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Abstract

Modal logics of strategic ability usually focus on capturing what it means for an
agent to have a feasible strategy that brings about some property. While there is a
general agreement on abilities in scenarios where agents have perfect information,
the right semantics for ability under incomplete information is still debated upon.
Epistemic Temporal Strategic Logic, an offspring of this debate, can be treated as
a logic that captures properties of agents’ rational play.
In this paper, we provide a semantics ofETSL that is more compact and compre-
hensible than the one presented in the original paper by van Otterloo and Jonker.
Second, we useETSL to show that a rational player knows that he will succeed
if, and only if, he knows how to play to succeed – while the sameis not true for
rational coalitions of players.

Keywords: multi-agent systems, theories of agency, game-theoretical founda-
tions, modal logic.

1 Introduction

Modal logics of strategic ability usually focus on capturing what it means for an agent
to have a feasible strategy that brings about some property.While there is a general
agreement on abilities in scenarios where agents have perfect information, the right
semantics for ability under incomplete information is still debated upon. Epistemic
Temporal Strategic Logic, proposed by van Otterloo and Jonker [19], is an offspring of
this debate, but one that leads in an orthogonal direction tothe mainstream solutions.
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Reasoning about Abilities of Agents

The central operator ofETSL can be read as: “ifA play rationally to achieveϕ (mean-
ing: they never play a dominated strategy), they will achieveϕ”. Thus, one may treat
ETSL as a logic that captures properties of agents’ rational playin a sense.

This paper contains two main messages. First, we provide a semantics ofETSL that is
more compact and comprehensible than the one presented in [19]. ETSL is underpinned
by several exciting concepts. Unfortunately, its semantics is also quite hard to read
due to a couple non-standard solutions and a plethora of auxiliary functions, which is
probably why the logic never received the attention it deserves. Second, and perhaps
more importantly, we useETSL to show that a rational player knows that he will succeed
if, and only if, he knows how to play to succeed – while the sameis not true for rational
coalitions of players.

2 Reasoning about Abilities of Agents

Modal logics of strategic ability [1, 2, 14] form one of the fields where logic and game
theory can successfully meet. The logics have clear possible worlds semantics, are
axiomatizable, and have some interesting computational properties. Moreover, they are
underpinned by intuitively appealing conceptual machinery for modeling and reasoning
about systems that involve multiple autonomous agentsas the basic concepts originate
from temporal logic (i.e., the logic of time and computation), and classical game theory,
which emerged in an attempt to give precise meaning to common-sense notions like
choices, strategies, or rationality – and to provide formalmodels of interaction between
autonomous entities, that could be used in further study.

2.1 ATL: Ability in Perfect Information Games

Alternating-time Temporal Logic (ATL ) [1, 2] was invented to capture properties of
open computer systems(such as computer networks), where different components can
act autonomously, and computations in such systems are effected by their combined
actions. Alternatively,ATL can be seen as a logic for systems involving multiple agents,
that allows one to reason about what agents can achieve in game-like scenarios. Since
ATL does not include incomplete information in its scope, it canbe seen as a logic for
reasoning about agents who always have perfect informationabout the current state of
affairs.

The language ofATL generalizes the branching time temporal logicCTL [3], in the
sense that path quantifiers are replaced with so calledcooperation modalities. Formula
〈〈A〉〉ϕ, whereA is a coalition of agents, expresses thatA have a collective strategy
to enforceϕ. ATL formulae include temporal operators: “g” (“in the next state”),�
(“always from now on”) andU (“until”). Operator♦ (“now or sometime in the future”)
can be defined as♦ϕ ≡ ⊤U ϕ. Like in CTL, every occurrence of a temporal operator is
preceded by exactly one cooperation modality〈〈A〉〉.1 Formally, the recursive definition

1 The logic to which such a syntactic restriction applies is sometimes called“vanilla” ATL (resp. “vanilla”
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PLAYING RATIONALLY AND KNOWING HOW TO PLAY

of ATL formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ

ExampleATL properties are:〈〈jamesbond〉〉♦win (James Bond has an infallible plan
to eventually win) and〈〈jamesbond, bondsgirl〉〉funU shot-at (Bond and his girlfriend
have a collective way of having fun until someone shoots at them).

A number of semantics have been defined forATL , most of them equivalent [4]. In
this paper, we use a variant ofconcurrent game structures,

M = 〈Agt, St,Π, π, Act, d, o〉,

which includes a nonempty finite set of all agentsAgt = {1, ..., k}, a nonempty set
of statesSt, a set of atomic propositionsΠ, a valuation of propositionsπ : Π →
P(St), and a nonempty set of (atomic) actionsAct. Functiond : Agt × St→ P(Act)
defines actions available to an agent in a state, ando is a deterministic transition function
that assigns an outcome stateq′ = o(q, α1, . . . , αk) to stateq, and a tuple of actions
〈α1, . . . , αk〉 that can be executed byAgt in q. A strategyof agenta is a conditional
plan that specifies whata is going to do for every possible situation (sa : St → Act
such thatsa(q) ∈ d(a, q)).2 A collective strategy(called also astrategy profile) SA for
a group of agentsA is a tuple of strategiesSa, one per agenta ∈ A. A pathΛ in M is
an infinite sequence of states that can be effected by subsequent transitions, and refers
to a possible course of action (or a possible computation) that may occur in the system;
by Λ[i], we denote theith position on pathΛ. Functionout(q, SA) returns the set of all
paths that may result from agentsA executing strategySA from stateq onward:

out(q, SA) = {λ = q0q1q2... | q0 = q and for everyi = 1, 2, ... there exists a tuple
of actions〈αi−1

1 , ..., αi−1
k 〉 such thatαi−1

a = Sa(qi−1) for eacha ∈ A, αi−1
a ∈

d(a, qi−1) for eacha /∈ A, ando(qi−1, α
i−1
1 , ..., αi−1

k ) = qi}.

Now, the semantics ofATL formulae can be given via the following clauses:

CTL etc.).
2 This is a deviation from the original semantics ofATL , where strategies assign agents’ choices tose-

quencesof states, which suggests that agents can recall the whole history of each game. Both types of
strategies yield equivalent semantics for “vanilla”ATL [16]. However, they donot result in equivalent log-
ics for ATL * nor for mostATL variants with incomplete information. We use “memoryless”strategies here
because they pose less conceptual difficulties when definingthe semantics. Moreover, model checking strate-
gic abilities of agents with perfect recall and incomplete information is believed undecidable [2, 16], which
undermines practical importance of these logics.
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Reasoning about Abilities of Agents

M, q |= p iff q ∈ π(p) (wherep ∈ Π);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ andM, q |= ψ;

M, q |= 〈〈A〉〉 gϕ iff there is a collective strategySA such that, for everyΛ ∈
out(q, SA), we haveM,Λ[1] |= ϕ;

M, q |= 〈〈A〉〉�ϕ iff there existsSA such that, for everyΛ ∈ out(q, SA), we have
M,Λ[i] for everyi ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there isSA st. for everyΛ ∈ out(q, SA) there isi ≥ 0, for
whichM,Λ[i] |= ψ, andM,Λ[j] |= ϕ for every0 ≤ j < i.

The complexity ofATL model checking is linear in the number of transitions in the
model and the length of the formula [2], which suggests that practical applications may
be possible.

2.2 Strategic Ability and Incomplete Information

ATL is unrealistic in a sense: real-life agents seldom possess complete information
about the current state of the world.Alternating-time Temporal Epistemic Logic(ATEL) [17,
18] enriches the picture with an epistemic component, adding to ATL operators for rep-
resenting agents’ knowledge:Kaϕ reads as “agenta knows thatϕ”. Additional oper-
atorsEAϕ, CAϕ, andDAϕ refer tomutual knowledge(“everybody knows”),common
knowledge, anddistributed knowledgeamong the agents fromA. Models for ATEL

extend concurrent game structures with epistemic accessibility relations∼1, ...,∼k⊆
Q×Q (one per agent) for modeling agents’ uncertainty; the relations are assumed to be
equivalences. We will call such modelsconcurrent epistemic game structures(CEGS)
in the rest of the paper. Agenta’s epistemic relation is meant to encodea’s inability to
distinguish between the (global) system states:q ∼a q

′ means that, while the system is
in stateq, agenta cannot determine whether it is not inq′. Then:

M, q |= Kaϕ iff ϕ holds for everyq′ such thatq ∼a q′.

Relations∼EA, ∼CA and∼DA , used to model group epistemics, are derived from the
individual relations of agents fromA. First,∼EA is the union of relations∼a, a ∈ A.
Next,∼CA is defined as the transitive closure of∼EA. Finally,∼DA is the intersection of
all the∼a, a ∈ A. The semantics of group knowledge can be defined as below (for
K = C,E,D):

M, q |= KAϕ iff ϕ holds for everyq′ such thatq ∼K
A q

′.

Example 1 (Gambling Robots) Two robots (a and b) play a simple card game.
The deck consists of Ace, King and Queen (A,K,Q); it is assumed thatA beatsK,K
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PLAYING RATIONALLY AND KNOWING HOW TO PLAY

q0

qw ql
win

qAK qAQ qKQ qKA qQA qQKa a ab b

b

keep,nop keep,nop

keep,nop

keep,nopkeep,nopkeep,chg keep,chg

keep,chg

keep,chg

exch,nop exch,nop

exch,nop

exch,nop

exch,nop

exch,chg exch,chg

exch,chg

keep,chg
exch,nop
exch,chg

exch,chg

keep,nop
keep,chg
exch,chg

Figure 1: Gambling Robots game. Arrows represent possible transitions of the sys-
tem (labeled with tuples of agents’ actions); dashed lines connect states that are indis-
cernible for particular agents.

beatsQ, butQ beatsA. First, the “environment” agentenv deals a random card to
both robots (face down), so that each player can see his own hand, but he does not know
the card of the other player. Then robota can exchange his card for the one remaining
in the deck (actionexch), or he can keep the current one (keep). At the same time,
robotb can change the priorities of the cards, so thatA becomes better thanQ (action
chg) or he can do nothing (nop). If a has a better card thanb after that, then a win is
scored, otherwise the game ends in a “losing” state. ACEGSfor the game is shown in
Figure 1; we will refer to the model asM0 throughout the rest of the paper. Note that
M0, q0 |= 〈〈a〉〉♦win (and evenM0, q0 |= Ka〈〈a〉〉♦win), although, intuitively,a has no
feasible way of ensuring a win. This is a fundamental problemwith ATEL, which we
discuss briefly below.

It was pointed out in several places that the meaning ofATEL formulae is somewhat
counterintuitive [6, 7, 11]. Most importantly, one would expect that an agent’s abil-
ity to achieve propertyϕ should imply that the agent has enough control and knowl-
edge toidentifyandexecutea strategy that enforcesϕ (cf. also [16]). This problem is
closely related to the well known distinction between knowledgede reand knowledge
de dicto[15, 12, 13].

A number of frameworks were proposed to overcome this problem [6, 7, 16, 11,
19, 5], yet none of them seems the ultimate definitive solution. Most of the solutions
agree that onlyuniform strategies (i.e., strategies that specify the same choicesin in-
distinguishable states) are really executable. However, in order to identify a successful
strategy, the agents must consider not only the courses of action, starting from the cur-
rent state of the system, but also from states that are indistinguishable from the current
one. There are many cases here, especially when group epistemics is concerned: the
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Reasoning about Abilities of Agents

agents may have common, ordinary or distributed knowledge about a strategy being
successful, or they may be hinted the right strategy by a distinguished member (the
“boss”), a subgroup (“headquarters committee”) or even another group of agents (“con-
sulting company”). Most existing solutions [16, 19, 5] treat only some of the cases
(albeit rather in an elegant way), while others [7, 11] offera more general treatment of
the problem at the expense of an overblown logical language (which is by no means
elegant).

Recently, a new, non-standard semantics for ability under incomplete information
has been proposed in [9, 10], which we believe to be both intuitive, general and elegant.
We summarize the proposal in the next section, as we will use it further to capture
strategic abilities of agents.

2.3 An Intuitive Semantics for Ability and Knowledge

When analyzing consequences of their strategies, agents must consider also the out-
come paths starting from states other than the current state– namely, all states that
look the sameas the current state. Thus, a property of a strategy being successful with
respect to goalϕ is not local to the current state;the samestrategy must be success-
ful in all “opening” states being considered. In [9, 10], a non-standard semantics for
the logic of strategic ability and incomplete information has been proposed, which we
believe to be finally satisfying. In the semantics, formulaeare interpreted oversets of
statesrather than single states. This reflects the intuition that the “constructive” ability
to enforceϕ means that the agents in question have a single strategy thatbrings about
ϕ for all possible initial situations – and not that a successful strategy exists foreach
initial situation (because those could be different strategies for different situations).

Moreover, we introduce “constructive knowledge” operatorsKa, one for each agent
a, that yield the set of states, indistinguishable from the current state froma’s perspec-
tive. Constructive common, mutual, and distributed knowledge is formalized via oper-
atorsCA,EA, andDA. The language, which we tentatively call Constructive Strategic
Logic (CSL) here, is defined as follows:

ϕ ::= p | ¬ϕ | ∼ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | CAϕ | EAϕ | DAϕ |
CAϕ | EAϕ | DAϕ.

Individual knowledge operators can be derived as:Kaϕ ≡ E{a}ϕ andKaϕ ≡ E{a}ϕ.
Moreover, we defineϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), andϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

The models are concurrent epistemic game structures again,and we consider only
memoryless uniform strategies. Letimg(q,R) be the image of stateq with respect to
relationR, i.e. the set of all statesq′ such thatqRq′. Moreover, we useout(Q,SA) as
a shorthand for∪q∈Qout(q, SA), andimg(Q,R) as a shorthand for∪q∈Qimg(q,R).
The notion of a formulaϕ being satisfied by a set of statesQ ⊆ St in a modelM is
given through the following clauses.

DEPARTMENT OF INFORMATICS 6



PLAYING RATIONALLY AND KNOWING HOW TO PLAY

M,Q |= p iff q ∈ π(p) for everyq ∈ Q;

M,Q |= ¬ϕ iff M,Q 6|= ϕ;

M,Q |=∼ϕ iff M, q 6|= ϕ for everyq ∈ Q;

M,Q |= ϕ ∧ ψ iff M,Q |= ϕ andM,Q |= ψ;

M,Q |= 〈〈A〉〉 gϕ iff there existsSA such that, for everyΛ ∈ out(Q,SA), we have
thatM, {Λ[1]} |= ϕ;

M,Q |= 〈〈A〉〉�ϕ iff there existsSA such that, for everyΛ ∈ out(Q,SA) and
i ≥ 0, we haveM, {Λ[i]} |= ϕ;

M,Q |= 〈〈A〉〉ϕU ψ iff there existsSA such that, for everyΛ ∈ out(Q,SA), there is
i ≥ 0 for whichM, {Λ[i]} |= ψ andM, {Λ[j]} |= ϕ for every
0 ≤ j < i;

M,Q |= KAϕ iff M, q |= ϕ for everyq ∈ img(Q,∼K
A) (whereK = C,E,D);

M,Q |= K̂Aϕ iff M, img(Q,∼K
A) |= ϕ (where K̂ = C,E,D and K =

C,E,D, respectively).

We will also writeM, q |= ϕ as a shorthand forM, {q} |= ϕ, and this is the notion
of satisfaction (in single states) that we are ultimately interested in – but that notion is
defined in terms of the satisfaction in sets of states.

Now,Ka〈〈a〉〉ϕ expresses the fact thata has a single strategy that enforcesϕ from
all states indiscernible from the current state, instead of stating thatϕ can be achieved
from everysuch stateseparately(whatKa〈〈a〉〉ϕ says, which is very much in the spirit
of standard epistemic logic). More generally, the first kindof formulae refer tohaving
a strategy “de re” (i.e. having a successful strategy and knowing the strategy), while
the latter refer tohaving a strategy “de dicto”(i.e. only knowing thatsomesuccessful
strategy is available; cf. [7]). Note also that the propertyof having a winning strategy
in the current state (but not necessarily even knowingabout it) is simply expressed
with 〈〈a〉〉ϕ. Capturing different ability levels of coalitions is analogous, with various
“epistemic modes” of collective recognizing the right strategy.

Example 2 Robota has no winning strategy in the starting state of the game:M0, q0 |=
¬〈〈a〉〉♦win, which implies that it has neither a strategy “de re” nor “de dicto” (M0, q0 |=
¬Ka〈〈a〉〉♦win∧¬Ka〈〈a〉〉♦win). On the other hand, he has a successful strategy inqAK
(just playkeep) and he knows he has one (because another action,exch, is bound to
win in qAQ); still, the knowledge is not constructive, sincea does not know which strat-
egy is the right one in the current situation:M0, qAK |= 〈〈a〉〉 gwin ∧Ka〈〈a〉〉 gwin ∧
¬Ka〈〈a〉〉 gwin. Also,b’s playingchg enforces a transition toqw for bothqAQ, qKQ, so
M0, qAQ |= Kb〈〈b〉〉 gwin (robotb has a strategy “de re” to enforce a win fromqAQ).

Finally, qQK |= 〈〈a, b〉〉♦win ∧ E{a,b}〈〈a, b〉〉♦win ∧ C{a,b}〈〈a, b〉〉♦win
∧¬E{a,b}〈〈a, b〉〉♦win∧D{a,b}〈〈a, b〉〉♦win: in qQK , the robots have a collective strategy
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to enforce a win, and they all know it (they even have common knowledge about it); on
the other hand, they cannot identify the right strategy as a team – they can only see one
if they share knowledge at the beginning (i.e., inqQK ).

3 Epistemic Temporal Strategic Logic

A very interesting variation on the theme of combining strategic, epistemic and tempo-
ral aspects of a multi-agent system was proposed in [19]. Epistemic Temporal Strategic
Logic (ETSL) digs deeper in the repository of game theory, and focuses onthe concept
of undominated strategies. Thus, its variant of cooperation modalities has a different
flavor than the ones fromATL , ATEL, CSL etc. In a way, formula〈〈A〉〉ϕ in ETSL can be
summarized as:

“If A play rationally to achieveϕ (meaning: they never play a dominated strategy),
they will achieveϕ”.

ETSL can be treated as a logic that describes the outcome ofrational playunder incom-
plete information,3 in the same way asCSL can be seen as a logic that captures agents’
strategic abilities (regardless of whether the agents playrationally or not). The main
claim we propose in this paper is that a rational player knowsthat he will succeed if,
and only if, he has a strategy “de re” to succeed – while the same is not true for rational
coalitions of players. However, before we present and discuss the claim formally in
Section 4, we must re-write the semantics ofETSL in several respects.

First, the original semantics ofETSL is defined only for finite turn-based acyclic
game models with epistemic accessibility relations, and wewill generalize the seman-
tics to concurrent epistemic game structures. Next, the semantics comes with a plethora
of auxiliary functions and definitions (and a couple of omissions), which makes it rather
hard to read. In fact, this is probably the reason why the logic never received the atten-
tion it deserves, and it is definitely worth trying to make thesemantics more compact.
Finally, the authors of [19] propose that a model should include also a “grand strategy
profile” SAgt, defining the actual strategies of all agents (or at least constraining them
in some way, since non-deterministic strategies are allowed in ETSL). While the idea
seems interesting in itself (a similar idea was later exploited e.g. in [8] to allow for
explicit analysis of strategies and reasoning about strategy revision), we will show that
it does not introduce a finer-grained analysis of “vanilla”ETSL formulas: if a formula
holds inM, q for one strategy profile, it holds inM, q for all the other strategy profiles,
too. Moreover, it can be proved that the semantics of cooperation modalities〈〈A〉〉 is the
same regardless of whether we consider non-deterministic strategies or not. In conse-

3 We emphasize that this is a specific notion of rationality (i.e., agents are assumed toplay only un-
dominated strategies). Game theory proposes several other rationality criteriaas well, based e.g. on Nash
equilibrium, dominant strategies, or Pareto efficiency. Infact, it is easy to imagineETSL-like logics based on
these notions instead.
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PLAYING RATIONALLY AND KNOWING HOW TO PLAY

quence, we will be able to show a “vanilla”ETSL semantics expressed entirely in terms
of concurrent epistemic game structures and their states.

3.1 The Semantics Made Easier to Read

Formulae ofETSL come with no restriction with respect to grouping of temporal oper-
ators:

ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈〈A〉〉ϕ | gϕ | �ϕ | ϕU ψ | Kaϕ.

After some re-writing (and having it generalized to generalgame structures, not only
turn-based trees), the semantics can be given as follows. Strategies are allowed to be
non-deterministic, i.e.Sa : St → P(Act).4 We require strategies to be uniform, al-
though [19] does not do it explicitly (we take it as a simple omission, because otherwise
many claims in that paper seem to be false). A collective strategy (strategy profile)SA
is a tuple of strategies, one per agent fromA. S0

a is the “neutral strategy” with no restric-
tion ona’s actions (S0

a(q) = Act for eachq ∈ St), and strategy profileS0
A assigns neu-

tral strategies to agents fromA. Moreover, we generalize functionout(q, SA) to handle
nondeterministic strategies too; inout′(q, SA), “αi−1

a = Sa(qi−1)” is replaced with
αi−1
a ∈ Sa(qi−1). Note that, for deterministicSA, we haveout′(q, SA) = out(q, SA).

Now, the semantics can be given through the following clauses (the semantics forp,¬ϕ
andϕ ∧ ψ is analogous to the one presented in Section 2.1):

M,SAgt, q |= 〈〈A〉〉ϕ iff for all strategies TA, undominated wrtq, ϕ, we have
M, (TA, S

0
Agt\A), q |= ϕ;

M,SAgt, q |= gϕ iff for every Λ ∈ out′(q, SAgt) we haveM,SAgt,Λ[1] |= ϕ;

M,SAgt, q |= �ϕ iff for every Λ ∈ out′(q, SAgt) and i ≥ 0 we have
M,SAgt,Λ[i] |= ϕ;

M,SAgt, q |= ϕU ψ iff for every Λ ∈ out′(q, SAgt) there is i ≥ 0 such that
M,SAgt,Λ[i] |= ψ and for allj such that0 ≤ j < i we have
M,SAgt,Λ[j] |= ϕ;

M,SAgt, q |= Kaϕ iff for all q ∼a q′ we haveM, (SAgt(a), S
0
Agt\{a}), q

′ |= ϕ.

Definition 1 StrategySA dominatesTA with respect to formulaϕ, modelM , and state
q, if SA achievesϕ better thenTA, i.e. iff:

1. for every q′ such thatq ∼A q′: if M, (TA, S
0
Agt\A), q′ |= ϕ then also

M, (SA, S
0
Agt\A), q′ |= ϕ, and

2. there existsq′ such that q ∼A q′, and M, (SA, S
0
Agt\A), q′ |= ϕ, and

M, (TA, S
0
Agt\A), q 2 ϕ.

4 To preserve seriality (“time flows forever”), we assume thatSa(q) 6= ∅ for all q ∈ St.
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Remark 1 Definition 1 uses epistemic relation∼A. However, epistemic accessibility
relations are defined only for individual agents in [19], which is perhaps another omis-
sion. In this study, we take the liberty to fix∼A as∼EA.

We also point out thatETSL can be extended with collective epistemic operators
EA, CA, DA in a straightforward manner.

Example 3 Consider the gambling robots again. Robota has two undominated strate-
gies wrt gwin,M, qAK : namely, to playexch in both qAK , qAQ, or to playkeep in
both (other choices do not matter). Since playingexch fails in qAK , so: M0, qAK 6|=
〈〈a〉〉 gwin. Furthermore, playingkeep is the only undominated strategy inqKQ and
qKA (and it succeeds only inqKQ). Thus,M0, qKQ |= 〈〈a〉〉 gwin, andM0, qKA 6|=
〈〈a〉〉 gwin. Hence,M0, qKQ 6|= Ka〈〈a〉〉 gwin.

3.2 A Few Properties

In this section, we present several properties ofETSL formulae that will allow us to give
an even simpler semantic definition of “vanilla”ETSL.

Proposition 2 For every “vanilla” ETSL formulaϕ, concurrent epistemic game struc-
tureM , and stateq in M : M,SAgt, q |= ϕ iff M,S′

Agt, q |= ϕ for any pair of “grand”
strategy profilesSAgt, S

′
Agt.

Proof. By induction on the structure ofϕ. Note that it is sufficient to prove the impli-
cation one way, as the choice ofSAgt, S

′
Agt is completely arbitrary.

Caseϕ ≡ p: M,SAgt, q |= p, soq ∈ π(q), soM,S′
Agt, q |= p.

Caseϕ ≡ ¬ψ: M,SAgt, q |= ¬ψ, soM,SAgt, q 6|= ψ, so (by induction hypothesis)
M,S′

Agt, q 6|= ψ, soM,S′
Agt, q |= ¬ψ. (As the choice ofSAgt, S

′
Agt was com-

pletely arbitrary, the implication holds the other way too.)

Caseϕ ≡ ψ1 ∧ ψ2: analogous.

Caseϕ ≡ 〈〈A〉〉 gψ: M,SAgt, q |= 〈〈A〉〉 gψ iff M, (TA, S
0
Agt\A),Λ[1] |= ϕ for all

undominatedTA andΛ ∈ out′(q, (TA, S
0
Agt\A)). Note that the latter condition

does not refer toSAgt, soM,S′
Agt, q |= 〈〈A〉〉 gψ too.

Casesϕ ≡ 〈〈A〉〉�ψ andϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.

Caseϕ ≡ Kaψ: M,SAgt, q |= Kaψ, soM, (SAgt(a), S
0
Agt\{a}), q

′ |= ψ for all q ∼a

q′. By induction hypothesis, alsoM, (S′
Agt(a), S

0
Agt\{a}), q

′ |= ψ for all q ∼a q′,
soM,S′

Agt, q |= Kaψ.

�

DEPARTMENT OF INFORMATICS 10



PLAYING RATIONALLY AND KNOWING HOW TO PLAY

Remark 3 We point out that restricting the scope of Proposition 2 to “vanilla” ETSL

formulae is important. In particular, the epistemic opertor Ka has a non-standard
interpretation when the full language ofETSL is considered.

Proposition 4 LetΦ ≡ gψ,�ψ, or ψ1 U ψ2 whereψ, ψ1, ψ2 are “vanilla” ETSL for-
mulae. Moreover, let|Φ| denote the set of paths for whichΦ holds; formally,| gψ| =
{Λ |M,Λ[1] |= ψ}, |�ψ| = {Λ | ∀iM,Λ[i] |= ψ}, and
|ψ1 U ψ2| = {Λ | ∃i(M,Λ[i] |= ψ2 ∧ ∀0≤j<iM,Λ[j] |= ψ1}.

Then,SA dominatesTA wrt Φ,M , andq iff:

1. for everyq′, q ∼EA q′: if out(q′, TA) ⊆ |Φ| then alsoout(q′, SA) ⊆ |Φ|, and

2. there existsq′, q ∼EA q′, such thatout(q′, SA) ⊆ |Φ| andout(q′, TA) 6⊆ |Φ|.

Proof. Straightforward from the definition. �

Remark 5 Note that dominance can be characterized in an even more compact way.
Let succq,Φ(SA) = {q ∈ img(q,∼EA) | out(q, SA) ⊆ |Φ|} be the set of states from
img(q,∼EA), for whichsa succeeds to enforceΦ. Now,SA dominatesTA wrt Φ,M, q
iff succq,Φ(TA)  succq,Φ(SA).

Proposition 6 Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 whereψ, ψ1, ψ2 are “vanilla” ETSL

formulae. StrategyTA is dominated wrtΦ,M, q by a strategySA iff it is dominated wrt
Φ,M, q by adeterministicstrategyS′

A.

Proof. ⇒: LetTA be dominated bySA (wrt ϕ,M, q). We construct the deterministic
strategyS′

A by fixing arbitrary (uniform) choices out ofSA. Formally, for every agent
a ∈ A and abstraction classimg(q′,∼a) ⊆ St such thatSa(q′) = {α, α′, ...}, we fix
S′
a(q

′′) = α for all q′′ ∈ img(q′,∼a). (By uniformity of SA, we haveα ∈ Sa(q
′′) for

all q′′ ∈ img(q′,∼a), soS′
A is a valid strategy.) First, this enforces uniformity ofS′

A.
Second,out(q̄, S′

A) ⊆ out(q̄, SA) for all q̄ ∈ St (by definition ofout). Thus, we can
use Proposition 4 to show thatS′

A dominatesTA, which concludes the proof.

⇐: Straightforward. �

Proposition 7 Let Φ be as above. Then,M,SAgt, q |= 〈〈A〉〉Φ iff for all deterministic
strategiesTA, undominated wrtΦ, we haveM, (TA, S

0
Agt\A), q |= Φ.

Proof. ⇒: Straightforward.

⇐: Assume thatM, (TA, S
0
Agt\A), q |= Φ for all deterministic strategiesTA, undom-

inated wrtΦ, and suppose that there is a nondeterministic undominatedSA such that
M, (SA, S

0
Agt\A), q 6|= Φ. Let us fix a deterministic uniform strategyS′

A out of SA
in a similar way as in Proposition 6. Now,out(q̄, S′

A) ⊆ out(q̄, SA) for all q̄ ∈ St,
soout(q′, SA) ⊆ |Φ| impliesout(q′, S′

A) ⊆ |Φ| (S′
A is never worse thanSA wrt Φ).

Moreover,out(q, S′
A) ⊆ |Φ| andout(q, SA) 6⊆ |Φ|. By Proposition 4,S′

A dominates
SA, soSA is dominated – a contradiction. �
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3.3 ETSL in Terms of Concurrent Epistemic Game Structures

We have shown that, for “vanilla”ETSL, strategies do not have to be referred explicitly
in the interpretation of formulae (Propositions 2 and 4). Moreover, we can restrict
the set of considered strategies to deterministic strategies (Propositions 6 and 7). In
consequence, we can express the semantics of “vanilla”ETSL equivalently inATL -like
fashion:

M, q |= 〈〈A〉〉 gϕ iff for every strategySA, undominated wrtq, gϕ, and everyΛ ∈
out(q, SA), we have thatM,Λ[1] |= ϕ;

M, q |= 〈〈A〉〉�ϕ iff for every strategySA, undominated wrtq,�ϕ, and everyΛ ∈
out(q, SA) andi ≥ 0 we haveM,Λ[i] |= ϕ;

M, q |= 〈〈A〉〉ϕU ψ iff for every strategySA, undominated wrtq, ϕU ψ, and every
Λ ∈ out(q, SA), there isi ≥ 0 such thatM,Λ[i] |= ψ and for all
j such that0 ≤ j < i we haveM,Λ[j] |= ϕ.

Only uniform deterministic strategies are taken into account. The semantics ofp,
¬ϕ, ϕ ∧ ψ, and the epistemic operators is the same as forATL andATEL.

4 Playing Rationally vs. Knowing how to Play

We can finally present the main result of this paper, namely, that a rational player knows
that he will succeed if, and only if, he has a strategy “de re” to succeed. The result holds
under the assumption that the model is finite,5 or more generally, that it includes at least
one undominated strategy.

Moreover, we show that having common knowledge how to succeed is, in general, a
stronger property than knowing that one will succeed for rational coalitions of players.
That is, if rational agents have common knowledge about a winning strategy, then they
have common knowledge that they will succeed – but the converse is not true any more.
Surprisingly enough, it turns out that the relationship is strictly reverse for distributed
knowledge: if a rational coalition has distributed knowledge that it will succeed, then it
has distributed knowledge about a winning strategy – but notnecessarily the other way
around. For mutual knowledge, the relationship holds neither way.

In what follows, we use|=ETSL and|=CSL to denote theETSL andCSL satisfaction
relation, respectively.

4.1 Rational Play of Individual Agents

We begin with two important lemmas.

5 We use the term “finite model” to denote aCEGSwith afinite set of statesSt.
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Lemma 8 Given a finite modelM , stateq in M , formulaΦ and agenta, there is a
strategysa which is undominated wrtM, q,Φ.

Proof. First, we consider the simpler case when the set of actionsAct is finite. In such
a case, the set of strategies is also finite, and the dominancerelation is transitive and
antireflexive. Suppose that every strategy is dominated; then, there must be a strategy
which is dominated by itself – a contradiction.

We sketch the proof for infiniteAct as follows. We partition the infinite set of strate-
gies into equivalence classes, such that strategies in the same class have the same out-
come paths for every stateq (i.e.,sa ≈ ta iff ∀qout(q, sa) = out(q, ta)). Obviously, if
sa dominatesta, then all strategiess′a ≈ sa dominateta too. Now, at every stateq (and
therefore at every point on a path fromout(q′, sa)) there is a finite number of possible
sets of successor states (the actual set being determined bythe choicesa(q)). Moreover,
the same choice (and hence a set of successors) must be taken at every further occur-
rence of the same stateq on a path, sincesa is a memoryless strategy. In consequence,
there is only a finite number of different sets of outcome paths, and hence a finite num-
ber of the equivalence classes. Again, dominance is transitive and antireflexive, so an
undominated strategy must exist. �

Remark 9 Note that the result in Lemma 8 does not extend toCEGSwith infinite state
spaces. Consider the game of “Fuzzy Blackjack” (called so all the more because our
robots play it usually after having consumed too much machine oil). Only a single
player is necessary, and we use positive real numbers as states and actions (i.e.,St =
Act = R+). When the player chooses a number in stateq, the number is added to the
state:o(q, α) = q + α. The values below1 are the winning ones, i.e.π(win) = (0, 1)
(it should be21, but this would make the game too complicated for a drunken robot).
Moreover, the robot cannot distinguish between the states below 1: q ∼a q′ for all
q, q′ ∈ (0, 1). Now, there is no undominated strategy wrt0.5, gwin.

To prove this, suppose that a strategysa is undominated. The strategy is uniform,
so sa(q) = α for someα ∈ R+ and all q ∈ (0, 1). Obviously,α ∈ (0, 1), be-
cause elsesa never succeeds. Now, the set of states in whichsa is successful is:
succ

0.5, gwin(sa) = (0, 1 − α). Let ta(q) = q + α/2. Now, succ
0.5, gwin(ta) =

(0, 1 − α/2) ! succ0.5,Φ(sa) – a contradiction. Note also that:

• If we replaceR+ with the set of positive rational numbers, the result is the same.
So, there may be no undominated strategies even when we restrict St andAct to
countable sets.

• In order to show the same for countableSt andfiniteAct, it is sufficient to modify
the example so thatAct = {0, 1, call}, and the initial state and every subsequent
actionα = 0, 1 are simply stored in the resulting state. Nowo(q, call) takes
the initial stateq0 and the string of0s and1sα1, ..., αn stored inq, and returns
q′ = q0 + (0.α1...αn1)2. For such a game, there is no undominated strategy wrt
0.5,♦win.
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Lemma 10 GivenM, q,Φ, a, if there is an undominated strategy wrtM, q,Φ, then
there is also an undominated strategy wrtM, q′,Φ for everyq′ ∈ img(q,∼a).

Proof. Take anysa undominated wrtM, q,Φ (*). Suppose now thatsa is dominated
by some strategyta wrt another stateq′ ∈ img(q,∼a) (**).

1. By (*) and Prop. 4:∀q′′∈img(q,∼a) (out(q′′, ta) ⊆ |Φ| ⇒ out(q′′, sa) ⊆ |Φ|).

2. By (**) and Prop. 4:∃q′′∈img(q′,∼a) (out(q′′, ta) ⊆ |Φ| ∧ out(q′′, sa) 6⊆ |Φ|).

Moreover,img(q,∼a) = img(q′,∼a) because is∼a is an equivalence relation – which
gives a contradiction between (1) and (2). �

Remark 11 We note that Lemma 10 may hold even for indistinguishabilityrelations
that are not equivalences. In fact, it is sufficient to require that∼a is transitive. In that
case,q′ ∈ img(q,∼a) and q′′ ∈ img(q′,∼a) implies thatq′′ ∈ img(q,∼a), and we
also get the contradiction.

We are ready to prove the main claim of this paper now.

Theorem 12 Let us consider only finite models, and formulaeΦ ≡ gψ,�ψ, or
ψ1 U ψ2 whereψ, ψ1, ψ2 are “vanilla” ETSL formulae. An agent has a strategy “de
re” to enforceΦ if, and only if, he knows that his rational play will bring about Φ.
Formally, for every finiteM and stateq in M :

M, q |=ETSL Ka〈〈a〉〉Φ iff M, q |=CSL Ka〈〈a〉〉Φ.

Proof. Induction on the structure ofΦ. We prove the theorem for the caseΦ ≡ �ψ.
Other cases are analogous.

⇒: Let M, q |=ETSL Ka〈〈a〉〉�ψ. Then,∀q′∈img(q,∼a)M, q′ |=ETSL 〈〈a〉〉�ψ, and
henceM, q |=ETSL 〈〈a〉〉�ψ in particular. By Lemmas 8 and 10, there is a strategysa,
undominated wrtM, q′,�ψ for everyq′ ∈ img(q,∼a).
Then: ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM,Λ[i] |=ETSL �ψ. By the induction hypothesis,
also ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM,Λ[i] |=CSL ψ. Thus, ∀Λ∈out(img(q,∼a),sa)∀i
M,Λ[i] |=CSL ψ and soM, img(q,∼a) |=CSL 〈〈a〉〉�ψ, and finallyM, q |=CSL Ka〈〈a〉〉�ψ.

⇐: Let M, q |=CSL Ka〈〈a〉〉�ψ, i.e. M, img(q,∼a) |=CSL 〈〈a〉〉�ψ. Considerq′ ∈
img(q,∼a). By transitivity of ∼a, we haveimg(q′,∼a) ⊆ img(q,∼a), so also
∀q′∈img(q,∼a)M, img(q′,∼a) |=CSL 〈〈a〉〉�ψ. Then, for everyq′ ∈ img(q,∼a), there
must besa such that∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM,Λ[i] |=CSL ψ, and hence (by in-
duction)∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM,Λ[i] |=ETSL ψ. So,succq′,�ψ(sa) = img(q′,∼a),
and thereforesuccq′,�ψ(ta) = img(q′,∼a) for every other undominated strategyta
(otherwiseta would be dominated bysa). Thus,M, q′ |=ETSL 〈〈a〉〉�ψ for every
q′ ∈ img(q,∼a), and finallyM, q |=ETSL Ka〈〈a〉〉�ψ. �
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Theorem 13 More generally, for everyΦ as above, andM, q such that there exists an
undominated strategy wrtM, q,Φ: M, q |=ETSL Ka〈〈a〉〉Φ iff M, q |=CSL Ka〈〈a〉〉Φ.

It is easy to see that Theorem 13 implies Theorem 12.

4.2 Rational Coalitions Are at Disadvantage

Beside some philosophical insight into the nature of knowledge and rational play, The-
orems 12 and 13 provide us with an alternative way of decomposing strategic abilities
under incomplete information into a strategic and epistemic part. The definition of the
strategic dimension is more sophisticated and less straightforward than usually; on the
other hand, we do not pay the price of a non-standard satisfaction relation. Unfortu-
nately, such decomposition is not valid any more when abilities of collective agents
are concerned. Now, the relationship is much more limited: if a coalition hascommon
knowledge how to play, then it has also common knowledge thatrational play will be
successful; the same doesnot hold for other types of collective knowledge. Moreover,
the converse relationship is guaranteed for distributed knowledge, butnot for common
nor mutual knowledge.

Theorem 14 Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 whereψ, ψ1, ψ2 are “vanilla” ETSL for-
mulae. Then, if a coalition has common knowledge how to play,then it has common
knowledge that rational play will be successful:

if M, q |=CSL CA〈〈A〉〉Φ then M, q |=ETSL CA〈〈A〉〉Φ.

The same holds for neither mutual nor distributed knowledge.

Proof. Common knowledge: Let M, q |=CSL KA〈〈A〉〉�ψ, i.e. M, img(q,∼CA)
|=CSL 〈〈A〉〉�ψ. Considerq′ ∈ img(q,∼CA). We haveimg(q′,∼EA) ⊆ img(q′,∼CA) ⊆
img(q,∼CA), so also∀q′∈img(q,∼C

A
)M, img(q′,∼EA) |=CSL 〈〈A〉〉�ψ. Then, for every

q′ ∈ img(q,∼CA), there must beSA such that∀q′′∈img(q′,∼E

A
)∀Λ∈out(q′′,SA)∀iM,Λ[i]

|=CSL ψ, and hence (by induction)∀q′′∈img(q′,∼E

A
)∀Λ∈out(q′′,SA)∀iM,Λ[i] |=ETSL ψ.

So,succq′,�ψ(SA) = img(q′,∼EA), and thereforesuccq′,�ψ(TA) = img(q′,∼EA) for
every other undominated strategyTA (otherwiseTA would be dominated bySA). Thus,
M, q′ |=ETSL 〈〈A〉〉�ψ for everyq′ ∈ img(q,∼CA), and finallyM, q |=ETSL CA〈〈A〉〉�ψ.

Mutual knowledge: for a counterexample, consider a modification of the game from
Figure 1, in which a third robotc is introduced. The robot can only executenop,
and its epistemic relation∼c= {(q, q) | q ∈ St} ∪ {(qKQ, qKA), (qKA, qKQ)}, i.e.
c can distinguish all states exceptqKQ, qKA. Moreover, the transition function is
slightly changed: now,o(qKA, keep, nop) = qw. For the resulting systemM1, we
have thatM1, qAQ |=CSL E{b,c}〈〈b, c〉〉 gwin, but at the same timeM1, qAQ 6|=ETSL
E{a,c}〈〈a, c〉〉 gwin becauseM1, qKQ 6|=ETSL 〈〈a, c〉〉

gwin.
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Figure 2: (A) ModelM2: four agentsa, b, c, d, epistemic relations shown with the
dashed lines,Act = {1, 2, 3, 4}. Transitions:o(qi, j, j, j, j) = qw for j 6= i, otherwise
the system proceeds to the “losing” stateql; (B) ModelM3: two agentsa, b, two
actions1, 2. The tuples of actions that are absent in the graph lead toql.

Distributed knowledge: analogously,M1, qKQ |=CSL D{b,c}〈〈b, c〉〉
gwin, yet at the

same timeM1, qKQ 6|=ETSL D{a,c}〈〈a, c〉〉 gwin becauseM1, qKQ 6|=ETSL 〈〈a, c〉〉
gwin.

�

Theorem 15 Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 whereψ, ψ1, ψ2 are “vanilla” ETSL for-
mulae, and letM be a finiteCEGS.6 Then, ifA have distributed knowledge that ratio-
nal play will bring aboutΦ, then they have distributed knowledge how to play to bring
aboutΦ. Formally:

if M, q |=ETSL DA〈〈A〉〉Φ then M, q |=CSL DA〈〈A〉〉Φ.

The same holds for neither mutual nor common knowledge.

Proof. (sketch)Distributed knowledge: the proof is analogous to the proofs of
Lemma 10 and Theorem 12 (part⇒), as we can exploit the fact that∼DA is transitive,
andimg(q,∼DA ) ⊆ img(q,∼EA).

Mutual knowledge: for a counterexample, consider modelM2 from Figure 2A. Let
q denote the state “opposite” toq, i.e. q1 = q3, q2 = q4 etc. Furthermore, letSi

Agt

denote the strategy of playing〈i, i, i, i〉 in all states. Now,Si
Agt is the only undomi-

nated strategy wrtqi, gwin for i = 1, ..., 4, andS1
Agt, ..., S

4
Agt are exactly the strategies

undominated wrtq0, gwin. So,M2, qi |=ETSL 〈〈Agt〉〉 gwin for everyi = 0, 1, ..., 4,
and thereforeM2, q0 |=ETSL EAgt〈〈Agt〉〉 gwin. On the other hand, there is no single
strategy that succeeds for allq0, q1, ..., q4.

Common knowledge:consider modelM3 from Figure 2B. LetS{a,b} be the strategy
“play 〈1, 1〉 everywhere”, andT{a,b} be “play 〈2, 2〉 everywhere”. Note thatS{a,b}

is the only undominated strategy wrtq, gwin for q = q0, q1, andT{a,b} is the only

6 Alternatively, we can request thatA have at least one undominated strategy for every relevant state.
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undominated strategy wrtq, gwin for q = q2, q3. Thus, for everyq = q0, ..., q3:
M3, q |=ETSL 〈〈a, b〉〉

gwin, and henceM3, q1 |=ETSL C{a,b}〈〈a, b〉〉 gwin. On the other
hand,M3, q1 6|=CSL C{a,b}〈〈a, b〉〉 gwin. �

5 Conclusions

In this paper, the relationship between rational play and knowing how to play is inves-
tigated in a formal way. To this end, we dust off Epistemic Temporal Strategic Logic
by van Otterloo and Jonker [19], and propose a simpler semantics expressed entirely in
terms of concurrent epistemic game structures and their states; we prove that the new
semantics is equivalent to the original one for “vanilla”ETSL formulae. ETSL serves
as a device for talking about the outcome of rational play (inthe sense that agents
are assumed to play only undominated strategies). To capture properties of the other
kind (“knowing how to play”), we use the recent proposal of Constructive Strategic
Logic [9, 10].

The main result of this paper states that, for finite models,a rational player knows
that he will succeed if, and only if, he knows how to succeed. We also show that the
relationship is much more limited for rational coalitions.That is, if rational agents have
common knowledge about a winning strategy, then they have common knowledge that
they will succeed – but the converse is not guaranteed any more. Moreover, it turns out
that the relationship isstrictly reversefor distributed knowledge: if a rational coalition
has distributed knowledge that it will succeed, then it has distributed knowledge about
a winning strategy – but not necessarily the other way around. Finally, for mutual
knowledge, the relationship does not hold either way in general. This is a curious
result, and one that may lead to interesting philosophical conclusions.
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