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Abstract

We study the model checking complexity ofAlternating-time temporal logic with
imperfect information and imperfect recall(ATL ir). Contrary to what we have
stated in [10], the problem turns out to be∆P

2 -complete, thus confirming the ini-
tial intuition of Schobbens. We prove the∆P

2 -hardness through a reduction of the
SNSAT problem, while the membership in∆P

2 stems from the algorithm pre-
sented in [16].

Keywords: multi-agent systems, model checking, temporal logic, strategic abil-
ity, computational complexity.

1 Introduction

Alternating-time temporal logic [1, 2] is one of the most interesting frameworks that
emerged recently for reasoning about computational systems. ATLir is a variant ofATL ,
proposed by Schobbens in [16] for agents withimperfect informationand imperfect
recall. We have already investigated the complexity ofATL ir model checking in [10],
concluding that the problem isNP-complete. Unfortunately, our claim was incorrect;
we want to set it right with this paper.

We begin with a presentation of the frameworks ofATL andATL ir. Then we present
some existing complexity results with respect toATL ir model checking, and we give an
alternative proof ofNP-hardness of the problem. In Section 3.2, we extend the con-
struction to present a reduction ofSNSAT, thus proving that model checkingATL ir is
∆P

2 -hard. As the membership in∆P
2 stems from the algorithms presented in both [16]

and [10], we get that model checkingATL ir is ∆P
2 -complete.

ATLir can be seen as the “core”, minimalATL -based language for ability under in-
complete information. In consequence, we obtain a lower bound for model checking of
most (if not all) logics of this kind, and for most of them the bound is tight.
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What Agents Can Achieve

2 What Agents Can Achieve

ATL [1, 2] has been invented by Alur, Henzinger and Kupferman in order to capture
properties ofopen computational systems(such as computer networks), where different
components can act autonomously, and computations in such systems result from their
combined actions. Alternatively,ATL can serve as a logic for systems involving multiple
agents, that allows one to reason about what agents can achieve in game-like scenarios.
As ATL does not include incomplete information in its scope, it can be seen as a logic
for reasoning about agents who always have complete knowledge about the current state
of affairs.

2.1 ATL: Ability in Perfect Information Games

ATL is a generalization of the branching time temporal logicCTL [3, 4], in which path
quantifiers are replaced with so calledcooperation modalities. Formula〈〈A〉〉ϕ, where
A ⊆ Agt is a coalition of agents, expresses that coalitionA has a collective strategy
to enforceϕ. ATL formulae include temporal operators: “g” (“in the next state”),�
(“always from now on”) andU (“until”). Operator♦ (“now or sometime in the future”)
can be defined as♦ϕ ≡ >U ϕ. Like in CTL, every occurrence of a temporal operator
is immediately preceded by exactly one cooperation modality.1 The broader language
of ATL∗, in which no such restriction is imposed, is not used in this paper.

A number of semantics have been defined forATL , most of them equivalent [5, 6].
In this paper, we refer to a variant ofconcurrent game structures, which includes a
nonempty finite set of all agentsAgt = {1, ..., k}, a nonempty set of statesSt, a set
of atomic propositionsΠ, a valuation of propositionsπ : Π → P(St), and the set of
(atomic) actionsAct. Functiond : Agt × St → P(Act) defines nonempty sets of
actions available to agents at each state, ando is a (deterministic) transition function
that assigns the outcome stateq′ = o(q, α1, . . . , αk) to stateq and a tuple of actions
〈α1, . . . , αk〉 that can be executed by the agent inq. A strategysa of agenta is a
conditional plan that specifies whata is going to do for every possible state (i.e.,sa :
St → Act such thatsa(q) ∈ da(q)).2 A collective strategySA for a group of agents
A ⊆ Agt is a tuple of strategies, one per agent fromA. A pathλ in modelM is an
infinite sequence of states that can be reached by subsequent transitions, and refers to
a possible course of action (or a possible computation) that may occur in the system;
by λ[i], we denote theith position on pathλ. Functionout(q, SA) returns the set of
all paths that may result from agentsA executing strategySA from stateq onward.
Now, informally speaking,M, q |= 〈〈A〉〉ϕ iff there is a collective strategySA such that
ϕ holds for everyλ ∈ out(q, SA). In Section 2.3, we give a more precise semantic
definition ofATL ir, which is the main subject of our study.

1 The logic to which such a syntactic restriction applies is sometimes called“vanilla” ATL (resp. “vanilla”
CTL etc.).

2 Note that in the original formulation ofATL [1, 2], strategies assign agents’ choices tosequencesof
states, which suggests that agents can by definition recall the whole history of each game.
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MODEL CHECKING ABILITIES IS ∆P
2 -COMPLETE

One of the most appreciated features ofATL is its model checking complexity –
linear in the number of transitions in the model and the length of the formula. However,
after a careful inspection, this result is not as good as it seems. This linear complexity
is no more valid when we measure the size of models inthe number of states, actions
and agents [9, 15], or when we represent systems withconcurrent programs [17]. Still,
we have the following.

Proposition 1 ([2]) TheATL model checking problem isPTIME-complete, and can be
done in timeO(ml), wherem is the number of transitions in the model andl is the
length of the formula.

2.2 Strategic Abilities under Incomplete Information

ATL and its models include no way of addressing uncertainty that an agent or a process
may have about the current situation. Moreover, strategies inATL can define different
choices for any pair of different states, hence implying that an agent can recognize
each (global) state of the system, and act accordingly. Thus, it can be argued that the
logic is tailored for describing and analyzing systems in which every agent/process has
complete and accurate knowledgeabout the current state of the system. This is usually
not the case for most application domains, where a process can access itslocal state,
but the state of the environment and the (local) states of other agents can be observed
only partially.

One of the main challenges for a logic of strategic abilities under incomplete in-
formation is the question of how agents’ knowledge should interfere with the agents’
available strategies. The early approaches to “ATL with incomplete information” [2,
Sec.7.2],[18, 19] did not handle this interaction in a completely satisfactory way (cf. [8,
16, 14]), which triggered a flurry of logics, proposed to overcome the problems [8, 11,
16, 14, 20, 7, 12]. Most of the proposals agree that onlyuniformstrategies (i.e., strate-
gies that specify the same choices in indistinguishable states) are really executable.
However, in order to identify a successful strategy, the agents must consider not only
the courses of actions starting from the current state of the system, but also those starting
from states that are indistinguishable from the current one. There are many cases here,
especially when group epistemics is concerned: the agents may havecommon, ordinary
or distributedknowledge about a strategy being successful, or they may be hinted the
right strategy by a distinguished member (the “boss”), a subgroup (“headquarters com-
mittee”) or even another group of agents (“consulting company”) etc. Most existing
solutions treat only some of the cases (albeit rather in an elegant way), while the others
offer a very general treatment of the problem at the expense of a complicated logical
language (which is by no means elegant). We believe that an elegant and general so-
lution has been recently proposed in the form of Constructive Strategic Logic [12, 13],
but this claim is yet to be verified.

ATLir stands out among the existing solutions for its simplicity. While by no means
the most expressive, it can be treated as the “core”, minimalATL -based language for
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ability under incomplete information.

2.3 ATL ir

ATLir includes the same formulae asATL , only the cooperation modalities are presented
with a subscript:〈〈A〉〉ir to indicate that they address agents with imperfectinformation
and imperfectrecall. Formally, the recursive definition ofATL ir formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ir gϕ | 〈〈A〉〉ir�ϕ | 〈〈A〉〉irϕU ϕ
Again, we define〈〈A〉〉ir♦ϕ ≡ 〈〈A〉〉ir>U ϕ.

Models ofATL ir, imperfect information concurrent game structures(i-CGS), can be
presented as concurrent game structures augmented with a family of epistemic indis-
tinguishability relations∼a⊆ St × St, one per agenta ∈ Agt. The relations describe
agents’ uncertainty:q ∼a q

′ means that, while the system is in stateq, agenta consid-
ers it possible that it is inq′ now. It is required that agents have the same choices in
indistinguishable states. To recapitulate,i-CGScan be defined as tuples

M = 〈Agt, St,Π, π, Act, d, o,∼1, ...,∼k〉,

where:

• Agt = {1, ..., k} is a finite nonempty set of all agents,

• St is a nonempty set of states,

• Π is a set of atomic propositions,

• π : Π → P(St) is a valuation of propositions,

• Act is a finite nonempty set of (atomic) actions;

• functiond : Agt× St→ P(Act) defines actions available to an agent in a state;
d(a, q) 6= ∅ for all a ∈ Agt, q ∈ St,

• o is a (deterministic) transition function that assigns outcome states to states
and tuples of actions; that is,o(q, α1, . . . , αk) ∈ St for every q ∈ St and
〈α1, . . . , αk〉 ∈ d(1, q)× · · · × d(k, q);

• ∼1, ...,∼k⊆ St×St are epistemic relations, one per agent. Every∼a is assumed
to be an equivalence. We require thatq ∼a q

′ impliesd(a, q) = d(a, q′).

Again, a (memoryless) strategy of agenta is a conditional plan that specifies what
a is going to do in every possible state. An executable plan must prescribe the same
choices for indistinguishable states. ThereforeATL ir restricts the strategies that can be
used by agents to the set of so called uniform strategies. Auniform strategyof agenta
is defined as a functionsa : St→ Act, such that: (1)sa(q) ∈ d(a, q), and (2) ifq ∼a q

′

DEPARTMENT OF INFORMATICS 4
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thensa(q) = sa(q′). A collective strategyfor a group of agentsA = {a1, ..., ar} is
a tuple of strategiesSA = 〈sa1 , ..., sar

〉, one per agent fromA. A collective strategy
is uniform if it contains only uniform individual strategies. Again, functionout(q, SA)
returns the set of all paths that may result from agentsA executing strategySA from
stateq onward: (the notationSA(a) stands for the strategysa of agenta in the tuple
SA = 〈sa1 , ..., sar 〉)

out(q, SA) = {λ = q0q1q2... | q0 = q and for everyi = 1, 2, ... there exists a tuple
of agents’ decisions〈αi−1

1 , ..., αi−1
k 〉 such thatαi−1

a = SA(a)(qi−1) for each
a ∈ A, αi−1

a ∈ d(a, qi−1) for eacha /∈ A, ando(qi−1, α
i−1
1 , ..., αi−1

k ) = qi}.

The semantics ofATL ir formulae is defined as follows:

M, q |= p iff q ∈ π(p) (for p ∈ Π);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ andM, q |= ψ;

M, q |= 〈〈A〉〉ir gϕ iff there exists a uniform strategySA such that, for everya ∈ A,
q′ ∈ St such thatq ∼a q

′, andλ ∈ out(SA, q
′), we haveM,λ[1] |= ϕ;

M, q |= 〈〈A〉〉ir�ϕ iff there exists a uniform strategySA such that, for everya ∈ A,
q′ ∈ St such thatq ∼a q

′, andλ ∈ out(SA, q
′), we haveM,λ[i] for everyi ≥ 0;

M, q |= 〈〈A〉〉irϕU ψ iff there exist a uniform strategySA such that, for everya ∈ A,
q′ ∈ St such thatq ∼a q′, andλ ∈ out(SA, q

′), there isi ≥ 0 for which
M,λ[i] |= ψ, andM,λ[j] |= ϕ for every0 ≤ j < i.

That is,〈〈A〉〉irϕ if coalitionA has a uniform strategy, such that for every paththat can
possibly result from execution of the strategy, ϕ is the case. This is a strong statement,
because many paths can result. It suffices that at least one of the agents inA considers
some statesq, q′ equivalent: Then all such paths have to be considered.

Note that the universal path quantifierA from CTL can be expressed inATL ir as
〈〈∅〉〉ir.

Example 1 (Gambling robots) Two robots (a and b) play a simple card game. The
deck consists of Ace, King and Queen (A,K,Q). Normally, it is assumed thatA is the
best card,K the second best, andQ the worst. ThereforeA beatsK andQ, K beats
Q, andQ beats no card. At the beginning of the game, the “environment” agent deals a
random card to both robots (face down), so that each player can see his own hand, but
he does not know the card of the other player. Then robota can exchange his card for
the one remaining in the deck (actionexch), or he can keep the current one (keep). At
the same time, robotb can change the priorities of the cards, so thatQ becomes better
thanA (actionchg) or he can do nothing (nop), i.e. leave the priorities unchanged. If
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q0

qw ql
win

qAK qAQ qKQ qKA qQA qQKa a ab b

b

keep,chg keep,chg

keep,chg

keep,chgkeep,chgkeep,nop keep,nop

keep,nop

keep,nop

exch,chg exch,chg

exch,chg

exch,chg

exch,chg

exch,nop exch,nop

exch,nop

keep,nop
exch,chg
exch,nop

exch,nop

keep,chg
keep,nop
exch,nop

Figure 1: Gambling Robots game

a has a better card thanb after that, then a win is scored, otherwise the game ends in a
“losing” state. A CGSM1 for the game is shown in Figure 1.

It is easy to see thatM1, q0 |= ¬〈〈a〉〉ir♦win, because, for everya’s (uniform) strat-
egy, if it guarantees a win in e.g. stateqAK then it fails inqAQ (and similarly for other
pairs of indistinguishable states). Let us also observe thatM1, q0 |= ¬〈〈a, b〉〉ir♦win
(in order to win,a must exchange his card in stateqQK , so he must exchange his card
in qQA too (by uniformity), and playingexch in qQA leads to the losing state. On the
other hand,M1, qAQ |= 〈〈a, b〉〉ir gwin (a winning strategy:sa(qAK) = sa(qAQ) =
sa(qKQ) = keep, sb(qAQ) = sb(qKQ) = sb(qAK) = nop; qAK , qAQ, qQK are the
states that must be considered bya andb in qAQ). Still,M1, qAK |= ¬〈〈a, b〉〉ir gwin.

Schobbens [16] proved thatATL ir model checking isNP-hard and∆P
2 -easy. He

also conjectured that the problem might be∆P
2 -complete. We prove that it is indeed

the case in Section 3.

3 Model Checking ATLir
Schobbens [16] proved thatATL ir model checking is intractable: more precisely, it is
NP-hard and∆P

2 -easy (i.e., can be solved through a polynomial number of calls to an
oracle for some problem inNP) when the size of the model is defined in terms of the
number of transitions. He also conjectured that the problem might be∆P

2 -complete.
In this section, we close the gap and prove that it is∆P

2 -hard, and hence indeed∆P
2 -

complete. The proof proceeds by a reduction of theSNSAT problem toATL ir model
checking, presented in Section 3.2.

We have already investigated the complexity ofATL ir model checking in [10], con-
cluding that the problem isNP-complete. Unfortunately, our claim was incorrect: we

DEPARTMENT OF INFORMATICS 6
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want to set it right in this paper.

3.1 Existing Results

Model checkingATL ir has been proved to beNP-hard and∆P
2 -easy in the number

of transitions and the length of the formula [16]. The membership in∆P
2 was demon-

strated through the following observation. If the formula to be model checked is of the
form 〈〈A〉〉irϕ (ϕ being gψ, �ψ or ψ1 U ψ2), whereϕ contains no more cooperation
modalities, then it is sufficient to guess a strategy forA, “trim” the model by removing
all transitions that will never be executed (according to this strategy), and model check
CTL formulaAϕ in the resulting model. Thus, model checking an arbitraryATL ir for-
mula can be done by checking the subformulae iteratively, which requires a polynomial
number of calls to anNP algorithm.3

TheNP-hardness follows from a reduction of the well knownSAT problem. Here,
we present a reduction which is somewhat different from the one in [16]. We will
adapt it in Section 3.2 to prove∆P

2 -hardness. InSAT, we are given a CNF formula
ϕ ≡ C1 ∧ . . . ∧ Cn involving k propositional variables from setX = {x1, ..., xk}.
Each clauseCi can be written asCi ≡ x

si,1
1 ∨ . . . ∨ xsi,k

k , wheresi,j ∈ {+,−, 0}; x+
j

denotes a positive occurrence ofxj in Ci, x
−
j denotes an occurrence of¬xj in Ci, and

x0
j indicates thatxj does not occur inCi. The problem asks if∃X.ϕ, that is, if there is

a valuation ofx1, ..., xk such thatϕ holds.
We construct the correspondingi-CGSMϕ as follows. There are two players: verifier

v and refuterr. The refuter decides at the beginning of the game which clauseCi will
have to be satisfied: it is done by proceeding from the initial stateq0 to a “clause” state
qi. At qi, verifier decides (by proceeding to a “proposition” stateqi,j) which of the
literalsxsi,j

j fromCi will be attempted. Finally, atqi,j , verifier attempts to proveCi by
declaring the underlying propositional variablexj true (action>) or false (action⊥).
If she succeeds (i.e., if she executes> for x+

j , or executes⊥ for x−j ), then the system
proceeds to the “winning” stateq>. Otherwise, the system stays inqi,j . Additionally,
“proposition” states referring to the same variable are indistinguishable for verifier, so
that she has to declare the same value ofxj in all of them within a uniform strategy.
A sole ATL ir propositionyes holds only in the “winning” stateq>. Obviously, states
corresponding to literalsx0

j can be omitted from the model.
Speaking more formally,Mϕ = 〈Agt, St,Π, π, Act, d, o,∼1, ...,∼k〉, where:

• Agt = {v, r},
• St = {q0} ∪ Stcl ∪ Stprop ∪ {q>}, whereStcl = {q1, . . . , qn}, andStprop =
{q1,1, . . . , q1,k, . . . , qn,1, . . . , qn,k};

• Π = {yes}, π(yes) = {q>},
• Act = {1, ...,max(k, n),>,⊥},

3 The algorithm from [10] can be also used to demonstrate the upper bounds for the complexity of this
problem.
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q0

q1,1

q1,3

q2,1

q2,2

q2,3

q1

q2

v:1

v:�

v:�

r:1 v:3

v:1

v:3

v:2

r:2

x
1

�x
3

�x
1

x
2

x
3

v:
�

q�

v:
�

v:
�

yes

Figure 2: Ani-CGS for checking satisfiability ofϕ ≡ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

• d(v, q0) = d(v, q>) = {1}, d(v, qi) = {1, ..., k},
d(v, qi,j) = {>,⊥},
d(r, q) = {1, ..., n} for q = q0 and{1} otherwise;

• o(q0, 1, i) = qi, o(qi, j, 1) = qi,j ,
o(qi,j ,>, 1) = q> if si,j = +, andqi,j otherwise,
o(qi,j ,⊥, 1) = q> if si,j = −, andqi,j otherwise;

• q0 ∼v q iff q = q0, qi ∼v q iff q = qi, qi,j ∼v q iff q = qi′,j .

As an example, modelMϕ for ϕ ≡ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) is presented in
Figure 2.

Theorem 2 ϕ is satisfiable iff Mϕ, q0 |= 〈〈v〉〉ir♦yes.

Proof. Firstly, if there is a valuation that makesϕ true, then for every clauseCi one
can choose a literal out ofCi that is made true by the valuation. The choice, together
with the valuation, corresponds to a uniform strategy forv such that, for all possible
executions,q> is achieved at the end.

Conversely, ifMϕ, q0 |= 〈〈v〉〉ir♦yes, then there is a strategysv such thatq> is
achieved for all paths fromout(q0, sv). But then the valuation, which assigns proposi-
tionsx1, ..., xk with the same values assv, satisfiesϕ. �

Both the number of states and transitions inMϕ are linear in the length ofϕ, and
the construction ofM requires linear time too. Thus, the model checking problem for

DEPARTMENT OF INFORMATICS 8
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ATL ir is NP-hard. Note that it isNP-hard even for formulae with a single cooperation
modality, and turn-based models with at most two agents.4

We already investigated the complexity ofATL ir model checking in [10], concluding
that the problem wasNP-complete. Unfortunately, our claim was incorrect: the error
occurred in the way we handled negation in our model checking algorithm (cf. [15]).
Still, as observed by Laroussinie, Markey and Oreiby in [15], our algorithmis correct
for “positive ATL ir” – i.e., ATL ir without negation. Thus, the following holds.

Proposition 3 Model checking of “positiveATL ir” is NP-complete with respect to the
number of transitions in the model and the length of the formula.

The∆P
2 -hardness for the fullATL ir is proved in Section 3.2.

3.2 Model Checking ATLir Is Indeed∆P
2 -complete

Let us first recall (after [15]) the definition ofSNSAT, a typical∆P
2 -hard problem.

Definition 1 (SNSAT)
Input: p sets of propositional variablesXr = {x1,r, ..., xk,r}, p propositional vari-
ableszr, andp Boolean formulaeϕr in CNF, with eachϕr involving only variables in
Xr ∪ {z1, ..., zr−1}, with the following requirement:

zr ≡ there exists an assignment of variables inXr such thatϕr is true.

We will also write, by abuse of notation,zr ≡ ∃Xr ϕr(z1, ..., zr−1, Xr).
Output: The truth-value ofzp (i.e.,> or ⊥).

Letn be the maximal number of clauses in anyϕ1, ..., ϕp from the given input. Now,
eachϕr can be written as:

ϕr ≡ Cr
1 ∧ . . . ∧ Cr

n, andCr
i ≡ x

sr
i,1

1,r ∨ . . . ∨ xsr
i,k

k,r ∨ zsr
i,k+1

1 ∨ . . . zsr
i,k+r−1

r−1 .

Again, sr
i,j ∈ {+,−, 0}; x+ denotes a positive occurrence ofx, x− denotes an oc-

currence of¬x, andx0 indicates thatx does not occur in the clause. Similarly,sr
i,k+j

defines the “sign” ofzj in clauseCr
i . Given such an instance ofSNSAT, we construct

a sequence of concurrent game structuresMr for r = 1, ..., p in a similar way to the
construction in Section 3.1. That is, clauses and variablesxi,r are handled in exactly
the same way as before. Moreover, ifzi occurs as a positive literal inϕr, we embed
Mϕi

in Mr, and add a transition to the initial stateqi
0 of Mi. If ¬zi occurs inϕr, we do

almost the same: the only difference is that we split the transition into two steps, with a
statenegr

i (labeled with anATL ir propositionneg) added in between.
More formally,Mr = 〈Agt, Str,Π, πr, Actr, dr, or,∼r

1, ...,∼r
k〉, where:

4 In fact, it is NP-hard even for models with a single agent, although the construction must be a little
different to demonstrate this.
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• Agt = {v, r},
• Str = {qr

0, q
r
1, . . . , q

r
n, q

r
1,1, . . . , q

r
n,k, neg

r
1, . . . , neg

r
r−1, q>} ∪ Str−1,

• Π = {yes, neg}, πr(yes) = {q>}, πr(neg) = {negj
i | i, j = 1, ..., r},

• Actr = {1, ...,max(k + r − 1, n),>,⊥},
• dr(v, qr

0) = dr(v, negr
i ) = dr(v, q>) = {1}, dr(v, qr

i ) = {1, ..., k + r − 1},
dr(v, qr

i,j) = {>,⊥},
dr(r, q) = {1, ..., n} for q = qr

0 and{1} for the otherq ∈ Str.
Forq ∈ Str−1, we simply include the function fromMr−1: dr(a, q) = dr−1(a, q);

• or(qr
0, 1, i) = qr

i , or(qr
i , j, 1) = qr

i,j for j ≤ k,
or(qr

i , k+j, 1) = qr−1
0 if sr

i,k+j = +, andor(qr
i , k+j, 1) = negr

j if sr
i,k+j = −,

or(negr
j , 1, 1) = qr−1

0 ,
or(qr

i,j ,>, 1) = q> if sr
i,j = +, andqr

i,j otherwise,
or(qr

i,j ,⊥, 1) = q> if sr
i,j = −, andqr

i,j otherwise.
For q ∈ Str−1, we include the transitions fromMr−1: or(q, α) = or−1(q, α);

• qr
0 ∼v q iff q = qr

0, qr
i ∼v q iff q = qr

i , qr
i,j ∼v q iff q = qr

i′,j .
For q, q′ ∈ Str−1, we include the tuples fromMr−1: q ∼r

v q
′ iff q ∼r−1

v q′.

As an example, modelM3 for ϕ3 ≡ (x3 ∨ ¬z2) ∧ (¬x3 ∨ ¬z1), ϕ2 ≡ z1 ∧ ¬z1,
ϕ1 ≡ (x1 ∨ x2) ∧ ¬x1, is presented in Figure 3.

Theorem 4 Let

Φ1 ≡ 〈〈v〉〉ir(¬neg)U yes,

Φi ≡ 〈〈v〉〉ir(¬neg)U (yes ∨ (neg ∧ A g¬Φi−1)).

Now, for allr: zr is true iffMr, q
r
0 |= Φr.

Before we prove the theorem, we state an important lemma.

Lemma 5 For i ≥ r: Mr, q
r
0 |= Φi iff Mr, q

r
0 |= Φi+1.

Proof (induction onr).

1. For r = 1: M1, q
1
0 |= Φi iff M1, q

1
0 |= 〈〈v〉〉ir♦yes iff M1, q

1
0 |= Φi+1, because

M1 does not include states that satisfyneg.

2. For r > 1: Mr, q
r
0 |= Φi+1 ≡ 〈〈v〉〉ir(¬neg)U (yes ∨ (neg ∧ A g¬Φi)) iff

∃sv∀λ ∈ out(qr
0, sv)∃u∀w ≤ u.

(
(Mr, λ[u] |= yes or Mr, λ[u] |= neg ∧

A g¬Φi) and(Mr, λ[w] |= ¬neg)
)
. [*]

However, each state satisfyingneg has exactly one outgoing transition, soMr, λ[u] |=
neg ∧ A g¬Φi is equivalent toMr, λ[u] |= neg andMr, λ[u + 1] |= ¬Φi.
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q0

q1,1

q2,1

q1,2

q2,1

q1

q1

q2

q2

v:1

v:1

v:�

v:�

r:1

r:1

v:2

v:2

v:1r:2

r:2

x
1

z
1

x
3

x
2

�x
1

�z
1

�z
1

�x
3

v:
�

v:
�

v:
�

yes

neg

neg

q�

M1
M2

M3

q0

q0

neg1

q1

q2

r:1

r:2

neg2 neg1q1,1

neg

�z
2

v:1 v:2

Figure 3: Ani-CGS for the reduction ofSNSAT

Thus, [*] iff ∃sv∀λ ∈ out(qr
0, sv)∃u∀w ≤ u.

(
(Mr, λ[u] |= yes or Mr, λ[u] |=

neg andMr, λ[u+ 1] |= ¬Φi) and(Mr, λ[w] |= ¬neg)
)

[**].

Note that, by the construction ofMr, λ[u+ 1] must refer to the initial stateqj
0 of

some “submodel”Mj , j < r ≤ i. Thus,Mr, λ[u + 1] |= ¬Φi iff Mj , q
j
0 |=

¬Φi iff (by induction) Mj , q
j
0 |= ¬Φi−1 iff Mj , λ[u+ 1] |= ¬Φi−1.

So, [**] iff ∃sv∀λ ∈ out(qr
0, sv)∃u∀w ≤ u.

(
(Mr, λ[u] |= yes orMr, λ[u] |=

neg andMr, λ[u + 1] |= ¬Φi−1) and (Mr, λ[w] |= ¬neg)
)

iff Mr, q
r
0 |=

〈〈v〉〉ir(¬neg)U (yes ∨ (neg ∧ A g¬Φi−1)) ≡ Φi.

�

Proof of Theorem 4 (induction onr).

1. For r = 1: we use the proof of Theorem 2.

2. For r > 1:
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Conclusions

For the implication from left to right (⇒): let zr be true: then, there is a valuation
of Xr such thatϕr holds. We constructsv as in the proof of Theorem 2. In case
that somexs

i has been “chosen” in clauseCr
i , we are done. In case that some

z−j has been “chosen” in clauseCr
i (note:j must be smaller thani), we have (by

induction) thatMj , q
j
0 |= ¬Φj . By Lemma 5, alsoMj , q

j
0 |= ¬Φr, and hence

Mr, q
j
0 |= ¬Φr. So we can make the same choice (i.e.,z−j ) in sv, and this will

lead to statenegr
j , in which it holds thatneg ∧ A g¬Φr.

In case that somez+
j has been “chosen” in clauseCr

i , we have (by induction) that

Mj , q
j
0 |= Φj , and hence, by Lemma 5,Mj , q

j
0 |= Φr. That is, there is a strategy

s′v in Mj such that(¬neg)U (yes∨ (neg∧A g¬Φr−1)) holds for all paths from
out(qj

0, s
′
v). As the states inMj have no epistemic links to states outside of it,

we can merges′v into sv.

For the other direction (⇐): let Mr, q
r
0 |= Φr ≡ 〈〈v〉〉ir(¬neg)U (yes ∨ (neg ∧

A g¬Φr−1)). We take the strategysv that enforces(¬neg)U (yes ∨ (neg ∧
A g¬Φr−1)). We first consider the clauseCr

i for which a “propositional” state
is chosen bysv. The strategy defines a uniform valuation forXr that satisfies
these clauses. For the other clauses, we have two possibilities:

• sv choosesqj
0 in the state corresponding toCr

i . Neitheryes nor neg have
been encountered on this path yet, so we can takesv to demonstrate that
Mr, q

j
0 |= Φr, and henceMj , q

j
0 |= Φr. By Lemma 5, alsoMj , q

j
0 |= Φj .

By induction,zj must be true, and hence clauseCr
i is satisfied.

• sv choosesnegr
j in the state corresponding toCr

i . Then, it must be that

Mr, neg
r
j |= A g¬Φr−1, and henceMj , q

j
0 |= ¬Φr−1. By Lemma 5,

alsoMj , q
j
0 |= ¬Φj . By induction,zj must be false, and hence clauseCr

i

(containing¬zj) is also satisfied.

�

Thus, in order to determine the value ofzp, it is sufficient to model checkΦp in
Mp, q

p
0 . Note that modelMp consists ofO(|ϕ|p) states andO(|ϕ|p) transitions, where

|ϕ| is the maximal length of formulaeϕ1, ..., ϕp. Moreover, the length of formulaΦp

is linear inp, and the construction ofMp andΦp can be also done in timeO(|ϕ|p) and
O(p), respectively. In consequence, we obtain a polynomial reduction ofSNSAT to
ATL ir model checking.

Theorem 6 Model checkingATL ir is ∆P
2 -complete with respect to the number of tran-

sitions in the model, and the length of the formula. The problem is∆P
2 -complete even

for turn-based models with at most two agents.
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MODEL CHECKING ABILITIES IS ∆P
2 -COMPLETE

4 Conclusions

In this paper we proved that model checking ofATL ir formulae is∆P
2 -hard, and there-

fore ∆P
2 -complete. Thus, we close an existing gap (betweenNP-hardness and∆P

2 -
easiness) in the work of Schobbens [16], and at the same time correct our own claim
from [10]. The gap betweenNP and∆P

2 is not terribly large, so the result might
seem a minor one – although, technically, it was not that trivial to prove it. On the
other hand, its importance goes well beyond model checking ofATL ir. In fact, Theo-
rem 6 yields immediate corollaries with∆P

2 -completeness of other logics likeATOL,
“FeasibleATEL”, CSL etc., and∆P

2 -hardness ofETSL.
We thank Nils Bulling for checking our proofs.
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