
Distributed Decision Making for
Metaschedulers
Janko Heilgeist1, Thomas Soddemann1, and
Harald Richter2

IfI Technical Report Series IfI-09-06

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45269536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)

Distributed Decision Making for Metaschedulers

Janko Heilgeist1, Thomas Soddemann1, and Harald Richter2

1 Fraunhofer Institute for Algorithms and Scientific Computing SCAI,
Schloss Birlinghoven, 53754 Sankt Augustin, Germany.

2 Department of Informatics, Clausthal University of Technology,
Arnold-Sommerfeld-Str. 1, 38678 Clausthal-Zellerfeld, Germany.

Abstract

We propose a distributed scheduling algorithm for HPC grids and clouds that al-
lows users, resource providers, and grid community to participate in the scheduling
decision. Its hierarchical representation of dynamically configurable criteria inte-
grates arbitrary aspects into the process in a well-defined manner; thus, the algo-
rithm can accommodate different views and policies of geographically distributed
stakeholders. The heuristic permits resource providers to exactly define the share
of participation allocated to each party and to retain control over their resources.
It is based on the Analytic Hierarchy Process but has been extended to support the
dynamic evaluation of utility values. Evaluation respects the different perception
of utility values by human decision makers with regard to their dissemination on
the measure scale. The algorithm is incorporated into a distributed metaschedul-
ing architecture that is modeled around cooperating peers. Its design is resilient to
network and site failures and preserves the autonomy of independent providers.

1 Introduction
Many theoretical and practical advances in distributed computing have been driven by
the goal to provide users with simplified access to remote resources. Grid computing, a
special form of distributed computing, has been motivated by this vision since the very
beginning; in fact, the phrase “grid computing” has been coined to draw an analogy
to power grids, which provide easy and ubiquitous access to power (see Foster and
Kesselman [16]). It suggests that access to computing resources is as easy as plugging
in an appliance and that the computing power is simply there to be used. However, the
barrier to entry is a lot higher. To take advantage of distributed computing, users need
to bring along a deep technical understanding of the concepts and master a variety of
software tools.

Moreover, resource providers are not a homogeneous mass: politically, they compete
for financing, they focus on unique user groups, they are governed by different policies,
and, most importantly, they value their autonomy. Technically, they employ different

1

Introduction

software stacks, and their computing resources target different types of applications.
In order to bridge the gap, it is necessary to efficiently balance the requests across the
administrative boundaries of resources and, simultaneously, address all these issues.
However, the problem of optimally scheduling jobs across loosely coupled, distributed
computing resources is still to be solved.

In the past, the proper groundwork for grid computing has been established by har-
monizing the interfaces to the local software stacks. Grid middleware provides tools
with a standardized abstraction of grid resources, e.g., via the Open Grid Services
Architecture (OGSA). However, common middleware such as UNICORE† or Globus
Toolkit‡ offers only little support for metascheduling and requires the user to explicitly
specify sites that make appropriate resources available.

Other products such as GridWay Metascheduler§ or Platform LSF¶ address this
problem and promise to offer out-of-the-box solutions; however, on closer examina-
tion they lack the interoperability that is essential in a grid environment. For example,
GridWay is specifically designed to work with the Globus Toolkit and is unable to co-
operate with UNICORE; in fact, GridWay has become a Globus project. On the other
hand, LSF does not adhere to open standards as defined by the Organization for the
Advancement of Structured Information Standards (OASIS)‖ or the OpenGridForum
(OGF)∗∗. However, the primary drawback from our point of view is that they follow a
centralized design even though the the resources are distributed.

Hamscher et al. [17] illustrate that metaschedulers, that is, schedulers which operate
on top of grid middleware to balance request between remote resources, can be de-
signed either centralized or distributed. In a centralized design, the metascheduler is
a dedicated software entity that is installed at a fixed site; it is responsible for the bal-
ancing of all requests in the grid. In practice, the metascheduler is often replicated for
security reasons, but only a single instance is active at any time. Balance is achieved by
dynamically selecting a resource for each computing job and inserting the job into the
target site’s queue management system. Such a queueing is transient: before the job is
actually dispatched for execution on the resource, it may well be relocated to a different
site at the discretion of the metascheduler. To fulfill its task, the metascheduler needs to
obtain all the information that is relevant before it can make a decision to migrate the
job description to another resource. Therefore, it has to collect data about all sites that
participate in the grid: which type of hardware do they provide, what is the speed of
their connection to the grid, which portion of the resource do they dedicate to the grid,
what load their resource is currently suffering, etc.

A distributed or decentralized metascheduler shares the scheduling task between
a number of independent entities. Each entity is deployed separately and manages a
part of the grid. It is responsible for all the jobs entering and leaving the sites in its

†UNICORE, http://www.unicore.eu
‡The Globus Alliance, http://www.globus.org
§GridWay Metascheduler, http://www.gridway.org
¶Platform Computing, http://www.platform.com
‖OASIS, http://www.oasis-open.org

∗∗OpenGridForum, http://www.ogf.org

DEPARTMENT OF INFORMATICS 2

http://www.unicore.eu
http://www.globus.org
http://www.gridway.org
http://www.platform.com
http://www.oasis-open.org
http://www.ogf.org

DECISION MAKING FOR METASCHEDULERS

portion. Here, the balance is achieved by cooperation between these entities, which
we call proxies of the metascheduler. Other than in the centralized architecture, the
proxies only have a local view of the state of the computing resources. They gather
data in their assigned portion of the grid, but, to obtain more information, they need to
communicate with other proxies. Total information exchange is of complexity O(n2),
where n is the number of proxies in the grid, and infeasible in any but the smallest grids.
Yet, Hamscher et al. [17] mention designs where the exchange is done via inter-proxy
communication or by maintaining a central shared pool of computing jobs, and Wang
et al. [38] propose to overlap the local job pools of adjacent sites.

Despite the fact that centralized schedulers are easier to design, to implement, to de-
ploy, and to maintain, they have three major disadvantages. First, a centralized sched-
uler is a single point-of-failure for the grid. Its breakdown will affect all sites and
resources in the grid and make continued operation impossible if the service is not re-
stored immediately. The deployment of fallback installations can mitigate the disruptive
effects somewhat; yet in the time until the backup solutions kicks in, access to remote
resources is prevented and the grid peers are separated from each other. Even with
backup installations in place, the central scheduler is an interesting target for malicious
attacks on the grid. A successful hack of the metascheduler compromises the whole
grid at once and may allow sensitive customer data to be stolen.

Second, in a centralized architecture the metascheduler represents a bottleneck for
the grid. By design, it is solely responsible for the handling of all jobs that are not com-
puted locally on a resource. Hence, the scalability of a centralized metascheduler is of
primary importance as the number of users and jobs increases. Further, with a grow-
ing number of grid resources the costs in computational power and network bandwidth
rise because the central entity will have to collect and maintain up-to-date status infor-
mation on all of them. Commonly, the countermeasure is to deploy multiple backup
servers and spread the load evenly between them. Yet, again this will increase the costs
as additional servers need to be acquired and maintained. Moreover, the boundaries
between centralized and distributed designs begin to blur.

However, the key issue with a centralized architecture is not technical but stems from
the political differences between resource providers. The intent of grids is to have them
extend over multiple administrative zones that include companies, institutions, coun-
tries, and continents. Generally, these parties pursue opposing, or at least different,
interests with respect to their participation in the grid. Industrial providers focus on fi-
nancial aspects; resources controlled by academic institutions target scientific advances
and research. Yet even with similar goals, the exact policies applied by a party may
differ significantly. From our experience, a centralized metascheduler will have to find
ways to accommodate a plethora of criteria, and, still, it will meet resistance when local
administrators are supposed to relinquish control over their hardware to it.

Therefore, we favor a distributed approach, where each site deploys its own meta-
scheduler proxy. This proxy manages all the grid jobs at its home site; thus, it can
consider and observe local restrictions and policies. As each site configures its proxy
separately, the political issues are largely nonexistent. A distributed design is more re-
silient to site and link failures, but if a proxy does break down it will only disconnect

3 Technical Report IfI-09-06

Introduction

its home site from the grid; other independent proxies are unaffected by such a down
time. Finally, the scalability of a distributed design is positively improved when com-
pared to a centralized architecture. Since every site manages itself and computes its
own schedule, the load is spread evenly across all grid peers, and the performance does
not depend on a single entity.

However, the lack of overview and the fact that general scheduling is computation-
ally hard mean that, in general, generated schedules will only be an approximation of
the optimal scheduling. It is the task of the decision making algorithm of a metasched-
uler to select a series of migrations that lead towards an acceptable schedule. In opera-
tions research (OR), decision making means the process of selecting the most qualified
option from a given set of alternatives. The qualification or utility of an option has
to be formally specified beforehand. It depends on the specific situation at hand and
is, therefore, determined on a case-by-case basis. In any realistic scenario, the utility
will depend on multiple distinct criteria. Hence, the domain of operations research that
deals with these problems is also called multicriteria decision making (MCDM).

The criteria applied in a particular decision making process correlate with the alter-
natives and the optimization goal. It is implicitly assumed, that the given alternatives
are mutually comparable when evaluated by the chosen criteria. Thus, the view on the
alternatives is restricted to certain aspects that have been determined as relevant to the
decision. As an example, it might be reasonable to compare the proverbial apples and
oranges if the criteria are, e.g., nutritional value, vitamins, and sweetness.

Usually, the set of criteria is not sufficient to deterministically rank the options by
their utility. During the evaluation, the algorithm can arrive at a set of so-called Pareto-
optimal† alternatives: the Pareto set. An option is Pareto-optimal if further improve-
ment can only be achieved by accepting a trade-off. That is, improving the utility with
regard to any arbitrary subset of the criteria will simultaneously decrease the utility with
regard to at least one other criterion. Fig. 1 illustrates the problem for an exemplary 2-
dimensional minimization problem.

The tie between Pareto-optimal alternatives can only be broken by external means.
That is, the decision making algorithm needs supplemental data besides the criteria
and the alternative’s utilities to actually select an element of the set. The additional
information is commonly supplied by the user and describes preferences between the
relevant criteria. Now, the algorithm can utilize this data to determine which utility
values to improve and where to accept a deterioration.

The preference can be expressed, e.g., as a simple ranking of the criteria or more de-
tailed by assigning explicit weights or priorities. We will further discuss both methods
when we describe the algorithm used by the metascheduler.

In the remainder of this technical report, we will present our approach to meta-
scheduling. Previously, we have presented the design of the resource discovery algo-
rithms in Heilgeist et al. [18], and we will therefore focus on the distributed scheduling
in this report. We start with an overview of traditional scheduling concepts in Section 2
and proceed to illustrate existing multicriteria decision making algorithms that are rel-

†Vilfredo Pareto (1848–1923); economist and sociologist.

DEPARTMENT OF INFORMATICS 4

DECISION MAKING FOR METASCHEDULERS

A

B

C

ut
ili

ty
 w

.r
.t

. s
ec

on
d

cr
it

er
io

n

utility w.r.t. first criterion0

Figure 1: Pareto set of a 2-dimensional minimization problem. — Each option is de-
picted by a little square. The x-axis and y-axis measure the utility of an option with
regard to two independent criteria. Due to minimization, the optimization is directed
towards the origin. A solid line connects the options of the Pareto set. Note, that option
A is strictly dominated by option B and, therefore, not Pareto-optimal. On the other
hand, option C is Pareto-optimal.

5 Technical Report IfI-09-06

Scheduling Concepts

evant to our idea in Section 3. Then, we describe how scheduling and decision making
are related in Section 4 and explain the general steps to build a schedule from individ-
ual decisions. We propose a specific hierarchical heuristic for distributed scheduling in
Section 5 and present details on the practical aspects in Section 6. Finally, we conclude
the report with conclusions and an outlook in Section 7.

2 Scheduling Concepts

2.1 Portable Batch System
The Portable Batch System (PBS) [10, 19] is a queue based batch job and resource
management software. Although it has been superseded by its descendants TORQUE
Resource Manager†, OpenPBS‡, and PBSPro‡, the original design is still used in these
products. PBS consists of three major components: a single job server, one or more
job schedulers, and one or more job executors. These three components are also called
pbs_server, pbs_sched, and pbs_mom, respectively, after their processes. Fur-
ther, PBS provides a set of commands broken up into user commands, operator com-
mands, and administrator commands. User commands generally operate on the jobs,
while operator and administrator commands manipulate and monitor the batch system.
The latter two command sets require elevated privileges.

The job server is the controlling instance of the installation. It manages job queues,
accepts or rejects jobs, and places them into the queues. Further, it maintains an ac-
counting log. All commands interact directly with the server. Management of the
queues requires administrational privileges. Besides creating and deleting queues, an
administrator can enable or disable queues; this controls whether new jobs can enter a
queue. In addition, queues can be started or stopped which controls whether jobs in a
queue are supposed to be executed or not. Every queue can have constraints assigned
to it. Constraints are expressed with regard to the requirements of the jobs they may
contain. The job server enforces these constraints when a job requests to be appended
to a queue.

Queues are divided into routing queues and executing queues. Routing queues are
used to automatically sort jobs into a set of associated execution queues. They analyze
the requirements of a job and match them to the constraints of the associated execution
queues. The job is routed into the first queue which has sufficiently lax constraints
to accept it. In contrast, execution queues hold the input for the job scheduler. They
contain the jobs that are eligible for execution. The manual notes, that the job server
does not actually enforce any of these limits. It will execute jobs out of order, jobs
from stopped queues, etc. if directed by the job scheduler or any other client with
administrative privileges.

The execution and monitoring is controlled by the job executors. Each node, that
is, each compute resource with a single operating system image, is being managed

†Cluster Resources, http://www.clusterresources.com
‡Altair Engineering, http://www.pbsgridworks.com

DEPARTMENT OF INFORMATICS 6

http://www.clusterresources.com
http://www.pbsgridworks.com

DECISION MAKING FOR METASCHEDULERS

by a separate job executor. They listen on a privileged port and accept commands
from the job server or other legitimate clients. Upon receiving a job, they provide a
shell environment as similar as possible to the user’s login shell. A prologue script is
executed before the job, that can be used for additional preparation of the environment
and stage-in of the input files. Afterwards, the job is forked in a separate child process.
Hence, the executor is also called MOM or pbs_mom because it is the mother of all
jobs running on its node.

The job executor continuously monitors its node and the states of the running jobs.
Eventually, jobs either finish their computations, abort with an error, or exceed their
allotted runtime; in the latter case, the job is killed by the job executor. Every run of a
computing job is followed by the execution of an epilogue script. This script allows an
administrator to clean up the environment and, in preparation for the next job, return it
to a stable state. Further, it performs the stage-out phase, that is, the epilogue script can
be used to copy the results of the job into the user’s home directory.

The scheduling is performed by one or more job schedulers. Such a process is con-
sidered a normal client with administration privileges. It runs in separate process and is
regularly contacted by the job server to select jobs for execution. The job server initiates
a scheduling cycle if a new job becomes eligible for execution, a running job finishes,
an administrator forces a cycle, and periodically after a configurable time interval. The
scheduler queries the resource monitor parts of the MOMs to obtain the current state of
the resource. Further, it has access to the job server queues and can select one or more
jobs to be started immediately.

Due to the modular concept of PBS, the scheduler is easily replaceable. In fact,
the manual notes that the default scheduler “is intended to be a jumping off point for
a real scheduler to be written” [10, page 32]. PBS provides several APIs to simplify
the implementation of the scheduling logic. The Batch Scheduling Language (BaSL) is
an enriched C dialect with explicit support for notions such as server, queue, and job.
Further, the scheduler can be developed in Tcl, pure C, or a third-party Java API that is
described by Nakada et al. [25].

The default scheduler is rule-based. In every scheduling cycle, it first sorts the queues
by their configurable priority and subsequently schedules each queue in decreasing or-
der. The jobs in a queue are sorted by the CPU time they request. The scheduler places
the shortest job first and only continues to the next queue if it has scheduled all jobs in
the current queue. Strong preference is given to jobs that have been waiting for more
than 24 hours as they are considered starving.

The default scheduler can be adjusted with a wide array of configuration parameters.
Priorities can be freely assigned to the queues and the job sort order can be defined based
on, e.g., requested CPU time, requested memory, job priority, walltime, or fair sharing.
Different rules can be specified for either holidays or workdays. For workdays the time
may be divided into intervals of either prime time or non-prime time. Again, each type
of interval can be associated with a unique set of scheduling rules. Finally, specific
queues may be active only during particular frames of time; hence, an administrator
can dedicate a recurring slice of the resource to, e.g., selected projects or user groups.

However, the TORQUE administrator manual warns that “the default TORQUE

7 Technical Report IfI-09-06

Scheduling Concepts

scheduler, pbs_sched, is very basic and will provide poor utilization of your clus-
ter’s resources. Other options, such as Maui Scheduler or Moab Workload Manager
are highly recommended” [12, appendix L.9]. In practice, TORQUE is therefore rarely
used on its own. E.g., in the German D-Grid† it is deployed in combination with the
Maui Cluster Scheduler (see Section 2.2).

2.2 Maui Cluster Scheduler

The Maui Cluster Scheduler‡ is an open source job scheduler that is deployed in concert
with third-party batch systems such as PBS, LoadLeveler§, Sun GridEngine¶, or LSF.
It uses the capabilities of the batch systems to execute and monitor jobs while taking
over the scheduling responsibility. Maui provides the administrator of a resource with
extensive configuration options to control the scheduling process. These options and
the actual algorithms employed by Maui have been documented by Jackson et al. [21].

Maui features a number of improvements over basic queue-based scheduling. Its
algorithm schedules jobs enqueued in the batch system in order of dynamic priority
values. Thus, job priorities provide an alternative to a rigid first-come, first-served
(FCFS) execution order. Further, Maui allows some leeway in its order of execution to
improve the utilization of a resource and reduce the average job turnaround time. This
style of batch handling is called backfill scheduling. Finally, Maui offers support for
advance reservations, that is, parts of a resource can be booked in advance. Hence,
execution of a job can be planned ahead and the necessary resources preempted.

The scheduling process is carried out in iterative cycles. Similar to PBS, each cycle
is triggered by an event such as job or resource state change, start or end of a reserva-
tion, an external command, or, periodically, upon expiration of a timer. In each cycle,
a fixed sequence of steps is executed. First, Maui honors previously registered ad-
vance reservations. Jobs associated with a reservation are dispatched immediately if
applicable. Afterwards, the scheduler builds a list of all jobs eligible for execution and
prioritizes the list. Stepping through the list in order of decreasing priority, it schedules
a configurable number of jobs. These jobs are either executed immediately, if sufficient
resources are free, or an advance reservation is made for the earliest point of availabil-
ity. Finally, two backfilling runs are performed over the remaining jobs in the prioritized
queue. In the first pass, vacancies in the schedule are filled with jobs that satisfy a set
of strict throttling policies. In the second pass, a set of more broad policies is used to
select candidate jobs.

Maui determines eligibility and priority of a job based on various static and dynamic
attributes. These include, e.g., job credentials, quality of service (QoS) levels, fair-
share records, and scheduling-related runtime properties. The job credentials encom-
pass static identifiers such as the the job owner’s user account, the group he belongs to,

†D-Grid Initiative, http://www.d-grid.de
‡Cluster Resources, http://www.clusterresources.com
§IBM Corp., http://www.ibm.com
¶Sun Microsystems, http://www.sun.com/software/sge/

DEPARTMENT OF INFORMATICS 8

http://www.d-grid.de
http://www.clusterresources.com
http://www.ibm.com
http://www.sun.com/software/sge/

DECISION MAKING FOR METASCHEDULERS

or the project in which he participates. Further, each job is associated with a job class
— an equivalent to the job queue found in other batch scheduling systems.

Subject to its credentials, a job can request individual QoS levels. An improved
quality level can incorporate, e.g., access to specialized hardware or software licenses,
preferred treatment by the scheduling algorithm, or exemption from certain restrictions.
Therefore, QoS levels are restricted and their usage is limited by access control lists
(ACL). A request for enhanced service levels is automatically granted or denied based
on the credentials.

Finally, fairshare targets further control the standards provided to a job. Although in-
terpretations of fairshare differ, they generally “involve a mechanism which controls the
distribution of delivered resources across various job attribute-based dimensions” [21,
page 97]. As the name suggests, the idea is to guarantee a fair share of the resource
to each user. Maui achieves this goal by collecting and storing utilization records on a
per-credential basis. For each job executed on a resource, its requirements in proces-
sors, memory, disk space and swap space are expressed in processor equivalents (PE).
The amount of PEs consumed by a job is credited against its associated user, group,
and project accounts. Then, Maui adjusts priority and eligibility values based on these
historical records to permit a balanced access to the scheduled resource.

The priority of a job is determined as a weighted sum of various measures. The
weights in this sum are specified by the administrator of a resource. They belong to
the basic configuration of Maui and are usually constant once they are established.
Other factors are based on a job’s associated attributes or dynamic measures. The exact
formula for the priority of a computing job J is

jobPriorityJ := serviceWeight · serviceFactorJ
+ resourceWeight · resourceFactorJ
+ fairShareWeight · fairShareFactorJ
+ directSpecWeight · directSpecFactorJ
+ targetWeight · targetFactorJ
+ bypassWeight · bypassFactorJ ,

where an index of J denotes a value that depends on the specific job. In the following,
we will explain the motivation behind directSpecFactorJ and targetFactorJ . For further
details regarding the remaining factors, we refer the reader to Jackson et al. [21].

The direct priority specification factor directSpecFactorJ is used to explicitly control
the priority of a job based on political directives. Its value is specified as

directSpecFactorJ := userWeight · priority(userJ)
+ groupWeight · priority(groupJ)
+ accountWeight · priority(accountJ)
+ qosWeight · priority(qosJ)
+ classWeight · priority(classJ),

9 Technical Report IfI-09-06

Scheduling Concepts

where priority is an operation that returns the configured priority value of its argument.
As can be seen, the factor is itself a weighted sum that combines weights and priorities.
Weights reflect the relative importance that is given to a particular piece of job creden-
tial. Again, they are configurable but, commonly, established only once. Their value is
independent of a job and applies to all jobs in the batch queue. Priorities, on the other
hand, are related to job-specific attributes and thus more dynamic. While the priority
of a user, group, or project account, a QoS level, or a job class is just as fixed, each
job does carry its own set of credentials. Therefore, these attributes can be used to dis-
tinguish job with respect to their owners. Customarily, such a method of distinction is
required for political reasons. Preferred access to a resource can thus be granted based
on aspects such as available funding, scientific relevance, or public visibility of a party.

The target factor targetFactorJ is designed to allow the definition of and adherence
to policies regarding the queue waiting time and expansion factor of a job. It is defined
as

targetFactorJ :=

max(0.0001, xfTarget− expansionFactorJ)−2

+ max(0.0001, qtTarget− queueTimeJ)−2,

where xfTarget and qtTarget are the configurable targets for the job-specific expansion
factor and queue waiting times. The expansion factor of a job J is determined as

expansionFactorJ :=
queueTimeJ + jobRuntimeJ

jobRuntimeJ

,

that is, it sets the waiting time of a job in relation to its requested runtime and is a unit-
less ratio. Queue time target and the actual queue waiting time are specified in minutes.
The intent behind the target factor is to allow an administrator to define objectives for
the time that a job spends in the batch queue. The priority of a job is then adjusted to
steer scheduling towards adherence of these policies.

The backfill scheduling algorithm orders the job queue in order of decreasing job
priority. Subsequently, it iterates through the queue and dispatches jobs that can be
started immediately. For jobs whose requirements can not be satisfied right away, it
creates advance reservations as early as possible. Up to this step, the backfill algorithm
is identical to a regular queue-based scheduling approach. Its distinction arrives from
the fact, that it fills vacancies in the schedule with low-priority jobs. Thus, it is able to
improve the utilization of the resource simultaneously reducing average job turnaround
times. In a sense, the preferred execution of the filler jobs does violate the priority
determined previously. But, jobs are only brought forward if their execution does not
delay any reservation of a higher prioritized job.

High priorities signal a preferred treatment in the planning phase of the scheduling
algorithm. However, they do not guarantee a preferred access to the resource. While
backfilling takes care not to violate advance reservations, a so-called pseudo-delay [21,
Section 4.1] can occur. Pseudo-delays cause a high priority job to be started later than it

DEPARTMENT OF INFORMATICS 10

DECISION MAKING FOR METASCHEDULERS

would be without backfilling. The effect is caused by the inaccuracies of user’s runtime
estimations about their jobs. These estimates are used by the scheduler to anticipate the
end of a job’s execution and determine the start of a subsequent advance reservation.
If such an estimate proofs to be wrong and the corresponding job aborts prematurely,
a low-priority job may already have been backfilled and occupy the resource. A sub-
sequent advance reservation is thus prevented from accessing the resource. But, sim-
ulations by Jackson et al. [21] with real-life workload traces showed that only about
ten percent of the jobs are actually stalled. On the other hand, backfilling can increase
the utilization of a resource by about 20 percent and up to 90 percent of small and
short-running jobs are backfilled.

Various aspects of Maui’s backfill algorithm can be easily customized. First, the
reservation depth, that is, the number of jobs that are turned into advance reservations
before backfilling starts, can be configured. An administrator can opt to create only a
few reservations, thus, leaving a large degree of freedom to the backfilling algorithm.
In general, this leads to better utilization of the resource. Alternatively, he can choose
to create a large number of reservations and, thereby, emphasize the importance of a
job’s priority. Maui defaults to a single advance reservation.

Second, the order in which Maui resolves overlapping vacancies is adaptable. Va-
cancies can be either wide or long; that is, either many CPUs are available for a short
time, or a few CPUs are idle for a long time. If vacancies overlap, they can be filled
either widest or longest window first. Maui’s default setting is to fill the widest vacancy
first.

Finally, the scheduling algorithm can be adjusted in the way in which it selects job to
fill vacancies. The default is to use the first job, that fits into the window; a strategy that
is called first-fit. Alternatively, a best-fit approach can be taken. Here, a job is select that
best fits into the window with regard to, e.g., seconds, processors, or processor-seconds.
However, Jackson et al. [21] state that, based on their experience, there is no practical
difference between these options.

2.3 Service Level Agreements

For users of a compute grid, it is desirable to obtain guarantees regarding the quality
of a service provided to them. Such a guarantee can be conveyed by means of a Ser-
vice Level Agreement (SLA). An SLA is an electronic contract that is automatically
negotiated between service consumer and service provider. The Web Services Agree-
ment Specification (WS-Agreement) [2] defines a standardized agreement structure for
SLAs. According to WS-Agreement, a SLA is characterized by its name, its context
and its terms.

The terms of an agreement describe the service to be provided under the agreement
(service terms) and assurances regarding the quality of the service (guarantee terms). In
the domain of scheduling, the service terms may be expressed by means of notions such
as the type of hardware, the number of allocated nodes, and the job dispatch time. The
guarantee terms specify in an unambiguous way the quality of service to be delivered

11 Technical Report IfI-09-06

Scheduling Concepts

Term Definition
TS earliest job start time
TF latest job finish time
tD reserved job runtime

NCPU number of reserved CPU nodes
A job size A = tDNCPU

tT deadline tightness tT = tD/(TF − TS)
tL job laxity tL = (TF − TS)− tD

Table 1: Set of guarantee terms used to heuristically determine the priority of a Service
Level Agreement [35, 40].

by the supplier. They can be phrased in terms of constant values or bounds that denote
legal values with regard to the specific service aspect.

Sakellariou and Yarmolenko present an exemplary grid architecture based on this
concept in [35]. In this three-party design, the negotiations are conducted between
users, brokers, and local schedulers. The brokers serve as mediators between users and
local schedulers. They negotiate with one or more local schedulers to accumulate the
resources required to fulfill their previously established agreement with a user. The lo-
cal schedulers need to be SLA-aware to be able to participate in the negotiation process
and, subsequently, honor the terms of an agreement. Further, the terms of an agreement
might need to be renegotiated occasionally. This can happen if, e.g., the availability of
a resource changes due to influences beyond the control of a provider.

With Service Level Agreements, actual scheduling on the grid level is replaced by
the bargaining of the brokers. Instead, the local scheduling needs to be adjusted such
that it supports SLAs. An approach to scheduling with agreements based on heuristics
is described in [35, 40]. Here, a priority is determined for each SLA that is heuristically
related to the agreement’s guarantee terms. The algorithm then schedules the SLAs in
order of their priority. An agreement is scheduled by reserving the requested CPUs at
the earliest possible time that honors the SLA without violating previously scheduled
agreements. Hence, an affinity to backfill scheduling is recognizable.

An agreements priority is defined based on a set of guarantee terms

{TS, TF, tD, NCPU, A, tT, tL}

(Table 1). The earliest job start time TS and the latest job finish time TF describe the
limits between which the execution of the job has to be fully contained. The resources
allocated to the job are given by the reserved job runtime tD and the number of reserved
CPU nodes NCPU. Generally, these values will be closely related to the requirements
of the compute job. Fig. 2 shows the relationship between these guarantee terms.

Further, the remaining terms are expressed with reference to the previous definitions.
The job size A is characterized as the number of CPU-hours consumed by a job, that is,

A := tDNCPU.

DEPARTMENT OF INFORMATICS 12

DECISION MAKING FOR METASCHEDULERS

TS TF time

1

2

3

4

CPUs
tD

NCPU

co
m
pu

te
jo
b

Figure 2: Basic guarantee terms for use in Service Level Agreements. — The displayed
guarantee terms are: earliest job start time TS, latest job finish time TF, reserved job
runtime tD, and number of reserved CPU nodes NCPU. Note, that the x-axis shows an
arbitrary interval of time.

It denotes the actual amount of compute power consumed. Thus, jobs can be compared
whether they use a few CPUs for an extended period of time or a large number of CPUs
only shortly. Deadline tightness tT and job laxity tL are related insofar as they both
provide measures for the amount of leeway given to the scheduling of the job. The
deadline tightness is defined as

tT :=
tD

TF − TS

and presents the allocated runtime as a fraction of the size of the available execution
interval. The job laxity

tL := (TF − TS)− tD

quantifies the actual amount of tolerance given by this interval.
Finally, the priority of an SLA is defined as

H := h1 + wh2

whereby h1 and h2 are picked from the set of guarantee terms in Table 1 and w ∈ R
is a weighing coefficient. Yarmolenko and Sakellariou show that the quality of the
generated schedule can vary significantly depending on various criteria. These criteria
include, e.g., the pair of selected terms, the value and sign of w, and the definition of
the performance metric. Furthermore, the performance strongly depends on whether
the SLAs are scheduled in order of increasing or decreasing priority.

Using parameter-sweep simulations, they show that the priority H1 = TF + w1A +
w2tL results in a higher percentage of serviced SLAs when w1 = 0.03 and w2 = 0.14
than if either coefficient is set to 0.0. Likewise, the utilization of the CPUs is maximized
for w1 = −0.06 and w2 = −0.6. This configuration clearly outperforms the best

13 Technical Report IfI-09-06

Multicriteria Decision Making

corresponding single-parameters variants where either w1 = −0.135 or w2 = −0.78
while the other coefficient is set to 0.0. They draw the conclusion that increasing the
number of parameters can positively influence the performance.

However, these priorities are opaque and without apparent coherence. Measures such
as TS (minutes), A (CPU hours), and tT (without unit) are added into a combined value.
It is impossible to exactly predict the effect a metric will have on the produced schedule.
The results just hint at a correlation between the selected metrics and the resulting
profit. For example, a simulation with the priority H2 = min (TF − 7.2tD) yielded
the best CPU utilization while two simulations with H3 = min (TF + 0.24NCPU) and
H4 = min (TF + 0.03A) resulted in the highest percentage of honored SLAs. Thus,
scheduling long running jobs first seems to lead to improved CPU utilization. Similarly,
penalizing jobs with large requirements apparently improves the percentage of honored
SLAs. Regardless, these results are not explained in any way.

Yarmolenko and Sakellariou [40] discovered the best metrics by performing para-
meter-sweep simulations with different weights; then, they analyzed the achieved profit
with respect to their test environment. Without simulation, there is no way to predict
the weights that will yield the best results.

3 Multicriteria Decision Making
Multicriteria Decision Making (MCDM) has been a topic of research in the economic
sciences for many years. Here, the primary goal is to provide managers with the tools
to support economic decisions based on various aspects. In general, the methods sug-
gested allow a set of distinct alternatives or options to be evaluated with respect to
another set of arbitrary, but fixed, criteria. It is common for the algorithms to construct
a utility function; that is, a function which maps an alternative to a numeric value that
represents its utility with respect to the criteria. A manager is, generally, queried to
express his preference for a single option or sets of options under certain aspects. Small
judgements are used to derive larger preference statements. Sometimes, the methods
are able to merge the judgements provided by different decision makers into an overall
utility function.

We define a MCDM problem as a tuple (Ω,Γ, w), where Ω = {O1, O2, . . . , Om} is
the set of options, Γ = {C1, C2, . . . , Cn} is the set of criteria, and w : Γ → R≥0 is a
weighting of the criteria. The weighting is a function mapping a criterion to its relative
importance in the overall decision. In the following sections, the weighting function is
generally represented as a weight vector w = (wj)1≤j≤n ∈ Rn

≥0. The jth entry in the
weight vector is then associated with the jth criterion, that is,

w : Γ→ R≥0 := Cj 7→ wj .

Then, the solution to a decision making problem is an algorithm A that takes a MCDM
problem and constructs a mapping from options to utility values. Formally,

A : (Ω,Γ, w) 7→ u ∈ RΩ
≥0

DEPARTMENT OF INFORMATICS 14

DECISION MAKING FOR METASCHEDULERS

where u is a function that maps each option to its associated utility value with respect
to the given criteria and their weights. In the following, we will describe a selection of
existing MCDM algorithms that fit into this formal definition.

A major component of each of the following algorithms is a procedure to elicit judge-
ments from a decision maker. He is presented with a set of items and asked to express
his preferences with respect to a given frame of reference. In various ways, these judge-
ments are aggregated into an overall set of relative preference values. It is this routine,
that is, e.g., used to derive the weight vector resp. weighting function w. Here, the set
of items corresponds to the set of criteria and the frame of reference is the notion of
“relative importance with respect to the overall decision making goal”. But, the routine
can also be employed to compare the set of alternatives with respect to a fixed criterion
Cj and, analogously, construct a partial utility vector resp. utility mapping

uCj
:= A

(
Ω, {Cj}, ej

)
,

where ej is the jth unit vector. The utility vector represents a partial solution to the
decision making problem that ignores all but one criterion. Next, the solution to the
overall problem is assembled by joining the partial solutions, that is,

A(Ω,Γ, w) := F (w1, w2, . . . , wn;uC1 , uC2 , . . . , uCn) (1)

for some aggregation function F .
In the following sections we will give an overview of existing MCDM algorithms

that constitute the basis for our approach to metascheduling. First, the general repre-
sentation of a set of criteria as a hierarchy is described in Section 3.1. In Section 3.2
a short introduction into a well-known application of this principle is given: the An-
alytic Hierarchy Process (AHP) by Saaty. The AHP is not without its critics, which
will be pointed out in Section 3.3. Another variant of the AHP, the Multiplicative AHP
(MAHP) by Barzilai et al., addresses some of the criticisms of the original AHP; its
ideas and motivation will be detailed in Section 3.4. Finally, two additional methods to
compute the weights used in conjunction with the AHP will be explained in Section 3.5:
the point of centralized weights by Solymosi and Dombi and the method of Rank-order
Centroid (ROC) by Barron and Barrett.

3.1 Hierarchy of Criteria
The strength of MCDM algorithms hinges on the ability of a decision maker to clearly
express his intentions. He is required to explicitly state all the aspects of the decision
that are relevant to him, and he must be able to precisely specify the relative importance
of each aspect. Otherwise, the results of the decision making process can be dissat-
isfying. Unfortunately, the construction of a well-defined MCDM problem can be a
daunting task. In real-life situations, decisions are customarily reached either instinc-
tively or based on a coarse set of superficial criteria. Situations are rarely analyzed in
the granularity and depth required by the following algorithms. A solution to this prob-
lem was first suggested by Miller [24] in his PhD thesis and, later, popularized by Saaty
[28] in conjunction with his Analytic Hierarchy Process (AHP).

15 Technical Report IfI-09-06

Multicriteria Decision Making

economics

0.731

recreation

0.188

healthcare

0.081

average income

0.667

job expansion

0.333

forests + parks

0.659

restaurants

0.263

movie theaters

0.079

fitness facilities

0.669

physicians

0.243

hospitals

0.088

goal

Figure 3: Exemplary criterion hierarchy in node-link representation.

Miller proposed a hierarchical design, that can considerably simplify the decomposi-
tion of a problem into independent criteria. Starting with the overall goal, each criterion
is iteratively broken up into more specific subcriteria. Hinting at the tree structure that
is recursively constructed, we denote these subcriteria as child criteria. Each child cri-
terion describes a facet of its father criterion; the other way around, a criterion is fully
defined by the total of its children. The decomposition process is stopped when an ad-
equate level of detail has been reached. Like all trees, the resulting structure can be
visualized as a graph, e.g., in node-link or treemap representation.

EXAMPLE 1. Saaty [29] applies the AHP to a set of criteria and numerical scores
taken from an almanac to determine “the most livable cities in the United States”. The
resulting hierarchy is to complex to display in detail, but Fig. 3 shows an example based
on his ideas.

At the root of the tree, the goal corresponds to the problem of determining how liv-

DEPARTMENT OF INFORMATICS 16

DECISION MAKING FOR METASCHEDULERS

able a city is. Three criteria have been chosen as relevant with regard to this question:
the economical situation, the recreational opportunities, and the available health care
services. The economical situation is further decomposed into the average household
income attainable and the job expansion. Recreational facilities of interest to the deci-
sion maker are national forests and parks, good restaurants, and a selection of modern
movie theaters. Finally, the ability to exercise a personal fitness program, the number
of physicians per 100,000 residents, and the quality of hospitals have been determined
as relevant health care services.

The original example by Saaty [29] contained additional facets, namely climate,
housing, crime, transportation, education, and arts, as well as a plethora of child crite-
ria. While he provided the weights for the top-level criteria, the weights of subcriteria
further down the hierarchy were not listed. For this reason, we weighted all of the
criteria in this example ourselves.

The hierarchical decomposition of the overall decision problem provides two distinct
advantages to the decision maker. First, the problem is separated into smaller chunks
which can be evaluated separately. Using the notation of the previous section, this re-
lationship between a father criterion and its children can be expressed via their utility
functions. Let C be an arbitrary criterion, and let C1, C2, . . . , Cn be the set of subcrite-
ria in which C has been decomposed. Further, let wj be the weight of criterion Cj , for
1 ≤ j ≤ n. The utility function with respect to the father criterion is then defined as

uC = F (w1, w2, . . . , wn;uC1 , uC2 , . . . , uCn),

where F is some aggregation function; commonly, but not necessarily, F is structurally
related to the aggregation function in Eq. (1). Examples for such aggregation functions
are, e.g., the weighted arithmetic mean employed by the traditional AHP algorithm

uC(Oi) :=
m∑

j=1

wjuCj (Oi) (2)

and the weighted geometric mean used by the Multiplicative AHP variant

uC(Oi) :=
m∏

j=1

uCj (Oi)wj . (3)

Note, that in both cases the weights are assumed to be normalized, that is,
∑m

j=1 wj =
1.

Thus, a criterion’s utility function is wholly defined by its children’s weights and
utility functions. In other words, it is sufficient for a user to provide three components
in addition to the options:

1. the hierarchy of criteria,

2. the relative weight of each criterion, and

17 Technical Report IfI-09-06

Multicriteria Decision Making

3. the utility functions for each leaf criterion.

The criterion tree can then be evaluated recursively from the leaves up to the root which,
by design, corresponds to the overall goal of the decision problem. Each intermediate
utility function, that is, each utility function with respect to an inner node of the tree, is
derived automatically.

The second advantage of hierarchical decomposition is the reduction of criteria that
need to be compared amongst each other. During the elicitation of the weight function,
the decision maker is required to state precise weights for each criterion. A weight
expresses the relative importance with respect to the overall decision of the criterion it
is associated with. The presence of a large number of different facets can make this
a demanding requirement to fulfill; even more so, if the elicitation procedure supports
only a limited scale to designate the differences. Consequently, subtle variations in
preference can easily be overlooked in the process. Here, the decomposition can help
by narrowing the focus to one subset of criteria at a time.

Note, that the idea of a criterion hierarchy does still fit into the definition of a MCDM
problem given in the previous section. The recursive application of an aggregation
function can generally be eliminated by flattening the hierarchy to a single level. In the
process, inner nodes of the tree are recursively replaced by their child nodes. Still, the
weights of the children need to be adjusted with respect to the replaced father criterion.
Let (rj1, rj2, . . . , rjkj

) be the unique sequence of criteria indices from the root of the
hierarchy to the leaf criterion Cj ; that is, on the way from the root to the leaf criterion
the nodes are visited in the order

root = Crj1 → Crj2 → . . . → Crjkj
= Cj .

Then, recursively applying the aggregation rule in either of Eq. (2) or (3) results in the
overall weight

w′
j =

kj∏
i=1

wrji

with regard to the decision making goal. Hence, the hierarchical MCDM problem can
be replaced by a non-hierarchically stated problem. The effect of the adjustment of
weights can be visualized best with a circular treemap. In Fig. 4 the treemap corre-
sponding to Example 1 is displayed.

3.2 Saaty’s Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) by Saaty [28] is a well-known application of
the hierarchical decomposition principle. It has been applied in countless cases and
domains: Saaty [29] uses the AHP to determine the most livable cities in the United
States; Saaty and Takizawa [33] employ an extended variant of the AHP to plan the
design of a motorcycle; Saaty [30] cites an example where a family is advised in its
plans to buy a family home; Olson and Dorai [26] query their students to assess potential
job offers and evaluate the results with the AHP; McCaffrey and Koski [23] describe

DEPARTMENT OF INFORMATICS 18

DECISION MAKING FOR METASCHEDULERS

economics

recreation

healthcare

average

income

job expansion

forests + parks

restaurants

movie theaters

fitness facilities

physicians

hospitals

Figure 4: Circular treemap of the hierarchy in Fig. 3. — The diameter of a circle
corresponds to the relative importance of the associated criterion. For numerical weight
values see Fig. 3.

the MAGIQ method to calculate the quality of a software system — MAGIC is closely
related to the AHP —, and Whitaker [39] presents various validation examples of the
AHP. Further, an extensive list of examples for the application of AHP is given in Saaty
[31].

For a motivation of the algorithms behind the AHP, let C1, C2, . . . , Cn be a set of
criteria and let their weights be known, that is, wi is the weight of criterion Ci. The
weights can be expressed as a weight vector w = (wi). Knowing the weight vector, a
n×n matrix of ratios A = (aij) where aij = wi/wj can be constructed. Each entry aij

represents the relative weight of criterion Ci with respect to criterion Cj . Multiplying
the ratio matrix A with the weight vector w one obtains

Aw =


w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn




w1

w2

...
wn

 = nw.

Hence, the weight vector is a right eigenvector of A with the eigenvalue n. Further, for
every square matrix A the sum of all eigenvalues λi equals its trace, that is, the sum of
the entries on the matrix’ main diagonal, tr(A) =

∑
i aii. For the ratio matrix,

n∑
i=1

λi = tr(A) =
n∑

i=1

aii =
n∑

i=1

1 = n;

thus, w is the right eigenvector corresponding to the only non-zero eigenvalue. Now,
what if the actual weight vector is unknown but a matrix of pairwise comparisons exists?

19 Technical Report IfI-09-06

Multicriteria Decision Making

A matrix A = (aij) where aij > 0 and aji = 1/aij for 1 ≤ i, j ≤ n is called
pairwise multiplicative†. The matrix constructed from the weight vector in the previous
paragraph is obviously pairwise multiplicative. On the other hand, a matrix can satisfy
the terms of the definition without being derived in such a way. Therefore, a pairwise
multiplicative matrix A is called consistent if there exists a weight vector w = (wi)
with aij = wi/wj . The vector corresponding to a consistent matrix is only unique up
to a multiplicative factor. In the following, the normalized weight vector is always taken
as a representative for its class, that is, the vector w, where

∑n
i=1 wi = 1. The sets of

pairwise multiplicative matrices, normalized weight vectors, and consistent pairwise
multiplicative matrices are denoted as A×, wS , and CS , respectively.

Given a matrix A ∈ A×, its element aij is interpreted as an approximation of the
ratio wi/wj for some, as of yet, unknown weight vector w = (wi). Stated alternatively,
the element aij is a single judgement, as provided by a decision maker, on the relative
weight of criterion Ci with respect to criterion Cj . The goal is to reconstruct the orig-
inal normalized weight vector from the pairwise comparisons expressed in the matrix.
If the provided matrix is consistent, the right eigenvector belonging to the largest eigen-
value can be determined. After normalization, this eigenvector matches the sought-after
weight vector. But, far more likely, the matrix will not be consistent.

The Perron-Frobenius theorem states that for each nonnegative, primitive matrix a
largest eigenvalue λmax and an associated eigenvector exist. The value λmax is called
the dominant eigenvalue and the eigenvector to go with it is called the principal eigen-
vector.

Theorem 1 (Perron-Frobenius theorem). Let A ∈ Rn×n
≥0 be a nonnegative, primitive

matrix, that is, Ak > 0 for some k ≥ 1, and let λ1, λ2, . . . , λs be its eigenvalues. Then

1. A has a positive, real eigenvalue λmax := λ1 which is larger (in absolute value)
than all other eigenvalues, i.e., λmax > |λi| for all 2 ≤ i ≤ s,

2. there is an eigenvector associated with λmax that has only positive elements, and

3. the eigenvalue λmax is a simple root of the characteristic polynomial; in particu-
lar, its associated eigenspaces are 1-dimensional.

A pairwise multiplicative matrix is, by definition, positive and primitive; thus, it sat-
isfies the preconditions of the theorem. Specifically, for consistent pairwise multiplica-
tive matrices the principal eigenvector corresponds to the weight vector and λmax = n.
Saaty [28] proved that for all A ∈ A× the dominant eigenvalue satisfies λmax ≥ n and
A is consistent if, and only if, λmax = n.

Still, the question persists whether the principal eigenvector is an acceptable approx-
imation to the weight vector if a matrix is not consistent. Saaty states that “there is no
easy way to study the sensitivity of the eigenvector w to errors in A” [28, page 239].

†Saaty [28] labels these matrices reciprocal, and Barzilai and Golany [6] dub them pairwise multiplica-
tive. Throughout this report, we will consistently use the latter denomination.

DEPARTMENT OF INFORMATICS 20

DECISION MAKING FOR METASCHEDULERS

intensity verbal judgement
1 equal importance
3 moderate or weak importance
5 strong or essential importance
7 very strong or demonstrated importance
9 absolute or extreme importance

Table 2: Scale of relative importance proposed by Saaty [28, 32].

But, an estimate of the degree of consistency of a pairwise multiplicative matrix A can
be given. It is

n∑
i=1

λi = tr(A) = n

=⇒ λmax +
n∑

i=2

λi = n

=⇒ −
n∑

i=2

λi = λmax − n

=⇒ − 1
n− 1

n∑
i=2

λi =
λmax − n

n− 1

=⇒ −µ =
λmax − n

n− 1
,

where µ is the average nondominant eigenvalue. Saaty terms −µ the consistency index
(C.I.) of a matrix [32].

Before the consistency index can be put to any use, the contents of a judgement
matrix need to be further examined. Saaty defines a scale of nine grades to express the
relation between any two criteria. A verbal expression is assigned to each of the odd
integers between one and nine (Table 2). Even values in between can be used to express
intermediate relationships or serve as a compromise. The reciprocals of these values
express the inverse relationship as dictated by the definition of a pairwise multiplicative
matrix. For example, if criterion C4 is strongly preferred to criterion C5 then we set in
the judgement matrix a45 := 5 and a54 := 1/5.

To justify the choice of scale, Saaty cites psychological research that demonstrates
that “an individual cannot simultaneously compare more than seven objects (plus or
minus two) without being confused” [28, page 245]. Further, Saaty [32] lists 27 other
scales suggested to him. He mentions that, in practice, only three scales showed good
results: the scale from Table 2, a version of that scale where each integer between two
and nine was multiplied with 0.9, and an exponential scale where the ith grade was as-
signed the value 2i/2. The latter scale was subsequently invalided by a counterexample.

Let us now return to the question of how consistent a judgement matrix is and to the

21 Technical Report IfI-09-06

Multicriteria Decision Making

n 1 2 3 4 5
R.I. 0 0 .58 .90 1.12

n 6 7 8 9 10
R.I. 1.24 1.32 1.41 1.45 1.49

Table 3: Random consistency indices provided by Saaty [32].

discussion of its consistency index

C.I. =
λmax − n

n− 1
.

With increasing consistency of a matrix, its dominant eigenvalue tends to n; conse-
quently, its consistency index approaches zero. But, comparative values are required
to judge the actual degree of consistency. Saaty [32] researches the significance of the
consistency index with randomized matrices. He generates pairwise multiplicative ma-
trices filled with random judgements from the scale in Table 2. For a number of fixed
n, he determines the average consistency index of 500 random n × n matrices (Ta-
ble 3). The resulting values are called random consistency indices (R.I.) and are used
as reference values.

The consistency of a given comparison matrix is evaluated by comparing its con-
sistency index to the random consistency index matching its size. For any matrix, the
ratio of C.I. to R.I. is termed its consistency ratio (C.R.). According to Saaty [32], the
consistency ratio should generally not exceed the value of 0.10. Otherwise, he suggests
that the underlying problem might not be fully understood and should be re-examined.
A consistency ratio of more than 0.20 is intolerable. But, Saaty [28] also points out
that getting a matrix more consistent does not mean that it matches the actual weights
more closely. If a matrix is consistent, there is a logical relationship between the judge-
ments it contains; with decreasing consistency the matrix gets more and more random.
Whether the weights extracted from a comparison matrix actually represent the weights
a decision maker had in mind can be verified only in practice.

Let evN : A× → w+ denote the operation of computing the normalized principal
eigenvector of a pairwise multiplicative matrix. A common such algorithm is the power
method or von Mises† iteration (see, e.g., Hohmann and Deuflhard [20, Section 5.2]).
Given a matrix A ∈ A× and an initial vector b0 ∈ Rn, the power method successively
computes

bk+1 := Abk = Ak+1b0. (4)

If the initial vector contains a non-vanishing part in the direction of the principal eigen-
vector, then the sequence

w′
k :=

bk

‖bk‖
(5)

†Richard Edler von Mises (1883–1953); mathematician, engineer and philosopher.

DEPARTMENT OF INFORMATICS 22

DECISION MAKING FOR METASCHEDULERS

will converge against a multiple of the normalized principal eigenvector. Stated alter-
natively, the initial vector b0 must not be orthogonal to the eigenspace of λmax if the
algorithm is to succeed. The type of norm used in Eq. (5) is irrelevant. The speed of
convergence of the power method depends on the degree of separation between the two
largest eigenvalues |λmax/λ2|. Assuming an acceptable consistency ratio, this require-
ment is satisfied by the judgement matrices.

Saaty [28] suggests an initial vector and a norm based on ē := [1, 1, . . . , 1]. The
norm of a vector bk is obtained by multiplying it with the reciprocal of the sum of its
elements, that is,

‖bk‖ :=
bk

bT
k ē

(6)

Further, for ē to be a valid initial vector for the power method, it must be proved that
it is not orthogonal to the principal eigenvector. An arbitrary vector x is orthogonal
to ē if, and only if, the scalar product xē = 0. From the Perron-Frobenius theorem
it is known that all elements of the principal eigenvector are positive and the same is,
obviously, true for ē. Hence, xē > 0 and b0 := ē can be used as start vector. The
following theorem brings together von Mises’ algorithm in Eqs. (4) and (5), Saaty’s
norm in Eq. (6), and the start vector ē.

Theorem 2 (Saaty [28, Theorem 6]). For a pairwise multiplicative matrix A ∈ A× and
ē = [1, 1, . . . , 1]

lim
k→∞

Akē

‖Akē‖
= Cwmax,

where C is a constant and wmax is the normalized principal eigenvector associated
with λmax.

Applying the algorithm to a judgement matrix, we can not only extract the weights
for a set of criteria. A set of alternatives can be evaluated using the exact same method of
pairwise comparison. Saaty [30] remarks the advantage of this approach: alternatives
can be compared even if no objective scales exist. Such intangible criteria include,
e.g., reputation, experience, beauty, or assertiveness. However, the method can also be
applied if explicit measure on a ratio or non-ratio scale exist.

Finally, we have to aggregate all the weights and partial utilities into a overall util-
ity vector with respect to the root criterion. Let Ω = {O1, O2, . . . , Om be the set of
alternatives that are supposed to be evaluated by the Analytic Hierarchy Process, and
let C1, C2, . . . , Cn be the child nodes of an arbitrary node C of the AHP criterion tree.
Further, let wj be the weight of criterion Cj , and let uCj (Oi) be the utility of alternative
Oi with regard to criterion Cj . The utility of alternative Oi with regard to the father
criterion C is then defined as the arithmetic mean

uC(Oi) :=
n∑

j=1

wjuCj (Oi).

23 Technical Report IfI-09-06

Multicriteria Decision Making

With this definition, we can recursively combine utilities and weights from the leaf
nodes of the hierarchy up to the root criterion. The result is the utility vector with
respect to the root criterion.

Note that the utilities at each criterion are normalized; specifically, this is true for the
root criterion. This can be proved by structural induction: if the utilities are normalized
for any set of child criteria in the hierarchy, they are also normalized for the parent
criterion. With the definitions from the previous paragraph, let the utilities uCj (Oi) be
normalized for each fixed criterion Cj , that is,

∑
i uCj (Oi) = 1. Further, let

∑
j wj =

1. Hence, at the parent criterion C we have for the utilities

m∑
i=1

uC(Oi) =
m∑

i=1

n∑
j=1

wjuCj
(Oi)

=
n∑

j=1

[
wj

m∑
i=1

uCj
(Oi)

]

=
m∑

j=1

wj = 1.

Finally, we need to verify the condition for the leafs of the hierarchy. But, as previously
described, the normalized principal eigenvector is used to determine utilities in the leafs
of the hierarchy, and it is computed for the weights of each set of child nodes belonging
together. Thus, the base case is trivially true.

We provide a small toy example with two pairwise multiplicative matrices to illus-
trate the eigenvector method.

EXAMPLE 2. Probably everyone is familiar with the problem of selecting a flavor at
the local ice cream parlor. A co-worker of the first author was kind enough to share
his preferences with regard to this topic. The available flavors were (in this order)
strawberry, yogurt, chocolate, stracciatella, and vanilla. Using the scale from Table 2,
he expressed his likings in the judgement matrix

AJM :=


1 9 3 5 1

1/9 1 1/9 1/9 1/9
1/3 9 1 3 1/5
1/5 9 1/3 1 1/5
1 9 5 5 1

 .

We apply the power method in its variant from Theorem 2 and define

bk :=
Ak

JMē

‖Ak
JMē‖

.

DEPARTMENT OF INFORMATICS 24

DECISION MAKING FOR METASCHEDULERS

Successively, one obtains

bT
1 :=

[
.289 .022 .206 .163 .320

]
,

bT
2 :=

[
.338 .020 .159 .083 .400

]
,

bT
3 :=

[
.341 .024 .147 .087 .401

]
,

and, after a few more iterations, the bk tend towards the normalized principal eigenvec-
tor

bT
6 :=

[
.339 .024 .152 .092 .394

]
.

Given a pairwise multiplicative matrix A = (aij) and an eigenvector x = (xi), the
associated eigenvalue λ of x can be determined from any row of the matrix. Directly
from Ax = λx follows

n∑
j=1

aijxj = λxi

for any fixed row i. Thus, λmax can be computed from, e.g., the first row of AJM as
λmax ≈ 5.504. Further, the consistency index is

C.I. =
λmax − n

n− 1
=

5.504− 5
5− 1

= 0.126.

Using the random consistency index for n = 5 from Table 3, the consistency ratio
is C.R. ≈ 0.126/1.12 ≈ 0.11. Not wishing to bother the decision maker again, we
accept this ratio. Finally, the ranking of ice cream flavors from most preferred to least
preferred is vanilla (.394), strawberry (.339), chocolate (.152), stracciatella (.092), and
yogurt (.024) with the associated utilities provided in parentheses.

3.3 Criticism of AHP
The original AHP algorithm has drawn criticism from various sources. Most comments
revolve around the fact, that certain seemingly innocuous changes to a problem instance
can cause alternatives to switch places in the ranking. This phenomenon has become
generally known as rank reversal.

The first example for rank reversal was published by Belton and Gear [11]. They
showed that introducing a new alternative can cause previous alternatives to reverse
their ranks. In their example, the rank reversal is triggered even though the pairwise
comparisons between previous alternatives remain unchanged.

EXAMPLE 3 (Belton and Gear [11]). Let A, B, and C be alternatives which are to be
ranked with regard to the three criteria C1, C2, and C3. The corresponding pairwise
comparison matrices are

C1 ≡

1 1/9 1
9 1 9
1 1/9 1

 , C2 ≡

 1 9 9
1/9 1 1
1/9 1 1

 , (7a)

25 Technical Report IfI-09-06

Multicriteria Decision Making

and

C3 ≡

 1 8/9 8
9/8 1 9
1/8 1/9 1

 . (7b)

Evaluating these matrices with Saaty’s algorithm results in the normalized eigenvectors

uC1 =
1
11

1
9
1

 , uC2 =
1
11

9
1
1

 , uC3 =
1
18

8
9
1

 . (8)

These individual values are aggregated assuming equally weighted criteria, i.e., w1 =
w2 = w3 = 1/3, into the final scores A ≡ 0.45, B ≡ 0.47, and C ≡ 0.08. Corre-
spondingly, the ranking of the alternatives is

B � A � C. (9)

Now, a copy of the alternative B is introduced and labeled D. Existing judgements
are not modified but taken over verbatim. The new judgement matrices are

C1 ≡


? ? ? 1/9
? ? ? 1
? ? ? 1/9
9 1 9 1

 , C2 ≡


? ? ? 9
? ? ? 1
? ? ? 1

1/9 1 1 1

 ,

and

C3 ≡


? ? ? 8/9
? ? ? 1
? ? ? 1/9

9/8 1 9 1

 .

The stars designate the locations of the previous comparisons. In place of these stars,
the values of the corresponding 3× 3 matrix from Eqs. (7a) and (7b) are inserted. The
normalized eigenvectors are determined as

u′C1
=

1
20


1
9
1
9

 , u′C2
=

1
12


9
1
1
1

 , u′C3
=

1
27


8
9
1
9

 . (10)

Aggregating them with w1 = w2 = w3 = 1/3 produces the final scores A ≡ 0.37,
B ≡ 0.29, C ≡ 0.06, and D ≡ 0.29 resulting, thus, in the ranking

A � B ≈ D � C. (11)

Comparison of the rankings (9) and (11) shows that the introduction of D caused the
original alternatives A and B to reverse their ranks.

DEPARTMENT OF INFORMATICS 26

DECISION MAKING FOR METASCHEDULERS

Belton and Gear [11] argue that the reversal is a result of the normalization of the
eigenvectors. Applying the normalization factor to an eigenvector is in fact a trans-
formation of the weight of the corresponding criterion. Let vi be the normalization
factor of the eigenvector of criterion Ci, that is, evN(Mi) = vi ev(Mi) where Mi is the
judgement matrix with regard to criterion Ci. Because of

n∑
i=1

wi evN(Mi) =
n∑

i=1

wivi ev(Mi) =
n∑

i=1

(wivi) ev(Mi),

the normalization can be regarded as transforming each weight wi to a new weight
w′

i = wivi. The factor vi is, by definition, the reciprocal of the sum of the values that
the options have been assigned under Ci. Thus, it depends on the number of alternatives
and each single judgement provided by a decision maker. For this reason, changing the
number of alternatives may — but does not necessarily — cause rank reversal in the
final ranking.

EXAMPLE 3 (continued). In the Belton-Gear example the weight vector (w1, w2, w3)
is actually not (1/3, 1/3, 1/3) but instead scaled componentwise with the correspond-
ing normalization factors. Using the factors from Eq. (8), the actual weights for the
case with three alternatives are

w(1) =

1/11 · 1/3
1/11 · 1/3
1/18 · 1/3

 =

1/33
1/33
1/54

 .

We renormalize these values for the sake of comparison and get (0.38, 0.38, 0.23).
The introduction of option D leads to the normalization factors in Eq. (10). They

transform the original scale to

w(2) =

1/20 · 1/3
1/12 · 1/3
1/27 · 1/3

 =

1/60
1/36
1/81

 ,

which yields (0.29, 0.49, 0.22) after normalization.
The original judgements in Eqs. (7a) and (7b) show that the example was carefully

crafted to be affected by this transformation. Alternative A is strongly preferred to alter-
native B with regard to second criterion. For the first criterion, the preference is exactly
converse. But both criteria have an actual weight of 0.38 and, thus, no alternative can
dominate the other. It is the slight preference for B with regard to the last criterion that
shifts the balance in B’s favor.

Adding alternative D turns this situation around. The weight of the second criterion
is significantly increased from 0.38 to 0.49. Simultaneously, the weight of the first
criterion is reduced to 0.29. Now, the strong preference for A over B results in a
overall dominance of A. The ranks of A and B are reversed.

27 Technical Report IfI-09-06

Multicriteria Decision Making

compute nodes res. runtime storage
(in hours) (in GB)

offer 1 64 2.0 20
offer 2 32 4.0 25
offer 3 64 2.5 15

Table 4: Exemplary resource offers.

Belton and Gear suggest that this is not what most decision makers would expect.
They propose to scale the weight with regard to a unit that is chosen to represent the
criterion. They define the unit to be the largest value of a criterion. That is, they
perform normalization by multiplying an eigenvector with the reciprocal of its largest
component. This new normalization operation does not result in a reversal of ranks in
the exemplary decision problem above. Saaty and Vargas [34] responded by showing
that other examples exist, where the Belton-Gear normalization can cause alternatives
to switch ranks.

Subsequently, Barzilai and Golany [7] proved that for any normalization operation
an example can be constructed where the original AHP will cause a rank reversal. They
claim that the normalization is an artificial construct introduced to enforce the con-
struction of a unique weight vector. Given a weight vector w = (wi), they observe
that a judgement matrix A = (aij) contains only weight ratios aij = wi/wj , where
1 ≤ i, j ≤ n. From these ratios, the original weight vector can never be fully recon-
structed. Whatever algorithm is employed, the resulting weights will at best be unique
up to a multiplicative factor. Barzilai and Golany argue, that Saaty’s normalization is
merely to avoid this problem, that is, the unknown weights are replaced by a normalized
proxy vector.

Barzilai even deems the “procedure of normalizing the weights at each node of the
criteria tree [...] a fundamental error” [5, page 3]. The values of an alternative with re-
gard to two different criteria may not be comparable, because both criteria are measured
in different units. Barzilai interprets the weight of a criterion as a conversion factor to a
common scale. Once all units are chosen, the values may only be multiplied by a fixed
overall factor without skewing the results. But, as we have seen, normalization causes
each weight to be multiplied by its own factor depending on the number of alternatives
and their values. We provide an example to elucidate this argument.

EXAMPLE 4. Assume that resource offers for a compute job are to be evaluated. The
criteria number of compute nodes, reserved runtime in hours, and storage in gigabytes
have been selected as relevant. The corresponding weights w1, w2, and w3 then rep-
resent coefficients that convert the criterion’s particular unit into a common unit, say
“virtual nodes”†. In this scenario, w1 is specified in virtual nodes per real compute
nodes, w2 in virtual nodes per hour, and w3 in virtual nodes per gigabyte. A weight

†The Maui Cluster Scheduler employs a similar concept, where the requirements of a job like memory,
disk space, and swap space are expressed in “processor equivalents”. See Jackson et al. [21, Section 6.1].

DEPARTMENT OF INFORMATICS 28

DECISION MAKING FOR METASCHEDULERS

vector

w =

w1

w2

w3

 =

1.0
0.5
2.0

 (12)

then expresses the assumption that a virtual node is equivalent to either one real com-
pute node, half an hour of reserved runtime, or 2 gigabytes of hard disk space.

Once these units are in place, a scaling of individual weights as it occurs during
normalization distorts the goal. Taking the alternatives from Table 4 as a reference, we
obtain the three normalization factors 1/160, 1/8.5, and 1/60 for nodes, runtime, and
storage, respectively. These transform the intended weights (12) to the new scale of

w′ =

w′
1

w′
2

w′
3

 =

1/160 · 1.0
1/8.5 · 0.5
1/60 · 2.0

 =

1/160
1/17
1/30

 .

Rescaling for comparison such that w′
1 = 1.0, we obtain (1.0, 9.4, 5.3). Suddenly, a

virtual node is equivalent to either a single real compute node, 9.4 hours of reserved
runtime, or 5.3 gigabytes of hard disk space.

With the same reasoning, Barzilai [5] argues that weights can not be determined
independently of the measurements that have been assigned to the alternatives. A cri-
terion’s unit directly influences the magnitude and interpretation of its weight. In an
environment like the metascheduler where these units are predefined and values are
obtained accordingly, this argument at least is negligible.

Further, Barzilai brings forward the criticism that the coefficient ratio wi/wj “can-
not correspond to any reasonable notion of relative importance” [5, page 3]. Again,
his rationale is with respect to the interpretation of weights as conversion factors. He
holds that changing the unit of a criterion does require an adjustment of the ratios to
reflect the new scale. That is, the “relative importance” of a criterion varies with its
scale. However, a scale transformation should not increase or decrease a criterion’s
importance.

EXAMPLE 4 (continued). The weight vector in Eq. (12) expressed the offered number
of compute nodes, the reserved runtime in hours, and the available storage in gigabytes
as virtual node equivalents. Changing the unit of the storage criterion from gigabytes to
megabytes, would require an adjustment of its coefficient by a factor of 1,000, that is,

w′′ =

 1.0
0.5

2, 000

 .

Nevertheless, the importance of storage space relative to the number of compute nodes
and the reserved runtime would be unchanged.

Barzilai et al. [9] criticize the use of eigenvectors and weighted arithmetic mean in
determining and aggregating the partial decisions [see also 4, 5, 6, 7, 8]. First, the

29 Technical Report IfI-09-06

Multicriteria Decision Making

eigenvector solution makes the algorithm dependent on the description of the problem.
Let A ∈ A× be a pairwise multiplicative matrix that contains a decision maker’s judge-
ments. How much more option i is preferred to option j is then represented by aij . If
the decision maker was instead asked to judge how much less i is preferred to j, the
result would be a another matrix

B = (bij) = (1/aij) = AT ,

where 1 ≤ i, j ≤ n. Barzilai et al. observe that it would be reasonable to expect
the algorithm to produce inverse weights and an inverse ranking for B. Formally, if
w = evN(A) then

evN(B) = evN(1÷A) = 1÷ w,

where÷ denotes componentwise division, should be the result. Barzilai calls this prop-
erty independence of scale-inversion [4, page 1227]. However, the eigenvector solution
does not satisfy this condition.

Second, they criticize that the combination of eigenvector and weighted arithmetic
mean is not a linear transformation. Let Ai ∈ A×, where 1 ≤ i ≤ n, be a set of
judgement matrices with a common parent node in the criteria tree and wi ∈ R+

≥0 the
corresponding set of weights. Formally, the lack of linearity is reflected by

w1 evN(A1) + w2 evN(A2) + · · ·+ wn evN(An)
6= evN(w1A1 + w2A2 + · · ·+ wnAn).

Thus, the order of operations is relevant when the partial judgements are aggregated.
The result is different, whether judgement matrices are aggregated first and evaluated
afterwards or vice versa. As a solution to this problem, Barzilai et al. [9] propose
a different set of evaluation and aggregation methods. They axiomatically postulate
requirements that eventually lead to independence of scale-inversion and linearity. We
will describe their approach in Section 3.4.

Finan and Hurley [15] describe another case of rank reversal in the presence of wash
criteria. A wash criterion is a criterion that provides no discrimination between the
alternatives. That is, all alternatives are valued equally with regard to a wash criterion.
Such a criterion can be removed from a single-level hierarchy without affecting the
ranking of the alternatives. Starting with a two-level hierarchy this is no longer possible.
An example can be constructed where both Saaty’s AHP and the Multiplicative AHP of
Barzilai et al. will cause rank reversal when the wash criterion is removed.

Liberatore and Nydick [22] replied that a wash criterion may not be removed by sim-
ply normalizing the weights of the remaining sibling nodes. The removal of a criterion
always requires a reassessment of the parent criterion’s weights. Still, the reassessment
may not prevent the rank reversal. Nevertheless, Liberatore and Nydick argue that the
AHP is adequately equipped to handle wash criteria.

DEPARTMENT OF INFORMATICS 30

DECISION MAKING FOR METASCHEDULERS

3.4 Multiplicative AHP

The algebraic structure and axiomatic construction of the multiplicative AHP — and its
isomorphism to a purely additive AHP — have been developed gradually in Barzilai [4],
Barzilai and Golany [6], Barzilai et al. [9]. Barzilai and Golany [7] added an axiomatic
design for the aggregation of partial results into a final score for each alternative. A
method that considers the relative power in a group of a decision maker was described
by Barzilai and Lootsma [8]. We introduce the existing results in this section using the
notation established by these authors.

The basic definitions of the multiplicative AHP are similar to the definitions seen in
Saaty’s original AHP. A matrix A = (aij) is called pairwise multiplicative if, and only
if, aij > 0 and aji = 1/aij for 1 ≤ i, j ≤ n. A weight vector w = (wi) is called
multiplicative if, and only if, wi > 0 for 1 ≤ i ≤ n and

∏n
i=1 wi = 1. A pairwise

multiplicative matrix C = (cij) is called consistent if, and only if, a multiplicative
weight vector w exists with cij = wi/wj . The sets of pairwise multiplicative and
consistent pairwise multiplicative matrices and the set of multiplicative weight vectors
are denoted by A×, C×, and w×, respectively. The set of mappings f : A× → w× is
identified by f×. Under componentwise multiplication the sets A×, C×, and w× are
groups†. C× is a subgroup of A× and C× is isomorphic to w×, that is, C× ∼= w×.

Given a pairwise multiplicative matrix A = (aij), the goal is to construct the weights
wi that come closest to satisfying aij = wi/wj . In other words, the solution to the
problem is finding a specific f ∈ f×. Further, certain desirable features of f are
postulated to restrict the set of all possible functions. Through an iterative refining
(see [4, 6, 9]), the set of requirements was finally reduced to the following two axioms
A1 and A2.

Axiom A1 (Barzilai [4, Axiom 1]). If A is a consistent multiplicative matrix with an
underlying multiplicative weight vector w (namely aij = wi/wj and

∏n
k=1 wk = 1),

then the solution is the vector w, that is, f(A) = w.

Axiom A2 (Barzilai [4, Axiom 2]). The weight wi attributed to alternative i is inde-
pendent of relative measurements among alternatives other than i.

Axiom A1 enforces that the function does map a consistent multiplicative matrix to
its related weight vector. Axiom A2 requires that a weight wk depends only on the
judgements aik and akj and is independent from all aij , where i 6= k and j 6= k.
Its main purpose is to make the resulting variant of the AHP resilient to rank rever-
sal. By restricting a weight’s dependencies to judgements regarding the corresponding
alternative, existing options can be removed or additional options introduced without si-
multaneously affecting the weights of remaining alternatives. The eigenvector solution
of Saaty does obviously not satisfy the second axiom.

The Fundamental Theorem of Barzilai et al. [4] states that the geometric mean

†It is trivial to proof that each structure satisfies the group axioms, that is, closure, associativity, invert-
ibility, and existence of the neutral element.

31 Technical Report IfI-09-06

Multicriteria Decision Making

fgeom : A× → w× with

wi =
[n∏

j=1

aij

]1/n

(13)

is the only solution that fulfills both requirements A1 and A2. It can be proved, that the
geometric mean is independent of scale-inversion, that is,

fgeom(1÷A) = 1÷ fgeom(A).

Further, the geometric mean is homomorph, that is,

fgeom(A ∗B) = fgeom(A) ∗ fgeom(B).

Here, division ÷ and multiplication ∗ are to be applied componentwise.
Still, the geometric mean is only sufficient to determine the weights corresponding

to a single multiplicative matrix. It corresponds to the eigenvector solution in Saaty’s
AHP. Solving a multicriteria decision making problem further involves aggregating the
single-criteria results. I.e., a counterpart to Saaty’s use of the arithmetic mean is neces-
sary. Barzilai and Golany [7] state three axioms that represent desirable properties for
such an aggregation rule F (w1, w2, . . . , wn;A1, A2, . . . , An) that aggregates n weights
wi, where

∑n
i=1 wi = 1, and judgement matrices Ai.

In preparation for the axioms, we define φ× to be set of all mappings φ : A× → C×,
that is, the set of all mappings from multiplicative matrices to consistent multiplicative
matrices. Further, let Pi : A× → A× be the operator that removes the ith row and
column from an n × n matrix and produces, thus, an (n − 1) × (n − 1) matrix. Let
P = Pi1 ◦ Pi2 ◦ · · · ◦ Pil

be an arbitrary sequence of l such operators. The matrix
produced by P or any Pik

is called a principal minor of the operator’s input matrix.

Axiom B1 (Barzilai and Golany [7, Axiom 1]). The aggregation rule F satisfies

F (w1, w2, . . . , wn;P (A1), P (A2), . . . , P (An))
= P (F (w1, w2, . . . , wn;A1, A2, . . . , An)),

where the operator P denotes taking a (fixed) principal minor of the appropriate ma-
trices.

Axiom B2 (Barzilai and Golany [7, Axiom 2]). If the input matrices of F are consistent,
so is its output matrix:

Ak ∈ C× k = 1, 2, . . . , n

⇒ F (w1, w2, . . . , wn;A1, A2, . . . , An) ∈ C×.

Axiom B3 (Barzilai and Golany [7, Axiom 3]). For some φ ∈ φ×,

F (w1, w2, . . . , wn;φ(A1), φ(A2), . . . , φ(An))
= φ(F (w1, w2, . . . , wn;A1, A2, . . . , An)).

DEPARTMENT OF INFORMATICS 32

DECISION MAKING FOR METASCHEDULERS

The axioms B1, B2, and B3 rely on the isomorphism C× ∼= w×. It allows us to
express the result of an aggregation F as a matrix instead of the usual weight vector.
Axiom B1 is motivated by the requirement that adding or removing alternatives must
not influence the scores of the remaining options. Axiom B2 postulates that once a con-
sistent matrix is reached, the algorithm must produce only consistent matrices further
on. And finally, axiom B3 demands that aggregation and evaluation be exchangeable.
Obviously, Saaty’s combination of eigenvector solution and arithmetic mean satisfies
neither of the axioms. It can be proved, that the weighted geometric mean

F (w1, w2, . . . , wn;A1, A2, . . . , An) =
n∏

i=1

Awi
i , (14)

on the other hand, does satisfy each of the axioms B1, B2, and B3.
Barzilai and Lootsma [8] look into the subject of relative power amongst participants

in a group of decision makers. Let pd be the relative power of the decision maker
d, 1 ≤ d ≤ g, with

∑g
d=1 pd = 1. Let rijkd be the judgement of alternative Oj

compared to alternative Ok with regard to criterion Ci as given by decision maker d.
The combined judgement of the group of decision makers respecting the relative power
of each participant can then be expressed as the weighted geometric mean

rijk =
g∏

d=1

rpd

ijkd. (15)

Assembling all previous steps into an overall expression, we can get a compact rep-
resentation for the final score u(Oj) of an alternative Oj . The pairwise comparisons
involving the alternative Oj are combined using Eq. (13), the results aggregated across
all criteria using Eq. (14), and the relative power of each decision maker is respected
using Eq. (15) leading, finally, to

u(Oj) =
[m∏

k=1

n∏
i=1

g∏
d=1

rwipd

ijkd

]1/m

. (16)

This combination of two weighted geometric means and a regular geometric mean can
be evaluated in any order.

The effect of the relative power pd of a participant on the aggregated judgement rijk

can be further assessed. Barzilai and Lootsma represent the original judgement on a
geometric scale

rijkd = exp(γδjkd),

where γ ∈ R is a scaling factor and the value δjkd represents a verbal judgement
(see Table 5) that expresses the preference of decision maker d for alternative Oj over
alternative Ok. They suggest to set the scaling factor depending on the topic judged to,
e.g., ln 2 for a resulting progression factor of 2.

Given a scenario with two decision makers, let ω be the relative power of the more
powerful party. Further, let δjk be the judgement of the powerful decision maker and

33 Technical Report IfI-09-06

Multicriteria Decision Making

δjkd verbal judgement
-8 very strong preference for k over j
-6 strong preference for k over j
-4 definite preference for k over j
-2 weak preference for k over j
0 indifference

+2 weak preference for j over k
+4 definite preference for j over k
+6 strong preference for j over k
+8 very strong preference for j over k

Table 5: Verbal judgements proposed by Barzilai and Lootsma to express the preference
for an alternative. [8]

let his weaker counterpart provide the judgement ϕjk, δjk 6= ϕjk. Using the weighted
geometric mean (15) to determine the aggregated judgement ϑjk leads to

exp
(
γ ω

ω+1δjk

)
exp

(
γ 1

ω+1ϕjk

)
= exp

(
γϑjk

)
.

The relative power ω can then be expressed independently of the geometric scale γ as

ω = −ϕjk − ϑjk

δjk − ϑjk
. (17)

Since |ϑjk| < |δjk|, the powerful decision maker can at best hope for |ϕjk| = 7 if he
himself judges |δjk| = 8. Let his opponent be diametrically opposed, that is, ϕjk =
−δjk = −8. Setting these values into Eq. (17) gives a relative power of ω = 15 that
is required for the powerful decision maker to dominate his opponent. At least in a
two-party scenario a power ratio of 15:1 is sufficient to express the complete range of
possibilities.

Thus, Barzilai and Lootsma propose to use a geometric scale with progression factor√
2 to judge the relative power of a decision maker. The values 1, 2, 4, 8, 16 represent

the verbal expressions equally, somewhat more, definitely more, much more, and vastly
more powerful. Reciprocals represent corresponding inverse expressions and interme-
diate values can be used to express uncertainty. Using this scale, the power of decision
makers in a group is compared in a pairwise multiplicative matrix. The relative power
coefficients pd can then be determined by applying the geometric mean.

Analogously to the multiplicative structure, the AHP can be expressed purely addi-
tive. In short, a pairwise additive matrix satisfies aji = −aij and an additive weight
vector is defined by

∑n
i=1 wi = 0. Note the difference to Saaty’s definition of a nor-

malized vector! A pairwise additive matrix is called consistent if, and only if, it satisfies
cij = wi−wj for some additive weight vector. The sets corresponding to the multiplica-
tive formulation are denoted by A+, C+, w+, and f+. Again, under componentwise
addition the sets A+, C+, and w+ are groups. C+ is a subgroup of A+ and C+ is
isomorphic to w+, that is, C+ ∼= w+.

DEPARTMENT OF INFORMATICS 34

DECISION MAKING FOR METASCHEDULERS

More interestingly, A× ∼= A+, C× ∼= C+, and w× ∼= w+ under a componentwise
application of a logarithm with an arbitrary fixed base and the corresponding inverse
exponential function. Thus, the theory developed for the multiplicative AHP can be
translated to corresponding results for the purely additive AHP. E.g., the arithmetic
mean farith : A+ → w+ with

wi =
1
n

n∑
j=1

aij (18)

is the only mapping that satisfies the additive formulations of axioms A1 and A2. Fur-
ther, it is independent of scale-inversion, that is,

− farith(A) = farith(−A)

and homomorph, that is,

farith(A + B) = farith(A) + farith(B).

Barzilai and Golany [6] use the purely additive formulation of the AHP to explore
the measure of inconsistency

∑n
i,j=1 ε2ij of a judgement matrix, where εij = aij−(wi−

wj) is the error of a single judgement. Expressing the weights wi and wj through the
arithmetic mean from Eq. (18) leads to

εij = aij −
1
n

[n∑
k=1

aik −
n∑

k=1

ajk

]

= aij +
1
n

[n∑
k=1

ajk +
n∑

k=1

aki

]

=
1
n

n∑
k=1

(aij + ajk + aki).

Let A = (aij) be a consistent additive matrix with the corresponding weight vector
w = (wi), then

aij + ajk = (wi − wj) + (wj − wk)
= wi − wk

= aik = −aki.

Thus, in a consistent case aij + ajk + aki = 0 and the error εij = 0. In all other cases,
εij is the average inconsistency over all triples with a fixed i and j. A similar expression
can be given for the multiplicative AHP based on εij = log aij−(log wi−log wj). [4, 6]

Note that although there is an isomorphism between the multiplicative and additive
structures of the AHP both formulations are self-contained. Barzilai and Golany see
the mixing of multiplicative and additive features in Saaty’s AHP as one of its major
problems: “[Rank reversal] is a symptom of inherent problems with the AHP: [...]
non-multiplicative procedures (the weighted arithmetic mean and the eigenvector) are
imposed on an intrinsically multiplicative structure” [7, page 63].

35 Technical Report IfI-09-06

Multicriteria Decision Making

3.5 Rank-order Centroid
Solymosi and Dombi [36] propose an algorithm motivated by geometric ideas that de-
termines approximated weights for a set of criteria. A decision maker is asked to itera-
tively compare subsets of criteria. Each judgement describes a hyperplane that separates
the space of weights into a valid and an invalid half. Combining all judgements leads to
a subspace bounded by a polyhedron. The polyhedron contains the weight vectors that
satisfy all judgements simultaneously. Then, the centroid of the polyhedron is taken as
an approximation to the real weights. Solymosi and Dombi call the centroid the point
of centralized weights.

Let P(Γ) be the powerset of the set of all criteria Γ = {C1, C2, . . . , Cn}. It is
assumed, that a decision maker inherently has an unknown mapping of criteria to weight
values in his mind, w : P(Γ) → R≥0. The mapping is assumed to be additive, that is,
w(a ∪ b) = w(a) + w(b) for all a, b ∈ P(Γ), where a ∩ b = ∅, and standardized, that
is, w(Γ) = 1. Using this mapping, a preference relation � can be defined as

a � b :⇐⇒ w(a) > w(b) + δ (19)

with a nonnegative constant δ ∈ R≥0. Further, we define an indifference relation ≈ as

a ≈ b :⇐⇒ ¬(a � b) ∧ ¬(b � a). (20)

Note that the relation to the left of the double arrow in (19) compares sets of criteria;
the relation to the right compares real numbers. All relations in (20) compare sets of
criteria.

Definition 1 (Pirlot and Vincke [27, Definition 3.1]). A reflexive relation R = (P, I) on
a finite set A is a semiorder if, and only if, there exist a real-valued function g, defined
on A, and a nonnegative constant q such that, for all a, b ∈ A,{

aPb ⇐⇒ g(a) > g(b) + q,

aIb ⇐⇒ |g(a)− g(b)| ≤ q,

or, equivalently,
aRb ⇐⇒ g(a) ≥ g(b)− q.

Obviously, the preference relation � and the indifference relation ≈ satisfy the re-
quirements of this definition. Hence, % = (�,≈) is a semiorder with the correspond-
ing real-valued representation w : P(Γ)→ R≥0. Note, that the indifference relation ≈
is generally not transitive, that is,

(a ≈ b) ∧ (b ≈ c) ; (a ≈ c).

It is transitive if, and only if, δ = 0.
Let ~w = (wi)1≤i≤n+1 be an extended weight vector with the unknown weights

wi = w(Ci), 1 ≤ i ≤ n, and the threshold wn+1 = δ. From the assumption that

DEPARTMENT OF INFORMATICS 36

DECISION MAKING FOR METASCHEDULERS

the mapping w be standardized, it follows that
∑n

i=1 wi = 1. Thus, the first n unit
vectors ei of Rn+1 represent extremal but valid weight vectors. They define a regular
polyhedron that contains all other weight vectors with wn+1 = 0. Allowing wn+1 ≥ 0
adds a positive infinite extension in the (n + 1)th dimension.

Every judgement a � b or ¬(a � b) ⇔ b % a can be written as a linear inequation
using the weights wi. Let a = {Ci1 , . . . , Cig} ∈ P(Γ) and b = {Cj1 , . . . , Cjh

} ∈
P(Γ), where a ∩ b = ∅. Using the definitions and the additive assumption about the
mapping w, we have

a � b ⇐⇒ w(a) > w(b) + δ

⇐⇒ −w(a) + w(b) + δ < 0

⇐⇒ −
g∑

k=1

w(Cik
) +

h∑
k=1

w(Cjk
) + wn+1 < 0

and, analogously,

b % a ⇐⇒ w(b) ≥ w(a)− δ

⇐⇒ w(a)− w(b)− δ ≤ 0

⇐⇒
g∑

k=1

w(Cik
)−

h∑
k=1

w(Cjk
)− wn+1 ≤ 0.

Thus, the inequality corresponding to the ith judgement can be expressed as either∑n+1
j=1 aijwj < 0 or

∑n+1
j=1 aijwj ≤ 0 with aij ∈ {−1, 0,+1}. The actual value aij is

given indirectly by

aij =

{
tij if the ith judgement is a � b,

−tij if the ith judgement is ¬(a � b),

and

tij =


−1 if Cj ∈ a,

0 if Cj /∈ a ∪ b,

+1 if Cj ∈ b or j = n + 1.

Each type of inequality divides the space of weight vectors into a valid and an invalid
half. The border between both subspaces is defined by a hyperplane in Rn+1. Formally,
the hyperplane of the ith judgement is defined by

Ai ~w = 0

with Ai = (aij)1≤j≤n+1.
The algorithm described by Solymosi and Dombi iteratively determine the poly-

hedra produced by these cuts through the space of valid weight vectors. After each
judgement, the centroid is determined as an approximation to the real weights. It is

37 Technical Report IfI-09-06

Multicriteria Decision Making

defined as the arithmetic mean of a polyhedron’s vertices. The centroid always falls
inside the bounded space and, therefore, satisfies all judgements. Further, it minimizes
the maximum error due to its position in the center of the polyhedron. At any point,
the decision maker can accept the approximated weights and terminate the algorithm.
Hence, the runtime of the algorithm is dynamic and depends on the intended quality of
the approximation.

Instead of repeating the rather complicated matrix operations given by Solymosi and
Dombi [36], we provide a small example for 3 criteria (see Fig. 5).

EXAMPLE 5. Let Γ = {C1, C2, C3} be the set of criteria. Initially, the bounding
polyhedron P0 is defined by the first three unit vectors e1, e2, and e3 of R4 and a
positive infinite extension in direction of e4. This shape can be mapped to the R3 as
displayed in Fig. 5a.

The first judgement provided by the decision maker is ¬(C1 � C2). We have
¬(C1 � C2)⇐⇒ w2 ≥ w1 − δ and, thus, the hyperplane

H0 :
[
1 −1 0 −1

]T
~w = 0.

Intersecting hyperplane H0 with the polyhedron P0 leads to a new polyhedron P1 de-
fined by its vertices e2, e3, p1 = [12 , 1

2 , 0, 0], p2 = [1, 0, 0, 1], and a positive infinite
extension in direction of e4 (see Fig. 5b).

The second judgement is C1 � C3 ⇐⇒ w1 > w3 + δ. Its corresponding hyperplane

H1 :
[
−1 0 1 1

]T
~w = 0.

intersects with P1 leading to a new polyhedron P2. Fig. 5c shows that this cut removes
the positive infinite extension in direction of e4. The remaining space has the shape of
a tetrahedron with the vertices e2, p1, p2, and p3 = [13 , 1

3 , 1
3 , 0].

The third judgement C2 � C3 leads to the inequality −w2 + w3 + δ < 0. Thus, the
hyperplane is

H2 :
[
0 −1 1 1

]T
~w = 0.

It is displayed in Fig. 5d. Intersecting the hyperplane with P2 removes the tip of
the tetrahedron, leaving the polyhedron bounded by the vertices e2, p1, p2, p4 =
[23 , 1

3 , 0, 1
3], and p5 = [12 , 1

2 , 0, 1
2].

Finally, the last judgement ¬(C1 � {C2, C3}) corresponds to the inequality w1 −
w2 − w3 − δ ≤ 0. Touching only one of the remaining polyhedron’s boundaries, the
hyperplane

H3 :
[
1 −1 −1 −1

]T
~w = 0.

(see Fig. 5e) does not intersect with it. Thus, the judgement is consistent with previous
relations and provides no new information. Inverting the judgement would have lead
to the same hyperplane but would have invalidated the opposite half of the space. In
that case, it had removed the complete polyhedron and had left no valid weight vectors
remaining.

DEPARTMENT OF INFORMATICS 38

DECISION MAKING FOR METASCHEDULERS

The polyhedron of valid weight vectors is displayed in Fig. 5f. Its centroid

~wc =
1
5
e2 +

1
5
p1 +

1
5
p3 +

1
5
p4 +

1
5
p5 ≈


0.40
0.54
0.07
0.17


represents the weights returned by the algorithm. Further, the second dot in Fig. 5f
marks the weights originally used to construct this example, that is, w1 = 0.46, w2 =
0.38, w3 = 0.16, and δ = 0.09.

A simplified variant of the centralized weights method is proposed by Barron and
Barrett [3]. They call their algorithm Rank-order Centroid (ROC) and require as input
only a ranking of the criteria

Ci1 % Ci2 % · · · % Cin
.

Assuming a strict preference �, the centroid is calculated just like in the method of
centralized weights. This leads to the centroid with

w(Cik
) =

1
n

n∑
j=k

1
j
. (21)

If equality resp. indifference is allowed, then the weights obtained by (21) are averaged
for each set of indifferent criteria. Note, that the weight of a criterion depends only on
the criterion’s position in the ranking and the total number of criteria. Thus, for any
given n the weights can be computed statically and stored in a table.

EXAMPLE 6. Let Γ = {C1, C2, C3, C4} be the set of alternatives and

C2 � C4 ≈ C3 � C1

the ranking provided by the decision maker. First, we assume strict preference and
obtain in the ranked order

w(C2) =
1
4

4∑
j=1

1
j

=
25
48

, w(C4) =
1
4

4∑
j=2

1
j

=
13
48

,

w(C3) =
1
4

4∑
j=3

1
j

=
7
48

, w(C1) =
1
4

4∑
j=4

1
j

=
3
48

.

Afterwards, we incorporate the equality of C3 and C4 by averaging the corresponding
weights

w(C3) = w(C4) =
1
2

[
13
48

+
7
48

]
=

10
48

.

The final weights are w1 ≈ 0.06, w2 ≈ 0.52, w3 ≈ 0.21, and w4 ≈ 0.21.

39 Technical Report IfI-09-06

Multicriteria Decision Making

e
1

e
2

e
3

(a)
Initialspace

of
allw

eightvectors
w
∈

R
4

w
ith P

3i=
1

w
i

=
1.

A
llvalid

w
eightvectors

are
contained

in
the

displayed
colum

n
w

ith
a

triangularbase.

p
1

p
2

e
1

e
2

e
3

(b)T
he

hyperplane
representing

the
judgem

ent
¬

(c
1
�

c
2
)

rem
oves

the
tetrahedron-shaped

space
bounded

by
the

vertices
e
1 ,

e
3 ,

p
1 ,and

p
2 .

p
1

p
2

p
3

e
1

e
2

e
3

(c)T
he

judgem
ent

c
1
�

c
3

invalidates
m

ostof
the

w
eightvectors

leaving
only

the
tetrahedron

given
by

the
vertices

e
2 ,

p
1 ,

p
2 ,and

p
3 .

p
1

p
3

p
4

p
5

e
1

e
2

e
3

(d)
T

he
last

pairw
ise

judgem
ent

c
2
�

c
3

re-
duces

the
space

of
valid

w
eight

vectors
to

the
polyhedron

lim
ited

by
the

vertices
e
2 ,

p
1 ,

p
3 ,

p
4 ,and

p
5 .

e
1

e
2

e
3

(e)
T

he
judgem

ent¬
(c

1
�
{
c
2
,c

3 }
)

is
con-

sistentw
ith

previous
judgem

ents
and

does
not

furtherrestrictthe
space

ofvalid
w

eights.

cen
tro

id

w
eig

h
ts

(f)
M

agnified
view

of
the

final
space

of
valid

w
eightvectors.T

he
centroid

is
returned

by
the

R
O

C
m

ethod;the
other

dotm
arks

the
w

eights
used

to
constructthe

exam
ple.

Figure
5:

E
xem

plary
application

of
the

R
O

C
m

ethod
w

ith
three

criteria.
—

B
lack

lines
representthe

edges
of

the
polyhedron

that
contains

the
valid

w
eight

vectors:
solid

edges
are

visible
from

the
view

point;
dashed

edges
are

concealed.
T

he
cut-off

surface
corresponding

to
the

currentjudgem
entis

highlighted
in

gray.
G

ray,dashed
lines

representedges
of

the
originalcolum

n
of

valid
w

eights
thathave

been
rem

oved
by

previous
cuts.

DEPARTMENT OF INFORMATICS 40

DECISION MAKING FOR METASCHEDULERS

Olson and Dorai [26] compared the results produced by Saaty’s AHP against the re-
sults obtained by the ROC method. Using judgements provided by their students, they
showed that the rankings produced in an exemplary hierarchical multicriteria decision
making problem differed only slightly. McCaffrey and Koski [23] give an introduction
into the Multi-Attribute Global Inference of Quality (MAGIQ) technique used to deter-
mine the quality of a software system. MAGIQ relies on the ROC method to weigh the
metrics considered in the competitive analysis.

4 Decision Making and Scheduling
Metascheduling is concerned with the scheduling of jobs across independent resources
in distinct administrative domains. Hence, the migration of a job description requires
multiple decisions to be made by different, remote parties. Two such scenarios occur
frequently in a grid: resource requests and resource announcements. The former de-
notes a request made for a resource that matches an existing job’s requirements, and
the latter denotes a request made for a job that can be used to improve the utilization of
an idle resource. Ultimately, both situations are similar: the objective is to find a good
combination of job and resource and execute the former on the latter. Bringing the
previous sections together, it can be said that multicriteria decision making is a major
responsibility for every scheduler.

In a resource request scenario, the migration is initiated by a site that wishes to
discard an existing job. First, the source site has to decide which of the queued jobs
provides the least utility and should be relinquished; it then issues a search request and
waits for resource offers. A grid peer that receives the request checks whether it satisfies
the stringent conditions of the requirements description, and, if so, whether the job has
enough utility to make an acceptance worthwhile. Subsequently, the grid peer decides
which of the computing slots on its resource will be offered to the job. It serializes the
description of the offer and transfers it back to the source site. Now, the source site
collects all received resource offers and evaluates them. It picks the offer that suggests
the most utility and migrates the job description.

The illustrated workflow incorporates four separate decision making processes. Goal
of the first decision is to select a migration candidate; that is, the set of options en-
compasses all jobs queued at the source site. Three parties, each of them inspired by
different motives, will be affected by the result: the job owner, the resource provider,
and the grid community. Below, we will explain how the interests can be combined
into a set of criteria with associated weights. Following the selection, the next two
decision making processes take place on the remote peer to evaluate whether a re-
source will be offered to a request and, afterwards, which computing slot to present.
We merge both events into a single decision by letting the metascheduler determine
the utility of executing the provided job in each separate window of resource avail-
ability. Based on the results, a slot on the resource is only offered to the requesting
job if the increased utility warrants it. Hence, the set of options is composed of each
available slot on the resource. Note, that the sites making a decision in this and the

41 Technical Report IfI-09-06

Decision Making and Scheduling

previous situation are not identical. Commonly, the resources will be owned by dif-
ferent resource providers and, consequently, governed by different goals. Following
a distributed approach, this is a perfectly valid situation. Eventually, the last decision
in the workflow is made on the original resource where the job is queued. Evaluat-
ing all the resource offers received as replies to the request, a target for the migration
is selected. Parties interested in this decision will usually be the job owner and the
grid community. The source site may participate; however, it holds no stakes in the
result as it will relinquish the job anyway. Instead, it may be more useful to allow
the destination sites to submit their objectives to be considered in the decision making
process.

The decision makers in our scenario can be divided into three separate groups: users,
resource providers, and grid community. First, job owners pursue their own objectives
only and, generally, define the utility with respect to the features offered to them by
the resource providers. We consider it too restrictive to confine users to a single set of
goals to be applied uniformly across all their jobs; hence, every job must be assumed
to have its own associated set of decision criteria. Users define a fixed set of criteria for
each of their jobs that is attached to the its description and transmitted with the request.
Criteria that are of interest to the average user include, e.g., reserved number of CPUs,
disk space, memory, expected waiting time, and allocated job runtime.

Second, resource providers can be expected to work towards their own benefits, too;
but, commonly, they also opt to consider additional criteria that improve the situation
for their local users. We expect resource providers to define an overall set of criteria to
govern all their decisions in a specific situation in the workflow. Thus, providers may
opt for simplicity and define a single set, but they may as well define separate criteria
with respect to job selection, resource offering, and offer selection. From our expe-
rience, resource providers consider criteria such as job owners, user groups, projects,
utilization of the resource, average waiting time, improved access to the resource for
local users, and length of job queues.

Finally, the grid community is introduced as a kind of global decision maker that
pursues gridwide improvements and binds together the mostly selfish acting resource
providers and job owners. Its goal is defined by a fixed set of criteria that expresses the
essential prospects of a grid such as balanced load across all resources, fair access for all
users in the grid, etc. There is no conceptual problem in allowing the grid community
to put down distinct sets for different types of situations.

A resource announcement is issued by an idle computing resource that plans to ac-
cept additional jobs and improve its utilization. It creates a specification of the services
offered to a candidate job, serializes it, and announces it to the grid. Each grid peer
that receives the offer evaluates its job queue to determine candidates whose require-
ments can be satisfied by the remote resource. The peer optionally selects a subset of
these jobs and transmits their descriptions back to the idle site. Here, these requests
are collected and a decision is made to accept on of the associated jobs. Note that the
second half of the process is, in fact, a stripped down resource request scenario: the
peer evaluates its job queue to select migration candidates, requests to be allocated the
idle resource, and, if accepted, migrates the job description.

DEPARTMENT OF INFORMATICS 42

DECISION MAKING FOR METASCHEDULERS

The workflow for a resource announcements seems to contain a new decision mak-
ing process: a site that selects the window of availability to be announced. However,
in practice the former situation often requires no explicit selection to be made; either
the resource has a low utilization and just announces the general availability of com-
puting power or it offers a dedicated window that has been reserved for grid usage by
a resource’s administration. All the remaining decisions in the workflow correspond to
events in the sequence of steps given for a resource request.

Note, that all of the previously mentioned criteria represent pure optimization ex-
amples. An additional class of aspects are the stringent conditions. These conditions
include, e.g., the general eligibility of a user to utilize a resource, the availability of re-
quired applications and libraries, and the type of hardware supported by a user-supplied
application. A stringent condition is either satisfied or it is not satisfied. There is no
middle ground for elaboration. Thus, this class of conditions can not be handled by an
optimization algorithm.

In the following, we assume that stringent conditions are accounted for by the re-
source discovery framework. That is, the list of available resources generated by the
framework contains only those offers that satisfy all stringent conditions spelled out by
a job’s requirements. This assumption imposes no artificial hardness on the resource
discovery process. It can be easily enforced, that a metascheduler replies only to a
request if it can actually provide the requested service.

In addition to the illustrated processes, there is another detail to be accounted for in
the migration of a job description. An offer obtained by a site will usually be valid only
for a limited time. Specifically, the offering site may reserve the offered timeslot, e.g.,
until acknowledged or canceled by the receiving site, for a limited time only, or it may
not provide any guarantees on the period of availability at all. Each of these scenarios
requires the receiving site to react accordingly by, respectively, either canceling unused
offers in a timely fashion, acknowledging offers within their restricted lifetime, or re-
issuing a request if previous offers are withdrawn.

In an unstructured grid of independent peers, either of these cases can occur, that is, a
metascheduler will have to support each scenario. For this reason, an MCDM algorithm
is useful that ranks the offers in order of decreasing preference. Then, the metascheduler
iterates through this list and tries to acknowledge the offers subsequently. The first offer
that is still available is accepted and the remaining offers explicitly canceled. Hence,
an algorithm will always return the best possible resource for a job regardless of the
guarantees given by remote peers.

5 AHP for Scheduling
Using the examples of Maui batch scheduler and service level agreements, we have
seen that MCDM problems in the scheduling domain are commonly solved by com-
bining various attributes by means of a weighted sum. The extensibility of these spe-
cialized decision making algorithms is limited as they are solely focused on supporting
the scheduling process. A decision is usually restricted to a fixed set of criteria that are

43 Technical Report IfI-09-06

AHP for Scheduling

hard-coded into the scheduling software. Thus, customers must rely on the develop-
ers of the scheduler to support all relevant criteria, and they are precluded from adding
additional facets to a decision. Further, weights are exclusively defined by the adminis-
trator of a resource; hence, decisions only take into account the interests of the resource
provider. Participation by additional decision makers such as the job owner or the grid
community is impossible. We argue that a hierarchical heuristic based on the Analytic
Hierarchy Process (AHP) can be a dynamic alternative to existing procedures.

The hierarchical structure of a criterion tree defines a concise representation of a
decision maker’s goal. Its recursive evaluation combines the hierarchy, the explicit cri-
teria, and their weights into an overall ranking of the options. An aggregation algorithm
such as the arithmetic or geometric mean is a generic procedure that is independent of
the particular characteristics. With respect to the utilities, the inner nodes of the tree
are recursively defined by the weights of their children and the utilities there. Hence,
the metascheduler only needs to know how the options are supposed to be evaluated in
the leaves of the tree; that is, it must be able to map a pair of an option and criterion
to a numeric utility value. In practice, it is unnecessary to provide a mapping for every
explicit option; instead, it is sufficient to define rules for each generic type of option,
e.g., job or resource offer, and let the rules describe how to generate the value for a
particular criterion. Moreover, this knowledge does not need to be hard-coded into the
metascheduler; it can be provided by configuration, by extensions, or programmatically
through scripting languages. E.g., our metascheduler represents a criterion by a unique
qualified name as defined by the XML schema language, that is, as a string composed of
a namespace URI and a local part. For example, the following strings are syntactically
valid identifiers for criteria:

• {http://example.com}WaitingTime

• {http://myprovider/myresource}UserID

• {urn:mysched:criterion}QueueLength

• {urn:mygrid:criteria:20090604}AvgJobRuntime

Further, our metascheduler defines an interface which may be implemented to describe
how to map a criterion and an option to a numeric utility. Thus, the scheduler can be
easily extended to support additional criteria by any interested party.

However, such a change requires the installation of an additional module into a par-
ticular instance of the metascheduler. Note, that this is not only an issue of our im-
plementation: the evaluation of the leaf criteria takes place at the junction between
metascheduler and local batch scheduler. Therefore, any modifications will have to
be implemented in cooperation with the resource provider hosting a metascheduler in-
stance. Depending on the intentions, the support of a new criterion can be handled
locally and independently by each resource provider. As long as a criterion will only
be used in local decisions, there is no requirement to have other providers acknowl-
edge and accept the change. While every grid peer could use its own set of criteria,
the existence of a basic vocabulary of common criteria is essential to the functioning of

DEPARTMENT OF INFORMATICS 44

DECISION MAKING FOR METASCHEDULERS

this approach to metascheduling. In practice, we expect some sites to have their own
specialized facets that may represent particular features or optional information. To let
users take advantage of these extensions and to prevent them from adding invalid crite-
ria to their hierarchies, we envision that they will be able to obtain a list of supported
patterns via a user interface.

The definition of the weights can be obtained by any of the previously presented
algorithms: pairwise comparisons as in AHP and MAHP or an ordering as in ROC.
Neither of the procedures requires any higher mathematics and all of them may be used
even by a casual user — with a little support from the user interface. The necessary
input data, that is, a matrix for the pairwise comparisons or a list for the ordering,
can be acquired even through a simple HTML based web interface. Once the weights
have been obtained, they remain static for the lifetime of the corresponding hierarchy.
Hence, both can be stored according to their intended purpose as, e.g., a configuration
file within the metascheduler installation or attached to the job description. For exam-
ple, our implementation of the metascheduler represents each criteria tree as an XML
document and, if need be, embeds it into the Job Submission Description Language
(JSDL) document of a job.

The Analytic Hierarchy Process and its multiplicative cousin explicitly define the
weighted geometric mean as an aggregation function. Unfortunately, this approach can
not be used together with our metascheduling design as it requires each of the decision
makers to use the same hierarchy in their evaluation. However, one particular strength
of our algorithm is exactly the ability to let participants define their own criteria. Hence,
we took a different course and interpret each parties opinion as a unique aspect of the
overall decision. As such, we join the separate trees under a common root and introduce
the three inner criteria user, resource provider, and grid community. Consequently, we
can employ the existing mechanisms to evaluate the new meta tree. Note, that this idea
is probably not an original innovation; while we have not seen any practical examples
of this approach publicized before, e.g., Aczél and Saaty describe their aggregation
method as comparable “with what one would obtain if each of the participants were to
be included as a decision maker in the hierarchy” [1, page 93].

Yet, this construction introduces a new issue: there is no procedure to prevent dif-
ferent decision makers from using identical criteria inside their trees. As a result, the
branches of the overall hierarchy may have interdependencies which is explicitly for-
bidden by the standards of Miller [24] and Saaty [28]. Saaty and Takizawa [33] de-
scribe how the AHP can be extended to work for generic graphs of criteria, where an
edge between a pair of criteria represents a dependency. The resulting algorithm is the
Analytic Network Process (ANP). However, the handling of the algorithm is more del-
icate, the structures less comprehensible, and, most importantly, the automatic joining
of the parties’ subgraphs is only possible for a few elementary cases. Further, in our
application each singular decision of a metascheduler is but a minuscule event with
temporary effects. A few minor inaccuracies are negligible and do not influence the
overall scheduling process negatively. Note, that with the same reasoning, the criticism
of rank reversal in the AHP can be disregarded with respect to scheduling. In a worst
case scenario, rank reversal lets the scheduler select the second best option in a given

45 Technical Report IfI-09-06

Utility Computation

situation; generally, it goes unnoticed because none of the reversed options would have
been chosen anyway. Thus, we take the illustrated way and join opposing opinions into
a common tree. Nevertheless, our application of the AHP does obviously not stand up
to Saaty’s rigorous requirements. Hence, we only refer to it as heuristic scheduling
based on the AHP.

Historically, scheduling algorithms have not allowed the participation of additional
decision makers. Therefore, resource providers are reluctant to allow users and grid
community to take part in the scheduling, and they will probably not accept a design
where those parties have an equal share in the decision. A solution to this dilemma
are the weights that join the differing opinions at the root of the overall decision tree;
we call them root weights. Normalization of the partial utilities at every node, as pre-
scribed in Saaty’s AHP, equalizes the judgements of user, resource provider, and grid
community. Stated alternatively, after normalization all statements are considered as
equally strong and of identical priority. Next, the weights at root of the decision tree
apply and define the share of participation granted to a particular party. By reserving
the definition of these weights to the providers of the specific resources where a deci-
sion is made, the power of control over their resources is returned to them. In addition,
this step guarantees that even in a grid environment the individual resource providers
preserve their autonomy.

Still, the scheduling is less a dictatorship than a “controlled democracy”. While
the providers have the authority to define the root weights, we assume that users and
grid community will closely examine the share of participation granted to them. The
weight allocated to the grid community will probably become a major point of discus-
sion and political controversy in the formation of a computing grid. Though users will
lack the power to pressure for specific weights, they will always be able to vote with
their feet. With different resources available to them, they can choose the resource that
most closely matches their expectations. Hence, we expect the exact values of the root
weights to become crucial sales arguments.

Altogether, in our opinion the Analytic Hierarchy Process provides for a unique ap-
proach to abandon inflexible structures and achieve a more dynamic scheduling design.

6 Utility Computation
MCDM problems as defined in Section 3 introduce two types of numerical values that
are distinct and yet closely related: weights and utilities. Recall that weights are used
to represent the importance of a criterion, while utilities express the “usefulness” of an
option. Both types of values constitute relative quantities that are only meaningful in
comparison of related items. As such, they represent abstract, subjective assessments
of the presumed impact a criterion or option has on the problem. But, despite their
similarities, the concepts underlying weights and utilities are often quiet distinct.

A criterion is an abstract notion that helps a decision maker to structure the problem
in his mind. Thus, its relative importance is subjective and almost always based on
social factors such as experience, agreement, or “gut feeling”. A criterion may be

DEPARTMENT OF INFORMATICS 46

DECISION MAKING FOR METASCHEDULERS

based on a physical principle, but it may as well be just a thought and nothing more.
E.g., the waiting time, as a criterion to evaluate a set of resource offers, is backed by the
physical principle of time, whereas the personal preference for one computing resource
over another is not directly quantifiable. Nevertheless, the scale on which the weight of
either criterion is expressed is a ratio scale.

An option, on the other hand, can be an abstract notion or a concrete object. The
utility of an option is only ever defined with respect to some fixed criterion. Depending
on this criterion, the utility may be backed by either a physical unit scale, e.g., a waiting
time of two hours vs. a waiting time of one hour, or a ratio scale, e.g., resource A is
preferred twice as strongly as resource B. The possible presence of objective quantities
marks the major difference to weights. However, the utility of an option is not directly
specified by its value on the physical scale. An additional mapping takes place, that re-
lates objective quantities to subjective quantities on a ratio scale. In general, the type of
mapping function is arbitrary, but in practice a few notable types occur more frequently
than others. Fig. 6 displays a selection of these more common mapping functions†.

Mappings of the types depicted in Fig. 6a and 6b describe the most basic linear
relationship between a measure on a unit scale and the utility on a ratio scale. The
assumption behind both types is, that increasing the measure by a constant value will
always, respectively, increase and decrease the utility by a fixed amount, too. Often,
this is an approximation to the real interactions taking place. An example for a max-
imization criterion that can be approximated as a linear mapping is, e.g., the number
of CPUs provided by a resource offer. Yet, assuming that more compute power will
always increase the utility of an offer is generally fallacious because most applications
do not scale indefinitely.

The type in Fig. 6c represents a linear relationship with an inner maximum. Once
that maximum is reached, further increasing the underlying measure does actually de-
crease the utility of an option. Saaty [30] suggests temperature as an example for this
mapping: low temperatures are uncomfortable and increasing the temperature creates a
more enjoyable environment. But, at some point this process is reversed and, eventu-
ally, higher temperatures result in hostile conditions. Edwards and Barron [13] mention
scratching as another example: it may be pleasant to scratch an itch, but too much
scratching may lead to painful skin irritations.

A mapping of the type in Fig. 6d corresponds to a piecewise linear relationship with
diminishing returns. Increasing the associated measure does indeed improve the utility.
Yet, the amount of utility added by a fixed increment on the unit scale decreases. The
reversed case, where the utility decreases with additional improvements on the measure
scale, is not explicitly displayed. With respect to job scheduling, an example for a
criterion with diminishing returns is, e.g., the aforementioned number of offered CPUs.
In many cases, parallel applications scale well up to a number of cores that depends on
the employed algorithm. After this number is reached, the impact of additional cores on
the total compute time gets less and less. For a few problems, this criterion may even

†Edwards and Barron [13] mention the mapping types 6a, 6b, and 6c, too. They add the direct specifica-
tion of an utility value as a fourth type.

47 Technical Report IfI-09-06

Utility Computation

utility

m
ea

su
re

(a)L
inearincreasing

utility
m

apping.

utility

m
ea

su
re

(b)L
ineardecreasing

utility
m

apping.

utility

m
ea

su
re

(c)L
inearutility

m
apping

w
ith

m
axim

um
.

utility

m
ea

su
re

(d)Piecew
ise

linearutility
m

apping.

utility

m
ea

su
re

(e)N
onlinearutility

m
apping.

utility

m
ea

su
re

(f)Stepw
ise

utility
m

apping.

Figure
6:D

ifferenttypes
offunctions

m
apping

objective
m

easures
to

subjective
utilities.

DEPARTMENT OF INFORMATICS 48

DECISION MAKING FOR METASCHEDULERS

prove to be a case of a mapping of the type in Fig. 6c.
The nonlinear mapping as displayed in Fig. 6e is just a representative of a large

class of vastly different utility functions: parabolas, exponential functions, sine- and
cosine-based mappings, and many more. We will defer the discussion of this type
to Section 6.1, where we propose a mapping that is based on the hyperbolic tangent.
Likewise, the stepwise mapping displayed in Fig. 6f is representative for the utility
function discussed in Section 6.2.

The metascheduler which we propose is modular with respect to the utility mappings
it supports. While any type of function can be added, we provide only two default
implementations: a nonlinear mapping on the basis of the hyperbolic tangent and a
configurable stepwise mapping. They cover most of the scenarios that can come up in
practice. Both procedures will be explained in the next sections. Note, that the functions
described above do not produce normalized utilities per se. MCDM algorithms that
require such values, such as Saaty’s AHP, need to perform an additional normalization
step before the utilities can be used.

6.1 Evaluation with the Hyperbolic Tangent
The utility of an option is generally relative and depends on the availability of other
alternatives. With the exception of a few situations where external influences control
his preferences, a decision maker will define his utility values based on a holistic view
of the options he is offered. An overabundance or scarcity of a particular facet may,
respectively, devalue or revalue options that provide that feature. That is, the utility of
the exact same measure on the unit scale may be perceived differently depending on
what other options have to offer. Theoretically, this problem is solved by algorithms
like AHP, MAHP, and ROC in such a way that the measure is never directly mapped to
a utility value. Instead, the decision maker provides subjective pairwise comparisons
or rankings even though objective measures exist. Hence, a measured value just serves
as information to the human user. Saaty notes that “in general, the numbers obtained
from such a scale are merely stimuli for the memory [...] and have no intrinsic signifi-
cance” [30, page 11].

Unfortunately, the environment in which a distributed metascheduler is deployed
does not allow for interactive evaluation. Metascheduler proxies make their decisions
indirectly and without immediate impetus from either resource provider, grid commu-
nity, or user. A call back to any of these parties would have to occur asynchronously
and would place the associated job in a pending state. Further processing of the job
could only take place after a reply had been received. In the majority of cases, this
behavior is unacceptable. It prevents the metascheduling from smoothly balancing the
load and migrating job descriptions between resources. More so, it would require addi-
tional staff just to support a task that is supposed to be carried out by the metascheduler
automatically.

Hence, it is essential to provide an algorithm that can dynamically assign utility
values to options. Fig. 7 shows an example for the challenges faced in the construction
of such an algorithm. It presents three sets of 10 options each with arbitrarily assigned

49 Technical Report IfI-09-06

Utility Computation

example measures

(a) 1.82 1.89 2.45 4.13 4.69
5.60 5.81 6.93 7.00 11.00

(b) 7.00 7.50 7.80 8.40 8.64
8.82 9.42 9.96 10.92 11.00

(c) 7.00 11.00 11.56 13.16 13.32
13.64 15.08 15.32 17.40 17.56

Table 6: Random measures used in Fig. 7 and Fig. 8.

(a)
0 20

measure

A B

(b)
0 20

measure

A B

(c)
0 20

measure

A B

Figure 7: Exemplary cases showing the holistic perception of utility. — The dots mark
the measures on the unit scale of distinct options. The two dots A and B represent a
pair of measures that is identical in each set. Nevertheless, the utility of this pair is
perceived differently depending on the measures exhibited by the other options in the
set.

DEPARTMENT OF INFORMATICS 50

DECISION MAKING FOR METASCHEDULERS

measures (see Table 6). Two measures A and B appear in every set and are highlighted
with small arrows. Despite their identity, the utilities of the associated options will be
perceived differently by a human decision maker. In case (a) the two measures are larger
than all other values occurring; conditional to the type of criterion, i.e., minimizing or
maximizing, the utility of A and B will be either very low or very high. In the second
case (b) the two measures are positioned in a rather dense cluster with the remaining
values. Here, the corresponding utilities will be slightly above and slightly below the
average. Finally, case (c) depicts the opposite situation of case (a). Consequently, the
utilities of the options associated with A and B are reversed.

The utility of an option depends on the option’s relative position with respect to the
bulk of remaining alternatives. In fact, we see the three possible regions of measures
that need to be considered in determining the utilities:

1. A significant agglomeration of measures that contains a majority of the dis-
tributed value. We call this region the dominant cluster of measures.

2. The range next to the dominant cluster which contains all the less preferable
values. Considering a maximization criterion this would mean the region ranging
from the absolute zero to the left boundary of the dominant cluster; considering a
minimization criterion, on the other hand, this would mean the region stretching
from the right boundary of the dominant cluster to infinity.

3. The range of values more preferable than the values in the dominant cluster. Sim-
ilarly, this would include the portion of the x-axis to the left of the dominant clus-
ter for minimization criteria, and, conversely, to the right of the dominant cluster
for maximization criteria.

It is reasonable to expect the utility values of the more and less preferred options to
be, respectively, above and below the mean utility value. Likewise, the dominant cluster
contains the options of average quality; hence, they can be expected to be mapped to
values of approximately mean utility. Yet, assigning each such option exactly the same
mean utility would neglect what small differences the measures show. For this reason,
we design the mapping such that it spreads the utilities of the dominant cluster to a
significant portion of the range of mean utility values. At the same time, we consider
it desirable to bound the maximum and minimum utility of more and less preferable
alternatives. Thus, extreme outliers can not distort the range of utilities. With respect to
the dominant cluster, this would compress the image of the utility mapping to a small
range of values and hide difference between these average options.

Moreover, we consider this to be corresponding to the way a human decision maker
would think. Assume that the majority of options sits in a clear-cut cluster and a few
outliers are positioned at various distances to the left and right of the cluster. In this
situation, the outliers are, respectively, either distinctly better or worse than the average
option. The exact benefit they provide when compared between themselves is less rele-
vant than the difference compared to the majority of remaining options. Once a certain
distance to the cluster is reached, further improvement or decline has no additional sig-
nificant impact on the utility of an option. The utilities must simply reflect the fact that

51 Technical Report IfI-09-06

Utility Computation

such outliers should be, respectively, absolutely preferred or rejected in comparison to
the options in the dominant cluster.

To transfer these ideas into an algorithm, the first step in the automatic evaluation
procedure is to determine the dominant cluster. We define a clustering of a set of mea-
sures and the dominance of a cluster as follows:

Definition 2. Let R = {r1, r2, . . . , rn} ⊂ R be an arbitrary set of real values and
C = (C1, C2, . . . , Cm) be a partition of R, that is, a sequence of nonempty, pairwise
disjoint subsets of R such that each element of R is in exactly one of these subsets.
Then, we call C a clustering of R with the clusters Ci where 1 ≤ i ≤ m if, and only if,

i < j =⇒ ∀x ∈ Ci ∀y ∈ Cj : x < y,

that is, the subsets are strictly successional. Further, we call a cluster Ci s-dominant if,
and only if, it contains at least a fraction s of the total number of values, |Ci| > s · |R|.

The definition allows for more than one s-dominant cluster with s < 0.5 to exist in a
clustering of measures. For s ≥ 0.5 the dominant cluster is unique and we can speak of
the dominant cluster. Which of the dominant clusters in the former case is subsequently
used to define the utility mapping depends on the type of criterion considered. For
a maximization criterion we choose the cluster with the largest measures, that is, the
right-most dominant cluster. The remaining dominant clusters do contain a significant
portion of the elements, yet these elements are all less preferred than the elements in the
chosen dominant cluster. Therefore, they are dismissed as agglomerations of inferior
utility. Conversely, for a minimization criterion we select the left-most dominant cluster
with the smallest measures.

Algorithm 1 describes how the complete set of s-dominant clusters can be deter-
mined in a constructive process. Its sequence of steps depends on the definition of a
distance function δ that returns the distance between two clusters of values. We have
had good results with average linkage clustering, where the distance is defined as

δ(A,B) :=
1

|A| · |B|
∑
a∈A

∑
b∈B

|a− b|,

but, in general, we believe the particular distance function to be of secondary signifi-
cance. In our metascheduler, the clustering is implemented as a separate module such
that the whole clustering algorithm and the distance function can both be easily ex-
changed. The results of clustering with Algorithm 1 are illustrated in Fig. 8a which
repeats the examples from Fig. 7 but highlights the 0.5-dominant clusters.

Further, the effect of the automatic utility mapping, which we will describe in the
following, is depicted in the subfigures (b), (c), and (d) of Fig. 8 for a minimization
criterion. The dominant cluster is translated into a rectangle which we call the con-
trol box of the utility mapping. Let m1,m2, . . . ,mk be the measures in the dominant
cluster, and let n be the number of all measures. Width and horizontal position of the
rectangle are matched to the exact width and position of the dominant cluster, that is,
∆m := |mk −m1| and the center of the control box is placed at 1

2 (m1 + mk).

DEPARTMENT OF INFORMATICS 52

DECISION MAKING FOR METASCHEDULERS

Algorithm 1 Find s-dominant clusters of R

Require: R = {r1, r2, . . . , rn} ⊂ R and 0 ≤ s′ = s · |R| < n
Ensure: C contains all s-dominant clusters of R

1: C ←
{
{r1}, {r2}, . . . , {rn}

}
2: {loop until an s-dominant cluster has accumulated}
3: while ¬∃CD ∈ C : |CD| > s′ do

4: {find minimum distance between any two clusters}
5: d←∞
6: for all A,B ∈ C where A 6= B do
7: d← min(d, δ(A,B))
8: end for

9: {merge all clusters that have minimum distance}
10: for all C1, . . . , Ck ∈ C where δ(Ci, Ci+1) = d for all 1 ≤ i < k do
11: C ← {C1 ∪ · · · ∪ Ck} ∪ C \ {C1, . . . , Ck}
12: end for

13: end while

14: {remove all non-s-dominant clusters}
15: for all A ∈ C where |A| ≤ s′ do
16: C ← C \ {A}
17: end for

18: return C

53 Technical Report IfI-09-06

Utility Computation

(a)
0

20
m

easu
re

A
B

(b
)

0
20

m
easu

re

A
B

(c)
0

20
m

easu
re

A
B

(a)
E

xam
ples

of
s-dom

inantclusters
constructed

by
A

lgorithm
1.

—
T

he
random

m
easures

are
provided

in
Table

6.
For

each
set

of
m

easures,
the

0
.5-dom

inantclusteris
highlighted

by
a

gray
ellipse.

0

0
.5 1

utility

0
1
0

2
0

m
ea

su
re

∆
m

∆u

A

B

(b)A
utom

atic
utility

function
corresponding

to
exam

ple
(a)ofFig.8a.

0

0
.5 1

utility

0
1
0

2
0

m
ea

su
re

∆
m

∆u

A

B

(c)A
utom

atic
utility

function
corresponding

to
exam

ple
(b)ofFig.8a.

0

0
.5 1

utility
0

1
0

2
0

m
ea

su
re

∆
m

∆u

A

B

(d)A
utom

atic
utility

function
corresponding

to
exam

ple
(c)ofFig.8a.

Figure
8:E

ffectofthe
s-dom

inantclusters
on

the
autom

atically
determ

ined
utilities.

DEPARTMENT OF INFORMATICS 54

DECISION MAKING FOR METASCHEDULERS

Height and vertical position of the rectangle are chosen to encompass a significant
portion of the mean utility values. For this reason, the vertical position is such that the
center of the rectangle is mapped to the utility value 1/2. The height ∆u is expressed
proportional to the size of the dominant cluster. We define the height of the control
box to be ∆u := 0.8k/n. The factor 0.8 is chosen somewhat arbitrarily to allow for
some margin at the top and bottom of the control box. The reason therefore is that
the dominant cluster can sometimes contain all measures, i.e., k = n; even in this
case, the height of the control box must satisfy ∆u < 1, that is, it must not be the full
height of the image of the utility mapping. Otherwise, our utility mapping based on the
hyperbolic tangent would leave the intended range (0, 1) of valid utility values.

In the following two subsections, we will derive the explicit utility functions to be
employed for the automatic evaluation.

6.1.1 Maximization Criteria

Above, we have described the considerations that went into the design of an automatic
utility mapping. Specifically, we mentioned that the utility values should be bounded
above and below to avoid misrepresentation of minor differences in the dominant clus-
ter of options. For this reason, we opted to base our utility mapping on the hyperbolic
tangent which asymptotically tends to y = −1 and y = 1 when x approaches, respec-
tively, negative and positive infinity. Hence, the behavior of the curve is suitable for a
maximization criterion, where larger input values have to yield larger output values.

As we have previously described, the MCDM algorithms require that utility values
are positive real numbers. Hence, the hyperbolic tangent needs to be scaled and shifted
to map its image from (−1, 1) into the range (0, 1) of valid utilities, i.e., 1

2 (1+tanh(x)).
Using the identity

tanh(x) =
ex − e−x

ex + e−x
,

we have

u(x) =
1
2

(1 + tanh (x))

=
1
2

(
1 +

ex − e−x

ex + e−x

)
=

1
2

(
ex + e−x

ex + e−x
+

ex − e−x

ex + e−x

)
=

1
2

2ex

ex + e−x

=
ex

ex (1 + e−2x)

=
1

e−2x + 1

as a starting point for the real mapping function.

55 Technical Report IfI-09-06

Utility Computation

The hyperbolic tangent transitions through the mean utility values of its image (0, 1)
for a rather narrow range of input values. Specifically, the middle 98.7% of output val-
ues are produced by the input values in the range [−2.5, 2.5]. Thus, the function needs
to be further scaled and shifted to match its range of transition with the dominant clus-
ter determined previously. For this purpose, we introduce four control parameters ∆m,
∆u, xe, and ue as well as two auxiliary parameters λ and δ. The auxiliary parameters
will be expressed in terms of the control parameters and are meant solely to support a
well-arranged representation of the utility function as

uC(x) :=
1

eλ(x−δ) + 1
. (22)

They will be defined such that the following two conditions are satisfied for the curve
of the automatic utility mapping:

1. The curve runs through the lower left and upper right corners of a rectangle R
that is defined by its width ∆m, its height ∆u, and its center that has been placed
in the point of symmetry of the hyperbolic tangent.

2. The curve runs through the point (xe, ue).

The first condition forces the scaling of the hyperbolic tangent to match the extends
of the rectangle R and the second condition fixes the absolute position of the curve.
Obviously, the rectangle is supposed to coincide with the control box which we previ-
ously derived from the dominant cluster. For generality, we will disregard the specific
constraints imposed upon the control box with respect to its vertical position.

Let (xs, us) be the center of the control box and simultaneously the point of symme-
try of the hyperbolic tangent. It is sufficient to ensure that the curve runs through the
lower left corner of the rectangle R. Due to symmetry, the curve will then run through
the upper right corner, too. First, we determine the coordinates of the point of symme-
try: xs and us. It is known, that this point is the vertical midpoint of the image of the
starting function u(x), i.e., us = 1/2. Hence, we have

uC(xs) = 1/2

=⇒ 1
eλ(xs−δ) + 1

= 1/2

=⇒ eλ(xs−δ) = 1
=⇒ λ (xs − δ) = 0
=⇒ xs = δ.

Further, the lower left corner of the rectangle R can be expressed as (xs − 1
2∆m,us −

1
2∆u). With (xs, us) = (δ, 1/2), we have

uC

(
xs −

1
2
∆m

)
= us −

1
2
∆u

=⇒ uC

(
δ − 1

2
∆m

)
=

1
2
− 1

2
∆u

DEPARTMENT OF INFORMATICS 56

DECISION MAKING FOR METASCHEDULERS

=⇒ 1

eλ((δ− 1
2∆m)−δ) + 1

=
1
2
− 1

2
∆u

=⇒ 1
e−

1
2 λ∆m + 1

=
1−∆u

2

=⇒ e−
1
2 λ∆m + 1 =

2
1−∆u

=⇒ e−
1
2 λ∆m =

2
1−∆u

− 1−∆u

1−∆u

=⇒ −1
2
λ∆m = ln

(
1 + ∆u

1−∆u

)
=⇒ λ = − 2

∆m
ln

(
1 + ∆u

1−∆u

)
.

Thus, we have an explicit representation of the auxiliary scaling factor λ in terms of the
parameters defining the control box.

Similarly, we can take the second condition into account. Applying the mapping to
xe, we obtain

uC(xe) = ue

=⇒ 1
eλ(xe−δ) + 1

= ue

=⇒ eλ(xe−δ) + 1 =
1
ue

=⇒ eλ(xe−δ) =
1− ue

ue

=⇒ λ (xe − δ) = ln
(

1− ue

ue

)
=⇒ δ = xe −

1
λ

ln
(

1− ue

ue

)
.

Note, that the auxiliary shifting parameter δ depends on the second auxiliary param-
eter λ. To avoid this dependency and gain independent scaling and shifting parameters,
we set

δ = xe −
1
λ

δ′,

where

δ′ := ln
(

1− ue

ue

)
.

Replacing δ in Eq. 22 with this equality, translates the original representation of the

57 Technical Report IfI-09-06

Utility Computation

utility mapping uC(x) into

uC(x) =
1

eλ(x−δ) + 1

=
1

eλ(x−xe+ 1
λ δ′) + 1

=
1

eλx−λxe+δ′ + 1

=
1

eλ(x−xe)+δ′ + 1
.

Finally, we keep this new representation and define the utility mapping for maxi-
mization criteria as

uC(x) =
1

eλ(x−xe)+δ′ + 1
, (23)

where

λ = − 2
∆m

ln
(

1 + ∆u

1−∆u

)
and

δ′ = ln
(

1− ue

ue

)
.

6.1.2 Minimization Criteria

For minimization criteria we proceed analogously to the construction given in the previ-
ous subsection on maximization criteria. The function is based on a shifted and scaled
hyperbolic tangent, too; however, we note that in this case smaller measures must lead
to larger utility values. Hence, we mirror the hyperbolic tangent at the axis y = 0 before
we fit its image to the range (0, 1). We obtain the start mapping

u′(x) = 1− 1
2
(1 + tanh(x))

= 1− 1
e−2x + 1

.

and, again, introduce two auxiliary parameters, this time called µ and ε, that allow us
to express the utility mapping as

u′C(x) := 1− 1
eµ(x−ε) + 1

. (24)

Reflecting the hyperbolic tangent has resulted in a curve that passes through the
opposing corners of the control box when compared with a maximization criterion.
Specifically, we require the curve to satisfy the following two conditions:

DEPARTMENT OF INFORMATICS 58

DECISION MAKING FOR METASCHEDULERS

1. The curve runs through the upper left and lower right corners of a rectangle R
that is specified by its width ∆m and its height ∆u and whose center is placed in
the point of symmetry of the curve.

2. The curve runs through the point (xe, ue).

Note, that the first condition can alternatively be replaced with a condition that requires
the curve only to pass through the upper left corner of R. Due to the rectangle’s position
centered at the point of symmetry, the curve will automatically pass through the lower
right corner, too.

Further, the upper left corner of R can be expressed relatively to the rectangle’s cen-
ter (x′s, u

′
s) as (x′s− 1

2∆m,u′s+ 1
2∆u). We omit the derivation of (x′s, u

′
s) = (ε, 1/2) as

it is identical to the reasoning for maximization criterion. Instead, we directly proceed
to insert the point into Eq. (24) and obtain

u′C

(
x′s −

1
2
∆m

)
= u′s +

1
2
∆u

=⇒ u′C

(
ε− 1

2
∆m

)
=

1
2

+
1
2
∆u

=⇒ 1− 1

eµ((ε− 1
2∆m)−ε) + 1

=
1
2

+
1
2
∆u

=⇒ 1
e−

1
2 µ∆m + 1

=
1
2
− 1

2
∆u

=⇒ 1
e−

1
2 µ∆m + 1

=
1−∆u

2

=⇒ e−
1
2 µ∆m + 1 =

2
1−∆u

=⇒ e−
1
2 µ∆m =

2
1−∆u

− 1−∆u

1−∆u

=⇒ −1
2
µ∆m = ln

(
1 + ∆u

1−∆u

)
=⇒ µ = − 2

∆m
ln

(
1 + ∆u

1−∆u

)
.

Likewise, the second condition allows us to derive

u′C(xe) = ue

=⇒ 1− 1
eµ(xe−ε) + 1

= ue

=⇒ 1
eµ(xe−ε) + 1

= 1− ue

=⇒ eµ(xe−ε) + 1 =
1

1− ue

59 Technical Report IfI-09-06

Utility Computation

=⇒ eµ(xe−ε) =
1

1− ue
− 1− ue

1− ue

=⇒ eµ(xe−ε) =
ue

1− ue

=⇒ µ (xe − ε) = ln
(

ue

1− ue

)
=⇒ ε = xe −

1
µ

ln
(

ue

1− ue

)
.

We define

ε′ := ln
(

ue

1− ue

)
,

and note that µ = −λ and, because ln
(

1
x

)
= − ln(x), also ε′ = −δ′. Hence, we can

transform Eq. (24) like in the previous section and obtain

u′C(x) = 1− 1
eλ(x−xe)−δ′ + 1

.

Due to the equality

1− 1
eE + 1

=
eE + 1
eE + 1

− 1
eE + 1

=
eE

eE + 1

=
eE

eE (1 + e−E)

=
1

e−E + 1
,

we can represent a concise formula for the utility mapping for minimization criteria as

u′C(x) =
1

e−λ(x−xe)+δ′ + 1
, (25)

where

λ = − 2
∆m

ln
(

1 + ∆u

1−∆u

)
and

δ′ = ln
(

1− ue

ue

)
.

This representation mirrors the representation in Eq. 23.

DEPARTMENT OF INFORMATICS 60

DECISION MAKING FOR METASCHEDULERS

6.1.3 Practical Considerations

In the theoretical derivation of the utility mapping, we presumed knowledge of an ex-
plicit point (xe, ue) which was required to determine the exact position of the utility
curve. In practice, it is favorable to consolidate this point with the center of the control
box and to vertically center the control box in the image range (0, 1). As a consequence,
ue = 1/2 is predefined and

δ′ = ln
(

1− ue

ue

)
= ln

(
1− 1

2
1
2

)
= ln (1)
= 0,

which simplifies Eq. (23) and (25) slightly. We already explained above how to define
the remaining control parameters with respect to the dominant cluster.

6.2 Direct Mapping

Using the hyperbolic tangent to compute utility values is well-suited for criteria that
are based on continuous measures such as load or waiting time; for these criteria, the
continuous utility function reflects the shape of the input values. A few discretely mea-
sured aspects, such as the length of the job queue, map equally well to the continuous
hyperbolic tangent. Though the input measures are discrete, there is little difference be-
tween the utility of consecutive input values. However, sometimes utilities are simply
not supposed to transition smoothly because successive measures represent distinctly
unique features.

One such criterion that occurs frequently with scheduling is the user ID. Users of a
computing resource are customarily associated with a unique integer identifier that is
used as their representation by the operating system. Consecutive user IDs express no
relationship between the associated users; yet, often ranges of user IDs are logically
associated with generic groups of users. On a Debian Linux system, e.g., the root user
has the ID zero, system accounts reserved by the operating system range from one to 99,
unreserved system accounts have values of up to 999, and regular users are identified
by IDs starting with 1,000 and ending at 29,999; the ID 65,534, the second to last value
that fits into a 16 bit integer, represents the user “nobody” which has no permissions at
all. It is common for administrators to subdivide the user IDs in the range 1,000–29,999
and associate the subranges with specific local user groups.

The mapping of user IDs to utilities can be instrumented to incorporate individual
priorities of the jobs of users into the decision. Yet, consecutive user IDs do not cor-
respond to small changes in their priorities; more often, whole ranges associated with
different user groups are supposed to be mapped to fixed utility values (see Fig. 9). To

61 Technical Report IfI-09-06

Utility Computation

0

0.5

1

u
ti

li
ty

0 500 1000 1500 2000
measure

Figure 9: Exemplary mapping of ranges of measures to fixed utilities. — In this figure
the criterion user ID is divided into three ranges which are mapped to specific utilities:
the range [250, 500) contains the IDs of administration and staff, the range [500, 1000)
contains local or favored user IDs, and the range [1000, 2000) contains the remaining
grid users. The utility reflects the priority of the users in each group.

DEPARTMENT OF INFORMATICS 62

DECISION MAKING FOR METASCHEDULERS

achieve this kind of mapping, the hyperbolic tangent must be abandoned for a step func-
tion that produces discrete output values. Obviously, it is impossible to automatically
determine the utility values because this mapping is an artificial construct.

Even though this concept of representing unique entities with numeric values is
prevalent in computer systems it is not restricted to this domain, e.g., humans are identi-
fied by their social security number, goods are labeled with barcodes, and animals may
be injected with a RFID chip. However, in real world multicriteria decision making the
numeric ID is rarely mapped directly to utilities. Here, the entities are seen as unique
individuals. Determining their utility is precisely why procedures such as the Analytic
Hierarchy Process or Rank-order Centroid have been developed. Still, for the reasons
given in the previous section, pairwise comparisons and rankings can not be queried
interactively in a metascheduler.

Therefore, we provide a second mapper module next to the hyperbolic tangent, where
ranges of input values can be mapped to specific utilities. Ranges can be expressed as
lower bounded, upper bounded, bounded in both directions, or as individual values.
Bounds can be given as exclusive or inclusive, and an epsilon value can be added to
exact values to express fuzziness. This design emulates the possibilities supported in
the specification of the Job Submission Description Language (JSDL). Likewise, the
mapping is specified as an XML fragment in the configuration of the metascheduler or
embedded in a job’s JSDL description. Any positive numeric value can be used as a
utility; the resulting mapping is normalized before it is employed in the AHP.

However, while a direct mapping is supposedly easy to configure, it can also be
misused. Its major disadvantage is, that its non-continuous utility function may look
unreasonably reasonable at first sight. At the boundaries of the intervals, small changes
in the measure will produce large changes in the corresponding utilities. In general,
these differences in utility between almost indistinguishable alternatives do not reflect
the preferences of a decision maker correctly. Take, e.g., a stepwise mapping of waiting
time intervals: an offer that promises a short waiting time of up to two hours is mapped
to a high utility, and remaining offers are penalized with a low utility with respect to
this criterion. Now let two offers exhibit, respectively, 119 minutes and 121 minutes of
waiting time. Except for a deadline that may warrant such a strong demarcation, the
two offers will generally be of similar utility to a user. Hence, the arbitrary boundary
placed at exactly 120 minutes produces a distorted image of the real interests. For this
reason, any use of the direct mapping module should be carefully circumstantiated.

7 Conclusions and Outlook
In this technical report, we have described a generic scheduling heuristic that incor-
porates arbitrary criteria by different decision makers. In general, the heuristic can be
used to prioritize jobs in local batch queues, service level agreements in grids, or job de-
scriptions and resource offers in metaschedulers. We illustrated how the heuristic can be
employed in a distributed architecture to create a fault-tolerant and scalable metasched-
uler. The design represents a politically acceptable method of gridwide decision making

63 Technical Report IfI-09-06

Conclusions and Outlook

as it offers a configurable share of participation to users, resource providers, and grid
community. Still, it respects the reservations by resource providers to relinquish con-
trol over a resource to other parties; to appease this most influential group of decision
makers, it retains the right to specify the power of each participant to them. Finally, we
presented a procedure based on the hyperbolic tangent to dynamically determine the
relative utility of a set of options for most criteria.

Working on the algorithms of our metascheduler, we collected first-hand experience
with local resource management systems of HPC sites and clusters. Hence, we were
able to gain detailed insights as to how the input queues of those systems interact with
the scheduling algorithms to influence the load of a resource. Further, we witnessed
the political issues that dominate in national and international grid projects such as the
German D-Grid† and the European DEISA grid‡. In cooperation with Sommerfeld and
Richter [37], we have isolated four intrinsic problems that will have to be solved before
metascheduling can become a fully working feature of computing grids.

First, metaschedulers generally have no direct control over the scheduling processes
at grid sites. They use the interfaces provided by a grid middleware to monitor re-
sources, access job queues, and submit or extract jobs. However, this also means that
from the point of view of local resource management systems, the metaschedulers as-
sume only the role of power users. Accordingly, they have to compete with regular
users over access to the resources, and, as a consequence, they can not generate optimal
schedules.

Second, the lack of control entails that the scheduling policy of the site scheduler is
generally not in concord with the goals of the grid scheduler. The prioritization of the
jobs queued in a resource management system is performed by the system itself; hence,
the decisions made by the metascheduler are always of subordinate priority. Scheduling
directions given to the metascheduler can only be implemented on a best effort basis.

Third, sensitive metrics that describe the state of a resource are usually not available
to regular users. Generally, this is a political decision as well as a technical issue. Re-
source providers are reluctant to disclose the utilization of their resources, so as not to
give competitors an advantage over them. Particularly publicly funded research insti-
tutes fear the loss of monetary support if low utilization of their resources was to be
publicized. From our experience, the only statistics commonly available are the num-
ber of running and waiting jobs, yet some sites do not even disclose this information.
To conclude, local schedulers currently do not offer sufficient data to derive a good
schedule.

Finally, predicting the future performance of a resource based on current indicators is
a delicate task. Resources are highly utilized and waiting times for computing jobs can
range from minutes to hours. For most jobs, the time spend in a job queue considerably
exceeds the actual execution time. Hence, the prediction of queue waiting times is a
significant factor when the utility of an offered resource has to be determined. Yet, the
behavior of queue waiting time and queue length over time is generally chaotic, and

†D-Grid Initiative, http://www.d-grid.de
‡Distributed European Infrastructure for Supercomputing Applications, http://www.deisa.org

DEPARTMENT OF INFORMATICS 64

http://www.d-grid.de
http://www.deisa.org

DECISION MAKING FOR METASCHEDULERS

these values can vary by a factor of thousand within minutes. However, scheduling
always relies on such predictions.

Therefore, future work will have to focus on finding solutions to these challenges.
Besides, we will aim our attention at developing a discrete event simulation of the
proposed scheduling heuristic. Thus, we hope to underline its benefits with respect to
the criteria expressed in a hierarchy.

References
[1] J. Aczél and T. Saaty, “Procedures for synthesizing ratio judgements,” Journal

of Mathematical Psychology, vol. 27, no. 1, pp. 93–102, Mar. 1983. [Online].
Available: http://dx.doi.org/10.1016/0022-2496(83)90028-7

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu, Web Services Agreement Specification (WS-
Agreement), Open Grid Forum, March 2007.

[3] F. Barron and B. Barrett, “Decision quality using ranked attribute weights,”
Management Science, vol. 42, no. 11, pp. 1515–1523, Nov. 1996. [Online].
Available: http://dx.doi.org/10.1287/mnsc.42.11.1515

[4] J. Barzilai, “Deriving weights from pairwise comparison matrices,” Journal of the
Operational Research Society, vol. 48, no. 12, pp. 1226–1232, Dec. 1997.

[5] ——, “Notes on the Analytic Hierarchy Process,” in Proceedings of the 2001 NSF
Design and Manufacturing Research Conference, Jan. 2001, pp. 1–6.

[6] J. Barzilai and B. Golany, “Deriving weights from pairwise comparison matrices:
The additive case,” Operations Research Letters, vol. 9, no. 6, pp. 407–410, 1990.
[Online]. Available: http://dx.doi.org/10.1016/0167-6377(90)90062-A

[7] ——, “AHP rank reversal, normalization and aggregation rules,” INFOR, vol. 32,
no. 2, pp. 57–64, May 1994.

[8] J. Barzilai and F. Lootsma, “Power relations and group aggregation in the
Multiplicative AHP and SMART,” Journal of Multi-Criteria Decision Analysis,
vol. 6, no. 3, pp. 155–165, 1997. [Online]. Available: http://dx.doi.org/10.1002/
(SICI)1099-1360(199705)6:3<155::AID-MCDA131>3.0.CO;2-4

[9] J. Barzilai, W. Cook, and B. Golany, “Consistent weights for judgements
matrices of the relative importance of alternatives,” Operations Research
Letters, vol. 6, no. 3, pp. 131–134, 1987. [Online]. Available: http:
//dx.doi.org/10.1016/0167-6377(87)90026-5

[10] A. Bayucan, R. Henderson, L. Jasinskyj, C. Lesiak, B. Mann, T. Proett, and
D. Tweten, Portable Batch System - Administrator Guide, Numerical Aerospace

65 Technical Report IfI-09-06

http://dx.doi.org/10.1016/0022-2496(83)90028-7
http://dx.doi.org/10.1287/mnsc.42.11.1515
http://dx.doi.org/10.1016/0167-6377(90)90062-A
http://dx.doi.org/10.1002/(SICI)1099-1360(199705)6:3<155::AID-MCDA131>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1099-1360(199705)6:3<155::AID-MCDA131>3.0.CO;2-4
http://dx.doi.org/10.1016/0167-6377(87)90026-5
http://dx.doi.org/10.1016/0167-6377(87)90026-5

References

Simulation Systems Division, NASA Ames Research Center, August 1998, revi-
sion 1.1.12.

[11] V. Belton and T. Gear, “On a short-coming of Saaty’s method of analytic
hierarchies,” Omega, vol. 11, no. 3, pp. 228–230, 1983. [Online]. Available:
http://dx.doi.org/10.1016/0305-0483(83)90047-6

[12] TORQUE admin manual, Cluster Resources, Inc., 2008, version 2.3.

[13] W. Edwards and F. Barron, “SMARTS and SMARTER: Improved simple
methods for multiattribute utility measurement,” Organizational Behavior and
Human Decision Processes, vol. 60, no. 3, pp. 306–325, dec 1994. [Online].
Available: http://dx.doi.org/10.1006/obhd.1994.1087

[14] M. Ehrgott, Multicriteria Optimization, 2nd ed. Berlin/Heidelberg, Germany:
Springer, 2005.

[15] J. Finan and W. Hurley, “The Analytic Hierarchy Process: can wash criteria be
ignored?” Computers & Operations Research, vol. 29, no. 8, pp. 1025–1030,
2002. [Online]. Available: http://dx.doi.org/10.1016/S0305-0548(00)00100-3

[16] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, 1998.

[17] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “Evaluation of
job-scheduling strategies for grid computing,” in GRID ’00: Proceedings of the
First IEEE/ACM International Workshop on Grid Computing. London, UK:
Springer, 2000, pp. 191–202.

[18] J. Heilgeist, T. Soddemann, and H. Richter, “Algorithms for job and
resource discovery for the meta-scheduler of the DEISA grid,” in Advanced
Engineering Computing and Applications in Sciences, 2007. ADVCOMP 2007.
International Conference on, Nov. 2007, pp. 60–66. [Online]. Available:
http://dx.doi.org/10.1109/ADVCOMP.2007.4401899

[19] R. Henderson, “Job scheduling under the Portable Batch System,” in Job
Scheduling Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science. Berlin/Heidelberg, Germany: Springer, 1995, vol. 949, pp. 279–294.
[Online]. Available: http://dx.doi.org/10.1007/3-540-60153-8_34

[20] A. Hohmann and P. Deuflhard, Numerical Analysis in Modern Scientific
Computing: An Introduction, 2nd ed., ser. Texts in Applied Mathematics.
Berlin/Heidelberg, Germany: Springer, 2003, vol. 43.

[21] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the Maui scheduler,”
in Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes in
Computer Science. Berlin/Heidelberg, Germany: Springer, 2001, vol. 2221, pp.
87–102. [Online]. Available: http://dx.doi.org/10.1007/3-540-45540-X_6

DEPARTMENT OF INFORMATICS 66

http://dx.doi.org/10.1016/0305-0483(83)90047-6
http://dx.doi.org/10.1006/obhd.1994.1087
http://dx.doi.org/10.1016/S0305-0548(00)00100-3
http://dx.doi.org/10.1109/ADVCOMP.2007.4401899
http://dx.doi.org/10.1007/3-540-60153-8_34
http://dx.doi.org/10.1007/3-540-45540-X_6

DECISION MAKING FOR METASCHEDULERS

[22] M. Liberatore and R. Nydick, “Wash criteria and the Analytic Hierarchy Process,”
Computers & Operations Research, vol. 31, no. 6, pp. 889–892, 2004. [Online].
Available: http://dx.doi.org/10.1016/S0305-0548(03)00041-8

[23] J. McCaffrey and N. Koski, “Test run: competitive analysis using MAQIG,”
MSDN Magazine, October 2006. [Online]. Available: http://msdn.microsoft.com/
en-us/magazine/cc300812.aspx

[24] J. R. Miller, III, “The assessment of worth: a systematic procedure and
its experimental validation,” Ph.D. dissertation, Massachusetts Institute of
Technology, 1966. [Online]. Available: http://hdl.handle.net/1721.1/13513

[25] H. Nakada, A. Takefusa, K. Ookubo, M. Kishimoto, T. Kudoh, Y. Tanaka, and
S. Sekiguchi, “Design and implementation of a local scheduling system with
advance reservation for co-allocation on the grid,” in Computer and Information
Technology, 2006. CIT ’06. The Sixth IEEE International Conference on, Sept.
2006, pp. 65–65. [Online]. Available: http://dx.doi.org/10.1109/CIT.2006.71

[26] D. Olson and V. Dorai, “Implementation of the centroid method of Solymosi and
Dombi,” European Journal of Operational Research, vol. 60, no. 1, pp. 117–129,
1992. [Online]. Available: http://dx.doi.org/10.1016/0377-2217(92)90339-B

[27] M. Pirlot and P. Vincke, Semiorders: Properties, Representations, Applications.
Springer, 1997.

[28] T. Saaty, “A scaling method for priorities in hierarchical structures,” Journal
of Mathematical Psychology, vol. 15, no. 3, pp. 234–281, Jun. 1977. [Online].
Available: http://dx.doi.org/10.1016/0022-2496(77)90033-5

[29] ——, “Absolute and relative measurement with the AHP. the most livable cities
in the United States,” Socio-Economic Planning Sciences, vol. 20, no. 6, pp. 327–
331, 1986. [Online]. Available: http://dx.doi.org/10.1016/0038-0121(86)90043-1

[30] ——, “How to make a decision: the Analytic Hierarchy Process,” European
Journal of Operational Research, vol. 48, no. 1, pp. 9–26, Sept. 1990. [Online].
Available: http://dx.doi.org/10.1016/0377-2217(90)90057-I

[31] ——, “Highlights and critical points in the theory and application of
the Analytic Hierarchy Process,” European Journal of Operational Research,
vol. 74, no. 3, pp. 426–447, May 1994. [Online]. Available: http:
//dx.doi.org/10.1016/0377-2217(94)90222-4

[32] ——, Mathematical Methods of Operations Research. Mineola, NY, USA: Dover
Publications Inc., 2004.

[33] T. L. Saaty and M. Takizawa, “Dependence and independence: from
linear hierarchies to nonlinear networks,” European Journal of Operational
Research, vol. 26, no. 2, pp. 229–237, Aug. 1986. [Online]. Available:
http://dx.doi.org/10.1016/0377-2217(86)90184-0

67 Technical Report IfI-09-06

http://dx.doi.org/10.1016/S0305-0548(03)00041-8
http://msdn.microsoft.com/en-us/magazine/cc300812.aspx
http://msdn.microsoft.com/en-us/magazine/cc300812.aspx
http://hdl.handle.net/1721.1/13513
http://dx.doi.org/10.1109/CIT.2006.71
http://dx.doi.org/10.1016/0377-2217(92)90339-B
http://dx.doi.org/10.1016/0022-2496(77)90033-5
http://dx.doi.org/10.1016/0038-0121(86)90043-1
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1016/0377-2217(94)90222-4
http://dx.doi.org/10.1016/0377-2217(94)90222-4
http://dx.doi.org/10.1016/0377-2217(86)90184-0

References

[34] T. Saaty and L. Vargas, “The legitimacy of rank reversal,” Omega, vol. 12, no. 5,
pp. 513–516, 1984. [Online]. Available: http://dx.doi.org/10.1016/0305-0483(84)
90052-5

[35] R. Sakellariou and V. Yarmolenko, “Job scheduling on the grid: Towards SLA-
based scheduling,” in High Performance Computing and Grids in Action, ser. Ad-
vances in Parallel Computing, L. Grandinetti, Ed. Amsterdam, The Netherlands:
IOS Press, 2008, vol. 16, pp. 207–222.

[36] T. Solymosi and J. Dombi, “A method for determining the weights of criteria: The
centralized weights,” European Journal of Operational Research, vol. 26, no. 1,
pp. 35–41, 1986. [Online]. Available: http://dx.doi.org/10.1016/0377-2217(86)
90157-8

[37] D. Sommerfeld and H. Richter, “A two-tier approach to efficient workflow
scheduling in MediGRID,” in Grid-Technologie in Göttingen - Beiträge zum Grid-
Ressourcen-Zentrum GoeGrid, U. Schwardmann, Ed. Göttingen, Germany:
GWDG, 2009, vol. 74, pp. 39–51. [Online]. Available: http://www.gwdg.de/
forschung/publikationen/gwdg-berichte/gwdg-bericht-74.pdf

[38] Q. Wang, X. Gui, S. Zheng, and Y. Liu, “De-centralized job scheduling
on computational grids using distributed backfilling: Research articles,”
Concurrency and Computation: Practice & Experience, vol. 18, no. 14, pp.
1829–1838, Dec. 2006. [Online]. Available: http://dx.doi.org/10.1002/cpe.1032

[39] R. Whitaker, “Validation examples of the Analytic Hierarchy Process and
Analytic Network Process,” Mathematical and Computer Modelling, vol. 46, no.
7–8, pp. 840–859, Oct. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.
mcm.2007.03.018

[40] V. Yarmolenko and R. Sakellariou, “An evaluation of heuristics for SLA based par-
allel job scheduling,” in Proceedings. 20th International Parallel and Distributed
Processing Symposium. Piscataway, NJ, USA: IEEE, 2006, p. 8 pp.

DEPARTMENT OF INFORMATICS 68

http://dx.doi.org/10.1016/0305-0483(84)90052-5
http://dx.doi.org/10.1016/0305-0483(84)90052-5
http://dx.doi.org/10.1016/0377-2217(86)90157-8
http://dx.doi.org/10.1016/0377-2217(86)90157-8
http://www.gwdg.de/forschung/publikationen/gwdg-berichte/gwdg-bericht-74.pdf
http://www.gwdg.de/forschung/publikationen/gwdg-berichte/gwdg-bericht-74.pdf
http://dx.doi.org/10.1002/cpe.1032
http://dx.doi.org/10.1016/j.mcm.2007.03.018
http://dx.doi.org/10.1016/j.mcm.2007.03.018

	Introduction
	Scheduling Concepts
	Portable Batch System
	Maui Cluster Scheduler
	Service Level Agreements

	Multicriteria Decision Making
	Hierarchy of Criteria
	Saaty's Analytic Hierarchy Process
	Criticism of AHP
	Multiplicative AHP
	Rank-order Centroid

	Decision Making and Scheduling
	AHP for Scheduling
	Utility Computation
	Evaluation with the Hyperbolic Tangent
	Maximization Criteria
	Minimization Criteria
	Practical Considerations

	Direct Mapping

	Conclusions and Outlook

