Clausthal University of Technology

Inner Sphere Trees
Rene Weller and Gabriel Zachmann

Ifl Technical Report Series If1-08-09

Department of Informatics
Clausthal University of Technology

Impressum

Publisher: Institut fiir Informatik, Technische Universitit Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jiirgen Dix

Technical editor: Wojciech Jamroga

Contact: wjamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jiirgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. Dr. Klaus Ecker (Applied Computer Science)

Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)

Prof. Dr. Kai Hormann (Computer Graphics)

Prof. Dr. Gerhard R. Joubert (Practical Computer Science)

apl. Prof. Dr. Giinter Kemnitz (Hardware and Robotics)

Prof. Dr. Ingbert Kupka (Theoretical Computer Science)

Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jorg Miiller (Business Information Technology)

Prof. Dr. Niels Pinkwart (Business Information Technology)

Prof. Dr. Andreas Rausch (Software Systems Engineering)

apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)

Prof. Dr. Harald Richter (Technical Computer Science)

Prof. Dr. Gabriel Zachmann (Computer Graphics)

Inner Sphere Trees

Rene Weller and Gabriel Zachmann

$

Figure 1: Our Inner Sphere Trees are based on sphere packings of arbitrary polygonal
objects (left). They are suitable for different kinds of geometric queries, namely prox-
imity queries (middle) and our new method for computing the penetration depth, the
penetration volume (right)

Abstract

We present a novel geometric data structure for collision detection at haptic rates between
arbitrary rigid objects. Our data structure, which we call inner sphere trees, efficiently sup-
ports both proximity queries and the penetration volume. The latter is related to the water
displacement of the overlapping region and, thus, corresponds to a physically motivated
force. Moreover, we present a time-critical version of the penetration volume computation
that is able to achieve very good estimates of the penetration volume within a fixed budget
of query time. In order to build our new hierarchy, we propose to use an Al clustering al-
gorithm, which we extend and adapt here. The results show extremely good performance
of our algorithms both for proximity and penetration volume queries for models consisting
of hundreds of thousands of polygons. We also conducted a comparison with an existing
package, which shows that our algorithms are about an order of magnitude faster.

1 Introduction

Collision detection between rigid objects plays an important role in many fields of
computer science, e.g. in physically-based simulations, robotics, and medical appli-
cations. Today, there exist a wide variety of freely available collision detection li-
braries, (like PQP [Larsen et al., 1999|], FreeSolid [van den Bergen, 1999], Opcode
[Terdiman, 2001] or CollDet [Zachmann, 1998|]) and nearly all of them are able to
work at interactive rates, even for very complex objects [Trenkel et al., 2007|]. Most
collision detection algorithms dealing with rigid objects use the very efficient data

Introduction

structure of bounding volume hierarchies (BVH). The main idea behind a BVH is
to subdivide the primitives of an object hierarchically until there is only one sin-
gle primitive left at the leaf level. Several kinds of bounding volumes have been
proposed in the past, the most popular are axis aligned bounding boxes (AABBs),
oriented bounding boxes(OBBs)[Gottschalk et al., 1996], oriented polytopes (k-Dops)
[Klosowski et al., 1998|] and spheres. BVHs guarantee very fast responses at query
time, as long as no further information than the set of intersecting polygons is required
for the collision response. However, most applications require much more information
in order to compute a proper force.

One way to do this is to compute the exact time of contact for the objects. This
method is called continuous collision detection. Algorithms for this kind of collision
detection are very time-consuming. Another approach, called penalty methods, is to
compute repelling forces based on the penetration depth. However, there does not exist
a universally accepted definition of the penetration depth between a pair of polygonal
models [Zhang et al., 2007, Hong et al., 2000]. Mostly, the minimum translation vector
to separate the objects is used, but this may lead to discontinuous forces.

Another approach is to avoid penetrations or contacts before they really happen. In
this case, the minimum distance between the objects can be used to compute repelling
forces. However, it can be difficult for the simulation to guarantee that the objects never
penetrate each other.

These problems get worse when the collision detection is not only needed to avoid
visual artifacts, but the algorithm is used in a haptic environment. Hardware for haptic
interaction requires update rates of at least 200Hz up to 1 kHz to guarantee a stable
force feedback.

A remedy could be the use of constant time collision detection algorithms, for ex-
ample, voxel-based methods like the Voxmap Pointshell algorithm (VPS). In this ap-
proach, the world is divided into a static environment that is approximated by voxels,
and dynamic objects that are approximated by point clouds and are allowed to move
freely. It is independent of the objects’ complexity and fast enough for haptic render-
ing. However, it has to be known in advance which objects are fixed and which are
moving. Moreover, collision detection is only available with the static environment, not
between pairs of moving objects. Furthermore, the method is very memory consuming
and produces strong aliasing artifacts due to the voxelization errors.

1.1 Main Contributions

Our new geometric data structure, the Inner Sphere Trees (IST), combines the advan-
tages and avoids most of the disadvantages of both prior approaches.

The main idea is that we do not build a hierarchy based on the polygons on the bound-
ary of an object. Instead, we fill the interior of the model with a set of non-overlapping
simple volumes that approximate the object’s volume closely. In our implementation,
we used spheres for the sake of simplicity, but the idea of using bounding volumes
for lower bounds instead of upper bounds can be extended easily to all kinds of vol-
umes. On top of these inner bounding volumes, we build a hierarchy that allows very

DEPARTMENT OF INFORMATICS 2

- 'l Clausthal

INNER SPHERE TREES

fast collision detection and proximity queries. Moreover, it enables us to estimate the
penetration volume very efficiently. The penetration volume corresponds to the water
displacement of the overlapping parts of the objects and leads to physically motivated
and continuous repelling forces, in contrast to the discontinuous forces of voxel- or
penetration depth-based algorithms. It is “the most complicated yet accurate method”
to define the extent of intersection [Fisher and Lin, 2001, Sec. 5.1], which was also re-
ported earlier by [O’Brien and Hodgins, 1999, Sec. 3.3]. However, to our knowledge,
there are no algorithms to compute it efficiently as yet.

The construction of our data structure consists of two main tasks. The first task is
to fill an arbitrary object densely with a set of spheres. Our data structure supports all
kinds of objects, e.g. polygon meshes or NURBS surfaces. The only precondition is
that they be watertight. We use an extended version of a flood filling voxelization in
combination with a new sphere creation algorithm for this part. The second task is to
build a hierarchy upon these inner spheres. Therefore, we utilize the recently proposed
batch neural gas clustering algorithm, which allows us to work in an adaptive manner.

Our inner sphere tree not only allows to compute both separation distance and pene-
tration volume, but it also lends itself very well to time-critical variants, which run only
for a pre-defined time budget.

The results shows that our new data structure outperforms state-of-the-art libraries
by more than an order of magnitude, with a negligible loss of accuracy.

2 Previous Work

Collision detection has been extensively investigated by researchers in the past decades.
There exist a large variety of freely available libraries for collision detection queries.
However, the number of libraries that also support the computation of proximity
queries or the penetration depth is manageable. Additionally, most of them are not
designed to work at haptic refresh rates, or they are restricted to simple point probes
[Hudson et al., 1997], or require special objects, such as convex objects as input.

In the following, we will give a short overview of classical and also state of the art
approaches to manage these tasks.

2.1 BVH based data structures

[Johnson and Cohen, 1998] present a generalized framework for minimum distance
computations that depends on geometric reasoning and includes time-critical properties.
The PQP library [Larsen et al., 1999] uses swept sphere volumes as BVs in combination
with several speed-up techniques for fast proximity queries. We used it in this paper to
compare it with our new data structure. Sphere trees have also been used for distance
computation [Quinlan, 1994, [Hubbard, 1995, Mendoza and O’ Sullivan, 2006|]. The al-
gorithm presented there is interruptible and it is able to deliver approximative distances.
However, it is not applicable to penetration depth estimation.

3 Technical Report IfI-08-09

Creation of the Inner Sphere Tree Hierarchy

[Johnson and Willemsen, 2003]] computes local minimum distances for a stable force
feedback computation and uses spatialized normal cone pruning for the collision detec-
tion. Another classical algorithm for proximity queries is the GJK [Gilbert et al., 1988,
van den Bergen, 1999], which computes the distance between a pair of convex objects,
by utilizing the Minkowski sum of the two objects. There also exist extensions to the
GJK algorithms that allow to measure the penetration depth [Cameron, 1997]).

[Zhang et al., 2007]] presented an extended definition of the penetration depth that
also takes the rotational component into account. This is called the generalized pene-
tration depth. However, the algorithm is not fast enough for haptic interaction rates.

[Redon and Lin, 2006]] approximate a local penetration depth by first computing
a local penetration direction and then use this information to estimate a local pen-
etration depth on the GPU. The algorithm is restricted to image-precision. Other
GPU approaches with very similar problems have been presented by [Kim et al., 2003,
Kim et al., 2002] or [Hoff et al., 2002], that also supports proximity queries in image
resolution.

The DEEP library [Kim et al., 2004]] finds a "locally optimal solution" by walking on
the surface of the Minkowski sums and uses a heuristic to estimate the initial features.
However, it is restricted to convex polytopes.

Another interesting approach to perform penetration depth computations is the use
of continuous collision detection. Unfortunately, most continuous collision detec-
tion algorithms are far from real time, not to speak about haptic rendering. So,
[Ortega et al., 2007]] use a god-object based approach, that computes the collisions and
the forces asynchronous in two different processes in order to guarantee constant up-
dating rates. However, between the queries, it does not guarantee collision free config-
urations.

2.2 Voxel based data structures

The Voxmap Pointshell approach [McNeely et al., 1999] divides the virtual environ-
ment into a dynamic object, that is allowed to move freely through the virtual space and
static objects that are fixed in the world. The static environment is discretized into a set
of voxels. The dynamic object is described by a set of points that represent its surface.
During query time, for each of these points it is determined with a simple boolean test,
whether it is located in a filled volume element or not.

[Renz et al., 2001]] presented extensions to the classic VPS, including optimizations
to force calculation in order to increase its stability. However, even these optimizations
can not completely avoid the limits of VPS, namely aliasing effects, the huge memory
consumption and the strict disjunction between dynamic and static objects.

Closely related to VPS are distance field based methods. [Barbi¢ and James, 2008]]
use a pointshell of reduced deformable models in combination with distance fields in
order to guarantee continuous contact forces.

DEPARTMENT OF INFORMATICS 4

.'I'U Clausthal

INNER SPHERE TREES

& o

Figure 2: The stages of our sphere filling method. First, we voxelize the object (left).
Additionally, we compute distances from the voxels to the closest triangle. The result-
ing distance field is visualized in the second image (for the sake of visualization, the
transparency is modulated by the distance). Then, we pick the voxel with the largest
distance and put a sphere at its center, with its radius set to the distance. We proceed
incrementally and, eventually, obtain a dense sphere filling (right).

3 Creation of the Inner Sphere Tree Hierarchy

In this section we describe the construction of our data structure. The goal is to fill
an arbitrary object densely with a set of disjoint (i.e. non-overlapping) spheres such
that the volume of the object is covered well while the number of spheres is as small
as possible. In a second step, we build a hierarchy over this set of spheres. We chose
spheres for volumes, because they offer a trivial and very fast overlap test. Moreover,
they are rotationally invariant, and it is easy, in contrast to AABBs or OBBs, to compute
the exact intersection volume.

3.1 Let there be Spheres

Filling objects densely with spheres is a highly non-trivial task. Bin packing, even when
restricted to spheres, is still a very active field in geometric optimization and far away
from being solved for general objects [Birgin and Sobral, 2008|,[Schuermann, 2006]. In
our implementation of the inner sphere trees, we use a simple heuristic that offers a
good trade-off between accuracy and speed in practice.

Currently, we voxelize the object as an intermediate step (by a simple flood filling
algorithm). But instead of simply storing whether or not a voxel is filled, we addition-
ally store the distance d from the center of the voxel to the nearest point on the surface,
as well as the triangle that realizes this distance.

After the voxelization, we generate the inner spheres greedily. We choose the voxel
V* with the largest distance d* to the surface. We create an inner sphere with radius d*
and centered on the center of V*. All voxels whose center is contained in this sphere
will not be considered any further. Additionally, we have to update all voxels V; with
d; > d* and distance d(V;, V*) < 2d; their d; must now be set to the new free radius.
This is, because they are now closer to the sphere around V* than to a triangle on the
hull (see Figure[3). This process stops, when there is no voxel left.

5 Technical Report IfI-08-09

Creation of the Inner Sphere Tree Hierarchy

y. = v
< i J\ | <) A\

Figure 3: The first steps of the creation of the inner spheres. Left: voxelized distance
field of the object. Middle: we place a maximal sphere (green) at the voxel center with
the largest radius, then, the red voxels are deleted, and the free radius of some voxels
(blue) is updated. Right: this procedure continues greedily.

™~

\

/8

After these steps, the object is filled densely with a set of non-overlapping spheres.
The density can be controlled by the number of voxels.

3.2 Building the IST

Our sphere hierarchy is based on the notion of a wrapped hierarchy [Agarwal et al., 2004].
In a wrapped hierarchy, a sphere at an inner node is a tight bounding sphere for all its
associated leaves, but it does not necessarily bound its direct children (see Figure [).
Compared to layered hierarchies, this has the big advantage that it fits the object more
tightly. We use a top-down approach to create our hierarchy, i.e., we start at the root
node that covers all inner spheres and divide these into several subsets.

The partitioning of the inner spheres has significant influence on the performance
during runtime. Partitioning algorithms for ordinary sphere trees, like the medial axis
approach [Bradshaw and O’Sullivan, 2004] work well if the spheres overlap heavily,
but in our scenario we use disjoint inner spheres. Other approaches based on the k-
center problem work only for sets of points and do not support spheres.

So, we decided to use the batch neural gas clustering algorithm (BNG) known from
artificial intelligence [Cottrell et al., 2006]. BNG is a very robust clustering algorithm,
which can be derived as stochastic gradient descent with a cost function closely con-
nected to quantization error. Like k-means, the cost function minimizes the mean
squared euclidean distance of each data point to its nearest center. But unlike k-means,
BNG exhibits very robust behavior with respect to the initial prototype positions: they
can be chosen arbitrarily without affecting the convergence. Moreover, BNG can be
extended to allow the specification of the importance of each data point, which will be
important to create efficient inner spheres trees.

In the following, we will give a quick recap of the basic batch neural gas and then
describe our extensions and application to building the inner sphere tree.

Given points x; € R?,j = 0,...,m and prototypes w; € R% i = 0,...,n initial-
ized randomly, we set the rank for every prototype w; with respect to every data point
Zj as

kij = {wg @ d(zj, wi) < d(z;,w;)} € {0,...,n} (1)

DEPARTMENT OF INFORMATICS 6

- 'l Clausthal

INNER SPHERE TREES

Figure 4: In a wrapped hierarchy, the blue sphere bounds all its leaf nodes (red
spheres), but not its direct children (green spheres).

In other words, we sort the prototypes with respect to every data point. After the com-
putation of the ranks, we compute the new positions for the prototypes:
m
o 2i=0 M Eig) T 2
P Tm L
> o ha(kij)
These two steps are repeated until a stop criterion is met. In the original paper, a fixed
number of iterations is proposed. We propose to use an adaptive version and stop the
iteration if the movement of the prototypes is smaller than some €. In our examples,
we chose € ~ 10~° x BoundingBoxSize, without any differences in the hierarchy
compared to the non-adaptive, exhaustive approach. This improvement speeds up the
creation of the hierarchy significantly.
The convergence rate is controlled by a monotonically decreasing function hy (k) >
0 that decreases with the number of iterations ¢. We use the function proposed

in the original paper: hy(k) = e~ % with initial value \g = 5, and reduction

t
tmax
A(t) = Ao (%) , where ¢« is the maximum number of iterations. These values

have been taken according to [Martinetz et al., 1993|].

Obviously, the number of prototypes defines the arity of the tree. Experiments with
our data structure have shown that a branching factor of 4 produces the best results.
Moreover, this has the advantage that we can use the full capacity of SIMD units in
modern CPUs.

So far, the BNG only utilizes the location of the centers of the spheres. In our
experience, this already produces much better results than other, simpler heuristics,
such as greedily choosing the biggest spheres or the spheres with the largest number
of neighbors. However, it does not yet take the extent of the spheres into account. As
a consequence, the prototypes tend to avoid regions that are covered with a very large
sphere, i.e., centers of big spheres are treated as outliers and they are thus placed on
very deep levels in the hierarchy. However, it is better to place big spheres at higher

7 Technical Report IfI-08-09

BVH Traversal

X IR

a

Figure 5: This figure shows the results of our hierarchy building algorithm based in
batch neural gas clustering with magnification control. All of those inner spheres that
share the same color are assigned to the same bounding sphere. The left image shows
the clustering result of the root sphere, the right images the partitioning of its four
children.

levels of the hierarchy in order to get early lower bounds during distance traversal (see
Section [d.1] for details).

Therefore, we use an extended version of the classical batch neural gas, that also
takes the size of the spheres into account. Our extension is based on an idea of
[Hammer et al., 2006]], where magnification control is introduced. The idea is to add
weighting factors in order to “artificially” increase the density of the space in some
areas.

With weighting factors v(x;), Eq. @becomes

 Xito akiv(;)z;
e >ito ho(kig)v(z;))

In our scenario, we already know the density, because our spheres are disjoint. Thus,
we can directly use the volumes of our spheres to let v(z;) = %m‘?’.

Summing up the hierarchy creation algorithm: we first compute a bounding sphere
for all inner spheres (at the leaves), which becomes the root node of the hierarchy.
To do that, we use the fast and stable smallest enclosing sphere algorithm proposed
in [Girtner, 1999]]. Then, we divide the set of inner spheres into subsets in order to
create the children. To do that, we use the extended version of batch neural gas with
magnification control. We repeat this scheme recursively.

In the following, we will call the spheres in the hierarchy that are not leaves hierarchy
spheres. Spheres at the leaves, which were created in Section@ will be called inner
spheres. Note that hierarchy spheres are not necessarily contained completely within
the object.

DEPARTMENT OF INFORMATICS 8

- 'l Clausthal

INNER SPHERE TREES

Algorithm 1: checkDistance(A, B, minDist)

input : A, B = spheres in the inner sphere tree

in/out: minDist = overall minimum distance seen so far
if A and B are leaves then
/l end of recursion
minDist = min{distance(A, B), minDist}
else
/[recursion step
forall children a[i] of A do
forall children b[j] of B do
if distance(al[i], b[j]) < minDist then
checkDistance(a[i], b[j], minDist)

4 BVH Traversal

During runtime, our new data structure supports different kinds of queries, namely
proximity queries, which report the separation distance between a pair of objects, and
penetration volume queries, which report the common volume covered by both objects.
As a by-product, the proximity query can return a witness realizing the distance, and
the penetration algorithm can return a partial list of intersecting polygons.

In the following, we describe algorithms for these two query types, but it should be
obvious how they can be modified in order to provide an approximate yes-no answer.
This would further increase the speed.

First, we will discuss the two query types separately, in order to point out their spe-
cific requirements and optimizations. Then, we explain how they can be combined into
a single algorithm.

4.1 Proximity Queries

Our algorithm for proximity queries works like most other classical BVH traversal al-
gorithms. We simply have to add the computation of lower bounds for the distance. If
a pair of leaves, which are the inner spheres, is reached, we update the lower bound so
far (see Algorithm [I)). During traversal, there is no need to visit bounding volumes in
the hierarchy that are farther away than the current minimum distance, because of the
bounding property. This guarantees a high culling efficiency.

4.1.1 Improving runtime

In most collision detection scenarios, there is a high spatial and temporal coherence,
especially when rendering at haptic rates. Thus, in most cases, those spheres realizing
the minimum distance in a frame are also the closest spheres in the next frames, or
they are at least in the neighborhood. Thus, in our implementation we store pointers to

9 Technical Report IfI-08-09

BVH Traversal

Figure 6: Every inner sphere (light green/blue) is attached to its closest triangle (dark
green/blue). The distance between the closest spheres (red line) is an upper bound for
the real distance between the closest triangles (black line)

the closest spheres as of the last frame and use their distance to initialize minDist in
Algorithm T}

For the moment, we are only interested in proximity queries. Therefore, we can
obtain a further speedup by terminating the traversal when the first pair of intersecting
inner spheres is found; in that case, the distance is zero.

Moreover, our traversal algorithm is very well suited for parallelization. During
recursion, we compute the distances between 4 pairs of spheres in one single SIMD
implementation, which is greatly facilitated by our hierarchy being a 4-ary tree.

4.1.2 Improving accuracy

Obviously, Algorithm I|returns only an approximate minimum distance, because it uti-
lizes only the distances of the inner spheres for the proximity query. Thus, the accuracy
depends on their density.

Fortunately, it is very easy to alleviate these inaccuracies by simply assigning the
closest triangle (or a set of triangles) to each inner sphere. After determining the closest
spheres with Algorithm [I] we add a subsequent test that calculates the exact distance
between the triangles assigned to those spheres (see Figure [6). This simple heuristic
reduces the error significantly even with relatively sparsely filled objects, and it does
not affect the runtime (see first diagram in Figure[I3)).

4.2 Penetration Volume Queries

In addition to proximity queries, our data structure also supports a new kind of pen-
etration query, namely the penetration volume. This is the volume of the intersection
of the two objects. In other words, it corresponds to the water displacement, which

DEPARTMENT OF INFORMATICS 10

- 'l Clausthal

INNER SPHERE TREES

Algorithm 2: checkVolume(A, B, totalOverlap)

input : A, B = spheres in the inner sphere tree

in/out: totalOverlap = overall volume of intersection
if A and B are leaves then

/I end of recursion

totalOverlap += overlapVolume(A, B)
else

/ recursion step

forall children a[i] of A do

forall children b[j] of B do

if overlap(al[i], b[j]) > O then
checkVolume(a[i], b[j], totalOverlap)

means that it is directly related to a physically motivated measurement to compute the
repelling forces.

Obviously, the algorithm to compute the penetration volume (see Algorithm [2) does
not differ very much from the proximity query test: we simply have to replace the
distance test by an overlap test and maintain an accumulated overlap volume during the
traversal.

4.2.1 Filling the gaps

Filling the objects as described in Section [3.1]results in densly filled objects. However,
there still remain small gaps between the spheres that can not be completely compen-
sated by increasing the number voxels.

As a remedy, we assign an additional, secondary radius to each inner sphere, such
that the volume of the secondary sphere is equal to the volume of all voxels whose
centers are contained within the radius of the primary sphere. This guarantees that
the total volume of all secondary spheres equals the volume of the object, within the
accuracy of the voxelization, because each voxel volume is accounted for exactly once.

Certainly, these secondary spheres may slightly overlap, but this simple heuristic
leads to acceptable estimations of the penetration volume. (Note, however, that the
secondary spheres are not necessarily larger than the primary spheres.)

4.2.2 Improvements

Similar to the proximity query implementation, we can utilize SIMD parallelization to
speed up both, the simple overlap check and the volume accumulation.

Furthermore, we can exploit the observation that a recursion can be terminated if a
hierarchy sphere (i.e., an inner node of the sphere hierarchy) is completely contained
inside an inner sphere (leaf). In this case, we can simply add the total volume of all of

11 Technical Report IfI-08-09

BVH Traversal

Figure 7: After the sphere filling algorithm, some voxel are intersected by several non-
overlapping spheres (yellow, red, and blue). On the left, the green, hatched volume
remains unaccounted for. As a remedy, we blow up the sphere centered at the voxel by
the volume of the gap (right).

its leaves to the accumulated penetration volume. In order to do this quickly, we store
the total volume

Vol (S) = Y Vol(s)), “4)

Sj€Leaves(S)

where S; are all inner spheres below S in the BVH. This can be done in a preprocessing
step during hierarchy creation.

4.2.3 Time-critical computation of penetration volume

In most cases, a penetration volume query has to visit many more nodes than the average
proximity query. Consequently, the runtimes are slower on average, especially in cases
with heavy overlaps. Furthermore, Algorithm 2] only provides a lower bound on the
penetration volume.

In the following, we will describe a variation of our algorithm for penetration vol-
ume queries that guarantees a predefined query time budget while providing an answer
“as good as possible”. This is essential for time-critical applications such as haptic
rendering,

An appropriate strategy to realize time-critical traversals is to guide the traversal by
a priority queue (). Given a pair of hierarchy spheres S and R, a simple heuristic is to
use Vol(S N R) for the priority in Q. In our experience, this would yield acceptable
upper bounds.

Unfortunately, this simple heuristic also leads to very bad lower bounds, because
only a small number of inner spheres will be visited (unless the time budget permits a
complete traversal of all overlapping pairs).

DEPARTMENT OF INFORMATICS 12

- 'l Clausthal

INNER SPHERE TREES

A simple heuristic to derive an estimate of the lower bound could be to compute

Z Z \/OI(Rz n Sj), (5)

(R,S)eQ R;€ech(R),
Sj€ch(S)
where ch(S) is the set of all direct children of node S.

Equation [5 amounts to the sum of the intersection of all direct child pairs of all
pairs in the p-queue (). Unfortunately, the direct children of a node are usually not
disjoint and, thus, this estimate of the lower bound could actually be larger than the
upper bound.

In order to avoid this problem, we introduce a new method to estimate the overlap
volume more accurately: the expected overlap volume.

The only assumption we make is that for any point inside S, the distribution of the
probability that it is also inside one of its leaves is uniform.

Let (R, S) be a pair of spheres in the p-queue. We define the densiry of a sphere as

Vol; (S
p(S) = Vf)f((s))- ©
with
Voli(S) = Y Vol(s)), (7)
Sj€Leaves(S)

where S; are all inner spheres below S in the IST.

This is the probability that a point inside .S is also inside one of its leaves (which
are disjoint). Next, we define the expected overlap volume Vol(R, S) as the probability
that a point is inside R NS and also inside the intersection of one of the possible pairs
of leaves, i.e.,

Vol(R, S) = p(S) - p(R) - Vol(RN S)

_ Voli(R) - Vol;(S) - Vol(RN S) 3)
B Vol(R) - Vol(S)

(see Figure|[g).
This estimate can be further refined by taking it one level deeper in the hierarchy. So
we define a “second level” expected overlap volume

Vol (R,5)= Y Vol(R.,S)) ©)

R;Ech(R),
S;€ch(S)

This could be further refined to any level Vo’ (R, S), but in our experience Vo'V (R, S)

has yielded the best compromise between performance and accuracy.
In summary, for the whole queue we get an expected overlap volume by

3 Vol (R,) (10)

(R,5)eQ

13 Technical Report IfI-08-09

Results

Figure 8: We estimate the real penetration volume (yellow) during our time-critical
traversal by the “density” in the hierarchy spheres (green and blue) and the total vol-
ume of leaf spheres.

Clearly, this volume can be maintained during traversal quite easily.
More importantly, this method provides a much better heuristic for sorting the pri-

ority queue: if the gap between the expected overlap W(l)(R7 S) and the overlap
Vol(R N S) is large, then it is most likely that the traversal of this pair will give the
most benefit towards improving the bound; consequently, we insert this pair closer to
the front of the queue.

Algorithm [3|shows the pseudo code of this approach. (Note that p(S) = 1if Sisa
leaf, and therefore Vol(R, S) returns the exact intersection volume at the leaves.)

4.3 Combined Traversal

In the previous sections, we introduced the proximity and the penetration volume com-
putation separately. However, it is of course possible to combine Algorithms [I|and
This yields a unified algorithm that can compute both the distance and the penetration
volume.

To that end, we start with the distance traversal of Algorithm E} If we find the first
pair of intersecting inner spheres, then we simply switch to the penetration volume
computation.

This is correct because all pairs of inner spheres we visited so far do not overlap and
thus do not extend the penetration volume. Thus, we do not have to visit them again
and can continue with the traversal of the rest of the hierarchies using the penetration
volume algorithm. If we do not meet an intersecting pair of inner spheres, the unified
algorithm still reports the minimal separating distance.

DEPARTMENT OF INFORMATICS 14

- 'l Clausthal

INNER SPHERE TREES

Algorithm 3: checkVolumeTimeCritical(A, B)

input : A, B = root spheres of the two ISTs
estOverlap = Vo'V (A, B)
@ = empty priority queue
Q.push(A, B)
while Q not empty & time not exceeded do
(R,S) = Q.pop()
if R and S are not leaves then
estOverlap —= Vo' (R,S)
forall R; < children of R, S; € children of S do
estOverlap += VoV (Ri, S;)
Q.push(R;, S;)

5 Results

We have implemented our new data structure in C++ on a PC running Windows XP with
an Intel Pentium IV 3GHz dual core CPU and 2GB of memory. We used a modified
version of Dan Morris’ Voxelizer [Morris, 2006] to compute the voxelization and the
initial distances of the voxels.

We used several hand recorded object paths for benchmarking. In order to test the
proximity queries, we moved the objects within a distance range of about 0-10% of
the object’s BV size. Here, we focused on very close configurations, because these
are more stressing and also more interesting in real world scenarios. The paths for the
penetration volume tests concentrate on light to medium penetrations of about 0-10%
of the object’s volume, because this resembles the usage in haptic applications best. But
we also included some heavy penetrations of 50% of the object’s volume so as to stress
our algorithm.

We used several different objects to test the performance of our algorithms, including
extremely concave objects, like pigs or the torso (see Figures[0]and [T4). The polygon
count ranges from 1k to 350k triangles per object. We voxelized each object in different
resolutions in order to evaluate the trade-off between the number of spheres and the
accuracy.

We compared the performance of our proximity query algorithm with the PQP li-
brary. It supports exact and approximate distance computation and make use of co-
herence and other techniques to improve performance. We used the exact distance
computation in order to get reference values for our approximative approach. We also
turned on the frame-to-frame coherence in our algorithm.

To our knowledge, there are no publicly available implementations to compute the
penetration volume efficiently. In order to evaluate the quality of our penetration vol-
ume approximation, we used a tetrahedralization in combination with a sphere hierar-

15 Technical Report IfI-08-09

Conclusions and Future Work

. ®

Figure 9: Some snapshots from our proximity query benchmarks: a pig, a screwdriver
(27k polygons) and an armadillo (350k polygons). The red and blue spheres show the
closest pair of spheres.

Average Runtime/Frame Maximum Runtime over all Frames
3.5 IST (2 k) = ' 20 IST (2 k) = ' —
3 [ISTd6k - — 18 FisT(16k) -
[IST (89 k) = 1 16 L 1ST®9k) =
IST(248k) m IST(248k) m
2.5 PP (27k) = 14 | PQP (27k) =
g 2t g 12/
7] 7] 10 L
E 15! g

] gl
1t] 6+
0.5}] ‘2‘ I
0 I 0
Figure 10: Benchmark of the proximity query using the screwdriver scene. Left: aver-
age total query time of the IST and PQP; the number in parentheses gives the sphere
resolution and the number of triangles, resp. Even with a very large number of inner
spheres, the IST is 10 times faster than PQP, and this factor increases up to 120 when

we reduce the number of spheres. Right: the maximum runtime; in contrast to PQP,
even in the worst case it is able to guarantee 200 Hz with the highest resolution.

chy to compute the exact overlap volume. However, the runtime of this approach is not
applicable to real-time applications due to bad BV fitting and the costly tetrahedron-
tetrahedron overlap volume calculation.

The results of our benchmarking show that our ISTs outperform PQP by an order of
magnitude with a negligible loss of accuracy. The speed-up is between 10—120 times,
depending on the density of the inner spheres (see Figures [T0]and [T T)).

Our penetration volume algorithm is able to answer queries at haptic rates, even for
very large objects with hundreds of thousands of polygons, as long as the interpenetra-
tion is not too big (see Figure[I5). In the case of deeper penetrations, our time-critical
traversal guarantees acceptable estimations of the penetration volume even in worst-
case scenarios and multiple contacts (see Figure[T6).

DEPARTMENT OF INFORMATICS 16

-'l U Clausthal

INNER SPHERE TREES
Distance Error relative to PQP Distance Average Runtime/Frame
IST (2 k) = 3 IST (5k) = j —
18+ IST (16 k) - IST (35 k) -
16| IST (89 k) - 2.5 HIST (185k) -
IST(248k) m IST(508k) m
s 14t PQP27k) o 5 [PPEOID) =
g 12y 8
5 10+ g 15
g8
61 Ly
‘2‘ i 05t
0 0 J

Figure 11: Left: the error of approximate proximity based on ISTs is relatively small
in the screwdriver scene; for the IST with highest resolution, the distance error is less
than 0.5% compared to the accurate distance computed by PQP, and even with the IST
containing only 89k inner spheres, the error is < 1% while the runtime is two times
faster. Right: average total time of IST and PQP using the armadillo scene. Again, the
IST is more than 10 times faster than PQP.

Distance/Frame
0.4
IST (5 k)
035 L 18TGsK i
IST (185 k) ! |
03 L ISTG08K) i i
PQP (691 k) |
025 1
02 | . E
0.15 | { :‘: . ‘1“, 5“ 7
0.1 E
0.05 [/
0

Figure 12: Distances per frame in the armadillo scene: The overestimation of the
lowest resolution IST (green, 5k spheres) is relatively big, whereas the error of the
ISTs with higher resolutions (35k, dark blue, 185k, red, 508k, light blue) differ only in
insignificant details from the exact distance curve of PQP (yellow).

17 Technical Report IfI-08-09

Conclusions and Future Work

Distance error relative to PQP distance Average Runtime/Frame
12 ' IST (4k) = 0.6 IST (4 k) = '
IST (27k) - IST (27 k) ~
10 t IST (157K) = 0.5 }1ST (157 k) =
IST (446k) = IST (446k) =
ISTUIA O ISTAKIA O
® 8 ISTQ7K)IA m | 04 5127014 =
k= IST(570) A = 3 IST(57k) 1A =
5 6f IST (446k) 1A = | é: 0.3 [IsT@I6KIA =
g
mo4! 0.2
2t 0.1+
0 0

Figure 13: Left: improvement of the accuracy (IA) in distance queries by the method
described in Section in the pig scene with only one triangle stored for every
sphere. Right: the improvement of accuracy does not significantly affect the runtime
our traversal algorithm.

. o

Figure 14: Some snapshots from our penetration volume benchmarks: another screw-
driver scene (27k polygons), a skull (100k polygons) and a human torso (200k poly-
gons). The red and blue spheres show the overlapping inner spheres.

DEPARTMENT OF INFORMATICS 18

-'l U Clausthal

INNER SPHERE TREES

Average Runtime/Frame Volume Error relative to TET Volume
6 IST (2 k) = ' 12 ' IST (2 k) =
IST (16 k) - IST (16 k) -
5 HIST(89K) - — 10 t IST (89 k) =
IST49k) = IST(249k) =
4 | TET04K) = S gl TET (94 k) =
9 =
Q =
2 3 — 6
3
g =
2 o 410
1t 2+
0 0

Figure 15: Left: average runtime for the penetration volume computation in the sec-
ond screwdriver scene; the average runtime of the tetrahedral tree (TET) is about 1.5
sec/frame with 94k tetrahedrons; the IST allows haptic refresh rates at every sphere
resolution. Right: the loss of accuracy is very small compared to the exact overlap
volume; clearly, the error decreases sharply with increasing sphere resolution and is
about 0.5% for the IST with 89k spheres.

Average Runtime/Frame Average Runtime/Frame
10 IST (17 k) = ' 7 IST 2k) = '
IST (105 k) - 6 LIST(14k) ™~
g | IST (616 k) - [IST (83 k) =
IST(1705k) = IST228k) =
TET (537 k) = SFTET (134K o
g Of 3 46
g g
41 3t
21
27 1
0 0

Figure 16: Average runtime of the penetration volume computation using the scull
scene (left) and the torso scene (right); here, some configurations in the object paths
incur heavy penetrations of about 50% of object volume. The tetrahedral tree needs
more than 2 sec/frame in both scenarios.

19 Technical Report IfI-08-09

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

Conclusions and Future Work

Volume/Frame

IST (17 k)
IST (105 k)
IST (616 k)

I IST (1705 k)

TET (537 k)

Figure 17: Volume per frame in the scull scene: Even with the lowest resolution IST
(green, 17k spheres) we get a close approximation of the exact volume curve computed
with the tetrahedral tree (yellow). The error of the ISTs with higher resolutions (105k,
dark blue, 616k, red, 1.7M, light blue) differ only in negligible details from the exact

curve.

Maximum Runtime over all Frames

50

IST (2 k)
IST (14 k)
IST (83 k)
40 IST (228 k)
TET (134 k)

30+

msec

20 +

10 +

0

ooEng

Error in %

Error of Time-Critical Traversal

(228K) ' -

0 50 100 150 200 250 300
Number of Sphere/Sphere Tests/1000

Figure 18: Benchmark of the penetration volume computation using the torso scene;
Left: maximum runtime (the tetrahedral tree needs 20 sec). Right: error of our time-
critical penetration volume algorithm based on the exact overlap volume, relative to
the number of sphere-sphere intersection tests.

DEPARTMENT OF INFORMATICS

20

- 'l Clausthal

INNER SPHERE TREES

6 Conclusions and Future Work

We have presented a novel hierarchical data structure, the inner sphere trees, that sup-
ports different kinds of collision queries, namely proximity queries and penetration vol-
ume computations. Both kinds can be answered at rates of about 1 kHz (which makes
the algorithm suitable for haptic rendering) even for very complex objects with several
hundreds of thousands of polygons. For proximity computations, inner sphere trees
achieve runtimes more than 10 times faster than PQP, with a negligible loss of accuracy
of about 0.5%. The balance between accuracy and speed can be defined by the user,
and this is independent of the object complexity, because the number of leaves of our
hierarchy is mostly independent from the number of polygons. Finally, our algorithms
for both kinds of queries can be integrated into existing simulation software very easily,
because there is only a single entry point, i.e., the application does not need to know in
advance whether or not a given pair of objects will be penetrating each other.

Memory consumption of our inner sphere trees is similar to other bounding volume
hierarchies, depending on the predefined accuracy. This is very modest compared to
voxel-based approaches.

Another big advantage of our penetration volume algorithm over voxel-based ap-
proaches is that it yields a continuous measure for penetration and that it utilizes the
same data structure for both static and dynamic objects. This implies, that there is no
time consuming re-sampling and re-voxeling needed when the roles of the objects or
the environment change.

Last but not least, inner sphere trees are perfectly suited for SIMD acceleration tech-
niques and allow algorithms to make heavy use of temporal and spatial coherence.

Our novel approach opens up several avenues for future work.

First of all, the intermediate step of voxelization in order to obtain a sphere packing
should be replaced with a better algorithm. This is probably a challenging problem,
because several goals should be met: accuracy, query efficiency, and small build times.

Another interesting task is to explore other uses of “inner bounding volume hierar-
chies”, such as ray tracing or occlusion culling. Note that the type of bounding volume
chosen for the “inner hierarchy” probably depends on its use.

An interesting question is the analytical determination of exact error bounds. This
could lead to an optimal number of inner spheres with well-defined errors, and it could
further improve the heuristics for the time-critical traversal.

It should be straight-forward to derive more contact information, like contact nor-
mals, to compute forces. This can possibly be done by extending a method proposed in
[Faure et al., 2008]].

Finally, a challenging task would be to extend our approach also to deformable ob-
jects.

21 Technical Report IfI-08-09

References

References

[Agarwal et al., 2004] Agarwal, Guibas, Nguyen, Russel, and Zhang (2004). Collision
detection for deforming necklaces. CGTA: Computational Geometry: Theory and
Applications, 28.

[Barbi¢ and James, 2008] Barbic, J. and James, D. L. (2008). Six-dof haptic render-
ing of contact between geometrically complex reduced deformable models. IEEE
Transactions on Haptics, 1(1):39-52.

[Birgin and Sobral, 2008] Birgin, E. G. and Sobral, F. N. C. (2008). Minimizing
the object dimensions in circle and sphere packing problems. Computers & OR,
35(7):2357-2375.

[Bradshaw and O’Sullivan, 2004] Bradshaw, G. and O’Sullivan, C. (2004). Adaptive
medial-axis approximation for sphere-tree construction. In ACM Transactions on
Graphics, volume 23(1), pages 1-26. ACM press.

[Cameron, 1997] Cameron, S. (1997). Enhancing GJK: Computing minimum and pen-
etration distances between convex polyhedra. In Proc. of Int’l Conf. on Robotics and
Automation, pages 3112-3117.

[Cottrell et al., 2006] Cottrell, M., Hammer, B., Hasenfuss, A., and Villmann, T.
(2006). Batch and median neural gas. Neural Networks, 19:762-771.

[Faure et al., 2008] Faure, F., Barbier, S., Allard, J., and Falipou, F. (2008). Image-
based collision detection and response between arbitrary volumetric objects. In
ACM Siggraph/Eurographics Symp. on Computer Animation, SCA 2008, July, 2008,
Dublin, Irlande.

[Fisher and Lin, 2001] Fisher, S. M. and Lin, M. C. (2001). Fast penetration depth
estimation for elastic bodies using deformed distance fields.

[Girtner, 1999] Girtner, B. (1999). Fast and robust smallest enclosing balls. In Ne-
setril, J., editor, ESA, volume 1643 of Lecture Notes in Computer Science, pages
325-338. Springer.

[Gilbert et al., 1988] Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. (1988). A fast
procedure for computing the distance between complex objects in three-dimensional
space. IEEE J. of Robotics and Automation, 4:193-203.

[Gottschalk et al., 1996] Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBB-
Tree: A hierarchical structure for rapid interference detection. Computer Graphics,
30(Annual Conference Series):171-180.

[Hammer et al., 2006] Hammer, B., Hasenfuss, A., and Villmann, T. (2006). Magnifi-
cation control for batch neural gas. In ESANN, pages 7—12.

DEPARTMENT OF INFORMATICS 22

- 'l Clausthal

INNER SPHERE TREES

[Hoff et al., 2002] Hoff, K. E., Zaferakis, A., Lin, M., and Manocha, D. (2002). Fast
3d geometric proximity queries between rigid & deformable models using graphics
hardware acceleration. Technical Report TR02-004, Department of Computer Sci-
ence, University of North Carolina - Chapel Hill. Fri, 8 Mar 2002 20:06:33 GMT.

[Hong et al., 2000] Hong, S.-M., Yeo, J.-H., and Park, H.-W. (2000). A fast procedure
for computing incremental growth distances. Robotica, 18(4):429-441.

[Hubbard, 1995] Hubbard, P. M. (1995). Collision detection for interactive graph-
ics applications. [EEE Transactions on Visualization and Computer Graphics,
1(3):218-230.

[Hudson et al., 1997] Hudson, T. C., Lin, M. C., Cohen, J., Gottschalk, S., and
Manocha, D. (1997). V-COLLIDE: Accelerated collision detection for VRML. In
Carey, R. and Strauss, P, editors, VRML 97: Second Symp. on the Virtual Reality
Modeling Language, New York City, NY. ACM Press.

[Johnson and Cohen, 1998] Johnson, D. E. and Cohen, E. (1998). A framework for ef-
ficient minimum distance computations. In Proc. of the IEEE Int’l Conf. on Robotics
and Automation (ICRA-98), pages 3678-3684, Piscataway. IEEE Computer Society.

[Johnson and Willemsen, 2003] Johnson, D. E. and Willemsen, P. (2003). Six degree-
of-freedom haptic rendering of complex polygonal model. In HAPTICS, pages 229—
235. IEEE Computer Society.

[Kim et al., 2003] Kim, Otaduy, Lin, and Manocha (2003). Fast penetration depth esti-
mation using rasterization hardware and hierarchical refinement (short). In COMP-
GEOM: Annual ACM Symp. on Computational Geometry.

[Kim et al., 2002] Kim, Y., Otaduy, M., Lin, M., and Manocha, D. (2002). Fast pene-
tration depth computation for physically-based animation. In Spencer, S. N., editor,
Proc. of the ACM SIGGRAPH Symp. on Computer Animation (SCA-02), pages 23—
32, New York. ACM Press.

[Kim et al., 2004] Kim, Y. J., Lin, M. C., and Manocha, D. (2004). Incremental pen-
etration depth estimation between convex polytopes using dual-space expansion.
IEEE Transactions on Visualization and Computer Graphics, 10(2):152-163.

[Klosowski et al., 1998] Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H.,
and Zikan, K. (1998). Efficient collision detection using bounding volume hier-
archies of k-dops. IEEE Transactions on Visualization and Computer Graphics,
4(1):21-36.

[Larsen et al., 1999] Larsen, E., Gottschalk, S., Lin, M., and Manocha, D. (1999). Fast
proximity queries with swept sphere volumes. In Technical Report TR99-018.

23 Technical Report IfI-08-09

References

[Martinetz et al., 1993] Martinetz, T. M., Berkovich, S. G., and Schulten, K. J. (1993).
"Neural-gas’ network for vector quantization and its application to time-series pre-
diction. IEEE Trans. on Neural Networks, 4(4):558-569.

[McNeely et al., 1999] McNeely, W. A., Puterbaugh, K. D., and Troy, J. J. (1999). Six
degrees-of-freedom haptic rendering using voxel sampling. In Rockwood, A., edi-
tor, Siggraph 1999, Annual Conference Series, pages 401-408, Los Angeles. ACM
Siggraph, Addison Wesley Longman.

[Mendoza and O’Sullivan, 2006] Mendoza, C. and O’Sullivan, C. (2006). Interruptible
collision detection for deformable objects. Computers & Graphics, 30(3):432—438.

[Morris, 2006] Morris, D. (2006). Algorithms and data structures for haptic rendering:
Curve constraints, distance maps, and data logging.

[O’Brien and Hodgins, 1999] O’Brien, J. F. and Hodgins, J. K. (1999). Graphical mod-
eling and animation of brittle fracture. In SIGGRAPH ’99, pages 137-146, New
York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Ortega et al., 2007] Ortega, M., Redon, S., and Coquillart, S. (2007). A six degree-of-
freedom god-object method for haptic display of rigid bodies with surface properties.
IEEE Trans. Vis. Comput. Graph, 13(3):458-469.

[Quinlan, 1994] Quinlan, S. (1994). Efficient distance computation between non-
convex objects. In In Proc. of Int’l Conf. on Robotics and Automation, pages 3324—
3329.

[Redon and Lin, 2006] Redon, S. and Lin, M. C. (2006). A fast method for local pen-
etration depth computation. J. of Graphics Tools: JGT, 11(2):37-50.

[Renz et al., 2001] Renz, M., Preusche, C., Potke, M., peter Kriegel, H., and Hirzinger,
G. (2001). Stable haptic interaction with virtual environments using an adapted
voxmap-pointshell algorithm. In In Proc. Eurohaptics, pages 149-154.

[Schuermann, 2006] Schuermann, A. (2006). On packing spheres into containers
(about kepler’s finite sphere packing problem).

[Terdiman, 2001] Terdiman, P. (2001). Memory-optimized bounding-volume hierar-
chies.

[Trenkel et al., 2007] Trenkel, S., Weller, R., and Zachmann, G. (2007). A benchmark-
ing suite for static collision detection algorithms. In Skala, V., editor, Inter’l Conf. in
Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG),
Plzen, Czech Republic. Union Agency.

[van den Bergen, 1999] van den Bergen, G. (1999). A fast and robust GJK implemen-
tation for collision detection of convex objects. J. of Graphics Tools: JGT, 4(2):7-25.

DEPARTMENT OF INFORMATICS 24

- 'l Clausthal

INNER SPHERE TREES

[Zachmann, 1998] Zachmann, G. (1998). Rapid collision detection by dynamically
aligned DOP-trees. In Proc. of IEEE Virtual Reality Annual Int’l Symp.; VRAIS *98,
pages 90-97, Atlanta, Georgia.

[Zhang et al., 2007] Zhang, L., Kim, Y. J., Varadhan, G., and Manocha, D. (2007).

Generalized penetration depth computation. Computer-Aided Design, 39(8):625—
638.

25 Technical Report IfI-08-09

	Introduction
	Main Contributions

	Previous Work
	BVH based data structures
	Voxel based data structures

	Creation of the Inner Sphere Tree Hierarchy
	Let there be Spheres
	Building the IST

	BVH Traversal
	Proximity Queries
	Improving runtime
	Improving accuracy

	Penetration Volume Queries
	Filling the gaps
	Improvements
	Time-critical computation of penetration volume

	Combined Traversal

	Results
	Conclusions and Future Work

