7"><corral type="ally"/></cell>
<cell x="-5" y="8"><corral type="ally"/></cell>
...

</perception>
</message>

Note that the agent perceives an area that is a square with the size 17 with
the agent in the center. Thus each agent is able to see 289 cells. We refrained
from depicting all 289 cells in the above example and showed just some of the
relevant cells instead. The three dots indicate the missing <cell> elements.

4.3.8 ACTION (agent-2-server)

The agent should respond to the REQUEST-ACTION message by an action it
chooses to perform.

DEPARTMENTOF INFORMATICS 22

AGENT CONTEST 2008

x

y

Figure 4: The view range of the agents. The agent is in the center and per-
ceives all the cells in the red rectangle. Cows are white squares, trees are green
circles.

The envelope of the ACTION message contains one element <action>
with the attributes type and id. The attribute type indicates an action the
agent wants to perform. It contains a string value which can be one of the
following strings:

• "skip" – (the agent does nothing),

• "north" – (the agent moves one cell to the top) ,

• "northeast" – (the agent moves one cell to the top and one cell to the
right),

• "east" – (the agent moves one cell to the right),

• "southeast" – (the agent moves one cell to the right and one cell to
the bottom),

• "south" – (the agent moves one cell to the bottom),

• "southwest" – (the agent moves one cell to the bottom and one to the
left),

23 Technical Report IfI-08-05

Protocol

• "west" – (the agent moves one cell to the left),

• "northwest" – (the agent moves one cell to the left and one to the
top).

The attribute id is a string which should contain the REQUEST-ACTION
message identifier. The agents must plainly copy the value of id attribute in
the REQUEST-ACTION message to the id attribute of ACTION message, oth-
erwise the action message will be discarded.

Note that the corresponding ACTION message has to be delivered to the
time indicated by the value of attribute deadline of the REQUEST-ACTION
message. Agents should therefore send the ACTION message in advance be-
fore the indicated deadline is reached so that the server will receive it in time.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action id="70" type="skip"/>
</message>

4.3.9 PING (agent-2-server)

In order to allow agents to test the speed of their internet connection the
simulation server provides a ping interface. The agent is allowed to send
PING messages to the server.

The message envelope of this message contains the element <payload>
with one attribute value. value contains an arbitrary string up to 100 char-
acters long. The payload value is plainly copied to the payload value of the
corrensponding PONG message by the server. The agents can use it to store
proprietary data in the case they need it.

Note that if the server receives a PINGmessage with a payload longer than
100 characters, it can discard the PING message and will not respond to it.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="ping">

<payload value="hello World"/>
</message>

4.3.10 PONG (server-2-agent)

When the simulation server receives aPINGmessage it immediately responds
by sending a PONG message.

The envelope contains one element <payload> with a string attribute
value. Its value is copied from the corresponding PING message.

Example:

DEPARTMENTOF INFORMATICS 24

AGENT CONTEST 2008

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978759491" type="pong">

<payload value="hello World"/>
</message>

4.4 Remarks and notes

4.4.1 Ill-formed messages

Not well-formed XML messages received by the server from agents are dis-
carded. This means, that if some obligatory information (element, or at-
tribute) of a given message is missing the server silently ignores it. In the
case that a message will contain additional not-required informations, only
the first occurence is processed by the server. We strongly recommend to
comply with the communicatison protocol described above.

Examples:

<?xml version="1.0" encoding="UTF-8"?>
<message type="auth-request">

<authentication username="team1agent1" password="qwErTY"/>
<authentication username="team1agent32" password="11111WWw"/>
<some-element arbitrary="234TreE"/>

</message>
<message type="action">

<authentication username="team1agent1" password="qwErTY"/>
<authentication username="team1agent1" password="qwErTY"/>
<some-element arbitrary="234TreE"/>

</message>

The message above will be processed as an AUTH-REQUEST message with
the credentials team1agent1/qwErTY.

<?xml version="1.0" encoding="UTF-8"?>
<message type="ping">

<payload value="payload1"/>
<payload value="payload2"/>

</message>

This message will be processed as a regular PING message and the PONG
response will include a payload equal to payload1.

4.4.2 Pinging and flooding (DoS attack attempts)

Although we do not impose any upper limits on the frequency of pinging,
we strongly discourage abuse of pinging interface by either flooding the sim-
ulation server by PING messages, or other malformed messages with large

25 Technical Report IfI-08-05

Protocol

payload. All suspicious cases will be considered as a DoS attack attempt and
will be dealt with by organizers. This can possibly lead to team disqualifica-
tion.

4.5 Further Important Informations

4.5.1 Weights

The weights for the cow-algorithm are as follows:

• w(cow) ∈ [1, 10] - attraction by cows that are visible and not in the
private-range

• w(cowprivate) ∈ [−1,−10] - repulsion by cows that are visible and in the
private-range

• w(agent) ∈ [−100,−300] - repulsion by agents that are visible

• w(empty) ∈ [1, 10] - attraction by empty cells

• w(tree) := −w(empty) - repulsion by trees

• w(corral) := w(empty) - attraction by corral cells

4.5.2 Visibility Ranges

The visibility ranges are as follows:

• cows have a visibility square that is 9 cells in width and in height, the
cow is considered to be in the center,

• cows have a private square that is 3 cells in width and in height, the
cow is considered to be in the center, and

• agents have a visibility square that is 17 cells in width and in height,
the agent is considered to be in the center.

Please refer to the Fig. 4 and Fig. 5 and for an illustration of the ranges.

4.5.3 Probabilities

The probability that the content of a cell is not perceived by the agent is
around 10%. The probability that an agent’s action fails is around 10%.

DEPARTMENTOF INFORMATICS 26

AGENT CONTEST 2008

x

y

Figure 5: The view range of the cows. The cow is in the center and perceives
all the cells in the blue rectangle. Cells in the red rectangle are in the private
range.

4.5.4 Points

Each cow that enters a corral-cell gives the team that belongs to the corral
one point for the simulation. The cow then disappears. The agent teams
that wins by collecting more cows gets 3 points for the overall tournament,
the loosing team gets 0 points. In the case of a draw, i.e. both agents have
collected the same amount of cows, both teams get 1 point for the tourna-
ment.

5 How to change the scenario

One of the important properties wrt. the MASSim server is its modularity.
For ease of use and with only low effort it is possible to adapt the scenario
or even to replace the simulation plug-in completely. For this you have to
change or exchange some Java classes. In the following the necessary modi-
fications are described.

5.1 GridSimulation.java

The GridSimulation.java is the entry point for a simulation plug-in de-
veloper. It describes the main class GridSimulation that defines the simu-
lation framework and the overall simulation structure: Firstly, while instan-
tiating the class, it parses the config file (GridSimulationConfiguration)

27 Technical Report IfI-08-05

References

and generates the initial world state (GridSimulationWorldState) of the
simulation. Also, it provides an object (GridSimulationAgent) which rep-
resents the set of participating agents as well as the allowed agents’ actions
and the actions’ impacts on the simulation world state. Secondly, it defines
the game cycle. For this purpose the GridSimulation class is derived from
the class ParallelizedRandomOrderSimulation provided by the pack-
agemassim.simulation.simplesimulation. This package offers further
classes that implement different kinds of simulations like for example a round
robin simulation which is not randomized.

Note, the disjunction of the simulation, the world state and the agent’s
states is intended in order to allow different roles respectively different types
of agents as well as a logical separation between the game mechanism and
the data that describes the world. While for minor changes one only have to
change the GridSimulation* files it might be necessary to add a new class
to the package massim.simulation.simplesimulation when it comes
to other types of games like e.g. auctions.

There is another important set of java-files, theGridSimulation*Observer
files, wich define theObservers. They transmit the information about parts
of the simulation to the web server, to the svg generator or to a backup file.

For more information please read the javadoc and the documentation in-
cluded in the software packages.

6 Conclusion

In this technical report we have explained in detail the technical aspects of
the Agent Contest. We have introduced this year’s cows-and-cowboys sce-
nario with an exact representation of the physics of the environment. We
also have considered the communication protocol on which the whole com-
munication between the agents and the MASSim platform is based. Finally
we have provided a manual that allows the interested user to create her own
custom-made scenario.

For us the future holds the following: 1) we are going to parallelize the
MASSim platform and 2) we will improve the visualization. We did an exper-
iment during this year’s contest that showed that parallelizing the MASSim
platform makes sense: allowing to have several matches in parallel saved us
a lot of time. Furthermore we will switch from SVGs to Flash in respect to
the visualization. And we are experimenting on more sophisticated means
of real-time monitoring the ingoing matches.

DEPARTMENTOF INFORMATICS 28

AGENT CONTEST 2008

References

[Dastani et al., 2006] Dastani, M., Dix, J., and Novak, P. (2006). The first con-
test on multi-agent systems based on computational logic. In Toni, F. and
Torroni, P., editors, Computational Logic in Multi-Agent Systems (CLIMA VI),
volume 3900 of Lecture Notes in Artificial Intelligence, pages 373–384, Lon-
don, UK. Springer.

[Dastani et al., 2007] Dastani, M., Dix, J., and Novak, P. (2007). The second
contest on multi-agent systems based on computational logic. In Inoue,
K., Satoh, K., and Toni, F., editors, Proceedings of CLIMA ’06, Revised Selected
and Invited Papers, number 4371 in Lecture Notes in Artificial Intelligence,
pages 266–283, Hakodate, Japan. Springer.

[Dastani et al., 2008a] Dastani, M., Dix, J., and Novak, P. (2008a). The
agent contest on multi-agent systems. In Dastani, M., Ricci, A., El Fal-
lah Seghrouchni, A., and Winikoff, M., editors, Proceedings of ProMAS ’07,
Revised Selected and Invited Papers, number 4908 in Lecture Notes in Artifi-
cial Intelligence, Honululu, US. Springer.

[Dastani et al., 2008b] Dastani, M., Fallah-Seghrouchni, A. E., Ricci, A., and
Winikoff, M., editors (2008b). Programming Multi-Agent Systems, 5th In-
ternational Workshop, ProMAS 2007, Honolulu, HI, USA, May 15, 2007, Re-
vised and Invited Papers, volume 4908 of Lecture Notes in Computer Science.
Springer.

29 Technical Report IfI-08-05

	Introduction
	MASSim Server
	Scenario
	General Description and Tournament Structure
	Preparation Stage and Communication Protocol
	Initial Phase
	Team, Match, and Simulation
	Perception
	Actions
	Cow Movement Algorithm
	Final Phase

	Relation to the Previous Contest Editions
	Network Miscellanea
	Technical Support and Organisational Issues

	Protocol
	General Agent-2-Server Communication Principles
	Communication Protocol
	Reconnection
	Ping Interface

	Protocol Sequence Diagram (UML like notation)
	XML Messages Description
	XML message structure
	AUTH-REQUEST (agent-2-server)
	AUTH-RESPONSE (server-2-agent)
	SIM-START (server-2-agent)
	SIM-END (server-2-agent)
	BYE (server-2-agent)
	REQUEST-ACTION (server-2-agent)
	ACTION (agent-2-server)
	PING (agent-2-server)
	PONG (server-2-agent)

	Remarks and notes
	Ill-formed messages
	Pinging and flooding (DoS attack attempts)

	Further Important Informations
	Weights
	Visibility Ranges
	Probabilities
	Points

	How to change the scenario
	GridSimulation.java

	Conclusion

