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This paper analyzes the impact of femtosecond laser pulse irradiation on the crystallinity of silicon

wafers by means of electron backscatter diffraction (EBSD) measurements. EBSD based image

quality maps and orientation imaging microscopy maps are correlated to the grade of the silicon

crystallinity. We analyze the impact of accumulated net laser irradiation originating from a laser

spot overlap that is necessary to process macroscopic areas, e.g., for sulfur doping of

semiconductor devices. Furthermore, we demonstrate that post processing annealing recovers

crystallinity and therefore allows fs-laser processed silicon to be used in semiconductor device

manufacturing. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752454]

Technical progress is increasingly relying on functional-

ized semiconductor surfaces in nearly all fields of applied

science.1 Nanostructuring silicon with femtosecond (fs)-laser

pulses is a method for changing material characteristics like

morphology,2,3 hydrophobicity,4 absorption,5,6 and dop-

ing.7,8 These characteristics find applications in advanced

photovoltaic structures,9 intermediate band photovoltaics,5,10

and near infrared silicon photodiodes.11,12 However, during

fs-laser processing, the crystallinity of the substrate is deter-

iorated.13,14 The reasons are extreme non-equilibrium proc-

esses induced by the intense light-matter interactions,

resulting in a surface layer of amorphous, polymorphic, and

nanocrystalline phases.6,15 This is in contrast to laser treat-

ment with nanosecond laser pulses which leads to classical

melting of a surface layer followed by epitaxial recrystalliza-

tion.13 The loss of crystallinity originating from the fs-laser

treatment decreases the charge carrier life time16 in the sub-

strate and hence the performance of manufactured semicon-

ductor devices. However, under a sulfuric atmosphere,11,12

only pulses in the fs regime are known to incorporate electri-

cally active sulfur for doping purposes. The mechanism of

amorphization of crystalline silicon depends first on the

pulse duration.17 The second significant parameter is the

number of pulses hitting the surface. Lowest crystal deterio-

ration is obtained for single laser pulse processing in which

only one laser pulse is applied per laser spot.18,19 For obtain-

ing macroscopic areas with a homogenous laser induced sur-

face structure and lateral homogenous sulfur doping, it is

necessary that laser spots within a line and adjacent lines

overlap. This work investigates the influence of the required

overlap between subsequent laser pulses on the resulting

amorphization, and methods to obtain optimum crystallinity

on large areas. Electron backscatter diffraction (EBSD) is

used20,21 for mapping the crystallinity on large areas. Previ-

ous transmission electron microscopy (TEM) investiga-

tions11,22,23 offer a very high resolution but are often limited

to rather small regions.

For processing monocrystalline silicon Si-(100) sub-

strates, a commercially available Mantis seed laser from

Coherent and a Spitfire regenerative amplifier from Spectra

Physics with a repetition rate of 10 kHz at a wavelength of

800 nm are used at fluencies of E � 1:6 J=cm2. The sample is

processed in a sulfur hexafluoride (SF6) ambient at a pressure

of p ¼ 0:66 bar. EBSD analysis is performed in a Tescan

Lyra XMU dual beam microscope equipped with an EDAX/

TSL XM4 camera. Data are acquired and processed with the

software package TSL OIM 5. The electron acceleration

voltage is 30 kV, which corresponds to a maximum probing

depth of dmax ¼ 50 nm. Information on crystallinity therefore

is gathered from a surface near layer of this depth. The reso-

lution is optimized to cover a macroscopic area of approxi-

mately 200� 100 lm2. We choose a pixel step pitch of

D ¼ 2 lm at an electron beam spot size of DSpot � 310 nm.

In addition, higher resolution spot checks are performed all

over the sample area with a pixel step pitch of D ¼ 0:1 lm at

a spot size of DSpot � 95 nm to validate that the coarse reso-

lution does not lead to misinterpretations. Therefore, all

amorphous appearing areas could as well consist of grains

smaller than 0:1 lm. An amorphous layer thicker than the

probing depth dmax ¼ 50 nm will lead to randomly colored

pixels in the orientation imaging microscopy (OIM)20 map.

EBSD image quality (IQ) maps allow an even more sensitive

contrast between the amorphous and the crystalline phase.21

The correlation between IQ value and grade of crystallinity

is depicted in Fig. 1, where we map amorphous thin film

layers deposited by plasma enhanced chemical vapor deposi-

tion (PECVD) on top of a monocrystalline silicon substrate.

An increasing thickness of the amorphous film results in a

decreasing IQ value and a darker coloring within the map. A

black gray scale value occurs, when the thickness of the

amorphous film exceeds the probing depth of dmax ¼ 50 nm.

For sample processing, the laser spot is scanned with

different overlaps across the sample with one pulse per spot.

The top row of Figure 2(a) shows a scanning electron
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microscopy (SEM) image of single fs-laser pulses applied

subsequently in a line with a step pitch of L ¼ 150 lm. The

laser spot diameter is measured (intensity 1/e) to be 60 lm

but the surface is modified in a diameter of approximately

160 lm, which is already below the 5 %-intensity level. For

the fluency of E � 1:6 J=cm2, the 1/e-intensity level (corre-

sponding to a fluence of E � 0:6 J=cm2) is near the known

threshold for ablation and recrystallization18 and the 5 %-in-

tensity level (corresponding to a fluence of E � 0:08 J=cm2)

is near the threshold for single shot surface modification or

rather amorphization.23 Within the SEM picture of Fig. 2(a),

these thresholds appear as two rings, although the spot shape

reveals not to be completely concentric circular. Another

striking contrast appears within the area of the overlap.

Exactly, these areas form the main contrast within the EBSD

IQ map in the bottom row of Fig. 2(a), which indicates this

area to be amorphous. The dashed rings in Fig. 2(a) highlight

an area that features a very slight difference in contrast com-

pared to the surrounding area. The position of these rings

corresponds to the above mentioned intensity levels appear-

ing as relief in the SEM image with diameters of 60 lm and

160 lm. This low contrast shows that these two rings consist

of amorphous material less than 10 nm thick. The higher

contrast within the area of the overlap shows that the amor-

phous layer is thicker than 10 nm there. Any other area

within the thin amorphous rings is found to be homoge-

nously white meaning the material is crystalline. Recrystalli-

zation takes place in these areas. This reveals that

amorphization by a subsequent laser pulse in the area of the

overlap plays a more important role than the amorphization

by a single pulse. The grade of amorphization increases with

the overlap. In the bottom row of Fig. 2(b), a row of single

fs-laser pulses with a step pitch of L ¼ 80 lm is mapped via

EBSD IQ and OIM. This step pitch is of interest because

then the spots, where ablation and recrystallization recovers

the substrate’s crystallinity, are very close to each other and

remaining amorphization is at a minimum. Moreover, it is

close enough to modify the surface almost homogenously, in

particular for area scanned samples. The inset within the

EBSD IQ map of Fig. 2(b) shows the homogenously red col-

ored OIM map indicating that no amorphous layer occurs

that exceeds the probing depth. However, the IQ map shows

dark areas indicating thin amorphous layers within the prob-

ing depth. But for this overlapped spots, the depicted struc-

tures feature amorphous material thicker than 10 nm, as it

appears darker than the low contrast rings in the IQ map of

Fig. 2(a). To better understand the “Double-C”-shape of

these darker structures, the dashed circles in Fig. 2(b) mark

the two rings of the original spot as in Fig. 2(a). The smaller

“C”-shape, which is almost a full circle, has a diameter of

60 lm and corresponds to the ablation and recrystallization

spot as the inner ring in Fig. 2(a). The elongated “C”-shape

structure has a lengthwise dimension of about 160 lm and

therefore obviously develops from the outer ring of the origi-

nal single spot. It is not a full circle because the overlap of

FIG. 1. Normalized EBSD IQ value versus the thickness of an amorphous

layer on top of a monocrystalline silicon substrate. The value 1 corresponds

to white pixels within the IQ maps, meaning the measured spot to be crystal-

line; 0 values are black pixels within the IQ maps, meaning the measured

spot to consist of an amorphous layer thicker than the probing depth

dmax ¼ 50 nm.

FIG. 2. Single fs-laser pulse lines with a

step pitch of (a) L ¼ 150 lm and (b)

L ¼ 80 lm. Top row: SEM images; bot-

tom row: EBSD IQ maps. Dashed rings

mark interface boundary area of the

ablation and recrystallization threshold

(inner ring) and the modification thresh-

old (outer ring) which both form a low

contrast within the EBSD IQ map,

meaning this areas to be amorphous with

a thickness less than 10 nm (inset in the

IQ map of (b): OIM map indicating red

areas to be (100) oriented and amor-

phous material to be thinner than the

probing depth).
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the subsequent laser pulse does not cover the whole ring and

amorphization is therefore not intensified all over. The over-

lap area is hit by two subsequent laser pulses and multi shot

amorphization17,23 intensifies the low amorphization that is

already present after a single pulse. That means overlapping

shots lead to an extra amorphization. When we proceed from

the single pulse line of Fig. 2(b) to large area processing, ad-

jacent lines create an additional overlap compared to the

overlap originating from spots within a single line, resulting

again in an extra amorphization. This additional extra

amorphization leads to the EBSD IQ map shown in Fig. 3(a),

where a large fraction of the area is amorphous, displayed in

black. The amorphous layer obviously reaches depths larger

than the probing depth so that even the OIM map switches

its color as can be seen in the inset of Fig. 3(a). Nevertheless,

monocrystalline spots remain. These spots are located in the

centers of the laser spots, where the recrystallisation thresh-

old is exceeded. The fluence of subsequent laser spots, which

hit these monocrystalline spots due to the overlap, is either

below the modification threshold or within the recrystallized

areas. The amorphous material, which is present in the fs-

laser pulse line, is now further intensified by a third and even

a fourth irradiation event due to the overlap. These are rea-

sons why the monocrystalline fraction is clearly smaller on

an area-scanned sample as compared to the single fs-laser

pulse line of Fig 2(b). A substantial improvement of the crys-

tal quality requires optimization of the overlap, or, even bet-

ter, a beam with top hat profile, where no overlap is

necessary. Concerning optoelectronic device fabrication,

annealing processes are common. It is well known that amor-

phous silicon crystallizes at temperatures above

T � 600 �C.24,25 Figure 3(b) shows the same area as imaged

in Fig. 3(a) after annealing at T ¼ 800 �C for t ¼ 30 min. For

identification purpose, focused ion beam (FIB) marks are set

as shown in Fig. 3(b). The EBSD OIM map shows the sub-

strate orientation all over the area. This implies a heavy

reduction of the amorphous layer thickness. Even the EBSD

IQ map of Fig. 3(b) is homogenously lit up, except at the

FIB-marks in the corners of the image. The same effect of

annealing occurs for the line scans of Figs. 2(a) and 2(b) (not

shown here). Obviously, during annealing epitaxial crystal

growth occurred from the substrate, which serves as a

seed.25

In conclusion, when silicon is processed with single

fs-laser pulses, amorphization occurs at the tails of the laser

spots. For large area processing, overlapping laser spots are

applied subsequently. In the overlap regions, several irradia-

tion events with low fluence lead to a heavy extra amorph-

ization. Nevertheless, monocrystalline areas always exist for

the used process parameters at the centers of the individual

laser spots. By post processing annealing, the complete area

can be recrystallized to the substrate orientation. Our results

show how to improve the crystal quality of fs-laser struc-

tured functionalized semiconductor material.
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FIG. 3. EBSD maps of a monocrystal-

line silicon sample after an area scan

with fs-laser pulses (same overlap as in

Fig. 2(b)). (a) IQ map of the non-

annealed sample. (b) IQ map of the same

sample after annealing at T ¼ 800 �C for

t ¼ 30 min. Insets: OIM maps indicating

red areas to be (100) oriented.
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