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Model Checking Abilities under Incomplete Information
Is IndeedAY-complete

Wojciech Jamroga and Jirgen Dix

Department of Informatics, Clausthal University of Technology
Julius Albert Str. 4, D-38678 Clausthal Germany
{wjamroga,dix}@in.tu-clausthal.de

Abstract

We study the model checking complexity Alternating-time temporal logic with
imperfect information and imperfect recglhTL;.). Contrary to what we have
stated in[[10], the problem turns out to #e} -complete, thus confirming the ini-
tial intuition of Schobbens. We prove ti®Y -hardness through a reduction of the
SNSAT problem, while the membership iAY stems from the algorithm pre-
sented in[[15].

Keywords: multi-agent systems, model checking, temporal logic, strategic abil-
ity, computational complexity.

1 Introduction

Alternating-time temporal logid [1,12] is one of the most interesting frameworks that
emerged recently for reasoning about computational systems,. & a variant ofaTL,
proposed by Schobbens in [16] for agents witiperfect informatiorand imperfect
recall. We have already investigated the complexityaof ;. model checking in[10],
concluding that the problem INP-complete. Unfortunately, our claim was incorrect;
we want to set it right with this paper.

We begin with a presentation of the frameworksof andATL ;.. Then we present
some existing complexity results with respecata ;,, model checking, and we give an
alternative proof ofNP-hardness of the problem. In Sectjon]3.2, we extend the con-
struction to present a reduction 8NSAT, thus proving that model checkingL ;.. is
APF-hard. As the membership IAY stems from the algorithms presented in both [16]
and [10], we get that model checkingL ,,. is AY-complete.

ATL;. can be seen as the “core”, minimalL-based language for ability under in-
complete information. In consequence, we obtain a lower bound for model checking of
most (if not all) logics of this kind, and for most of them the bound is tight.
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2 What Agents Can Achieve

ATL [1,[2] has been invented by Alur, Henzinger and Kupferman in order to capture
properties obpen computational systerfsich as computer networks), where different
components can act autonomously, and computations in such systems result from their
combined actions. AlternativelyrL can serve as alogic for systems involving multiple
agents, that allows one to reason about what agents can achieve in game-like scenarios.
As ATL does not include incomplete information in its scope, it can be seen as a logic
for reasoning about agents who always have complete knowledge about the current state
of affairs.

2.1 ATL: Ability in Perfect Information Games

ATL is a generalization of the branching time temporal lagic [3, /4], in which path
quantifiers are replaced with so calledoperation modalitiesFormula{(A)) ¢, where
A C Agt is a coalition of agents, expresses that coalitibhas a collective strategy
to enforcep. ATL formulae include temporal operatorsD™ (“in the next state”),[]
(“always from now on”) and/ (“until”). Operator{ (“now or sometime in the future”)
can be defined asp = T U . Like in CTL, every occurrence of a temporal operator
is immediately preceded by exactly one cooperation mocﬁﬂme broader language
of ATL*, in which no such restriction is imposed, is not used in this paper.

A number of semantics have been definedAor, most of them equivalent 5, 6].
In this paper, we refer to a variant ebncurrent game structuresvhich includes a
nonempty finite set of all agentsgt = {1, ..., k}, a nonempty set of state#, a set
of atomic propositiongI, a valuation of propositions : II — P(St), and the set of
(atomic) actionsAct. Functiond : Agt x St — P(Act) defines nonempty sets of
actions available to agents at each state, @igla (deterministic) transition function
that assigns the outcome state= o(q, a1, ..., o) to stateg and a tuple of actions
(a1,...,qp) that can be executed by the agentgin A strategys, of agenta is a
conditional plan that specifies whatis going to do for every possible state (i.&,, :
St — Act such thats,(q) € da(q))E] A collective strategys 4 for a group of agents
A C Agt is a tuple of strategies, one per agent frédm A path A in model M is an
infinite sequence of states that can be reached by subsequent transitions, and refers to
a possible course of action (or a possible computation) that may occur in the system;
by A[7], we denote theth position on path\. Functionout(q, S4) returns the set of
all paths that may result from agentsexecuting strategys 4 from stateq onward.
Now, informally speaking)M, ¢ |= (A)) ¢ iff there is a collective strateg§, such that
¢ holds for every\ € out(q,S4). In Sectior{ 2.B, we give a more precise semantic
definition of ATL ;,., which is the main subject of our study.

1 The logic to which such a syntactic restriction applies is sometimes catigilla” ATL (resp. “vanilla”
CTL etc.).

2 Note that in the original formulation ofTL [ [2], strategies assign agents’ choicesénuencesf
states, which suggests that agents can by definition recall the whole history of each game.
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One of the most appreciated featuresaof is its model checking complexity —
linear in the number of transitions in the model and the length of the formula. However,
after a careful inspection, this result is not as good as it seems. This linear complexity
is no more valid when we measure the size of modethénnumber of states, actions
and agents[9, 15]or when we represent systems wéthncurrent programs [17]Still,
we have the following.

Proposition 1 ([2]) TheATL model checking problem sTIME-complete, and can be
done in timeO(ml), wherem is the number of transitions in the model ahi the
length of the formula.

2.2 Strategic Abilities under Incomplete Information

ATL and its models include no way of addressing uncertainty that an agent or a process
may have about the current situation. Moreover, strategiesincan define different
choices for any pair of different states, hence implying that an agent can recognize
each (global) state of the system, and act accordingly. Thus, it can be argued that the
logic is tailored for describing and analyzing systems in which every agent/process has
complete and accurate knowledgleout the current state of the system. This is usually
not the case for most application domains, where a process can acdesslittate,

but the state of the environment and the (local) states of other agents can be observed
only partially.

One of the main challenges for a logic of strategic abilities under incomplete in-
formation is the question of how agents’ knowledge should interfere with the agents’
available strategies. The early approachesam “with incomplete information”[[2,
Sec.7.2][[18, 19] did not handle this interaction in a completely satisfactory way|(cf. [8,
16,[14]), which triggered a flurry of logics, proposed to overcome the problemsl[8, 11,
16,[14) 20/ 77, 12]. Most of the proposals agree that omijormstrategies (i.e., strate-
gies that specify the same choices in indistinguishable states) are really executable.
However, in order to identify a successful strategy, the agents must consider not only
the courses of actions starting from the current state of the system, but also those starting
from states that are indistinguishable from the current one. There are many cases here,
especially when group epistemics is concerned: the agents magtawveonordinary
or distributedknowledge about a strategy being successful, or they may be hinted the
right strategy by a distinguished member (the “boss”), a subgroup (“headquarters com-
mittee”) or even another group of agents (“consulting company”) etc. Most existing
solutions treat only some of the cases (albeit rather in an elegant way), while the others
offer a very general treatment of the problem at the expense of a complicated logical
language (which is by no means elegant). We believe that an elegant and general so-
lution has been recently proposed in the form of Constructive Strategic LLogic [12, 13],
but this claim is yet to be verified.

ATL;, stands out among the existing solutions for its simplicity. While by no means
the most expressive, it can be treated as the “core”, minknatbased language for

3 Technical Report IfI-06-10



What Agents Can Achieve

ability under incomplete information.

2.3 ATL,,

ATL;. includes the same formulae &&L, only the cooperation modalities are presented
with a subscript{( A)),, to indicate that they address agents with imperifgicrmation
and imperfectecall. Formally, the recursive definition efrL ;. formulae is:

pu=pl-wleAe| (A)aOe | (ANiDOe | (AhirelU ¢

Again, we defind(A));-Op = (A)ir T U .

Models ofATL ., imperfect information concurrent game structu(éscGs), can be
presented as concurrent game structures augmented with a family of epistemic indis-
tinguishability relations~,C St x St, one per agent € Agt. The relations describe
agents’ uncertaintyg ~, ¢’ means that, while the system is in stat@genta consid-
ers it possible that it is ig’ now. It is required that agents have the same choices in
indistinguishable states. To recapitulate;Gscan be defined as tuples

M = (Agt, St, 11, 7, Act,d, 0, ~1, ..., ~k),
where:
e Agt = {1, ..., k} is afinite nonempty set of all agents,
e Stis anonempty set of states,
e Il is a set of atomic propositions,
o 7 : Il — P(St) is a valuation of propositions,
e Act is a finite nonempty set of (atomic) actions;

o functiond : Agt x St — P(Act) defines actions available to an agent in a state;
d(a,q) # () for all a € Agt, q € St,

e o is a (deterministic) transition function that assigns outcome states to states
and tuples of actions; that i®(g, a1,...,axr) € St for everyq € St and
<O[1,...,Oék> E d(17q) X X d(k,q),

o ~q, ...~ C Stx St are epistemic relations, one per agent. Everyis assumed
to be an equivalence. We require that,, ¢’ impliesd(a, ¢) = d(a, ).

Again, a (memoryless) strategy of agenis a conditional plan that specifies what
a is going to do in every possible state. An executable plan must prescribe the same
choices for indistinguishable states. Therefare;, restricts the strategies that can be
used by agents to the set of so called uniform strategiamifdrm strategyf agenta
is defined as a functiosy, : St — Act, such that: (1y,(q) € d(a,q), and (2) ifg ~4 ¢

DEPARTMENT OF INFORMATICS 4
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thens,(q) = s.(¢’). A collective strategyor a group of agentst = {ay,...,a,} is
a tuple of strategieSs = (sq,, -.-, Sa,.), ONe per agent fromi. A collective strategy
is uniform if it contains only uniform individual strategies. Again, functiart(q, S4)
returns the set of all paths that may result from agehtxecuting strategy 4 from
stateq onward: (the notatior 4 (a) stands for the strategy, of agenta in the tuple
SA = <8a1, ceey sa7,>)

out(q,S4) = {\ = qq1q2--- | g0 = g and for everyi = 1,2, ... there exists a tuple
of agents’ decisionga ™", ..., o ") such thata’~! = S4(a)(g;—1) for each
a€ A, a7t €d(a,qi—1) foreacha ¢ A, ando(g;—1, 057", ...,af ") = ¢;}.

The semantics oATL ;,- formulae is defined as follows:

M,qEp iff g€ n(p) (for p € T0);
M,q—p iff M,q %,
M,qE oAy iff M,q = pandM,q k=1,

M,q E (A)irO¢p iff there exists a uniform strategy, such that, for every € A,
¢’ € St such thay ~, ¢/, andX € out(Sa,q’'), we haveM, \[1] = ¢;

M, q = (A);Op iff there exists a uniform strategy, such that, for every € A,
¢ € Stsuchthay ~, ¢/, and\ € out(S4,q'), we haveM, \[i] for everyi > 0;

M, q = (A)ireUp iffthere exista uniform strateg§4 such that, for every € A,
¢ € St such thaty ~, ¢/, andX € out(Sa,q’), there isi > 0 for which
M, \[i] E v, andM, A[j] = ¢ for every0 < j < i.

That is,{{A));¢ if coalition A has a uniform strategy, such that for every phtit can
possibly result from execution of the strategyis the case. This is a strong statement,
because many paths can result. It suffices that at least one of the agdntensiders
some statesg, ¢’ equivalent: Then all such paths have to be considered.

Note that the universal path quantifiarfrom cTL can be expressed iaTL ;. as

(0Dir-

Example 1 (Gambling robots) Two robots ¢ and b) play a simple card game. The
deck consists of Ace, King and Queeh [, Q). Normally, it is assumed that is the

best card,K the second best, and the worst. Thereforel beatsK and , K beats

Q, andQ@ beats no card. At the beginning of the game, the “environment” agent deals a
random card to both robots (face down), so that each player can see his own hand, but
he does not know the card of the other player. Then rebmin exchange his card for

the one remaining in the deck (actiemch), or he can keep the current onkegp). At

the same time, robdtcan change the priorities of the cards, so tidabecomes better
than A (actionchg) or he can do nothingr{op), i.e. leave the priorities unchanged. If
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Figure 1: Gambling Robots game

a has a better card thah after that, then a win is scored, otherwise the game ends in a
“losing” state. A cGs M for the game is shown in Figufé 1.

It is easy to see thall1, g0 = —{(a));»Owin, because, for every's (uniform) strat-
egy, if it guarantees a win in e.g. stajgx then it fails ing4¢ (and similarly for other
pairs of indistinguishable states). Let us also observe Matqy, = —((a, b)) ;-Owin
(in order to win,a must exchange his card in stajgx, so he must exchange his card
in goa too (by uniformity), and playingzch in goa leads to the losing state. On the
other hand, M1, qaq = (a,b);Owin (a winning strategy:s,(qax) = sa(qag) =
sa(qrq) = keep, sp(qaq) = sv(arq) = sp(qax) = nop; qarx,qaq, qqx are the
states that must be considereddgndb in g4¢). Still, M1, gax = —{a, b));rOwin.

Schobbens [16] proved thatL ;. model checking iSNP-hard andA¥ -easy. He
also conjectured that the problem might Ad’ -complete. We prove that it is indeed
the case in Sectidd 3.

3 Model Checking ATL,,

Schobbens [16] proved tharL ;. model checking is intractable: more precisely, it is
NP-hard andA¥ -easy (i.e., can be solved through a polynomial number of calls to an
oracle for some problem iNP) when the size of the model is defined in terms of the
number of transitions. He also conjectured that the problem migia Becomplete.
In this section, we close the gap and prove that \&-hard, and hence indeen? -
complete. The proof proceeds by a reduction ofS?éS AT problem toATL ;,, model
checking, presented in Section|3.2.

We have already investigated the complexityxof ;. model checking in [10], con-
cluding that the problem iBNP-complete. Unfortunately, our claim was incorrect: we

DEPARTMENT OF INFORMATICS 6
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want to set it right in this paper.

3.1 Existing Results

Model checkingATL ;. has been proved to N P-hard andA¥ -easy in the number
of transitions and the length of the formula[16]. The membershiaihwas demon-
strated through the following observation. If the formula to be model checked is of the
form {(A) ¢ (p beingO1, O or i1 U 1), Wwherep contains no more cooperation
modalities, then it is sufficient to guess a strategyAoftrim” the model by removing
all transitions that will never be executed (according to this strategy), and model check
cTL formulaAey in the resulting model. Thus, model checking an arbiteary;,. for-
mula can be done by checking the subformulae iteratively, which requires a polynomial
number of calls to alNP algorithm[J

The NP-hardness follows from a reduction of the well kno®AT problem. Here,
we present a reduction which is somewhat different from the ong_in [16]. We will
adapt it in Secti02 to provA¥Y-hardness. I'BAT, we are given a CNF formula
v = C1 A ... A C, involving k propositional variables from set = {z1, ..., xx}.
Each claus€; can be written a€; = x7"' v ...V z;"*, wheres; ; € {+, —,0}; :cj
denotes a positive occurrencexgfin C;, Ty denotes an occurrence ef; in C;, and
9:9 indicates that:; does not occur if;. The problem asks #.X.¢, that is, if there is
a valuation ofry, ..., z;, such thatp holds.

We construct the correspondingGs M, as follows. There are two players: verifier
v and refuter. The refuter decides at the beginning of the game which claysdll
have to be satisfied: it is done by proceeding from the initial gfate a “clause” state
qi- At g;, verifier decides (by proceeding to a “proposition” state) which of the
IiteraISazj” from C; will be attempted. Finally, aj; ;, verifier attempts to prove’; by
declaring the underlying propositional variablg true (actionT) or false (actionl).
If she succeeds (i.e., if she executegor :cj or executesL for z;’), then the system
proceeds to the “winning” staigr. Otherwise, the system staysgp;. Additionally,
“proposition” states referring to the same variable are indistinguishable for verifier, so
that she has to declare the same value ,0in all of them within a uniform strategy.
A sole ATL ;- propositionyes holds only in the “winning” state+. Obviously, states
corresponding to Iiterals? can be omitted from the model.

Speaking more formally)/,, = (Agt, St,II, 7, Act,d, 0, ~1, ..., ~), Where:

Agt = {v,r},

St = {go} U Sty U Stprop U {gT}, WhereSty = {q1,...,qn}, andSt,,op =
{(Il,l;-~~aq1,k7-~~>Qn,1a~~'»Qn,k};

o II={yes},  m(yes) ={qr},

o Act ={1,...,max(k,n), T, L},

3 The algorithm from[[ID] can be also used to demonstrate the upper bounds for the complexity of this
problem.

7 Technical Report IfI-06-10
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Figure 2: Ani-cGsfor checking satisfiability ofp = (x1 V —a3) A (—z1 V 22 V 23)

e d(v,qo) =d(v,q7) ={1}, d(v,q;) ={1,....k},
v,qi;) ={T,L1},
r,q) = {1,...,n} for ¢ = ¢o and{1} otherwise;

QU QU

® 0 q0,177;):q1', O(qiajvl):qi,jr
o(¢i;, T,1) = gt if 5, ; =+, andg; ; otherwise,
o(¢ij;,L,1) = gt if 5;; = —, andg; ; otherwise;

(
(
(
(
(

e qo~vqiffg=q, @~qiffg=q, q;~vqiff ¢=qy ;.

As an example, modelf,, for ¢ = (x1 V —x3) A (mz1 V 22 V x3) iS presented in

Figure[2.

Theorem 2 ¢ is satisfiable iff M, gy = (v))irOyes.

Proof. Firstly, if there is a valuation that makestrue, then for every clausé; one
can choose a literal out @f; that is made true by the valuation. The choice, together
with the valuation, corresponds to a uniform strategyvauch that, for all possible
executionsgT is achieved at the end.

Conversely, ifM,,q0 = (v)irOyes, then there is a strategy, such thatgr is
achieved for all paths fromuit(qo, sv). But then the valuation, which assigns proposi-
tionszy, ...,z with the same values ag, satisfiesp. [ ]

Both the number of states and transitionsify, are linear in the length ap, and
the construction of\/ requires linear time too. Thus, the model checking problem for

DEPARTMENT OF INFORMATICS 8
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ATL ;. isNP-hard. Note that it iNP-hard even for formulae with a single cooperation
modality, and turn-based models with at most two ag§nts.

We already investigated the complexityaafi ;. model checking in[10], concluding
that the problem waBP-complete. Unfortunately, our claim was incorrect: the error
occurred in the way we handled negation in our model checking algorithm_(¢f. [15]).
Still, as observed by Laroussinie, Markey and Oreiby if [15], our algorithcorrect
for “positive ATL ;,.” —i.e., ATL;,- without negation. Thus, the following holds.

Proposition 3 Model checking of “positivaTL ;,.” is NP-complete with respect to the
number of transitions in the model and the length of the formula.

The A% -hardness for the fulkTL ;. is proved in Sectiof 3]2.

3.2 Model Checking ATL;, Is Indeed AP-complete
Let us first recall (aftei [15]) the definition §NSAT, a typical A¥ -hard problem.

Definition 1 (SNSAT)

Input: p sets of propositional variableX, = {z1,,...,xx}, p propositional vari-
ablesz,., andp Boolean formulaep, in CNF, with eachp,. involving only variables in
X, U{z, ..., z-—1}, with the following requirement:

z = there exists an assignment of variablesXin such thatp,. is true.

We will also write, by abuse of notation, = 31X, ¢,(z1, ..., 2r-1, X;).
Output: The truth-value ot, (i.e., T or L).

Letn be the maximal number of clauses in amy; ..., ¢, from the given input. Now,
eachyp,. can be written as:

sy sL sy S5l
or=C{A...ANC), andCy =z} V.. Ve F vz v g B

cee R

Again, s7 ; € {+,—,0}; =* denotes a positive occurrence of z~ denotes an oc-

currence of-z, andz? indicates that- does not occur in the clause. Similary,, , ;
defines the “sign” ot; in clauseC;. Given such an instance BINSAT, we construct
a sequence of concurrent game structuvgsfor » = 1, ..., p in a similar way to the
construction in Sectio@.l. That is, clauses and variablgesare handled in exactly
the same way as before. Moreoverzjfoccurs as a positive literal ip,., we embed
M, in M,, and add a transition to the initial staj@of M;. If —z; occurs ingp,., we do
almost the same: the only difference is that we split the transition into two steps, with a
stateneg, (labeled with amTL ;. propositionneg) added in between.

More formally, M, = (Agt, St",II, #", Act”,d", 0", ~1, ..., ~}.), where:

4 In fact, it is NP-hard even for models with a single agent, although the construction must be a little
different to demonstrate this.
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o Agt = {v,r},

L4 Str = {q67q{, . aq:mqila te 7q;7k7neg{7 Tt 7neg:71’q—r} U StT—l’

o II = {yes, neg}, 7" (yes) = {qT1}, 7" (neg) = {negf li,j=1,...,71}
o Act" ={1,...,max(k+r—1,n), T, L},
o d"(v,q)) =d"(v,negl) =d"(v,q1) = {1}, A (v,q) ={1,....k+r—1},
dr(v,q{)j) ={T,1},
d"(r,q) = {1,...,n} for ¢ = ¢ and{1} for the otherg € St".
Forg € St"~!, we simply include the function from/, _;: d"(a,q) = d"~(a, q);
o O"(qh L) =q],  o(qf.51) =g, forj <k,
o (qf k+j,1) =gt if Si gy = Hhando"(qf k+3,1) = neg; if s}, . = —,
o"(negj,1,1) = a
or(q;:j, T,1) =gt if s =+, andq{j otherwise,
o"(g; ;,L,1) = gt if s} ; = —, andgq] ; otherwise.
Forq € St"—1, we include the transitions frod/,_1: 0" (¢, ) = 0"~ 1(q, a);
e g ~vaiffg=q5 g ~qiff g=qi, ¢~ qiff g=qj ;.
Forq,q' € St"—1, we include the tuples from,_1: ¢ ~7 ¢ iff ¢ ~771 ¢'.

As an example, model/s for g3 = (z3 V —22) A (—x3 V —21), w2 = 21 A —zq,
¢1 = (21 V @2) A ~ay, is presented in Figufd 3.

Theorem 4 Let

&1 = (v)ir(neg) U yes,
O, = (v)ir(-neg)U (yes V (neg AAO-D;_1)).
Now, for allr: z, is true iff M., ¢j = ®,.

Before we prove the theorem, we state an important lemma.

Lemmab5 Fori > r: M,,q = ©; iff M., q} E Piy1.

Proof (induction orr).

1. Forr = 1: My, ¢} = @, iff My, ¢t = (v)irOyes iff My, q} | ®i11, because
M, does not include states that satigfg.

2. Forr > 1: My, qf E ®it1 = (v)ir(—neg)U (yes V (neg A AO—®;)) iff
IsvVWA € out(gy, sv)Fuvw < u.((My,Au] = yes or M, A[u] = neg A
AO-®;) and (M., A[w] |= —neg)). [*]

However, each state satisfyingg has exactly one outgoing transition, &6, A[u] =
neg A AO-®; is equivalent toM,, A[u] = neg and M, A[u + 1] E ;.

DEPARTMENT OF INFORMATICS 10
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Figure 3: Ani-cGsfor the reduction oSNSAT

Thus, [*] iff 3syVA € out(qf, sv)Iuvw < u.((M,, A[u] = yes or M,, \[u] |=
neg and M,, A[u + 1] = =®;) and (M,, A[w] |= —neg)) [**].

Note that, by the construction @f,., A[u 4+ 1] must refer to the initial stat% of
some “submodelM;, j < r < i. Thus,M,, Aju + 1] = =®; iff M, q) =
-~®, iff (by induction) M;, ¢ = ~®; 1 iff M Nu+1] | ~®;_,.
So,[**] iff JsyVA € out(qf, sv)FuVw < u.((M,, A[u] |= yesor M, Au] =
neg and M, Aju + 1] = -®;_;) and (MT,/\[w] = —neg)) iff M, q) =
{(v)ir(—neg) U (yes V (neg AAO—P,;_1)) = P,.

Proof of Theorer]4 (induction af).

11

1. Forr = 1: we use the proof of Theorem 2.

2. Forr > 1:

Technical Report IfI-06-10



Conclusions

For the implication from left to right£-): let z,. be true: then, there is a valuation
of X, such thatp, holds. We construct, as in the proof of Theoreftj 2. In case
that somez; has been “chosen” in claugel’, we are done. In case that some
z; has been “chosen” in clauggf (note:j must be smaller thai), we have (by
induction) thatM;, ¢ = —®;. By Lemm:ﬂi, alsaV;, ¢j = —®,, and hence
Mr,qg = —®,. So we can make the same choice (iz(;i) in sy, and this will
lead to stateeg’, in which it holds thaheg A AO =®,..

In case that some;r has been “chosen” in clausg’, we have (by induction) that
M;, q) = ®;, and hence, by Lemn@ B8/;,q) = ®,. Thatis, there is a strategy
s, in M; such thai{—neg) U (yes V (neg AAO—®,._1)) holds for all paths from
out(qj, s,). As the states in/; have no epistemic links to states outside of it,
we can merge’, into s, .

For the other direction<€): let M,., g5 = @, = {(v)ir(—neg) U (yes V (neg A
AO-®,_1)). We take the strategy, that enforceg—neg)U (yes VV (neg A
AO—-®,_1)). We first consider the claugg! for which a “propositional” state
is chosen by, . The strategy defines a uniform valuation f8y. that satisfies
these clauses. For the other clauses, we have two possibilities:

e s, choosesy) in the state corresponding @;. Neitheryes nor neg have
been encountered on this path yet, so we can tgki® demonstrate that
M,,q & ®,, and hencé/;, ¢} = ®,. By Lemma 5, alsd\;, ¢} = ®,.
By induction,z; must be true, and hence clausgis satisfied.

e s, choosesueg; in the state corresponding ;. Then, it must be that
M, neg; = AO-®,_1, and henceM;,q} | —®,_1. By Lemma|},
alsoM;, ¢ = —®;. By induction,z; must be false, and hence clausg
(containing—z;) is also satisfied.

Thus, in order to determine the value g, it is sufficient to model check,, in
M, g5. Note that modelM,, consists of0(|¢|p) states an@(|¢|p) transitions, where
|| is the maximal length of formulags, ..., ¢,. Moreover, the length of formulé,,
is linear inp, and the construction dff,, and®, can be also done in tim@(|,|p) and
O(p), respectively. In consequence, we obtain a polynomial reducti@NS AT to
ATL ;- model checking.

Theorem 6 Model checkingTL ;. is A¥-complete with respect to the number of tran-
sitions in the model, and the length of the formula. The problea¥scomplete even
for turn-based models with at most two agents.
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Conclusions

In this paper we proved that model checkingaof ;,. formulae isAY -hard, and there-
fore A¥-complete. Thus, we close an existing gap (betwtd+hardness and\ ¥ -
easiness) in the work of Schobbeps|[16], and at the same time correct our own claim
from [10]. The gap betweelNP and AY is not terribly large, so the result might
seem a minor one — although, technically, it was not that trivial to prove it. On the
other hand, its importance goes well beyond model checkingof.. In fact, Theo-
rem@ yields immediate corollaries with¥-completeness of other logics likeaoL,
“FeasibleaTEL”, csL etc., andA¥ -hardness oETsL.

We thank Nils Bulling for checking our proofs.
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