
Mastering Project-Controlling Using a
Process-Integrated Project Cockpit
Marco Kuhrmann1, Jürgen Münch2 and Andreas
Rausch3

IfI Technical Report Series IfI-10-06

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45269679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Michael Köster
Contact: michael.koester@tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Prof. Dr. Christian Siemers (Hardware and Robotics)
PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)
Dr. Michaela Huhn (Theoretical Foundations of Computer Science)



Mastering Project-Controlling Using a
Process-Integrated Project Cockpit

Marco Kuhrmann1, Jürgen Münch2 and Andreas Rausch3

1Technische Universität München, Boltzmannstr. 3, 85748 Garching,
kuhrmann@in.tum.de

2Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern,
muench@iese.fraunhofer.de

3Technische Universität Clausthal, Julius-Albert-Str. 4 38678 Clausthal-Zellerfeld
andreas.rausch@tu-clausthal.de

Abstract

Measurement has been emphasized as an effective method for gaining
control and insight into software development projects. For that rea-
son many organizations have incorporated measurement based control-
ling mechanisms into their software development processes. However,
an integrated coupling between controlling mechanisms and the orga-
nization wide standardized process definitions on different application
levels, like for instance on engineering and managing level, is still miss-
ing. Thereby standardized de-escalation and exception procedures could
be provided to project and executive management in case of abnormal
project situation. These procedures support help to perform corrective
actions within the projects. Therefore the process definition has to be
extended to incorporate standardized controlling measurements and de-
escalation and exception procedures. To demonstrated and apply the
proposed concepts the standard process - the V-Model XT - is used as ap-
plication sample.

1 Introduction

In the face of the high impact of computer science on economy and admin-
istration, the creation of IT systems still comes with a high level of uncer-
tainty. A quarter of all IT projects are canceled before completion with dra-
matic consequences for all participants. Almost half are significantly behind
schedule, budget or suffer from incompleteness [1], [2]. This current situa-
tion is not acceptable. The success rate, the productivity, and the cost effi-
ciency in terms of development, maintenance, and operation of IT systems

1



Introduction

have to be increased. Standard process models like the Rational Unified Pro-
cess (RUP) [3] or the V-Model XT [4], [7] can contribute to alleviating this
situation.

Those process models capture best practice knowledge offering the possi-
bility to acquire and use this knowledge, and last but not least provide an
outline for training young software engineers. Several studies give empiri-
cal evidence on such benefits. Once a standardized process model is correct
implemented within an organization quality, productivity, and success rates
are significantly increased [5]. Obviously a couple of key factors, like for in-
stance proper tool support and well trained people, are needed to success-
fully implement a process model as the organization wide accepted and ap-
plied model. However to establish, control, and improve the application of
the process model at least the following three elements are required:

• A standardized process description organization wide accepted

• Adequate measure and controlling instruments for observing the ap-
plication of the process model

• A catalog de-escalation and exception procedures based on experiences
to find solutions for abnormal situations

Explicitly defined standardized processes that are applied in real develop-
ment projects are necessary for implementing adequate controlling mech-
anisms. The required measurements have to be performed on standardized
data input defined by the development process. Moreover controlling can be
a means to increase adherence between the documented processes and the
real processes. This is especially helpful if the data that is monitored during
controlling provides information about process deviations. Thus measure
and controlling instruments can also be seen as a means to support the suc-
cessful deployment of process standards.

Project cockpits - to control and direct projects - are well known in other
domains such as production engineering or business process engineering.
In software engineering, typically two types of project cockpits can be ob-
served. The first one is mainly used by the executives and provides only
coarse-grained information. For each project to be monitored, there are usu-
ally two or three indicators comparable to traffic lights. These indicators are
normally used to symbolize aspects such as timeliness, resource consump-
tion, or degree of completeness of products. The second variant is a cock-
pit for the development project itself. Such cockpits usually focus on one
project and visualize information such as defect profiles, product states, or
test progress. Thus they are often project-driven and very specific. Nowa-
days, executive and management cockpits are usually not coupled, as shown
in the comprehensive overview of concepts and approaches of project cock-
pits [6]. This leads to some serious problems, e.g. it is difficult to understand

DEPARTMENTOF INFORMATICS 2



MASTERING PROJECT-CONTROLLING

what colored indicators of executive cockpits mean in detail. As a conse-
quence, it is difficult to react appropriately on the executive and in particu-
larly on the project management level. Moreover project management cock-
pits are usually project specific. If one wants to adapt a cockpit for a new
project, it often has to be created from scratch. So, on the one hand, the
controlling and directing capabilities of such cockpits are very suitable, but
on the other hand, they are almost not reusable.

Finally we have to take into account that de-escalation and exception pro-
cedures - emergency rules describing corrective actions for anticipated or un-
expected situations - are typically not part of the deployed process models.
Those rules are a very important help in many critical settings. As IT projects
are complex and as well often critical those de-escalation and exception pro-
cedures must be part of the deployed process model.

To sum up, more or less powerful isolated concepts for process models
exist. However there is no integrated process model with respect to pro-
cess model definition, measure and control instruments, and de-escalation
and exception procedures. Therefore process models have to be improved
towards more sophisticated integrated process models. Such an integrated
process model is based on a common meta-model. This meta-model must be
powerful enough to capture not only the process definition but also - in an
integrated manner - the measure and controlling as well as the de-escalation
and exception procedures.

In the next section we show, based on sample scenarios, how such an over-
all project controlling environment can be used for project management and
risk-driven controlling. In section three, we introduce the meta-model of a
usual standard development process - the V-Modell XT. Based on this meta-
model we show in section four how to extend the meta-model to enable pro-
cess engineers to model not only the development process itself but also re-
lated information that have to be integrated. In particularly measure and
controlling instruments and de-escalation and exception procedures have
to be integrated. Based on these elaborated concepts, we introduce in sec-
tion six the design and implementation of a project cockpit to apply the pre-
sented approach within an organization and within project management.

2 Applying a Project Cockpit

As we pointed out, a project cockpit should be suitable for both management
and project execution. At first, we want to motivate Project Cockpits using a
real world scenario.

3 Technical Report IfI-10-06



Applying a Project Cockpit

2.1 What we can learn from pilots and air traffic controllers

To point out our approach more clearly, we want to take a look at an area
where cockpits work well. Looking at air traffic, we find controlling and
monitoring on different levels.

Figure 1: Controlling relations and information flow in air traffic

At first there is the aircraft. During a flight it produces status data and
needs to be controlled. The aircraft is controlled by a pilot, who evaluates
the collected and presented data. The relevant data are shown on instru-
ments in the aircraft’s cockpit. According to the current state, the pilot has
to make decisions like correcting the heading because of stormy weather or
initializing emergency procedures defined in emergency rules. Finally, the
pilot gets information and instructions from air traffic controllers who mon-
itor the overall sky. They know how many aircrafts are in the air, where they
are, at which altitude, etc. Operators have to coordinate the air traffic.

In Figure 1 we sketched the relations between aircrafts, pilots, and con-
trollers as well as the information flow between them. Especially the right
part of the figure is of special interest. Pilots as well as controllers have so-
called emergency rules available that define how to react in a crisis. So, for
example, if a controller realizes that two aircrafts are heading for collision, he
has to alternate the heading of one of the two machines to avoid a collision.
Another very critical scenario is the case of an air crash. Here, operators have
to find alternative routes for incoming aircraft and have to redirect them to
other destinations.

As we have pointed out, pilots have emergency rules as well. So if there is
an engine failure, a pilot will have detailed steps described in an emergency
checklist. This checklist describes what he has to do in what order and so on.
Based on the collected data, the pilot has to take action, as do the operators.

DEPARTMENTOF INFORMATICS 4



MASTERING PROJECT-CONTROLLING

But the kind of information presented might be different. So, for example,
an operator on the ground does not need to know that the air conditioning
system works well. The pilot should know because a failure could endanger
the passengers’ safety.

2.2 Adaptation to project management

We consider this scenario to be a good parable, and we want to adopt this to
project management. According to our scenario, we want to define the scope
as the first step. We can identify two relevant scopes. The first one is the
Project Management Scope/View and the second one is the Executive Man-
agement Scope/View. Each view addresses different roles. The first one is the
view the project manager has on his project and is comparable to the pilot
controlling the aircraft. The second addresses the executive management
that is responsible for several projects. This is comparable to the controllers
working in the control centers.

Thus the project manager becomes the pilot in this scenario. He needs de-
tailed data about his project and has to be able to react in appropriate ways
according to the project’s current situation. On the other hand, the exec-
utive management becomes some kind of operator who needs information
about several projects. The executive management has to be able to rate sev-
eral projects related to the objectives of the whole company. In fact: both
need information to make decisions, but they have different scopes. Deci-
sions made by a project manager usually affect only one project but can have
impacts on the organizational environment.

Decisions made by the executive management always target the whole or-
ganization and give rules and frames to particular projects as well.

2.3 Applying de-escalation procedures

Before switching to development process models, we want to present an ex-
ample scenario comparable to the pilot - operator setting shown in section
2.1. We assume that a project manager evaluates the project’s current state
for reporting. The manager is responsible for a client-side software devel-
opment project. He realizes that the document summarizing the system’s
requirements is not in an adequate state (meaning showing the document’s
state indicator is yellow or red). Because of the project’s current situation he
does not have a chance to correct this for himself. Thus he has to report to
the executive management for escalating the situation. Together with the
executive management he opens a Project Cockpit tool, which controls the
currently running projects (Figure 2, upper right). The situation is as fol-
lows: The generated report shows that the product Requirements Specifica-
tion Sheet is six days over schedule and two quality testing procedures were

5 Technical Report IfI-10-06



Applying a Project Cockpit

Figure 2: Controlling relations and information flow in air traffic

failed. The third test is currently running but may fail, too.
The Cockpit tool now provides some help - a Problem Specification As-

sistant (Figure 2, lower left). This assistant sums up information stored in
a knowledge base, consisting of experiences, best practices and project re-
ports. For the current situation, the tool identifies the problem based on
predefined indicators or performance counters. The managers at first have
to determine the problem (diagnostic mode). The list shown in the Reasons
for the Problem-section is based on experiences. They can select applying
reasons. Possible reasons for this kind of problem could be:

• Requirements have changed (because of new environment conditions
etc.)

• Requirements are not adequate (because of possible misunderstanding
etc.)

• Requirements Engineers are not available (maybe someone is ill)

• . . .

During the organization’s project experience, best practices were collected.
The assistant now provide recommendations that could be a possible solu-
tion for the current problem. Because every project is different, several alter-
natives are presented, such as:

DEPARTMENTOF INFORMATICS 6



MASTERING PROJECT-CONTROLLING

• Request an external Consultant (this could apply if the Requirements
Engineer is not available or project resources are stressed)

• Request an additional Requirements Engineer (this could work, if the
re-sources are stressed, but other projects possibly have free resources
for compensating this project)

• Organize a requirements workshop (this could work, if requirements
have changed or requirements were identified as not realizable)

• . . .

It is not possible to anticipate all situations that can occur. So the pre-
sented solutions are only recommendations! The assistant have to couple
with this and have to provide alternatives, like adding new problems, rea-
sons, best practices etc. Furthermore it should be possible to implement ade-
quate solutions in the problematic project e.g. by adding new tasks, resched-
uling and so on.

Views on projects. Both, the project managers and the executive project
management need support to master a variety of situations like the one shown
above. In the previous section we sketched a conceptual tool prototype out-
lining the shown scenario.

A Cockpit has to support a project manager by analyzing the current prob-
lems and presenting the right information. It has to consider that a project
manager can make decisions limited to his scope. So it should only present
actions and recommendations possible in this context. A Project Cockpit
acts context-sensitive. In the same way as the project manager’s options, the
ones for the executive management are also context-sensitive. But the scope
is a different one. Decisions, made for a particular project might affect other
projects as well. Thus the executive management always has to have possible
impacts in mind. An adequate Cockpit has to consider this as well. It should
always present a critical situation in the context of all other projects, the ex-
ecutive management is responsible for (Figure 2, upper right). A supporting
tool automatically alerts responsible people that projects reached warning
points and presents support using a checklist based on predefined experi-
ences, emergency rules and guidelines, as sketched in previous section1.

1The Project Cockpit cannot be omniscient! It has to have knowledge about reference and
actual values, information about objects to be monitored, information about risk or quality in-
dicators and references to a knowledge base associating actual values with problem descriptions,
experiences and possible solution descriptions.

7 Technical Report IfI-10-06



Standardized Development Process Model

3 Standardized Development Process Model

For a project cockpit as presented in the previous sections a standardized de-
velopment process model is required as the basis. One prerequisite for ap-
plying the presented approach is that the standardized development process
model must be based on a process meta-model. Usually process engineers
use the language defined by the process meta-model to describe a company’s
standardized development process model (see also [10], [11]).

In this section, we will introduce the meta-model of the used process mo-
del. In the next sections, the process meta-model will be extended to en-
able the process engineers to model not only the standardized development
process model but also related measure and controlling instruments and de-
escalation procedures. Once these aspects are modeled based on an overall
meta-model an integrated tool support as presented in the previous section
can be provided.

3.1 Sample process model - V-Modell XT

In this paper we use the V-Modell XT [7] as sample process model2. The
V-Modell is the German system development and lifecycle process model
standard for federal administration and defense engineering projects. The
V-Modell regulates the system development and maintenance process; it de-
fines binding sets of activities and artefacts, and accompanying processes
such as quality assurance, configuration management, and technical project
management. It is publicly available and many companies have successfully
adopted it.

In 2002, the most recent update of the V-Modell dated back to 1997. Many
new innovations in software engineering were missing, as were quality at-
tributes of the process model. Consequently, a project was initiated to an-
alyze the drawbacks and improvement potentials for the current V-Modell,
and to develop a new redesigned version called V-Modell XT. At the end of
2004 the new V-Modell XT was established within the federal administra-
tion, military engineering projects, and companies as the new development
process standard [9].

3.2 Development process meta-model

The V-Modell XT is a generic process model based on a well-defined formal
meta-model. The V-Modell can be applied to different project constellations.
Hence, it is necessary to customize the V-Modell to certain project settings.

2Any other process model based on a meta-model could be used to apply the presented ap-
proach.

DEPARTMENTOF INFORMATICS 8



MASTERING PROJECT-CONTROLLING

This customization - called tailoring - is one of the first and most critical ac-
tivities of a V-Modell user. Tailoring in the context of the V-Modell XT means
the selection of one of the supported project types, the process modules to
be applied, and the strategy for project operation to be used. All these meta-
model concepts will briefly be introduced in the following.

Process Modules: As shown in Figure 3 (right side), a process module
encapsulates a set of products, activities, and roles. Products represent the
What of a project, meaning all (provisional) results, like documents, source
codes or physical components. Activities are the How part. They are directly
assigned to products. Every activity completes exactly one product. There
are no activities defined that do not complete any product. A process module
contains a specific set of products, activities, and roles relevant to a specific
process area. All contents of a process module have content dependencies
on each other. Thus, for example, the relevant contents for project manage-
ment are collected in a separate process module; relevant contents for soft-
ware development are collected in another process module, and so on. Each
process module is an independent unit. It is individually changeable or ex-
tendable. The essential, static contents of the V-Modell XT are contained
in the process modules. All products, activities, and roles do not contain any
formal specification or limitation for the project’s execution or the product’s
creation process.

Strategies for Project Operation: A project’s execution is usually very
complex. To enable reliable planning and controlling of a project, an or-
dered process has to be worked out. To support the users, the V-Modell XT
includes a catalog of so-called strategies for project operations (SPO). SPOs
contain the dynamic parts of the V-Modell XT. An SPO defines the coarse
frame for the traceable project operation. The V-Modell XT contains a set of
so-called decision points. Each decision point is a milestone defining a set
of products. These products have to be in the finished state, which shows
that these products were tested during the quality assurance process. Look-
ing at these products, the project management has to decide whether the
current stage can be finished successfully or not. Typical decision points are
"Project engaged" or "System specified". Hence, an SPO defines a set of deci-
sion points and an order across this set to outline how the project has to be
operated. Decision points can be reached multiple times and mark the final-
ization of a project stage.

Project Types: Obviously there exist dependencies between SPOs and pro-
cess modules. The decision points of an SPO refer to the products to be fin-
ished. These products can be located in different process modules. As men-
tioned above, the V-Modell XT is a generic process model that has to be tai-
lored before it can be applied in a project. During tailoring it has to be guar-

9 Technical Report IfI-10-06



IntegratingMeasurement andControlling Instruments andEmergencyGuidelines

anteed that a reasonable combination of process modules and SPOs will be
selected. Therefore the V-Modell provides project types. A project type char-
acterizes typical project settings like server-side system development. Each
project type defines a reasonable combination of mandatory and optional
process modules as well as a selection of corresponding SPOs.

4 Integrating Measurement and Controlling In-
struments and Emergency Guidelines

Quality and risk management should be directly integrated in the process
model. Necessary extensions can be integrated in a meta-model to give a
guideline for projects operated according to the process model. So a formal-
ized process model that builds on a meta-model is advantageous. The meta-
model can be extended with standardized measurement points. Standard-
ized processes define uniformed project operation strategies. Furthermore
such projects include standardized connection points for collecting data. So
these projects are comparable. In the following sections we introduce such
meta-model extensions.

Figure 3: The extended V-Modell XT Meta Model

4.1 Project quality and progress controlling

The V-Modell XT contains meta-model elements appropriate for measure-
ment and controlling. The elements we are interested in are products, ac-

DEPARTMENTOF INFORMATICS 10



MASTERING PROJECT-CONTROLLING

tivities, and roles - concepts included in almost all available process models.
Products and activities are promising candidates because their monitoring
can be automated.

How to use controlling extensions? In section 2.3 we introduced a sam-
ple scenario and sketched a tool supporting the management on different
levels. The tool monitors the products’ states and the scheduled activities.
In the underlying process model3, connection points for miscellaneous con-
trolling and monitoring instruments are defined. The process engineer, who
made a concrete process model from this meta-model, has defined concrete
metrics. Such metrics can be time-frame calculations, product state calcula-
tions, and associations to warning levels and so on.

Controlling extensions, defined in the meta-model, have to be known to
the supporting tool. To schedule and control a project it is necessary, to have
information about reference values and actual values (see also section 2.3).
Reference values can be extracted during the scheduling of a project based on
the process model [13]. Continuously reporting provides the required actual
values. These are necessary to evaluate the project’s current state. To rate the
current state, metrics are needed, which can be derived by the GQM [16] ap-
proach. Metrics usually provide only raw data, which have to be interpreted.
So some kind of knowledge base (including best practices or experience re-
ports) is required. In the previous sections, we used traffic light indicators as
metric. In the following section we want to describe this more in detail.

Sample: Traffic light indicators. To be able to interpret metrics, it is nec-
essary to define result domains. Result domains consisting of the values pro-
duced by an evaluation function. An evaluation function gets the objects to
be monitored (products, activities and so on) as input and calculates a result
from the domain using predefined expected values and current values. Let
us give an example. The state of a product can be in progress, presented and
finished [7]. The question to be answered is: what states this indicator re-
lated to a product’s state? A possible definition of the particular indicators
made by a process engineer might look as follows:

1. Green:

• A Product is still being edited/an Activity is still in progress. The
Product must not have to be finished. Project is on time.

• A Product is finished/an Activity has been carried out.
3The process model can only provide concepts preparing an organization to introduce so-

phisticated project-controlling. Concrete implementations, such as specific metrics have to be
defined by a process engineer during the instantiation and customization of the process model
for the organization or particular projects. So not only a tool for supporting the management is
required, but an adequate tool for process definition as well!

11 Technical Report IfI-10-06



IntegratingMeasurement andControlling Instruments andEmergencyGuidelines

• A Product/an Activity failed the quality testing procedure with min-
imal defects, meaning the number of errors is quite small or the
importance is marginal.

2. Yellow:

• A Product/an Activity failed the quality testing procedure with me-
dium defects that have to be corrected immediately.

• A Product/an Activity should have been finished, but is minimal
over time, meaning within a scheduled buffer.

3. Red:

• A Product/an Activity failed the quality testing procedure with
heavy defects.

• A Product/an Activity should have been finished, but is extremely
over time, meaning the scheduled buffer was exceeded.

This is a very simple metric for product states. Every value defined in the
domain is associated to at least one reason. Other interpretations or models
are possible. Result domains may be specific to an organization or a single
project.

Collecting controlling model elements. As shown in the previous sec-
tions, we need several elements to extend a process meta-model in an ap-
propriate way. First of all, the meta-model objects to be monitored have
to be identified. The second point is to define some kind of architecture
that describes the controlling and monitoring engine. As shown in the pre-
vious section, we need an evaluation function realizing some kind of met-
ric. This function has to calculate the monitored object’s state according to
the project’s goals. The calculation leads to a result from a defined domain,
which to our understanding has to be assigned to de-escalation procedures.
As shown in section 2.3, de-escalation procedures can be checklists executed
by someone. In the next section we want to refine our modeling and rec-
ommend an extension to the V-Modell XT meta model including all points
mentioned above.

4.2 How to integrate Measurement Points into the Process
Development Model?

The V-Modell XT’s meta-model defines products, roles, and activities as ba-
sic concepts. One connection point in our understanding is a meta-model
element appropriate for measurement.

DEPARTMENTOF INFORMATICS 12



MASTERING PROJECT-CONTROLLING

Existing connection points in the meta-model. Here we want to give
some examples for potential connection points already available in the cho-
sen development process model. Connection points address queries over the
set of meta-data associated with every meta-model element. Taking a closer
look at the products, we can ask: "Who is responsible?" or "What is the cur-
rent state?" and so on. In the same way, we are able to give information about
activities as well. The V-Modell XT is rich in structured meta-data. So it is
possible to identify lots of connection points for evaluating a project’s cur-
rent state. As we pointed out earlier, relevant connection points are: prod-
ucts, activities and roles. Products are the main results and contain lots of
meta-data, like dependency information or completeness. Activities, on the
other hand, are a matter of scheduling the project. They can be observed
and associated with resources, like time or people. Roles may contain infor-
mation about people assigned to a particular role like an architect who works
under stress or a developer, who is fired.

Connection points for controlling and monitoring on the meta-model
level. What are connection points in the context of project controlling and
monitoring capabilities? Looking at Figure 3 (left side) we integrate the con-
trolling and monitoring capabilities by creating a new super-class called Mon-
itorable in the meta-model and deriving all relevant meta-model elements
from this class. This way we express the concept of a connection point in a
formal way. This super-class is also the access point for the controlling and
monitoring engine outlined above.

The Monitorable class connects a Controller class, which contains at least
one evaluation function, and a result domain (e.g., red, yellow, and red, as
pointed out earlier). The evaluation function gets one or more monitorable
objects as input and delivers a result from the domain. Each result is as-
signed to a de-escalation procedure, which is called by the controller. A de-
escalation procedure may result in showing a checklist comparable to the
scenario shown in section 2.3. It should be possible to assign more than
one controller to a monitorable object on the one hand, and it is possible to
get more than one monitor able object as input for evaluating on the other
hand, too. So it is possible to define complex monitoring operations by com-
bining several objects.

4.3 De-Escalation and Exception Procedures

After having defined connection points in the process model in the last sec-
tion, it is necessary to define de-escalation and exception procedures. We
want to refer to the scenario shown in section 2.3 again.

Scenario refinement and procedures. De-escalation and exception pro-

13 Technical Report IfI-10-06



Project Cockpit Design

cedures are dynamic parts of projects that have to be activated if tolerances
are exceeded. As pointed out in section 2.3, the project manager as well
as the executive management should have checklists and recommendation-
lists available. Furthermore, we noted that these lists are context-sensitive.
We want to take a closer look at this: the project manager realizes that a
product is too late in the schedule. This is shown by a tool implementing
the monitoring capabilities shown in the last section. So, the list shown in
the lower left of Figure 2 is the result of an executed de-escalation function,
called by a controller observing the requirements sheet. Based on the exam-
ple sketched in section 2.3, we can identify at least two points where excep-
tion procedures can be fired by a controller. The first point is the schedule
that shows whether products are over-time or not. The second one is the
testing result associated with a product’s quality assurance definition. In the
following two sections we want to briefly discuss about these two points.

Activity-based exception procedures. Activity-based exception proce-
dures can be initialized on two levels. The first one is look ahead like, the
second one is an emergency. Look ahead exception procedures apply e.g., if
buffers are defined for work packages. If the schedule is near the buffer, the
Cockpit is able to warn the user automatically, enabling the user to react in
an early stage. This should be the preferred way. The emergency exception
procedures can be fired automatically, too. These procedures apply e.g., if
particular products are over-time. Different from the look ahead procedures,
serious consequences for the whole project/for the organization are possible
in this case. An immediate reaction is required.

As mentioned, corresponding lists are context-sensitive. Furthermore, a
Project Cockpit can provide support for look ahead and emergency scenar-
ios. Looking at the scenario shown in section 2.3, the presented list is a look-
ahead checklist, because we think a buffer is still available.

Quality-based exception procedures. Quality-based exception procedures
can be caused by quality testing procedures. To fire a quality based exception
it is necessary to assign products to testing protocols. Quality based excep-
tions are caused by the product’s state model and therefore can be fired au-
tomatically, too. An adequate controller observes a product. The associated
evaluation function requires the product and the test result as input and is
able to calculate the result, which possibly causes an exception.

5 Project Cockpit Design

After having introduced the basic concepts of a Project Cockpit, as well as
the necessary extensions of a meta-model based development process model
and their integration, we want to give an idea of the design of an appropriate

DEPARTMENTOF INFORMATICS 14



MASTERING PROJECT-CONTROLLING

tool for management support. In this section, we want to give an overview
of an appropriate tool design. We look at the scenarios sketched in section
2.3.

5.1 Collecting requirements

Projects create status data and results. The project leader has to understand,
evaluate, and react in his scope - he has to avoid a crash. The project’s status
has to be known to management as well. But the scope is a different one. The
state of one project has to be seen in the context of all projects that are cur-
rently running. This requires that projects are comparable. Comparability
means:

• All projects should implement a similar process (unified development
process model).

• All projects should produce comparable data at predefined points and
should implement comparable methods for quality management (mea-
surement points and quality gate definitions).

• All projects should have catalogs for emergencies available (unified emer-
gency rules/correcting action/de-escalation procedures) that apply for
the whole organization, including guidance for their application in par-
ticular projects.

• All projects should implement an interface that enables the project lead-
ers as well as management to collect all information they need to re-
alize the current state of a particular project as well as the state of all
projects in the enterprise’s scope. The interface should also include an
implementation of a controlling engine.

These requirements based on the scenario in section 2.3 and our modeling
in section 4 implicate that components are necessary for an organizational
Project Cockpit. In Figure 4 we outline the big picture of an organizational
Project Cockpit including all the mentioned points. The core of Figure 4 is
a unified organizational development process model. This model should be
based on a well-defined meta-model. We think this is the best way to include
the required capabilities in accordance with measurement points, basic qual-
ity management, and basic integration concepts of emergency behavior as
outlined in section 4.

As we could learn from the V-Modell XT’s introduction, the generic pro-
cess has to be customized to specific organizations first. A team consisting
of process engineers and experienced project workers has to integrate orga-
nizational best practices during the customization phase. Thus, every point
we sketched in section 4 would be integrated in a concrete process model.

15 Technical Report IfI-10-06



RelatedWork

The organizational process model should provide an interface for control-
ling and management. As shown in section 4.2, this integration can directly
be included in the process meta model.

5.2 Views

An appropriate tool for supporting managers in project operation is always
based on a unified organizational process model. Tasks that are specific to
managers and the executive management are only views in such a tool.

Project management view: As shown in section 2.3, managers require
detailed information about one project. Existing tools like microTOOL’s in-
Step provide such views. Managers need guidance in an emergency that fo-
cuses on basic questions like finishing products quickly. Measures based on
best practices are collected in a knowledge base and are assigned to specific
tasks. Thus the tool supports controlling while its goal is to achieve the tar-
get of the project.

Executive management view: As shown in section 2.3, the executive man-
agement needs a different point of view. Beside the successful operation of
single project, higher ranked targets of the organization are in their scope,
too. An adequate view first provides coarse-grained information about gen-
eral states. In case of an emergency, the executive management needs infor-
mation about global resources to be applied to a critical project for possible
compensation. They need information that supports them in estimating the
impact of possible measures on the whole organization.

5.3 Architecture considerations

The requirements sketched above imply some kind of centralized project con-
trolling. An organization has to provide project servers that observe all run-
ning projects. As we could learn in [12], this procedure not only enables
good controlling, but distributed working as well. Centralized project servers
have the advantage that the organizational process model, which is one of
the most basic requirements, is available to all participating people. So all
projects are executed on a comparable basis, which on the other hand, is a
basic requirement for overall project controlling. The Project Cockpit is thus
a simple distributed application, where the server is an organizational pro-
cess model server, including a repository, a knowledge base, and the control-
ling engine, sketched during the previous sections.

DEPARTMENTOF INFORMATICS 16



MASTERING PROJECT-CONTROLLING

Figure 4: Concept of the organizational Project Cockpit

17 Technical Report IfI-10-06



RelatedWork

6 Related Work

Relevant approaches that are related to the presented approach for instru-
menting process standards can be seen in the following areas: Process mod-
eling notations, standard processes and software project control centers.

Process modeling notations or languages (such as IDEF0) usually comprise
elements to represent activities, products, resources, and product flow. In
addition, some notations (such as the Marvel Strategy Language) offer con-
structs for representing control flows (usually in a constraint-based or im-
perative way). Quality aspects are often represented via attributes that char-
acterize activities, products, or resources. Examples are product complex-
ity, duration, or availability. In addition, products and processes usually
have status attributes such as ’non-existent’, ’incomplete’, and ’complete’ for
products, and ’disabled’, ’enabled passive’, and ’enabled active’ for processes.
Only few notations allow for more advanced definitions of quality models.
MVP-L, for example, allows for capturing explicit relations between depen-
dent and independent as quality models and to describe relation between
attributes on different aggregation levels by attribute mappings. This sup-
ports a goal-oriented interpretation of the collected data in a Project Cock-
pit. Attributes are a good means to attach metrics to processes and process
elements. However, they need to be coupled with controlling mechanisms
during project execution.

Manifold process standards are available. Examples are the V-Modell XT,
the MIL standards, or company-specific standards. Most of these standards
have their unique meta-model that does not adhere to a meta-model stan-
dard (such as SPEM). Furthermore, most of the standards do not explicitly
support instrumentation and controlling. Sometimes, as for example in the
ECSS Software Development Standards of the European Space Agency stan-
dards, explicit instrumentation is addressed mainly in the verification activ-
ities. Applying standards for project tracking requires that they offer mecha-
nisms to cope with replanning. When the goals or characteristics of a project
change, the processes must react accordingly. Consequently the process stan-
dards, which should always reflect the real-world situation, must be updated.
This requires flexible mechanisms for change management. Only a few soft-
ware process modeling notations support updating the process models (e.g.,
Slang [14]). General problems exist manipulating states and keeping them
consistent with the type information, and partial backtracking of process
tracks in the case of erroneous process performance. Approaches for Project
Cockpits that are tailored to software engineering mainly exist on the level
of research prototypes. A comprehensive framework for feedback-oriented
Cockpits can be found in [15]. Professional Project Cockpits usually stem
from the business performance management domain. A recent survey of ex-
isting software project control centers can be found in [5]. Experience with

DEPARTMENTOF INFORMATICS 18



MASTERING PROJECT-CONTROLLING

performance management is described in [17].
Finally, it should be mentioned that measurement should be done in a

goal-oriented way so that predefined metric sets are only of a limited value
[18]. Therefore, process standards need to offer a concept that allows inte-
grating metrics without prescribing them in detail.

7 Conclusion

Project controlling and monitoring is quite complex - especially if many pro-
jects have to be monitored. In this article we presented an approach, which is
based on a standardized organizational development process model. An in-
tegrated approach of instrumenting processes needs meta model-based pro-
cesses. Mechanisms for the instrumentation can be directly integrated in the
meta model and enriched by tailoring the process to specific needs. We iden-
tified possible so-called connection points in V-Modell XT’s meta model ap-
propriate for the injection of controlling capabilities. Controlling needs ob-
jects to be controlled, reference values and actual values. The observation of
these values can be automated by observing selected objects and the sched-
ule. To create added values it is necessary to provide additional support, like
problem analysis and solution recommendations, too. A meta model-based
integrated approach is strongly required, because it is the basis of a stan-
dardized project operation and controlling. Using this approach, projects
become comparable. Thus not only instrumentation and controlling is pos-
sible, but benchmarking, too.

Standardized meta model-based Project Cockpits have high potentials for
increasing projects’ quality. It is possible to establish semi-automatic risk
management: risks can be identified and associated to indicators, which can
be controlled by the Cockpit. The Cockpit allows sophisticated information
flow. Context-sensitive views, automatically created tasks and so on enable
to optimize processes and their implementation. Standardized quality met-
rics and indicators combined with proven methods and best practices can be
modeled and directly integrated in the project controlling environment. A
Project Cockpit, based on our approach, is able to support responsible peo-
ple by making suggestions and presenting recommendations. If there is a
standardized process including standardized and homogenized process pat-
tern, quality metrics, and indicators for controlling and benchmarking and
a knowledge base including best practices, all projects in a multi-project sce-
nario can be operated in the same manner. They are comparable and easier
to handle.

In this article we sketched our idea of a tool supporting the Project Cock-
pit idea. We assume that it is not necessary to implement such a tool from
the scratch. Existing tools can easily be extended. So it is possible to extend
established project management tools like in-Step with Cockpit support. It is

19 Technical Report IfI-10-06



References

also possible to think of extending team-supporting solutions like Microsoft
Share Point Team Services with appropriate services.

8 References

1. Standish Group International, Inc. CHAOS: A Recipe for Success. (1999)

2. K. Bergner, M. Broy, K. Moll, M. Pizka, A. Rausch, T. Seifert. Erfolgre-
iches Management von Softwareprojekten. Informatik Spektrum 27:5,
Springer-Verlag (2004) 419-432

3. P. Kruchten. The Rational Unified Process, An Introduction. Addison-
Wesley, 2nd Edition, (2000)

4. A. Rausch, M. Broy. V-Modell XT - Grundlagen, Erfahrungen, Werk-
zeuge. dpunkt.Verlag (2006)

5. H. Watts. Three Process Perspectives: Organization, Teams, and People.
Annals of Software Engineering, Kluwer Academic Publishers 14 (2002)
39-72

6. J. M"unch and J. Heidrich. Software project control centers: concepts
and approaches. The Journal of Systems and Software 70 (2004) 3-19

7. V-Modell XT. Definition and documentation on the web. http://www.v-
modell-xt.de

8. BWB-IT I-5, AU 250, Entwicklungsstandard fr IT-Systeme des Bundes,
Vorgehensmodell. (1997)

9. Projekt WEIT - Weiterentwicklung des Entwicklungs-Standards fr IT-
Systeme des Bundes auf Basis des V-Modell-97. http://www.v-modell-
xt.de (2003)

10. M. Gnatz, F. Marschall, G. Popp, A. Rausch, W. Schwerin. The Living
Software Development Process. Software Quality Professional, 5 (2003)

11. Object Management Group (OMG). Meta Object Facility (MOF) Speci-
fication. http://www.omg.org, document number: 99-06-05.pdf (1999)

12. M. Kuhrmann, D. Niebuhr, A. Rausch. Application of the V-Modell V-
Modell XT - Report from a Pilot Project. Software Processes Workshop
2005, Beijing (China) (2005)

13. M. Gnatz. Vom Vorgehensmodell zum Projekplan. PhD Thesis, Tech-
nische Uni-versit"at M"unchen (2005)

DEPARTMENTOF INFORMATICS 20



MASTERING PROJECT-CONTROLLING

14. Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software pro-
cess model evolution in the SPADE environment. IEEE Transactions on
Software Engineering, 19 (1993) 1128-1144

15. Christopher M. Lott. Measurement-based feedback in a process-cen-
tered software engineering environment. PhD thesis, Department of
Computer Science, University of Maryland (1996)

16. V.R. Basili, G. Caldiera, and H.D. Rombach. Goal Question Metric Par-
adigm. "Encyclopedia of Software Engineering", 1 (1994) 528-532

17. S. Miller and W. Riddle. Experience Defining the Performance Man-
agement Key Process Area of the People CMM . . . and the Link to Busi-
ness Strategy. Software Engineering Process Group Conference (SEPG
2000), Seattle, Washington, (2000)

18. Tesoriero R, Zelkowitz MV. The Web Measurement Environment (WebME):
A Tool for Combining and Modeling Distributed Data. 22nd Annual
Software Engineering Workshop (SEW), (1997)

21 Technical Report IfI-10-06


	Introduction
	Applying a Project Cockpit
	 What we can learn from pilots and air traffic controllers
	Adaptation to project management
	Applying de-escalation procedures

	Standardized Development Process Model
	Sample process model - V-Modell XT
	Development process meta-model

	Integrating Measurement and Controlling Instruments and Emergency Guidelines
	Project quality and progress controlling
	How to integrate Measurement Points into the Process Development Model?
	De-Escalation and Exception Procedures

	Project Cockpit Design
	Collecting requirements
	Views
	Architecture considerations

	Related Work
	Conclusion
	References

