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1 Introduction

The topics treated in this thesis stem from the area of algebraic graph theory which
uses algebraic methods to derive structural results on graphs. Our focus is the
study of eigenvalues and eigenspaces of finite, simple, loopless and usually undirected
graphs.

The crucial construct we will deal with is the adjacency matrix of a graph. Given a
graph with vertices v1, . . . , vn we can construct the respective adjacency matrix by
setting the entry at position (i, j) to 1 if the vertices vi and vj are joined by an edge
and 0 otherwise. This definition of the adjacency matrix depends on the chosen
vertex order. The eigenvalues of the adjacency matrix, however, do not and can
therefore be interpreted as a property of the graph itself. The same applies to the
eigenspaces if only we attribute the entries of an eigenvector to the corresponding
vertices of the graph (by matching indices).

Apart from introductory results and some remarks on eigenvector iteration, each
chapter of this thesis concentrates on a certain graph class and predominantly studies
its eigenspace stucture.

Starting with the eigenspace relation between a graph and its complement it will be
shown that the dimension of the kernel of a graph differs from the dimension of the
eigenspace for eigenvalue −1 of the complement by at most one. If the dimensions are
not equal, then the smaller space will be contained in the larger one. For undirected
graphs equal dimension implies identical eigenspaces. These results are based on
more general matrix theoretical findings.

Subsequently, our main concern are trees and distance powers of paths and circuits.
Besides studying the special eigenspaces mentioned above we also derive spectral
bounds, determine the occurence or multiplicities of certain eigenvalues, search for
common eigenvectors of two graphs from the same class, and construct simply struc-
tured bases of certain graph eigenspaces.
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2 Basics

In the following sections we will introduce basic concepts that will be used in later
chapters.

2.1 Linear algebra

Linear algebra provides tools used frequently in algebraic graph theory. We will
therefore introduce some notation found throughout the following sections and briefly
quote some theorems that will be used in the context of graphs later on. For more
details consult any standard book on linear algebra.

Let K be a field. Let Kn×m denote the set of n × m matrices with entries from
K and Kn = Kn×1. This means we will not strictly distinguish between a column
vector and a matrix with only one column.

Let Jk,l ∈ Rk×l be the all ones matrix, 11n = Jn,1 ∈ Rn the all ones vector, Nk,l ∈ Rk×l

the null matrix, and Ik ∈ Rk×k the identity matrix. The column vectors e1, . . . , ek

of the identity matrix Ik are called the standard unit vectors and form the standard

basis of Rk.

Occasionally, we will write Jk = Jk,k and Nk = Nk,k.

Further, let Lk, Uk ∈ Rk×k be all ones lower and upper triangular matrices, respec-
tively. Also, let L̃k = Lk − Ik and Ũk = Uk − Ik be the corresponding strictly lower
and upper triangular matrices.

If the dimensions are clear from the context, we will occasionally omit the subscripts
to improve readability. We may even write 0 = Nk, especially within block matrices.

A matrix in which the i-th column vector can be derived from the first column vector
by means of a downward rotation by i − 1 entries is called a circulant matrix.

In the following, consider a matrix A = (aij) ∈ Kn×n. We call matrix A normal if it
represents a normal endomorphism, i.e. AAT = AT A. A matrix P ∈ Rn is called a
permutation matrix if its column vectors form the standard basis of Rn. Permutation
matrices are orthogonal, i.e. P−1 = P T .

The characteristic polynomial χ of A is defined by

χ(x; A) = det(A − xI). (1)

Lemma 2.1. The constant term of the characteristic polynomial χ(x; A) equals the
determinant of A. �
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Proof. Note that χ(0; A) = det A. �

Note that by some sources alternatively det(xI −A) is considered the characteristic
polynomial.

It is easy to see that

χ(λ; A) = 0 ⇔ Ker(A − λI) 6= {0}. (2)

The zeros of the characteristic polynomial of a matrix A are called the eigenvalues of
A. The set of all eigenvalues is referred to as the spectrum of A. For any eigenvalue
λ we call

Eig(λ; A) = Ker(A − λI) (3)

the corresponding eigenspace.

Theorem 2.2. Let A be symmetric. Then all eigenvalues of A are real numbers.
�

Throughout, we tacitly assume that angles between vectors are measured using the
standard inner product.

Different eigenspaces are disjoint (neglecting the null vector) and may even be mu-
tually perpendicular.

Theorem 2.3. If Av1 = λ1v1 and Av2 = λ2v2 holds for two vectors v1, v2 6= 0 and
eigenvalues λ1 6= λ2, then v1 and v2 are linearly independent. �

Theorem 2.4. Let A be normal. If Av1 = λ1v1 and Av2 = λ2v2 holds for two
vectors v1, v2 and eigenvalues λ1 6= λ2, then v1 and v2 are perpendicular. �

We turn our attention to integer matrices and will comment on their rational eigen-
values. But first we need the following well-known lemma on polynomials:

Lemma 2.5. Let
anxn + . . . + a1x + a0 = 0

for x = p

q
with gcd(p, q) = 1 and integer coefficients ai. Then,

p|a0 ∧ q|an.

�
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Proof. Substitute x = p

q
into the polynomial equation and multiply by qn. Rear-

ranging the result, we get

0 = anpn + q
(
an−1p

n−1q0 + . . . + a0p
0qn−1

)

= a0q
n + p

(
anpn−1q0 + . . . + a1p

0qn−1
)
.

(4)

Because of gcd(p, q) = 1 the result follows immediately. �

Lemma 2.6. Every rational eigenvalue of an integer matrix is integer. �

Proof. Consider Lemma 2.5 for the characteristic polynomial of an integer matrix.
It is easy to see that all coefficients are integer and that an = (−1)n. Consequently,
for every eigenvalue λ = p

q
with gcd(p, q) = 1 we have q|(−1)n so that λ must be

integer. �

A different proof technique can be found in [29]. It relies on the fact that for any
rational eigenvalue of an integer matrix there would exist an integer eigenvector.

We will call a matrix positive or non-negative if all its entries are positive or non-
negative, respectively. A matrix A is called reducible if there exists a permutation
matrix P such that

P−1AP =

(
X 0
Y Z

)

(5)

with square matrices X, Z. Otherwise, we say that A is irreducible.

The following theorems are concerned with non-negative matrices. For a thorough
treatment the reader is referred to [16].

Theorem 2.7. (Perron, Frobenius)
Let A be a non-negative irreducible matrix. Then all eigenvalues of A of largest
modulus are simple and among them there is always a positive real eigenvalue λmax.
The eigenspace for λmax contains a positive eigenvector.

Moreover, the spectrum of A, considered as a set of points in the complex plane, is
mapped onto itself under a rotation around the origin by the angle 2π

k
if k denotes

the number of eigenvalues of A of largest modulus.

If k > 1, then there exists a permutation matrix P such that

P−1AP =










0 B1

0 B2

. . .
. . .

0 Bh−1

B0 0










with square blocks along the main diagonal (omitted blocks are zero). �



12 2. Basics

Since λmax is uniquely determined, we will refer to it as the largest or maximum

eigenvalue of A.

Theorem 2.8. Let A be non-negative. Let λ′
max be the largest eigenvalue of any

principal submatrix A′ 6= A of A. Then,

λ′
max ≤ λmax.

If A is irreducible, then the inequality is strict. If A is reducible, then equality holds
for at least one principal submatrix. �

Theorem 2.9. Let A be non-negative. Increase any entry of A to get the non-
negative matrix A′. Then,

λmax ≤ λ′
max.

The inequality is strict if A is irreducible. �

The final theorem in this section describes a phenomenon called eigenvalue inter-

lacing.

Theorem 2.10. Let A be symmetric and A′ be one of its principal submatrices.
Let λ1 ≤ . . . ≤ λn and λ′

1 ≤ . . . ≤ λ′
m be the eigenvalues of A and A′, respectively.

Then the inequality

λi ≤ λ′
i ≤ λn−m+i

holds for all i = 1, . . . , m. �

Historically, the original notion of interlacing was only used for the case m = n− 1.

2.2 Algebraic graph theory

For the general basics of graph theory, the reader is referred to sources like [9], [24],
[2], or [13].

Throughout, we will only consider finite, simple, loopless graphs. Unless stated
otherwise all graphs are undirected. Our definitions and notation mainly follow
[17]. However, we will speak of the degree γ(v) of a vertex v instead of its valency.
The maximum and minimum degree of a graph G are denoted by ∆(G) and δ(G),
respectively. Further, we will not strictly distinguish between isomorphic graphs
and even write G = H if the graphs G and H are isomorphic. Basically, any two
isomorphic graphs differ only by the labelling of their respective vertex sets.
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The neighbourhood N(v) is the set of all vertices adjacent to v. The set N(v) ∪ {v}
will be called the closed neighbourhood.

Note that for a set M \ {x} we will frequently write M −x. Likewise, G−x denotes
the subgraph of G = (V, E) induced by the vertices V −x and G− e is derived from
G by removing edge e ∈ E.

If G is the complement of G, we will use γ(v) for the degree of v in G. The same
principle applies to other notation.

Recall that the distance dG(u, v) is the length of a shortest path in G from vertex u

to vertex v (or ∞ if no such path exists). Further, the diameter diam(G) of a graph
G is the length of a longest path in G.

The k-th distance power G(k) of a graph G has the same vertex set as G. Two vertices
u, v of G(k) are adjacent if and only if dG(u, v) ≤ k. Note that G(k) is complete if
k ≥ diam(G).

2.2.1 Essentials

Let G = (V, E) be a graph with V = {x1, . . . , xn} and write xi ∼ xj if the vertices
xi and xj are adjacent. Then we define the adjacency matrix A(G) = (aij) by

aij =

{

1 if xi ∼ xj

0 else
.

Note that for an undirected graph the matrix A(G) is symmetric.

The adjacency matrix of a graph therefore allows to look up if an edge leads from
vertex xi to xj . The powers of the adjacency matrix have a similar property:

Theorem 2.11. [3] Let A be the adjacency matrix of the directed graph G. Then
the entry at position (i, j) of Ar equals the number of directed walks of length r

from vertex xi to vertex xj . �

From this point, we will assume that all graphs mentioned are undirected (unless
stated otherwise).

We are interested in eigenvalues and eigenvectors of A(G). Obviously, the matrix
A(G) depends on the actual ordering of the vertices of G. But the effect of any
reordering of the vertices on the adjacency matrix can be reproduced by a basis
transformation P−1A(G)P with a suitable permutation matrix P . Hence, all possible
adjacency matrices of an isomorphy class of graphs are similar and therefore have
the same eigenvalues and eigenvalue multiplicities. This justifies that we may speak
of the eigenvalues of a graph regardless of the representation chosen.
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Note that for Kn all adjacency matrices are the same whereas for Pn we have several
possibilities. Since we will frequently exploit the structure of special choices of the
adjacency matrix we will introduce canonical vertex orderings for some graph classes.
In particular, we will assume a sequential vertex order both for paths Pn and circuits
Cn.

The eigenvalues of a graph G are the roots of the characteristic polynomial

χ(x; G) = det(A(G) − λx).

The set of all eigenvalues is called the spectrum of G. We see from Theorem 2.2 that
all eigenvalues of a graph are real. The maximum modulus of all eigenvalues of G is
called the spectral radius ρ(G).

The eigenspace of eigenvalue λ is denoted by Eig(λ; G). If there is no risk of confusion
we will frequently write Eλ = Eig(λ; G) and Eλ = Eig(λ; G).

Since A(G) is symmetric and therefore diagonalisable we see that the multiplicity
of a root of χ(x; G) equals the dimension of the corresponding eigenspace.

Example 2.12. (Spectrum of Kn)

The adjacency matrix of the complete graph Kn is J − I. Since J has eigenvalues n

and 0 with multiplicities 1 and n − 1, respectively, we see that Kn has eigenvalues
n − 1 and −1 with multiplicities 1 and n − 1. �

It should be observed that any graph can be reconstructed if its eigenvalues and a
basis of eigenvectors are known (conduct a simple basis transformation). However,
it is not generally possible to reconstruct a graph from its spectrum only. In fact,
there exist constructions to obtain arbitrarily many cospectral graphs [25].

Owing to the following reconstruction theorem, the characteristic polynomial of a
graph can be almost entirely reconstructed from the characteristic polynomials of
its one-vertex-deleted subgraphs:

Theorem 2.13. (Clarke, cf. [7], [5])

χ′(λ; G) = −
∑

v∈V (G)

χ(λ; G − v).

�

In order to fully reconstruct the characteristic polynomial it suffices to know one of
the eigenvalues of G.

Many of the results we present next are direct consequences of the theorems from
section 2.1. For more details see [17] or [3].
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Theorem 2.14. The eigenspaces of a graph are mutually perpendicular. �

Lemma 2.15. Every rational eigenvalue of a graph is necessarily integer. �

Proof. See Lemma 2.6. �

The diameter of a graph can be used to provide a lower bound for the number of
distinct eigenvalues of a graph:

Theorem 2.16. [3] Let G be a graph with diameter d. Then G has at least d + 1
distinct eigenvalues. �

An important interpretation of eigenvectors is as follows. Consider a graph G =
(V, E), V = {v1, . . . , vn}, with adjacency matrix A and let w = (wi) be an eigen-
vector of A for eigenvalue λ. Now assign the weight w(vi) = wi to each vertex vi.
Looking at the system Aw = λw row by row we see that for every vertex vi the sum
of the weights of its neighbours equals λ times its own weight wi, i.e.

∑

vj∈N(vi)

w(vj) = λwi (6)

for i = 1, . . . , n. We will refer to this equation as the summation rule.

The automorphisms of a graph provide a simple but often effective device to explore
the structure of eigenvectors:

Theorem 2.17. [3] Let σ be an automorphism of a graph G with adjacency matrix
A and x any eigenvector of G for eigenvalue λ. If P is the permutation matrix that
transforms A into the adjacency matrix P−1AP of σ(G), then P−1x is an eigenvector
of σ(G) for eigenvalue λ. �

2.2.2 Consequences of the Perron-Frobenius theorem

We will now turn our attention to some important consequences of the Perron-
Frobenius Theorem 2.7 and the theory of non-negative matrices [16]. In this
context it is important to note that a graph G is connected if and only if its adjacency
matrix is irreducible, i.e. there exists no permutation matrix P such that

A(G) = P−1

(
B1 0
B2 B3

)

P

with square matrices B1 and B3. For a directed graph irreducibility of the adjacency
matrix means strong connectivity.
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Theorem 2.18. Let G be a directed graph. Then G has a non-negative real eigen-
value λmax of largest modulus. For λmax there exists a non-negative eigenvector.
The deletion of vertices from G does not increase the spectral radius.

If G is strongly connected and has at least one edge, then λmax is positive and simple
with a positive eigenvector. The maximum eigenvalue of every strict subgraph of G

is strictly smaller than λmax.

Otherwise, the maximum eigenvalue of at least one strong component of G equals
λmax. �

Since the adjacency matrix of an undirected graph also yields a directed graph we
can deduct the following corollaries:

Corollary 2.19. Let G be an undirected graph. Then the eigenvalues of G are real
and the maximum eigenvalue λmax is non-negative. Further, the moduli of all other
eigenvalues do not exceed λmax. If G is connected and has at least one edge, then
λmax is positive and simple.

Finally, we have
λmax(H) ≤ λmax(G)

for every subgraph H of G with H 6= G. The inequality is strict if G is connected.
�

Remark 2.20. Parts of both Theorem 2.18 and Corollary 2.19 are consequences of
Theorem 2.8. The principal submatrices of the adjacency matrix of G are exactly
the adjacency matrices of the induced subgraphs of G. Owing to Theorem 2.9 we
see that the eigenvalue inequalities remain valid even for non-induced subgraphs.

�

Theorem 2.21. Any two positive eigenvectors of a connected graph G are linearly
independent. �

A direct consequence of this theorem and the corollary before is that for a connected
graph only the eigenvalue λmax affords a positive eigenvector.

Finally, the Perron-Frobenius theorem can be applied to investigate the spectra
of bipartite graphs. Recall that a graph is bipartite if its vertex set can be split into
sets V1 and V2 such that these sets induce null graphs. Equivalently, there exists a
vertex ordering for which the adjacency matrix assumes the block diagonal form

(
0 B1

B2 0

)

.

With the help of Theorem 2.7 we arrive at a characterisation of bipartite graphs:
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Theorem 2.22. A connected graph is bipartite if and only if −λmax is one of its
eigenvalues. �

It is easy to see that the spectrum of a bipartite graph exhibits even stricter sym-
metry:

Theorem 2.23. Let G = (V, E) be bipartite with bipartition V = V1 ∪ V2. If v is
an eigenvector for eigenvalue λ, then the vector ṽ obtained by inverting the signs of
all components of v associated with vertices from V1 is an eigenvector for eigenvalue
−λ with the same multiplicity. �

Corollary 2.24. The spectrum of a bipartite graph is symmetric around zero. �

2.2.3 Eigenvalue bounds

We will now provide some eigenvalue bounds, in particular for the the largest eigen-
value λmax, that will be used in later chapters.

Lemma 2.25. Let G be a connected graph on n ≥ 2 vertices. Then,

λmax(G) ≥ 1.

�

Proof. Since G has at least one edge it contains an induced K2 whose maximum
eigenvalue is one. Therefore, the result follows by Corollary 2.19. �

Theorem 2.26. [17] If H is an induced subgraph of G, then

λmin(G) ≤ λmin(H) ≤ λmax(H) ≤ λmax(G).

�

It is interesting to compare this result to Corollary 2.19.

We can extend this result if we apply the notion of interlacing to graphs. The
following theorem is a simple rewrite of Theorem 2.10:
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Theorem 2.27. Let G be a graph and H an induced subgraph such that |V (G)| = n

and |V (H)| = m. Let λ1 ≤ . . . ≤ λn and λ′
1 ≤ . . . ≤ λ′

m be the eigenvalues of G and
H , respectively. Then the inequality

λi ≤ λ′
i ≤ λn−m+i

holds for all i = 1, . . . , m. �

Corollary 2.28. Every multiple eigenvalue of G−v is also an eigenvalue of G. �

This corollary provides a complementary tool for the reconstruction Theorem 2.13.

Eigenvalue interlacing is also observed if a matrix is block partitioned and each block
is replaced by the average of its entries ([23], [12]). As an immediate application we
see that the maximum eigenvalue of a graph is bounded from below by the average
row sum of its adjacency matrix (which in turn equals the average node degree):

Lemma 2.29. Let G be a graph and A = (aij) ∈ Rn×n its adjacency matrix. Then,

λmax(G) ≥ 1

n

n∑

i,j=1

aij .

�

On the other hand, the maximum eigenvalue of a graph is bounded from above by
the maximum row sum of its adjacency matrix:

Lemma 2.30. Let G be a graph and A = (aij) ∈ Rn×n its adjacency matrix. Then,

λmax(G) ≤ max
j=1,...,n

n∑

i=1

aji.

�

Proof. Let v = (vi) be an eigenvector of A such that λmaxv = Av and

max
i=1,...,n

vi = 1. (7)

Choose an index j such that vj = 1. Then we get

λmax = λmaxvj =

n∑

i=1

ajivi ≤
n∑

i=1

aji ≤ max
j=1,...,n

n∑

i=1

aji. (8)

�

Another useful bound is due to Yuan:
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Theorem 2.31. [45] If G is a graph with n vertices and m edges, then

λmax(G) ≤
√

2m − n + 1

with equality if and only if G is isomorphic to Kn or K1,n−1. �

2.2.4 Circulant graphs

In subsequent chapters we will frequently encounter circulant graphs. A circulant

graph is a graph whose adjacency matrix is circulant. Note that this definition is
invariant under isomorphisms. The spectrum of a circulant graph exhibits very strict
structural properties as we will see below.

In the following, we will abbreviate ω = e
2πi
n .

Theorem 2.32. [3] Let (0, a2, . . . , an)T be the first column of a real circulant matrix
A. Then the eigenvalues of A are exactly

λr =

n∑

j=2

ajω
(j−1)r, r = 0, . . . , n − 1.

�

Corollary 2.33. Let G be a circulant graph. Let (0, a2, . . . , an)T be the first column
of a circulant adjacency matrix of G. Then the eigenvalues of G are exactly

λr =

n∑

j=2

ajω
(j−1)r, r = 0, . . . , n − 1.

�

Theorem 2.34. The eigenvalues of Cn are

λr = ωr + ω−r, r = 0, . . . , n − 1.

�

Proof. The canonical adjacency matrix (entries not specified are zero)

A(Cn) =











0 1 1

1 0
. . .

. . .
. . .

. . .
. . . 0 1

1 1 0











(9)

of Cn is obviously circulant. Using Corollary 2.33 we obtain the claimed eigenvalues.
�
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2.2.5 Regular graphs

For regular graphs there exist a number of special results that make it easier to
deal with their spectra and eigenvectors. For example, the class of regular graphs is
characterised by the maximum eigenvalue or its accompanying eigenspace:

Theorem 2.35. [3],[17] If G is regular of degree r, then r is an eigenvalue of G.
Its eigenspace is spanned by the all ones vector. Further, the spectral radius σ(G)
equals r.

Conversely, if the all ones vector is an eigenvector of a graph G or if the maximum
degree is an eigenvalue of G, then G must be regular. �

The complements of regular graphs can be easily analysed using the following the-
orem:

Theorem 2.36. [7],[17] Let G be regular of degree k. Further let

fG(x) =
χ(x; G)

x − k
, fG(x) =

χ(x; G)

x − n + 1 + k
,

i.e. we omit from each characteristic polynomial the linear factor of the respective
degree of regularity. Then,

fG(−x − 1) = (−1)n−1fG(x).

Moreover, if G has eigenvalues k, λ2, . . . , λn, then its complement G has eigenvalues
n − k − 1,−1 − λ2, . . . ,−1 − λn with the same respective eigenvectors. �

Corollary 2.37. Let G be regular and neither a complete nor a null graph. Then,

E0 = E−1, E−1 = E0.

�

Proof. The omitted linear factors for fG and fG cannot be x or (x+1). Therefore,
from Theorem 2.36 we see that the multiplicities and the corresponding eigenvectors
are as claimed. �

Corollary 2.38. Let G be regular of degree k. If x is an eigenvector for eigenvalue
λ 6= k, then the sum over its components vanishes. �
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Proof. The sum over the components of x is zero if and only if x is perpendicular
to the all ones vector. This vector spans the eigenspace of the degree of regularity
k. The eigenspaces of a graph, however, are mutually perpendicular (cf. Theorem
2.14). �

The last two corollaries will be relied on frequently.

Note that Corollary 2.38 can be easily extended to arbitrary matrices:

Lemma 2.39. Let A ∈ Rn×n be symmetric. If the all ones vector is an eigenvector
of A for eigenvalue λ, then for every eigenvalue µ 6= n − λ of J − A the component
sum vanishes. �

Proof. Let A11 = λ11 and consider the matrix B = J −A− µI. If x ∈ Ker B, then
Bx = 0 and also JBx = 0. Thus,

JJx − JAx − µJIx = 0. (10)

But from JJ = nJ , JA = λJ and JI = J we get

(n − λ − µ)Jx = 0, (11)

which means that the component sum of x is necessarily zero. �
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3 Graph complements

This chapter is dedicated to the relation between the eigenspaces of a graph and its
complement. In particular, the eigenspaces E0 and E−1 exhibit a tight connection.

In the following, let A be an n×n matrix over fixed field K and λ ∈ K. We begin by
showing a number of results on general matrices, to be precise, we consider matrices
of the form A − λJ and study their relationship with matrix A.

Theorem 3.1. Let λ 6= 0. Then

Ker A ∩ Ker(A − λJ) = {x ∈ Ker A : 11T x = 0}
= {x ∈ Ker(A − λJ) : 11T x = 0}.

�

Proof. Let x ∈ KerA ∩ Ker(A − λJ). Then both Ax = 0 and (A − λJ)x = 0.
Because of

(A − λJ)x = Ax − λJx = −λJx = 0 (12)

it follows that Jx = 0 and hence 11T x = 0. This proves

Ker A ∩ Ker(A − λJ) ⊆ {x ∈ Ker A : 11T x = 0}. (13)

Now let x ∈ Ker A and 11T x = 0. Then by 0 = Ax − λJx = (A − λJ)x it follows
that x ∈ Ker(A−λJ). Conversely, if x ∈ Ker(A−λJ) and 11T x = 0 we immediately
get Ax = (A − λJ)x = 0 and therefore x ∈ Ker A.

�

Theorem 3.2. Let dim Ker A = d1 and dim Ker(A − λJ) = d2. Then

dim(Ker A ∩ Ker(A − λJ)) ≥ max{d1, d2} − 1.

�

Proof. For λ = 0 the result is obvious. Let λ 6= 0.

Consider the matrix

A′ =

(
A

11T

)

∈ K(n+1)×n. (14)
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By Theorem 3.1 the intersection of the two kernels exactly consists of all vectors x

with Ax = 0 and 11T x = 0. It is therefore equal to KerA′. Obviously, rkA′ ≤ rk A+1.
Thus,

dim Ker A′ = n − rk A′ ≥ n − (rk A + 1) = dim(Ker A) − 1. (15)

Also, for

A′′ =

(
A − λJ

11T

)

∈ K(n+1)×n (16)

we get
dim Ker A′′ ≥ dim(Ker(A − λJ)) − 1. (17)

�

Remark 3.3. The same result can be obtained by reasoning as follows. From The-
orem 3.1 we know that any vector from one of the two kernels also belongs to the
other kernel exactly if the sum over all its entries is zero. Given an arbitrary basis
of one of the kernels, we can construct a basis such that at least all but one of its
vectors have component sum zero. Therefore, the dimensions of the two kernels
cannot differ by more than one. �

Theorem 3.4.

1. | rk A − rk(A − λJ)| ≤ 1

2. rk A < rk(A − λJ) ⇒ Ker(A − λJ) & Ker A

3. rk A > rk(A − λJ) ⇒ Ker A & Ker(A − λJ)

�

Proof. Let d1, d2 be as described in Theorem 3.2. Suppose d1 ≥ d2. Then by
Theorem 3.2 we get

d1 − 1 ≤ dim(Ker A ∩ Ker(A − λJ)) ≤ dim Ker(A − λJ)) = d2. (18)

Thus d1 ≤ d2 + 1. Analogously, d2 ≤ d1 + 1 if d1 ≤ d2.

Now let rk A < rk(A − λJ). It follows that d1 = d2 + 1. We can choose a basis of
KerA such that at least d1 − 1 basis vectors have zero component sum. But then
by Theorem 3.1 we have found a basis for Ker(A − λJ). Hence

Ker(A − λJ) & Ker A. (19)

Analogously, the third result follows.

�
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At this point we know that if the two kernels have different dimensions the smaller
kernel is contained in the other one. But in the case of equal dimensions the kernels
need not necessarily be identical. We give a simple example.

Example 3.5. Consider the matrix

A =





0 1 0
0 1 0
0 −1 1



 .

Then we have

Ker A = Span{





1
0
0



}, Ker(A − J) = Span{





−2
1
−2



}.

�

If however we know that the matrix A is symmetric, then the two kernels must be
identical:

Theorem 3.6. Let A = AT and rk A = rk(A − λJ). Then

KerA = Ker(A − λJ),

�

Proof. For λ = 0 this is obvious. Let λ 6= 0. Assume that

KerA 6= Ker(A − λJ). (20)

Since the kernels have equal dimension it cannot be that one kernel contains the
other because then they would be identical. Therefore, there exists a vector

b ∈ Ker(A − λJ) \ KerA. (21)

Let s = λ11b. Then
Ab = (A − λJ)b + λJb = λJb = s11. (22)

We see that necessarily s 6= 0 because otherwise b ∈ KerA by Theorem 3.1. Let

Ã =
(

A 11
)
. (23)

Then,
11 ∈ Im A ⇔ rk Ã = rk A. (24)

But A(1
s
b) = 11, therefore rk Ã = rk A.

Let A′ = ÃT . Then KerA′ ⊆ Ker A. By rk A′ = rk ÃT = rk Ã = rk A we even see
that Ker A′ = Ker A. Hence 11T x = 0 for all x ∈ Ker A. By Theorem 3.1 this means
that

KerA ⊆ Ker(A − λJ). (25)

Since we have assumed that the kernels have equal dimension the theorem follows.
�
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Theorem 3.7. Let A = AT and rk(A − λ0J) = rkA for a some λ0 6= 0. Then for
any λ ∈ K we have either

rk(A − λJ) = rkA

or

rk(A − λJ) = rkA − 1.

�

Proof. Let x ∈ Ker A. Then KerA = Ker(A − λ0J) and therefore 11T x = 0 by
Theorem 3.6 so that x ∈ Ker(A − λJ) by Theorem 3.1. Consequently, KerA ⊆
Ker(A − λJ) and rk(A − λJ) ≤ rk A for all λ ∈ K. By Theorem 3.2 the result
immediately follows. �

Consider the following congruence relation. Given a fixed matrix M , we will say
that two matrices A and B are congruent modulo M , written A ≡ B, if there exists
λ ∈ K such that A − B = λM . Now let M = J . Then Kn×n gets partitioned into
congruence classes C(A) = {A − λJ : λ ∈ K}.

It turns out that only a very restricted number of possible ranks occur within each
congruence class:

Theorem 3.8.

1. Let R = {rk(A′) : A′ ∈ C(A)}. Then

(a) R = {rk(A)} or

(b) R = {rk(A) − 1, rk(A)} or

(c) R = {rk(A), rk(A) + 1}.

2. If A = AT then either

(a) rkA′ = rk A for all A′ ∈ C(A) or

(b) there exists A′′ ∈ C(A) such that

rk A′ = rk A′′ + 1

for all A′ ∈ C(A), A′ 6= A′′.

�
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Proof. The first part immediately follows from Theorem 3.4.

Now let A = AT and suppose that more than one rank occurs within C(A). Then
there exist matrices Ã, A′′ ∈ C(A) such that

rk A′′ < rk Ã. (26)

Suppose there exists a matrix A′ ∈ C(A), A′ 6= A′′ with rk A′ = rk A′′. Then by
Theorem 3.7

rk B ≤ rk A′′ (27)

for all B ∈ C(A′′) = C(A). In particular this means rk Ã ≤ rk A′′, a contradiction.
Hence,

rk A′ = rk Ã (28)

for all A′ ∈ C(A), A′ 6= A′′. �

The second part of Theorem 3.8 strengthens Theorem 3.7. It tells us that if two
ranks exists within a class, then the smaller rank is only achieved for one single
matrix of the class.

Example 3.9. Let

A1 =

(
2 1
1 0

)

.

Then any easy check on the determinant shows that rk(A1 − λJ) = 2 for all λ ∈ R.

Let

A2 =

(
1 0
0 1

)

.

Then for λ0 = 1
2

we have A2 − λ0J = λ0J so that

1 = rk(A2 − λ0J) < rk A2 = 2.

By Theorem 3.8 we know that rk(A2 − λJ) = 2 for all λ 6= λ0.

�

We will now apply our results to eigenspaces of graphs and their complements.

Let G = (V, E) be a graph with adjacency matrix A. Observe that

A = J − A − I

is the adjacency matrix of G that corresponds to the same vertex ordering. Recall
the abbreviations E−1 = Eig(−1; G) and E0 = Eig(0; G) = KerA.
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Lemma 3.10.
E−1 = Ker(J − A).

�

Proof. It suffices to note that

E−1 = Ker(A + I) = Ker(J − A). (29)

�

By virtue of this lemma and the symmetry of A, our previous results can be imme-
diately applied to eigenspaces of graphs:

Theorem 3.11.

1. | dim E−1 − dim E0 | ≤ 1,

2. dim E−1 < dim E0 ⇒ E−1 & E0.

3. dim E−1 = dim E0 ⇒ E−1 = E0.

�

For regular graphs there already exist stronger results, e.g. Theorem 2.36 and Corol-
lary 2.37.

It is interesting to note that Theorem 3.11 partly overlaps with the following known
Theorem:

Theorem 3.12. [7] Let λ be a multiple eigenvalue of G. Then,

| dim E−λ−1 − dim Eλ | ≤ 1.

�
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4 Trees

This chapter is dedicated to the study of eigenspaces of trees and their line graphs.
Note that the subclass of paths will be paid special attention in a separate chapter.

The characteristic polynomial of a tree can be computed in linear time by an algo-
rithm described in [27] and [14]. The same algorithm can also compute the rank
of the adjacency matrix of a tree which for trees is twice the size of a maximum
matching [8]. A fast algorithm for the direct computation of eigenvectors of trees
can be found in [28]. Its ideas are based on results published in [1].

Theorem 2.16 states that the number of distinct eigenvalues of a graph is at least
its diameter plus one. In [32] this result is generalised to tree pattern matrices, i.e.
to general symmetric matrices whose zero/nonzero pattern represents a given tree.

An interesting result on the signs of the entries of eigenvectors of trees has been
obtained in [18]. Take an eigenvector for the k-th largest eigenvalue of a tree and
interpret its components as vertex weights. Then there exist at least k − 1 edges
whose endpoints have weights with opposite signs.

The spectral radius of a tree may range between that of a path and a star:

Theorem 4.1. [33] Let T be a tree on n vertices. Then,

2 cos
π

n + 1
= λmax(Pn) ≤ λmax(T ) ≤ λmax(K1,n−1) =

√
n − 1.

�

The idea of the proof is to define a partial ordering of cospectral trees which preserves
the ordering of the maximum eigenvalue. The relation λmax(Pn) ≤ λmax(B) ≤
λmax(K1,n−1) can also be obtained for the Laplacian spectrum of a tree [37].

Another way to bound the spectral radius is in terms of the maximum degree [18]:

√
∆ ≤ λmax(T ) < 2

√
∆ − 1. (30)

Since for any graph there exists an eigenvalue λ with

−
√

δ ≤ λ ≤
√

δ (31)

it follows immediately that at least one eigenvalue of a forest lies in the interval
[−1, 1] (cf. [18]).

Counting all possible matchings of a given forest F , it is immediately possible to
state its characteristic polynomial. Let m(G, k) be the number of matchings of size
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k of a graph G. Let formally m(F, 0) = 1 and

µ(x; G) =

bn
2
c

∑

k=0

(−1)km(G, k)xn−2k (32)

be the matching polynomial of G.

Theorem 4.2. [18], [20], [10] Let F be a forest. Then,

χ(x; F ) = (−1)nµ(x; F ).

�

In particular, we see that a forest is nonsingular if and only if it contains a one-factor.
Note that this relation between the characteristic and the matching polynomial even
characterises the class of forests [18].

From Theorems 4.2 and 2.27 we conclude that the zeros of the matching polynomial
of a forest are real and that they interlace the spectrum of any one vertex deleted
induced subforest. These properties also hold for arbitrary graphs [19].

In the following, let T be a tree with vertex set V = V (T ) = {x1, . . . , xn} and adja-
cency matrix A. If w = (wi) is an eigenvector of T , we will interpret its components
as weights on the vertices of T , writing w(xi) = wi.

4.1 Eigenspaces E0, E
−1, E0, and E

−1

Theorem 3.11 implies that for an arbitrary graph at least one of the eigenspaces E0

and E−1 is contained in the other one. The main result of this section is that for
trees, however, the eigenspace E0 always contains E−1.

It is useful to note that instead of using the summation rule (6) on the complement
of a graph one can operate on the graph itself and simply let each sum comprise the
values of all non-neighbours.

Further, for the sake of brevity and simplicity let us introduce the following short-
hand notation:

∑

M

=
∑

xi∈M

w(xi),

∑

M

f =
∑

xi∈M

w(xi)f(xi),

∑

N(M)

=
∑

v∈M

∑

N(v)

with f : V → R.
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Lemma 4.3. Let G be a graph and w = (wi) = w(xi). Then w ∈ Eig(−1; G) if and
only if

∑

N(xj)

=
∑

V

∀xj ∈ V (G).

�

Proof. Let xj ∈ V (G). Then

N(xj) = V − N(xj) − xj (33)

and therefore ∑

N(xj)

=
∑

V

−
∑

N(xj)

−wj . (34)

But −1 is an eigenvalue of T if and only if

∑

N(xj)

= −wj (35)

and therefore the result follows from equation (34). �

Remark 4.4. Application of Lemma 4.3 to trees yields some further interesting
summation rules for the components of eigenvectors for the eigenvalue −1 of trees.

Let x ∈ V be a leaf of the tree T and y its neighbour. Then we have N(x) = V −x−y

and therefore
w(y) =

∑

V

. (36)

Suppose there exists an inner node z of T that is adjacent only to neighbours of
leaves. Then,

∑

N(z)

= γ(z)
∑

V

=
∑

V

. (37)

But because of γ(z) ≥ 2 this means

∑

V

= 0. (38)

�

Theorem 4.5. It holds
E−1 ⊆ E0

for all trees. �
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Proof. Choose a leaf x ∈ V and partition the vertex set into sets M0, M1, . . . , MN

such that (cf. figure 1)
d(x, z) = j∀z ∈ Mz. (39)

Further, let Bi denote the leaves contained in the set Mi.

For the following computations note that

∑

Mi

(γ − 1) =
∑

Mi−Bi

(γ − 1), i ≥ 1, (40)

since leaves have degree one. Also, keep in mind that multiple neighbours in N(Mi)
contribute multiple times to a sum over N(Mi).

Let w ∈ Eig(−1; T ). We need to show that the component sum of w vanishes (cf.
Theorem 3.1). Apply Lemma 4.3 for each distance level to get

∑

N(M0)

=
∑

M1

= |M0|
∑

V

,

∑

N(M1)

=
∑

M2

+
∑

M0

= |M1|
∑

V

,

∑

N(Mi)

=
∑

Mi+1

+
∑

Mi−1

(γ − 1) = |Mi|
∑

V

, 2 ≤ i ≤ N − 1,

∑

N(MN )

=
∑

MN−1

(γ − 1) = |MN |
∑

V

.

(41)

The idea is that the multiset N(Mi) consists of the set Mi+1 (each of these nodes
has exactly one predecessor in Mi) and the multiset derived from the predecessors
of Mi (each of which has degree minus one successors in Mi). Summation of the
equations (41) yields

∑

M0

+
∑

M1

γ + . . . +
∑

MN−1

γ +
∑

MN

= |V |
∑

V

(42)

and further ∑

V

γ = |V |
∑

V

(43)

since M0 and MN contain only vertices of degree one. Now assume that the compo-
nent sum of w does not vanish. Let w.l.o.g.

∑
wi = 1. Then from equation (43) we

deduce
n =

∑

xi∈V

γ(xi)w(xi) ≤ (n − 1)
∑

xi∈V

w(xi) = n − 1, (44)

which is impossible. �

Corollary 4.6. It holds
E−1 ⊆ E0

for all forests. �
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M0

M1

MN−1

MN

...

Figure 1: Partitioning tree vertices by their distance from a fixed leaf

Proof. Let G be a forest and w ∈ Eig(−1; G). Then the restriction of w to a
component of G is either the null vector or an eigenvector of the component for
the same eigenvalue. Apply Theorem 4.5 on each component separately. Since
the component sums of the restrictions vanish the component sum of w itself also
does. �

Remark 4.7. For graphs that are not trees it is easy to find counterexamples to
Theorem 4.5, cf. figure 2. Ordering the vertices according to their labels we have

E0 = Span{(0, 0, 0, 0, 0, 0, 1,−1)T},
E−1 = Span{(0, 0, 0, 0, 0, 0, 1,−1)T , (−1, 2, 1,−1, 1, 1,−1, 0)T}.

�

Figure 2: Graph with E−1 6⊆ E0

Remark 4.8. The relation between the eigenspaces E−1 and E0 can be arbitrary
even for trees. In figure 3 the representative example trees are shown. �
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(a) (b) (c)

Figure 3: Example trees with (a) E−1 % E0, (b) E−1 = E0 and (c) E−1 $ E0

The next theorem presents a relation between the size of the kernel of a tree and
the chromatic number of the complement of its line graph. Since the rank of the
adjacency matrix of a tree can be computed in linear time this offers an interesting
way to determine the chromatic number χ(L(T )).

Theorem 4.9. Let T be a tree on n vertices. Then,

dim E0 = n − 2χ(L(T )).

�

Proof. To obtain a valid colouring of the vertices of T we may assign the same
colour to two vertices of T only if they are adjacent in T . Since the clique number
ω of T is at most 2 it is not possible to have more than two vertices in the same
colour class of T . Therefore, to find a colouring of T with minimal number of colours
simply determine a maximum set of independent edges of T . Then the endpoints
of each edge become the two-element colour classes whereas the remaining vertices
form one-element colour classes.

Let c1 and c2 denote the numbers of the one-element and two-element colour classes,
respectively. Then c2 by construction is the independence number α of the intersec-
tion graph of all subgraphs K2 in T (which is simply the line graph of T ). Therefore,

c2 = α(L(T )). (45)

We now make use of some results on perfect graphs. Remember that a graph is
perfect if and only if its clique number equals the chromatic number for every induced
subgraph. According to [43] a line graph is perfect if and only if its root does not
contain an odd circuit of size at least 5. Further, a graph is perfect if and only its
complement is perfect [9]. Hence, it follows from the acyclicity of T that L(T ) is
perfect so that

α(L(T )) = ω(L(T )) = χ(L(T )). (46)
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Combining equations (45) and (46) yields

c2 = χ(L(T )). (47)

But since c2 is the size of a maximum matching of T we have [8]

c2 =
1

2
rk A =

1

2
(n − dim E0) (48)

so that the result readily follows. �

Computer experiments suggest that there always exists a basis of the kernel of a
forest with a particularly simple structure:

Conjecture 4.10. For every forest there exists a basis of E0 such that all vectors
contained in this basis only have entries 0, 1, or −1. �

We provide a proof for the special case that dimE0 = 1. But beforehand we need
to provide some notation and preliminary theory.

Lemma 4.11. Let F be a forest. Then,

det F ∈ {−1, 0, 1}.
�

Proof. If F is singular we have det F = 0. Let therefore F be nonsingular. Then
by Theorem 4.2 and the definition (32) of the matching polynomial the number
n of vertices of F is even and the constant term of χ(x; F ) is exactly det F =
(−1)

n
2 m(F, n

2
) 6= 0. But m(F, n

2
) is the number of one-factors of F . We conclude

that F contains a one-factor. On the other hand, a forest may only contain a
single one-factor. To see this we observe that the edges incident to leaves of F are
necessarily contained in a one-factor. Removing their endpoints and all incident
edges we get a smaller tree that necessarily also contains a one-factor. Repeat the
procedure until all vertices have been covered by matching edges. Consequently,
det F = (−1)

n
2 . �

The adjugate A∗ = (a∗
ij) of a given matrix A = (aij) is defined as follows. Let a∗

ij

be the cofactor of aij in the determinant of A, i.e. a∗
ij = (−1)i+j det A[j,i] with A[j,i]

being the matrix obtained by deleting row j and column i from A.

We will call the matrix B(λ) = A − λI derived from the adjacency matrix A of a
graph G the characteristic matrix of G.

Let T be a tree with vertices v1, . . . , vn. Then by Pij we denote the unique path in
T that joins vi and vj . The graph T − Pij is formed by removing the vertices of Pij

and all incident edges from T .
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Theorem 4.12. [18] Let T be a tree with characteristic matrix B(x) ∈ Rn×n Then,

b∗ij = (−1)i+jχ(x; T − Pij), i, j = 1, . . . , n

holds for the entries of the adjugate B∗(x) = (b∗ij) of B. �

Note that [18] states this theorem for forests although the path Pij does not exist if
vi and vj lie in different components. However, the theorem holds if in this case we
formally let F − Pij = ∅ and therefore χ(x; F − Pij) = 0. This is necessary because
the adjugate assumes block diagonal form if we consider a forest.

Corollary 4.13. If λ is an eigenvalue of F , then every nonzero column vector of
B∗(λ) is an eigenvector of F for the eigenvalue λ. �

Proof. Since χ(λ; F ) = 0 the result follows directly from the fact that [16]

B(x)B∗(x) = χ(x; F )I. (49)

�

Note that due to the block diagonal form of the adjugate every such eigenvector is
zero on all but one of the components of F .

Lemma 4.14. Let F be a forest with adjacency matrix A ∈ Rn×n. Then,

a∗
ij ∈ {−1, 0, 1}

holds for the entries of the adjugate A∗ of A. �

Proof. Observe A∗ = B∗(0) and apply Lemma 4.11 and Theorem 4.12 for each
tree T of F . The result follows readily from χ(0; T −Pij) = det(T −Pij) ∈ {−1, 0, 1}
and the fact the A∗ is block diagonal. �

Lemma 4.15. If F is a simply singular forest with adjacency matrix A ∈ Rn×n,
then

rk A∗ = 1.

�
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Proof. Since λ = 0 is an eigenvalue of F we have

AA∗ = B(0)B∗(0) = χ(0; F )I = 0 (50)

from equation (49) so that
Ker A ⊇ Im A∗. (51)

But dim KerA = 1 so that rkA∗ ≤ 1.

Now let

χ(x; F ) =

n∑

i=0

aix
i. (52)

Then we have a0 = 0 and a1 6= 0. We conclude that n must be odd and that F

possesses an almost perfect matching that only misses a single vertex vi.

But then F − vi has a perfect matching i.e. a one-factor so that by Theorem 4.2 we
find

χ(0; F − Pii) = det(F − Pii) = det(F − vi) 6= 0. (53)

Hence, A∗ 6= 0 by Theorem 4.12 and therefore rkA∗ ≥ 1. �

Theorem 4.16. Let F be a simply singular forest. Then E0 = Ker F is spanned
by a vector x = (xi) with entries xi ∈ {−1, 0, 1}∀i. �

Proof. Lemma 4.15 guarantees that B∗(0) contains at least one nonzero column
vector x. By Corollary 4.13 the vector x is an eigenvector from E0 and by Lemma
4.14 it only contains entries 0, 1, or −1. �

Remark 4.17. The technique we have used fails for multiply singular forests. It
has been shown [18] for every tree T and induced path P that the function

f : x 7→ χ(x; T − P )

χ(x; T )

has only simple poles. This means that by removing the path P from T each eigen-
value loses at most one degree of multiplicity. Now consider a multiply singular forest
F and recall that its characteristic polynomial is the product of the characteristic
polynomial of its trees.

Case 1. If F contains a multiply singular component T , then depending on whether
P lies in T or not this component becomes either T or T − P in F − P . But both
are singular so that F − P is singular as well.

Case 2. If all components of F are at most simply singular, then there exist at least
two simply singular components in F . Therefore, after the removal of a path P there
remains at least one singular component so that F − P is still singular.
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Overall, in view of Theorem 4.12 we see that the adjugate B∗(0) of the forest F is
the null matrix. We cannot use Corollary 4.13 to construct eigenvectors for KerF .

�

4.2 Eigenspaces of line graphs of trees

In this section we will be chiefly concerned with lower bounds in connection with
the eigenvalue −1 of the line graph of a tree.

In the following, let T ′ denote the intersection graph of the maximum cliques of
L(T ). It is easy to see that T ′ is a tree. The leaves of T ′ represent the terminal

cliques of L(T ).

Lemma 4.18. Assign to every node of T ′ the size of its associated maximum clique
in L(T ) as a node weight. Then every leaf of T ′ with weight w ≥ 3 contributes w−2
to the multiplicity of the eigenvalue λ = −1 of L(T ). �

Proof. Choose a leaf of T ′ and let Q be its associated terminal clique in L(T ).
Let V (Q) = {x1, . . . , xw} such that xw is the cut vertex of Q. Now construct w − 2
linearly independent eigenvectors v(k) (k = 2, . . . , w−1) for eigenvalue −1 as follows.

xw

0

1

−1

0

Let Q′ = Q − xw. Assign value 1 to a fixed vertex of Q′, in turn −1 to one other
vertex of Q′ and 0 to all other vertices of L(T ). �

Remark 4.19. The construction from Lemma 4.18 can be applied to arbitrary
graphs G in the sense that each maximum clique Q of L(G) with homogeneous
exterior neighbourhood (i.e. N(x) \ V (Q) is the same for every vertex x ∈ V (Q))
contributes to the multiplicity of the eigenvalue λ = −1 of L(G). �

Lemma 4.20. Let x = (xi) ∈ Eig(−1; L(T )) and M be the nodes of a maximum
clique of L(T ). If M contains not only cut vertices, then

∑

vi∈M

xi = 0.

�
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Proof. Let vj ∈ M not be a cut vertex. Then N(vj) = M − vj . For x = (xi) ∈
Eig(−1; L(T )) we have in particular

∑

vi∈N(vj )

xi = −xj (54)

so that we get

0 =
∑

vi∈N(vj)+vj

xi =
∑

vi∈M

xi. (55)

�

Theorem 4.21. Let x = (xi) ∈ Eig(−1; L(T )) such that for every every cut vertex
vj ∈ L(T ) we have xj = 0. Then,

x ∈ Eig(−1; L(T )(k)) ∀k ∈ N.

�

Proof. Let d ∈ N and let x = (xi) be as described. For every maximum clique of
L(T ) the sum over the corresponding entries of x vanishes because either Lemma
4.20 can be applied or by the prerequisites of the theorem the concerned entries of
x are zero anyway.

Let v ∈ L(T ) and consider the sum Sk over the entries of x that correspond to
vertices z with d(z, v) ≤ k. For k = 1 we have the closed neighbourhood N(v) + v.

If v is a cut vertex we see that its closed neighbourhood comprises exactly two
maximum cliques of L(T ), otherwise only one maximum clique. Now consider
S2, S3, . . . , Sd. Each time, the range of the sum is extended by a number of maxi-
mum cliques, excluding some of the cut vertices which may already have been in the
sum. But since the values of cut vertices are zero anyway we may split the overall
sum into partial sums that each range over a single maximum clique. Therefore, all
partial sums except the initial sum S1 vanish. The summation rule (6) thus yields
the same result both for L(T ) and for every distance power. �

It should be remarked that, in general, for the linegraph of a tree there exist many
vectors x that fulfil the prerequisites of Theorem 4.21. According to Lemma 4.18,
each terminal clique of L(T ) with w ≥ 3 vertices gives rise to w − 2 linearly inde-
pendent eigenvectors that vanish on the cut-vertices of L(T ).

Note that the closed neighbourhood of a vertex v ∈ L(T ) corresponds to an induced
K1 or K2 in T ′. The extension of the sums can be interpreted as the inclusion of the
next distance level from this induced subgraph using a breadth first search on T ′.
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Corollary 4.22. The construction from the proof of Lemma 4.18 can be used to
obtain a basis of E−1 for any distance power of L(T ). �

We will conclude this section by quoting some interesting results on the eigenvalues
0 and −1 of line graphs of trees.

Theorem 4.23. [22] The eigenvalue λ = 0 is at most simple for the graph L(T ).
Attach a new vertex v to the tree T to obtain the graph T + v. Then for exactly
one of the graphs L(T ) and L(T + v) the eigenvalue λ = 0 is simple. �

The preceding theorem allows to deduce a number of properties of the kernel of L(T ).
For instance, it can be shown that for singular L(T ) there exists no vertex from T ′

such that an eigenvector from Ker(L(T )) contains exactly two nonzero entries within
the corresponding maximum clique in L(T ).

Theorem 4.24. [41] If L(T ) is singular, then T necessarily has an even number of
vertices. �

Theorem 4.25. [41] Let L(T ) be singular. Then a vertex v can be removed from
L(T ) such that at least λ = 0 or λ = −1 is a multiple eigenvalue of L(T ) − v. �

This theorem allows a partition of all trees into two classes.

Conversely, note that by Theorems 2.13 and 2.27 every multiple eigenvalue of L(T )−
v is also an eigenvalue of L(T ).
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5 Paths

In this chapter we will investigate the spectrum of paths Pn. We will start with
recursion formulae for the calculation of the characteristic polynomial, then we will
analyse the structure of eigenvectors of paths and proceed to the complete determi-
nation of the spectrum and all associated eigenvectors. Finally, the relation between
the eigenspaces for eigenvalues 0 and −1 for paths and their complements will be
examined.

5.1 Recursion formulae for χ(x)

Recursions for the calculation of the characteristic polynomial χ(x) of paths have
long been known [15],[6],[39], although not necessarily connected to the notion of
graphs.

In the following, let an(x) = χ(x; Pn) and formally a0(x) = 1.

Theorem 5.1. [25]

an(x) = −xan−1(x) − an−2(x) for n ≥ 2.

�

Proof. We have

an(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−x 1 0 . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 −x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (56)

Expanding along the last row yields

an(x) = −xan−1 −

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−x 1 0 . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . . 1 0
...

. . .
. . . −x 0

0 . . . 0 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (57)

The result now follows by expanding the remaining determinant along the last col-
umn. �



42 5. Paths

An especially interesting algorithmic proof can be found in [27]. It relies on the fact
that the characteristic polynomial of a tree can be elegantly determined in linear
time by a symbolic algorithm that works directly on the graph.

The following generalisation reveals an even deeper connection between the charac-
teristic polynomials of paths:

Theorem 5.2.

an(x) = ai(x)an−i(x) − ai−1(x)an−i−1(x) for 1 ≤ i ≤ n − 1.

�

Proof. For n = 2 the result is clear. Therefore let n ≥ 3. For the sake of readability
we will omit the function argument of the ai. By Theorem 5.1 we have

a0 = −xa1 − a2 (58)

and
an−1 = −xan−2 − an−3. (59)

Rewriting Theorem 5.1 as
an = a1an−1 − a0an−2 (60)

and substituting equations (58) and (59) we arrive at

an = −xa1an−2 − a1an−3 − (−x)a1an−2 + a2an−2

= −a1an−3 + a2an−2.
(61)

The result now follows by repeated application of this technique. �

Remark 5.3. Phrasing Theorem 5.2 in terms of matching polynomials, the same
recursion has been found in [10] already. �

5.2 The spectrum of Pn

Lemma 5.4. [3] Pn has exactly n distinct and simple eigenvalues. �

Proof. Since Pn has diameter n−1 we conclude from Theorem 2.16 that Pn has at
least n distinct eigenvalues. Adding up the minimum dimensions of the eigenspaces
we see that all eigenvalues must be simple. �
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Lemma 5.5. If n ∈ N, then for the spectral radius of Pn we have

ρ(Pn) ≤ 2.

�

Proof. Since Pn is a subgraph of Cn the spectral radius of Pn does not exceed the
degree of regularity 2 of a circuit (cf. Theorem 2.35 and Corollary 2.19). Alterna-
tively, the result also follows from Lemma 2.30 since the maximum row sum of any
adjacency matrix of Pn equals 2. �

We will now determine the complete spectrum of Pn which can be found by a number
of different approaches ([39],[33],[7]). For example, by deleting any vertex from a
circuit Cn+1 we get a path Pn. Therefore we can use Theorem 2.13 to derive the
spectrum of Pn from the spectrum of Cn+1 (cf. Theorem 7.3). We will, however,
simply describe the eigenvectors and eigenvalues of Pn ([6]) and restrict ourselves to
direct verification:

Theorem 5.6. For j = 1, . . . , n let x(j) = (x
(j)
k ) ∈ Rn with

x
(j)
k = sin

(
jkπ

n + 1

)

, k = 1, . . . , n.

Then the set {x(1), . . . , x(n)} forms a basis of Rn consisting of eigenvectors of Pn with
the respective eigenvalues

λj = 2 cos

(
jπ

n + 1

)

.

Moreover, we have λ1 > λ2 > . . . > λn. �

Proof. Consider the k-th entries (k = 2, . . . , n−1) of Ax(j) and x(j) for the canonical
adjacency matrix A of Pn. Their ratio is

sin
(

j(k−1)π
n+1

)

+ sin
(

j(k+1)π
n+1

)

sin
(

jkπ

n+1

) . (62)

Applying the formula [4]

sin α + sin β = 2 sin

(
α + β

2

)

cos

(
α − β

2

)

(63)

for α = c(k+1) and β = c(k−1) with c = jπ

n+1
we see that the above ratio equals λj.

Alternatively, Taylor expansion at k = 0 also immediately leads to the same result.
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To show that λj > λj+1 we consider λj as a continuous function of j ∈ R. It is easy
to see that its derivative

−2π

n + 1
sin

(
jπ

n + 1

)

(64)

is always negative for 1 ≤ j ≤ n.

The reasoning so far is also formally valid for k = 1 and k = n.

Linear independence of the vectors x(1), . . . , x(n) is obvious as they represent eigen-
vectors of pairwise different eigenvalues (cf. Theorem 2.3). �

For the determinant of these eigenvectors of Pn we can find a surprisingly simple
formula:

Theorem 5.7. Let A = (ajk) ∈ Rn×n with ajk = sin
(

jkπ

n+1

)
. Then

det A =

(
n + 1

2

)n
2

.

�

Proof. Consider the matrix B = (bpq) = A2. Then we have

bpq =
n∑

j=1

sin
jpπ

n + 1
sin

jqπ

n + 1
. (65)

Using the equality

sin x sin y =
1

2
(cos(x − y) − cos(x + y)) (66)

from [4] we find

bpq =
1

2

n∑

j=1

(

cos
j(p − q)π

n + 1
− cos

j(p + q)π

n + 1

)

=
1

2

n∑

j=0

cos
j(p − q)π

n + 1
− 1

2

n∑

j=0

cos
j(p + q)π

n + 1

=
1

2

n∑

j=0

cos
j(p − q)π

n + 1
.

(67)

For p = q this sum consists only of ones, whereas for p 6= q we have a complete sum
of real parts of roots of unity. Consequently, it follows that

bpq =

{

0 for p 6= q
n+1

2
for p = q

. (68)
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To complete the proof it suffices to observe that

(det A)2 = det A2 =

(
n + 1

2

)n

.

�

In particular, this again ensures the linear independence of the vectors constructed
in Theorem 5.6.

In figure 4 the spectrum of the graphs P2, . . . , P22 is plotted as points. They lie on
the curves we get from viewing the λi as continuous functions of n ∈ R. Observe
the interlacing of the spectra of Pn and Pn+1 (cf. Theorem 2.27).

–2

–1

0

1

2

5 10 15 20

n

Figure 4: The spectrum of the paths P2, . . . , P22

Remark 5.8. Of all graphs on n vertices the path Pn has the smallest spectral
radius (i.e. maximum eigenvalue) [7]. �

Having computed the entire spectrum of Pn, it is now also possible to give an explicit
formula for its characteristic polynomial, e.g. by assembly of linear factors. But other
formulations are also possible:

Theorem 5.9. [7]

χ(x; Pn) =

bn
2 c∑

k=0

(−1)n−k

(
n − k

k

)

xn−2k =
sin
(
(n + 1) arccos

(
−x

2

))

√

1 − x2

4

.

�
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Proof. Both representations follow by straightforward induction on n (use Theorem
5.1). �

Note that the same result can be obtained in the context of matching polynomials,
e.g. by using generating functions [10].

To conclude this section, we present an interesting result on continued fractions that
is closely related to the spectra of paths.

Theorem 5.10. Given n ∈ N there exists a real number c > 0 such that the first n

members of the sequence

c, −1

c
+ c, − 1

−1

c
+ c

+ c, − 1

− 1

−1

c
+ c

+ c

+ c, . . .

have strictly alternating signs. �

Proof. Let n ∈ N and A be the canonical adjacency matrix of Pn. We conduct an
LU decomposition [21] of the matrix B = A+ cI. To construct the upper triangular
matrix U , we proceed as follows. For i = 1, . . . , n − 1, multiply row i of B = (bij)

by − bi+1,i

bii
and add it to row i + 1. As a result, U contains the continued fraction on

its main diagonal, the upper diagonal contains all ones, and the remaining entries
of U are zero.

It is clear that for Pi with 1 ≤ i ≤ n − 1 the respective upper triangular matrices
of the LU decomposition are principal submatrices of the matrix U we get for Pn.
Now choose c > 0 such that it is smaller than every positive eigenvalue of the
paths P1, . . . , Pn−1. Since paths are bipartite, by Corollary 2.24 their spectrum is
symmetrical around zero. Therefore, comparing matrices A and B for our choice of
c, we see that a spectral shift has been conducted that has only changed exactly one
eigenvalue sign, namely the eigenvalue 0 has become c > 0.

Now consider the sets Ms = {b11, b22, . . . , bss} for s = 1, . . . , n. Keeping in mind the
spectral shift, we can use Ms to reconstruct the inertia of Ps because any principal
submatrix of U has the same inertia as a principal submatrix of B with the same size.
But as a result of the spectral shift, we see that for even s we have as many positive
as negative elements in Ms, whereas for odd s the number of positive members
exceeds the number of negative elements by exactly one. Consequently, because of
M1 ⊆ M2 ⊆ . . . ⊆ Ms we see that the signs of the bii must be strictly alternating
along the main diagonal of B. �
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5.3 Eigenvector structure

Although we already have completely determined the eigenvectors of Pn it is worth-
while to take a closer look to reveal interesting structural properties. In particular,
in this section we will see that the entries of an eigenvector of Pn can be determined
by evaluation of the characteristic polynomials a0, . . . , an−1. Also the nature of any
zero entries is exposed.

In the following, let x = (xi) ∈ Rn be an eigenvector of Pn for eigenvalue λ. Let A

be the tridiagonal adjacency matrix of Pn.

Theorem 5.11. Let xj−1 = 0 for some j ∈ {3, . . . , n − 1}. Then,

c · xT = (−aj−3, . . . ,−a1,−a0, 0, a0, a1, . . . , an−j) (−λ)

for some c ∈ R, c 6= 0. �

Proof. First note that Ax = λx translates to the equations

xi−1 + xi+1 = λxi, i = 2, . . . , n − 1. (69)

Let xj−1 = 0. Assume xj = 0. Then by eq. (69) it would follow that xj+1 = 0 and
so on, yielding x = 0, which is a contradiction. Therefore, w.l.o.g. let xj = 1. In
this case eq. (69) yields xj+1 = λ. Therefore,

xj = a0(−λ), (70)

xj+1 = a1(−λ). (71)

Now assume that

xi−1 = ak−1(−λ), (72)

xi = ak(−λ) (73)

holds for a pair i, k of integers with 2 ≤ i ≤ n − 1 and k ≥ 0.

Then by eq. (69) we see that

ak−1(−λ) + xi+1 = λak(−λ). (74)

Using Theorem 5.1 for x = −λ, we get

xi+1 = ak+1(−λ). (75)

Hence by repeated application of this step we conclude that x is a multiple of the
vector

(∗, 0, a0(−λ), a1(−λ), . . . , an−j(−λ)).
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The remaining entries can be determined in a similar manner by observing that
eq. (69) yields

xj−1 = −a0(−λ). (76)

�

Remark 5.12. Note that neither x1 = 0 nor xn = 0 can occur as this would
automatically lead to x = 0. �

Theorem 5.13. We have

c · xT = (a0, a1, . . . , an−1) (−λ)

= (an−1, an−2, . . . , a0) (−λ)

for some c ∈ R, c 6= 0. �

Proof. From Ax = λx we can derive the equations

x2 = λx1, (77)

xn−1 = λxn. (78)

Setting x0 = 0 and xn+1 = 0, these equations attain the same formal structure as in
eq. (69). So formally the proof of Theorem 5.11 remains valid for this case. �

Both theorems reveal a tight relationship between the characteristic polynomials ai

and the eigenvectors of Pn.

We can expose even more structure due to symmetry:

Lemma 5.14.

1. If n = 2k, then we have

c · xT = (a0, a1, . . . , ak−1, ak−1, . . . , a1, a0) (−λ)

for some c ∈ R, c 6= 0.

2. If n = 2k + 1, then either we have

c · xT = (a0, a1, . . . , ak−1, ak, ak−1, . . . , a1, a0) (−λ)

or
c · xT = (a0, a1, . . . , ak−1, 0,−ak−1, . . . ,−a1,−a0) (−λ)

for some c ∈ R, c 6= 0.

�
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Proof. Having assumed that we number the vertices of Pn from one end to the
other, we will now reverse the vertex numbering. This automorphism transforms
any eigenvector z1 of Pn into another eigenvector z2 of Pn, belonging to the same
eigenvalue (see Theorem 2.17). Lemma 5.4 states that Pn has exactly n distinct and
simple eigenvalues. So z1 and z2 must be linearly dependent, and the result follows
from Theorem 5.13. �

Note that the equation ak(−λ) = 0 from the second alternative of the second case
implies that −λ is an eigenvalue of Pk.

Having determined the entries around any zero entry of an eigenvector, we will
continue our investigation of the role of the zero entries.

Theorem 5.15. Let n ≡ j mod j + 1. If w is an eigenvector of Pj, then

xT = (w, 0,−w, 0, w, . . .)

yields an eigenvector x of Pn for the same eigenvalue. �

Proof. The summation rules derived for the adjacency matrix of Pj are also valid
for the adjacency matrix of Pn. Therefore, the summation for any vertex that is not
one of the inserted zero weight vertices yields a common multiple. For the remaining
zero weight vertices, however, we get a zero sum by construction. �

Corollary 5.16. Any eigenvector w of Pk gives rise to an eigenvector

x = (w, 0,−w)T

of P2k+1 for the same eigenvalue. Therefore, the spectrum of Pk is contained in the
spectrum of P2k+1 (cf. [14]). �

Proof. We have 2k + 1 ≡ k mod k + 1. �

Corollary 5.17. The path P2k+1 is always singular with eigenvector

(1, 0,−1, 0, 1, 0, . . .)T .

�

The construction from Theorem 5.15 gives rise to zero entries in eigenvectors of
paths. The following theorem states that this is the only way to introduce zero
entries.
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Theorem 5.18. If x = (xi) is an eigenvector of Pn for eigenvalue λ and xj+1 = 0,
then

n ≡ j mod j + 1.

�

Proof. From Theorem 5.13 we conclude that aj(−λ) = xj+1 = 0. But because of
Theorem 5.11 this must be also the value of x2j+1. Therefore, from x = (w, 0,−w, ∗)T

with w = (x1, . . . , xj−1)
T it follows that in fact x = (w, 0,−w, 0, ∗)T . Repeat this

conclusion for the newly discovery zero entry. We finally get r copies of ±w and
r − 1 zero entries between them, which means that n ≡ j mod j + 1. �

We now know exactly under what circumstances path eigenvectors contain zero
entries. It is therefore very easy to state their exact number:

Corollary 5.19. If x = (xi) is an eigenvector of Pn and k the smallest index for
which xk = 0, then x contains exactly n−k+1

k
zero entries. �

5.4 Eigenspaces E0, E
−1, E0, and E

−1

We have seen in section 3 that there exist interesting relations between the eigen-
spaces for the eigenvalues 0 and −1 of a graph and its complement. We will therefore
study these eigenspaces for paths and a number of derived graph classes.

First we will study the eigenspace E0 of Pn. The following theorem summarises some
results that have already been discovered and characterises the relation between E0

and E−1.

Theorem 5.20.

1. Pn is singular if and only if n is odd.

2. For n ≥ 2, n odd, E0 is spanned by the vector

(1, 0,−1, 0, 1, 0,−1, . . .)T .

3. If n ≡ 3 mod 4, then E0 = E−1, otherwise E−1 = {0}.

�
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Proof.

1. Checking Theorem 5.6 it is immediately clear that λj = 0 occurs if and only
if n is odd.

2. This is Corollary 5.17.

3. Since Pn is a tree, Theorem 4.5 implies E−1 ⊆ E0. But for even n the path
Pn is nonsingular and therefore E−1 = {0}. Let n ≥ 2 be odd. Then we see
that exactly for n ≡ 3 mod 4 the eigenvector (1, 0,−1, 0, 1, 0,−1, . . .)T that
spans E0 has component sum zero. Consequently, by Theorem 3.1 we have
E−1 ⊇ E0, which proves equality. For n ≡ 1 mod 4 we have E−1 = {0}
because no other vector from the superspace E0 has component sum zero.

�

Remember that if Pn is singular, the eigenvalue λ = 0 is only simple.

Now we will focus on the eigenspace E−1 of Pn and its relation to E0.

Lemma 5.21.

1. E−1 6= {0} if and only if n ≡ 2 mod 3. In this case the eigenspace is spanned
by the vector

(−1, 1, 0,−1, 1, 0,−1, 1, . . . , 0,−1, 1)T .

2. E−1 ⊆ E0.

�

Proof.

1. From Theorem 5.6 it follows easily that λj = −1 is an eigenvalue of Pn if and
only if

j =
2

3
(n + 1) ∈ N. (79)

This happens exactly for n ≡ 2 mod 3. Summing over all adjacent vertices of
Pn, it is readily checked that

(−1, 1, 0,−1, 1, 0,−1, 1, . . . , 0,−1, 1)T .

is an eigenvector of Pn for eigenvalue −1. It spans E−1 because all eigenvalues
of Pn are simple.
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2. E−1 is spanned by a vector with component sum zero, so by Theorem 3.1 the
claim follows.

�

Theorem 5.22.

1. Let x = (xi) ∈ E0. Then x has the form

(a, b, 0, a, b, 0, . . .)T

with numbers a, b ∈ R.

2. Let n ≥ 4. Then E0 = E−1.

�

Proof.

1. Let A be the canonical adjacency matrix of Pn. Consider a vector x = (xi) from
the kernel of the adjacency matrix B = J − A − I of Pn. For j = 2, . . . , n − 2
we form the differences of the components j and j + 1 of Bx = 0. We see that

xi = xi+3 (80)

for i = 1, . . . , n − 3 so that x = (a, b, c, a, b, c, . . .)T . Taking the difference for
j = 1 yields x3 = 0.

2. Let n ≥ 4 and x ∈ E0. We will show that x = (xi) has component sum zero,
then by Lemma 5.21 the result follows. Assume w.l.o.g. that

n∑

i=1

xi = 1. (81)

From the first component of Bx = 0 we see that

n∑

i=3

xi = 0 (82)

and therefore
x1 + x2 = 1. (83)

We will now consider three cases:
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Case 1. Let n = 3k. Then by the first part of the theorem and equations (81),
(83) we have

1 =

n∑

i=1

xi = k(x1 + x2 + x3) = k. (84)

But this would mean n = 3, a contradiction.

Case 2. Let n = 3k + 1. Then from the last component of Bx = 0 we deduce

0 =

n−2∑

i=1

xi = (k − 1)(x1 + x2 + x3) + x1 + x2 = (k − 1) + 1 = k. (85)

But this would mean n = 1, a contradiction.

Case 3. Let n = 3k + 2. Then in a similar fashion as in case 1 we find

1 =

n∑

i=1

xi = k(x1 + x2 + x3) + x1 + x2 = k + 1. (86)

But this would mean n = 2, a contradiction.

�

Table 1 conveys an impression of what we have found out up to this point of the
section. The remaining cases for n ≤ 3 can be checked by hand.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dim E0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
dim E−1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
dim E−1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
dim E0 2 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

Table 1: Dimensions of E0, E−1, E0 and E−1 for the paths P2, . . . , P20

Our reasoning so far can be applied to unions of paths and their complements. Keep
in mind that the restriction of an eigenvector of a union of graphs to one of the com-
ponents trivially yields an eigenvector on that component for the same eigenvalue.
Conversely, arbitrary eigenvectors for a common eigenvalue can be determined for
every component and then be combined into an eigenvector of the union for the
same eigenvalue. We may also choose null vectors on the components as long as at
least one vector is not the null vector.

Theorem 5.23. Consider the union 2Pn.

1. If n is even, then E0 = E−1 = {0}.
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2. If n ≡ 3 mod 4, then E0 = E−1 and dim E0 = 2.

3. If n ≡ 1 mod 4, then E0 ' E−1 and dim E0 = 2.

�

Proof. First note that Corollary 4.6 ensures E−1 ⊆ E0.

1. From Theorem 5.20 we see that Pn and therefore also 2Pn is nonsingular if
and only if n is even. In this case we have E0 = E−1 = {0}.

2. If n ≡ 3 mod 4 we get an eigenvector for eigenvalue 0 on each component,
their component sum being zero. Therefore they span E0 so that dim E0 = 2.
But by Theorem 3.1 they also span the subspace E−1.

3. If n ≡ 1 mod 4 we also get an eigenvector for eigenvalue 0 on each component,
but we have non-vanishing component sums. Combining them into a basis of
E0 we see that dim E0 = 2. Since E0 contains a vector with non-vanishing
component sum we may find a basis of E0 that contains only exactly one such
vector. Hence, by Theorem 3.1 we have dim E−1 = 1.

�

Corollary 5.24. 2Pn is nonsingular if and only if n is even. �

Theorem 5.25. Consider the union 2Pn. Then, E−1 = E0 and

dim E−1 =

{

2 if n ≡ 2 mod 3

0 otherwise
.

�

Proof. Remembering Lemma 5.21, we find that for n ≡ 2 mod 3 we have dim E−1 =
2 with a basis of eigenvectors with vanishing component sums. Also, E−1 = {0} for
all other choices of n.

We will now show that E0 is nontrivial only for n ≡ 2 mod 3 and that in this case
we get a basis of two eigenvectors with vanishing component sum. This will prove
E−1 = E0.
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Let A be the canonical adjacency matrix of 2Pn, i.e. the block diagonal matrix
consisting of two canonical adjacency matrices of Pn. Let x ∈ E0 = Ker(J −A− I),
i.e. Bx = 0 for B = J − A − I.

Taking the difference of the n-th and (n + 1)-th components of Bx = 0, we find

xn−1 + xn = xn+1 + xn+2. (87)

Further, the difference of components n − 1 and n as well as n + 1 and n + 2 yields

xn−2 = xn+3 = 0. (88)

Using a technique similar to that in Theorem 5.22 on the first and second n compo-
nents, we can deduct the following structure of the vector x:

x = (a, b, 0, a, b, 0, a, . . . , c, 0, d, c, 0, d, c)T . (89)

We now need to consider three different cases.

Case 1. Let n = 3k. Then the center of x is

x = (∗, a, b, 0, 0, d, c, ∗)T . (90)

Equations (87) and (88) imply that

a = c = 0 ∧ b = d. (91)

Looking into component n of Bx = 0, we see that

0 =
n∑

i=1

xi + 0 + 0 +
2n∑

i=n+3

xi

= k(a + b) + 0 + 0 + c + (k − 1)(c + d)

= (2k − 1)b.

(92)

But now from 2k − 1 6= 0 we conclude b = d = 0 and therefore x = 0.

Case 2. Let n = 3k + 1. Then the center of x is

x = (∗, b, 0, a, c, 0, d, ∗)T . (93)

In a similar way as in case 1 we find that x = 0.

Case 3. Let n = 3k + 2. Then the center of x is

x = (∗, 0, a, b, d, c, 0, ∗)T . (94)

Equation (87) implies that
a + b = c + d. (95)

Considering component n + 1 of Bx = 0 we find that

0 = k(a + b) + a + b + 0 + 0 + k(c + d) = (2k + 1)(a + b). (96)

Thus, a + b = 0 = c + d so that the component sum of x vanishes. �

Examples of our findings can be found in table 2.
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n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dim E0 0 2 0 2 0 2 0 2 0 2 0 2 0 2
dim E−1 0 2 0 1 0 2 0 1 0 2 0 1 0 2
dim E−1 2 0 0 2 0 0 2 0 0 2 0 0 2 0
dim E0 2 0 0 2 0 0 2 0 0 2 0 0 2 0

Table 2: Dimensions of E0, E−1, E0 and E−1 for the graphs 2P2, . . . , 2P15

Theorem 5.26. Consider the graph G = Pn ∪ Pn+1.

1. For all n ∈ N we have dim E0 = 1.

2. We have E−1 = {0} unless n ≡ 2 or n ≡ 3 mod 4, in which case E0 = E−1.

3. E−1 = {0} if and only if 3|n (i.e. |G| ≡ 1 mod 6). Otherwise, dim E−1 = 1.

4. E−1 = E0.

�

Proof.

1. Exactly one of the graphs Pn and Pn+1 is singular, therefore dim E0 = 1.

2. We have vanishing component sums within E0 if and only if

n ≡ 3 mod 4 ∨ n + 1 ≡ 3 mod 4, (97)

that is if
n ≡ 2 mod 4 ∨ n ≡ 3 mod 4. (98)

Since G is a forest, this completely determines E−1.

3. We get an eigenvector with component sum zero that spans E−1 exactly for

n ≡ 2 mod 3 ∨ n + 1 ≡ 2 mod 3. (99)

Otherwise, 3|n and we have E−1 = {0}.

4. It can be easily seen that E0 is spanned by a single vector with component
sum zero if

n ≡ 2 mod 3 ∨ n + 1 ≡ 2 mod 3. (100)

E0 is trivial otherwise. Therefore we have E−1 = E0.

�
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n 1 2 3 4 5 6 7 8 9 10 11 12
dim E0 1 1 1 1 1 1 1 1 1 1 1 1
dim E−1 0 1 1 0 0 1 1 0 0 1 1 0
dim E−1 1 1 0 1 1 0 1 1 0 1 1 0
dim E0 1 1 0 1 1 0 1 1 0 1 1 0

Table 3: Dimensions of E0, E−1, E0 and E−1 for Pn ∪ Pn+1, n = 1, . . . , 12

The respective eigenspace dimensions have been compiled in table 3.

A cocktail party graph CP (2n) is formed by removal of a one-factor from K2n. In
particular, this graph is regular so that by Corollary 2.37 we have E0 = E−1 and
E−1 = E0. The complement of a cocktail party graph is nP2 so that we can use our
findings about paths to study eigenspaces E0 and E−1 of cocktail party graphs.

Theorem 5.27. Consider G = CP (2n). Then,

1. dim E0 = n,

2. E−1 = {0}.

�

Proof. The complement of G = CP (2n) is nP2. It has eigenvalues 1 and −1 with
multiplicity n each, which means that 0 is an eigenvalue of G with multiplicity n.
Also, nP2 is never singular so that E−1 = {0}. �

Note that the spectrum of CP (2n) can be completely determined by Theorem 2.33
because the graph is circulant with generating vector (0, 1, . . . , 1, 0, 1, . . . , 1)T (zeros
at positions 1 and n + 1). We find that λ0 = 2n − 2 and λr = −1 − ωrn for
1 ≤ r ≤ 2n − 1, proving the previous theorem a second time.
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6 Distance powers P (d)
n of paths

In this section we deal with distance powers of paths. We will be concerned with
a number of different topics, among them recursion formulae of the characteristic
polynomial, multiple eigenvalues, and common eigenvectors.

Let dn
2
e ≤ d < n. Then the canonical adjacency matrix A of P

(d)
n derived from the

canonical adjacency matrix of Pn takes the form of a banded matrix with a zero
main diagonal and both d upper and lower bands containing all ones.

To start with, we look at the distribution of the eigenvalues of P
(d)
n .

Theorem 6.1. Let dn
2
e ≤ d < n and s = n − d − 1. Let λ1 ≤ . . . ≤ λn be the

eigenvalues of P
(d)
n . Then

λ1, . . . , λs+1 < −1,

λs+2 = . . . = λn−s = −1,

λn−s+1, . . . , λn > −1.

�

Proof. Applying a sequence of symmetrical row and column operations, we will
perform a principal axis transformation on A+I so that we obtain a diagonal matrix
with the same inertia.

Step 1. Iterate j = 1, . . . , s + 1 and nest i = j + 1, . . . , n − s. Each time, subtract
row j from row i and after that column j from column i. Then our matrix takes the
form: 





J1,1 N1,s N1,n−2s−1 N1,s

Ns,1 Ns,s Ns,n−2s−1 Is

Nn−2s−1,1 Nn−2s−1,s Nn−2s−1,n−2s−1 Nn−2s−1,s

Ns,1 Is Ns,n−2s−1 Js,s







. (101)

Remove the first row and column from matrix (101) because we can already see that
they hint at a positive eigenvalue in A + I. Note that this effects a shift in row and
column indices.

Step 2. Iterate j = 1, . . . , s and nest i = 1, . . . , s. Each time, subtract row j divided
by two from row d + i (columns likewise). Then the lower right block becomes null
so that the matrix takes the form:





Ns,s Ns,n−2s−1 Is

Nn−2s−1,s Nn−2s−1,n−2s−1 Nn−2s−1,s

Is Ns,n−2s−1 Ns,s



 . (102)
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Step 3. For i = 1, . . . , s add row n − 1 − s + i divided by two to row i (columns
likewise). This yields





Is Ns,n−2s−1 Is

Nn−2s−1,s Nn−2s−1,n−2s−1 Nn−2s−1,s

Is Ns,n−2s−1 Ns,s



 . (103)

Step 4. Now we eliminate the upper left and lower right unit blocks. For i = 1, . . . , s
subtract row i from row n− 1− s + i (columns likewise). Then we finally reach the
form 



Is Ns,n−2s−1 Ns,s

Nn−2s−1,s Nn−2s−1,n−2s−1 Nn−2s−1,s

Ns,s Ns,n−2s−1 −Is



 . (104)

Keeping in mind the additional positive eigenvalue and the initial spectral shift, we
see that the proof is complete. �

Note that hereafter similar requirements on d will be encountered repeatedly, as
most proof techniques applied rely decisively on the fact that there exist vertices of
P

(d)
n that are adjacent to all other vertices. In particular, P

(n−1)
n = Kn.

6.1 Distance squares P (2)
n of paths

Remembering Theorem 5.1 one may ask if equally elegant recursion formulae exist
for arbitrary distance powers of paths. Although this is possible, such formulae are
somewhat tedious to derive, as we can already see for P

(2)
n :

Theorem 6.2. Let pi(x) = χ(P
(2)
i ; x) and formally p0(x) = 1. Then for n ≥ 5 the

following equality holds:

pn(x) = −(x + 1) (pn−1(x) + pn−2(x) − pn−3(x) − pn−4(x)) + pn−5(x).

�

Proof. Let Ak be the canonical adjacency matrix of P
(2)
k . Then we define the

matrices
Rk = Ak − xI (105)

and

Q1 =
(
1
)
, Q2 =

(
−x 1
1 1

)

, Qk =

(
Rk−1 ek−1 + ek−2

eT
k−1 1

)

, k ≥ 3, (106)

where ei denotes the i-th unit vector of appropriate size.
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We observe that
det Qk = det Rk−1 − det Qk−1 (107)

for k ≥ 2.

Expanding along the last row of Rn we see that

det Rn = −x det T1 − det T2 + det T3 (108)

with T1 = Rn−1 and

T2 =

(
Rn−2 en−2

eT
n−2 + eT

n−3 1

)

, T3 =





Rn−3 en−3 0
eT

n−4 + eT
n−3 1 1

eT
n−3 −x 1



 . (109)

We see T2 = QT
n−1 so that

det T2 = det Qn−1 = det Rn−2 − det Qn−2. (110)

Expand T3 along its last column to get

det T3 = det T31 − det T32 (111)

with T31 = QT
n−2 and

T32 =

(
Rn−3 en−3

eT
n−3 −x

)

. (112)

We now expand T32 along its last column so that

det T32 = −x det T321 − det T322 (113)

with T321 = Rn−3 and

T322 =

(
Rn−4 en−4 + en−5

0T 1

)

. (114)

But by expanding T322 along its last row it follows immediately that det T322 =
det Rn−4.

Collecting the results we arrive at

det Rn = −x det Rn−1 − det Rn−2 + x det Rn−3 + det Rn−4 + 2 detQn−2. (115)

Repeated use of the recursion (107) to eliminate all occurrences of Qi yields

det Rn = − x det Rn−1 − det Rn−2 + x det Rn−3 + det Rn−4

+ 2

n−3∑

j=0

(−1)n−j−1 det Rj .
(116)
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Writing det Ri as pi(x), we get

pn(x) = −xpn−1(x)−pn−2(x)+xpn−3(x)+pn−4(x)+2

(
n−3∑

j=0

(−1)n−j−1pj(x)

)

. (117)

Use the previous equation to compute pn(x) and pn−1(x). Then for the sum we have

pn(x) + pn−1(x) = − xpn−1(x) − (x + 1)pn−2(x) + (x − 1)pn−3(x)

+ (x + 1)pn−4(x) + pn−5(x) + 2pn−3(x).
(118)

The result now follows by solving for pn(x). �

Corollary 6.3. Let n ∈ N. Then,

det P (2)
n =







n
3

+ 1 if n ≡ 0 mod 3

0 if n ≡ 1 mod 3

−n−2
3

− 1 if n ≡ 2 mod 3

i.e. the sequence (det P
(2)
n )n∈N0 reads

1, 0,−1, 2, 0,−2, 3, 0,−3, 4, 0,−4, . . .

if we formally let det P
(2)
0 = 1. �

Proof. For n ∈ {1, 2, 3, 4} the theorem is easily checked by hand.

So let n ≥ 5. We proceed by induction. Assume that the theorem has been proven
for the determinants of P

(2)
0 , . . . , P

(2)
n−1.

Abbreviating ci = det P
(2)
i and noting that ci = χ(0; P

(2)
i ), we evaluate the recursion

formula from Theorem 6.2 at x = 0 to get

cn = −cn−1 − cn−2 + cn−3 + cn−4 + cn−5. (119)

Note that by assumption

(c0, c1, c2, c3, . . . , cn−1) = (1, 0,−1, 2, 0,−2, . . .). (120)

We need to consider three cases:

Case 1. Let n = 3q and prove cn = q + 1.
Case 2. Let n = 3q + 1 and prove cn = 0.
Case 3. Let n = 3q + 2 and prove cn = −(q + 1).

Since these cases are all alike we will only prove the first case. Let therefore n = 3q.
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From (120) we conclude that

cn−1 = −q, cn−2 = 0, cn−3 = q, cn−4 = −(q − 1), cn−5 = 0. (121)

Inserting these values into equation (119), the result cn = q +1 follows immediately.
�

Since we can compute det P
(2)
n it is now possible to reconstruct the characteristic

polynomial of P
(2)
n from the characteristic polynomials of its one vertex deleted

subgraphs:

Theorem 6.4. Let V (P
(2)
n ) = {v1, . . . , vn}. Assume that

χ(x; P (2)
n − vi) = ai,n−1x

n−1 + . . . + ai,1x + ai,0.

Then,

χ(x; P 2
n) = −1

n

(
n∑

i=1

ai,n−1

)

xn − . . . − 1

2

(
n∑

i=1

ai,1

)

x2 −
(

n∑

i=1

ai,0

)

x + det P (2)
n .

�

Proof. This is a direct consequence of Theorem 2.13 and Lemma 2.1. �

6.2 Bounds for the maximum eigenvalue of P (d)
n

In this section we will develop bounds for the maximum eigenvalue of P
(d)
n and

analyse their quality. We start with an upper bound:

Theorem 6.5. Let 1 ≤ d < n − 1. Then,

λmax(P
(d)
n ) ≤

√

−(d + d2 − 2nd) − n + 1.

�

Proof. For d < n − 1 the graph P
(d)
n has exactly

m =
d∑

i=1

(n − i) = dn − 1

2
d(d + 1) (122)

edges. By virtue of Theorem 2.31 the result now follows. �



64 6. Distance powers P
(d)
n of paths

Remark 6.6. Another upper bound is given by the maximum row sum of the canon-
ical adjacency matrix (cf. Theorem 2.30), that is

λmax(P
(d)
n ) ≤ min(n − 1, 2d). (123)

Since P
(d)
n is a subgraph of the graph C

(d)
n which is regular of degree min(n − 1, 2d)

we can also derive this bound by means of Corollary 2.19. �

Theorem 6.7. Let 1 ≤ d < n − 1 and

b(n, d) = −d + d2 − 2nd

n
.

Then,
λmax(P

(d)
n ) ≥ b(n, d).

�

Proof. Remembering that the sum s of all entries of an adjacency matrix equals
twice the number of edges, we can use equation (122) to find s = d(2n − d − 1) so
that the result follows by Lemma 2.29. �

Remark 6.8. In order to prove Theorem 6.7 we have basically used the block quo-
tient technique described in [23] on a single block. One may ask if a less trivial
partition of the matrix may yield a better bound. For even n a straightforward
choice would be a partition of the adjacency matrix into four equally sized blocks.
The eigenvalues of the resulting 2 × 2 quotient matrix could be computed directly.
It turns out, however, that this approach leads to exactly the same bound as in
Theorem 6.7. �

Figure 5 exemplifies the bounds we have derived. The maximum eigenvalues of
P

(d)
14 have been plotted as points and whereas the bounds are shown as continuous

functions. In particular, we see that for small values of d the simple piecewise linear
upper bound from equation (123) is tighter than the upper bound from Theorem
6.5. The lower bound appears to be tighter than any of the two upper bounds.

We proceed with an analysis of the lower bound.

Theorem 6.9. Let λ1 ≤ . . . ≤ λn be the eigenvalues of P
(d)
n , 1 ≤ d < n − 1. If

b(n, d) denotes the bound from Theorem 6.7, then

λi ≤ b(n, d)

holds for i = 1, . . . , d + 1. �
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Figure 5: Bounds for the maximum eigenvalue of P
(d)
14

Proof. Let A be the canonical adjacency matrix of P
(d)
n . The main idea is as

follows. Shift the spectrum of A to the left by the value of the bound to test. Then
determine the inertia of the resulting matrix A + cI to see how many eigenvalues
have been separated by the bound. For this purpose we will compute an LDLT

decomposition ([35],[16]) of the symmetric matrix A + cI such that D is diagonal
and L is a lower triangular matrix with an all ones main diagonal. Since U = DLT

is an upper triangular matrix we see that this is basically an LU decomposition.
But U has the same main diagonal as D, so it has the same inertia. To compute the
triangular matrix U it suffices to conduct a Gauss forward elimination procedure
without pivoting.

First observe that the upper left (d + 1) × (d + 1) principal submatrix of the A is

the canonical adjacency matrix of P
(d)
d+1 = Kd+1. It is straightforward to verify that

LU decomposition of this principal submatrix of A + cI yields an upper triangular
matrix U = (uij) ∈ R(d+1)×(d+1) with

uij =







0 if i > j
(c−1)(c−1+i)

c−2+i
if i = j

c−1
c−2+i

if i < j

. (124)

Since this matrix is a principal submatrix of the upper triangular matrix computed
for the full matrix A + cI, we can check the signs of the main diagonal entries uii to
get lower bounds for the number of separated eigenvalues. Substituting

−c = b(n, d) = −d + d2 − 2nd

n
(125)
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we get

uii =
(d + d2 − 2nd − n)(d + d2 − 2nd − n + in)

n(d + d2 − 2nd − 2n + in)
. (126)

For the numerator we see that

d + d2 − 2nd − n = −(d + 1)(n − d) − nd < 0 (127)

and

d + d2 − 2nd − n + in = d(d + 1) − (2d + 1 − i)n < 0 (128)

since d ≤ 2d + 1 − i (remember 1 ≤ i ≤ d + 1) and d + 1 < n. On the other hand,
the denominator is negative:

d + d2 − 2nd − 2n + in = (d − 2n)(d + 1) + in

< −n(d + 1) + in

= (i − (d + 1))n

≤ 0.

(129)

Hence, uii < 0 for i = 1, . . . , d + 1. But this means that for −c = b(n, d) the matrix
A + cI has at least d + 1 negative eigenvalues. �

Note that the bound b(n, d) is always positive for d ∈ N. Therefore, the above
theorem blends with Theorem 6.1 which for sufficiently large values of d guarantees
a number of negative eigenvalues of P

(d)
n .

However, we can prove much better separation even for smaller values of d than
those demanded by Theorem 6.1.

Theorem 6.10. Let d ≥ n− 1
2

(
1 +

√
2n2 + 1

)
. Then the bound from Theorem 6.7

separates λmax from the rest of the spectrum of P
(d)
n . �

Proof. Let λ1 > . . . > λr be the different eigenvalues of P
(d)
n . In [38] is was shown

that

λ2 ≤
n

2
− 1. (130)

Keeping in mind that 1 ≤ d ≤ n − 1, it is straightforward to check that this upper
bound for the second largest eigenvalue is strictly smaller than the lower bound
b(n, d) for that largest eigenvalue if and only if

d > n − 1

2

(

1 +
√

2n2 + 1
)

. (131)

�
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Corollary 6.11. Let d ≥ 1
3
n. Then the bound from Theorem 6.7 separates λmax

from the rest of the spectrum of P
(d)
n . �

Proof. It suffices to note that

1

3
n ≥

(

1 − 1

2

√
2

)

n ≥ n − 1

2

(

1 +
√

2n2 + 1
)

. (132)

�

Figure 6 illustrates the separation property of the bound b(n, d). In fact, it seems
that the lower bound b(n, d) provides a good estimate for the largest eigenvalue of

P
(d)
n .

0
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15

2 4 6 8 10 12 14 16 18

d

Figure 6: Separation of the maximum eigenvalue of P
(d)
20

Remark 6.12. Note that P
(d)
n is an induced subgraph of C

(d)
n+d. Therefore, we know

by Theorem 2.27 that the eigenvalues of P
(d)
n interlace those of C

(d)
n+d. Since the

eigenvalues of C
(d)
n+d are well-known (cf. section 8) one would expect to derive usable

eigenvalue bounds from the interlacing property. But especially for the larger eigen-
values the interlacing may prove too loose to be of much use. On the other hand, if
λ is an eigenvalue of C

(d)
n+d with multiplicity k, the interlacing property guarantees

us that λ is also an eigenvalue of P
(d)
n with multiplicity at least k − d.

Both issues can be seen in figure 7 where the eigenvalues of P
(d)
n are denoted by

circuits that lie in the interlacing intervals predicted from the eigenvalues of C
(d)
n+d.

�
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Figure 7: Eigenvalue interlacing of P
(d)
n and C

(d)
n+d for P

(3)
18 and P

(6)
18

To conclude this section we will use the previous results to check under what cir-
cumstances the maximum eigenvalue of a path power cannot be rational.

Theorem 6.13. Let d ∈ N. Then λmax(P
(d)
n ) 6∈ Q if n > d2 + d. �

Proof. Let d ∈ N and n > d2 + d. Then from Theorem 6.7 we deduct

λmax(P
(d)
n ) > 2d − 1.

On the other hand, from Remark 6.6 and Corollary 2.19 it follows that

λmax(P
(d)
n ) < 2d.

Therefore, λmax(P
(d)
n ) cannot be integer. But assuming λmax(P

(d)
n ) to be rational

would then contradict Lemma 2.15. �

6.3 Multiple eigenvalues

In this section we will study the occurrence of eigenvalues with multiplicity greater
than one. We will see that for sufficiently large d all eigenvalues of P

(d)
n except

λ = −1 must be simple.

To start with, we study the structure of eigenvectors belonging to simple eigenvalues
of P

(d)
n .



6. Distance powers P
(d)
n of paths 69

Lemma 6.14. Let λ be a simple eigenvalue of P
(d)
n and v a corresponding eigen-

vector.

1. If n is even, then v either has the form

(. . . , a2, a1, a0,−a0,−a1,−a2, . . .)
T

or
(. . . , a2, a1, a0, a0, a1, a2, . . .)

T .

2. If n is odd, then v either has the form

(. . . , a2, a1, 0,−a1,−a2, . . .)
T

or
(. . . , a2, a1, a0, a1, a2, . . .)

T .

�

Proof. Let P be the permutation matrix that reverses the canonical vertex ordering
of P

(d)
n . Then by Theorem 2.17 the product Pv is also an eigenvector for eigenvalue

λ. Since λ is simple we have
Pv = µv (133)

for some µ ∈ R. But P is an involution so that P 2 = I. Hence,

v = P 2v = µPv = µ2v (134)

and therefore
µ = ±1. (135)

Consequently, Pv = v or Pv = −v so that vector v possesses the claimed form. �

In the following, two values s, t will be associated with a given graph P
(d)
n as follows:

s = 2d + 2 − n, t = n − d − 1. (136)

Because of
n = t + s + t (137)

we will write eigenvectors of P
(d)
n as

(a | b | c) = (a1, . . . , at, b1, . . . , bs, c1, . . . , ct)

with a = (ai) ∈ Rt, b = (bi) ∈ Rs and c = (ci) ∈ Rt.

Note that for n
2

< d < n − 1 we have s ≥ 2 and t ≥ 1. In this case, the canonical

adjacency matrix of P
(d)
n looks like

A(P (d)
n ) =





Jt − It Jt,s L̃t

Js,t Js − Is Js,t

R̃t Jt,s Jt − It



 . (138)
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Theorem 6.15. Let n
2

< d < n − 1. Then

1. dim Eig(−1; P
(d)
n ) = s − 1,

2. the vectors

{(0 | e1 − e2 | 0)T , (0 | e1 − e3 | 0)T , . . . , (0 | e1 − es | 0)T},

constitute a basis of Eig(−1; P
(d)
n ) (ei ∈ Rs is the i-th unit vector).

�

Proof. Let n
2

< d < n − 1 and A the canonical adjacency matrix of P
(d)
n . From

equation (138) it is clear that

rk(A + I) ≤ rk





Jt Jt,s L̃t

11T 11T 11T

R̃t Jt,s Jt



 = 2t + 1 = s − 1. (139)

On the other hand, it is easy to see that the s − 1 vectors
















0
1
−1
0
0
...
0
0
















,
















0
1
0
−1
0
...
0
0
















, . . . ,
















0
1
0
0
...
0
−1
0
















. (140)

are linearly independent and indeed eigenvectors of P
(d)
n for eigenvalue λ = −1.

Therefore, they form a basis of Eig(−1; P
(d)
n ). �

Remark 6.16. According to Theorem 6.15 the set Eig(−1; P
(d)
n ) \ {0} contains ex-

actly those vectors v = (x | z | y)T such that not all components of z are identical.

Therefore we can distinguish between two types of eigenvectors of P
(d)
n for λ 6= −1:

vT = (x | 0 | y) type I

and
cvT = (x | 11T | y) type II

for some c ∈ R, c 6= 0. �
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Lemma 6.17. Let v = (x | 0 | y)T ∈ Eig(λ; P
(d)
n ). Assume that any other vector

from this eigenspace that has the same form is a multiple of v.

Then

v = (x1, x2, . . . , xt, 0, . . . , 0, xt, . . . , x2, x1)
T

or

v = (x1, x2, . . . , xt, 0, . . . , 0,−xt, . . . ,−x2,−x1)
T

for some vector x = (xi) ∈ Rt. �

Proof. Use a symmetry argument like in the proof of Lemma 5.14. �

Note that Lemma 6.17 holds in particular if λ is simple.

Theorem 6.18. Any eigenspace basis of P
(d)
n affords at most one vector of type I.

�

Proof. Let A be the canonical adjacency matrix of P
(d)
n and let v = (x | 0 | y)T be

a type I eigenvector. Then we have

(A + I)v = λv (141)

for some λ 6= 0 (cf. Remark 6.16) and therefore

Jtx + Jt,s0 + L̃ty = λx, (142a)

Js,tx + Js,s0 + Js,ty = 0, (142b)

R̃tx + Jt,s0 + Jty = λy. (142c)

Since all components of equation (142b) are identical, we can also write

Jtx + Jty = 0 (143)

and substitute this equation into (142a) and (142c) to get

(L̃t − Jt)y = λx, (144a)

(R̃t − Jt)x = λy. (144b)

Solving for x and y yields

x =
1

λ
(L̃t − Jt)y, (145a)

y =
1

λ
(R̃t − Jt)x. (145b)
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Substituting (145a) into (144b) and (145b) into (144a) we find

(R̃t − Jt)(L̃t − Jt)y = λ2y, (146a)

(L̃t − Jt)(R̃t − Jt)x = λ2x. (146b)

Let M1 = (R̃t − Jt)(L̃t − Jt). Then

M1 =











1 . . . . . . . . . 1
... 2 . . . . . . 2
...

... 3 . . . 3
...

...
... etc.

1 2 3 t











. (147)

We will show that M1 has only simple eigenvalues, which means that for given λ the
vector y is completely determined up to a factor.

Translating M1y = λ2y from (146a) into a system of equations, we get

(1, 1, 1, . . . , 1)Ty = λ2y1

(1, 2, 2, . . . , 2)Ty = λ2y2

(1, 2, 3, . . . , 3)Ty = λ2y3

...

(148)

and, further, by subtracting adjacent rows

(1, 1, 1, . . . , 1, 1)Ty = λ2y1

(0, 1, 1, . . . , 1, 1)Ty = λ2(y2 − y1)

(0, 0, 1, . . . , 1, 1)Ty = λ2(y3 − y2)

...

(0, 0, 0, . . . , 0, 1)Ty = λ2(yt − yt−1)

. (149)

Since the coefficient matrix is regular and λ 6= 0 we can solve this system uniquely
by backward substitution provided that yt 6= 0 is known (the case yt = 0 leads to
y = 0). As a consequence, M1 has only simple eigenvalues.

Due to the fact that M2 = (L̃t−Jt)(R̃t−Jt) can be constructed from M1 by reversing
the order of all row and column indices it has the same eigenvalues as M1. Therefore,
x is also completely determined up to a factor (which is identical to the factor for
y). �

By now we have discovered enough structure to formulate a first result on the size
of an eigenspace of P

(d)
n .
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Theorem 6.19. Let n
2

< d < n−1. Then every multiple eigenvalue λ 6= −1 of P
(d)
n

has multiplicity 2. �

Proof. Assume dim Eig(λ; P
(d)
n ) ≥ 2 for some λ 6= −1. Since for any pair of type II

vectors there exists a linear combination that yields a type I vector we may assume
w.l.o.g. that any basis B of Eig(λ; P

(d)
n ) contains at least one type I vector v1 and

a type II vector v2. By Theorem 6.18 the vector v1 is the only type I vector in B.
Hence, if B contained another type II vector v3 6= v2, the set {v1, v2, v3} would be
linearly dependent because there exists a type I linear combination of v2 and v3. �

As the main result of this section we will see that there are, in fact, no multiple
eigenvalues λ 6= −1 of P

(d)
n for n

2
< d < n − 1. But before we can prove this, we

need to provide some more structural results on type I and II eigenvectors.

Theorem 6.20. Let n
2

< d < n−1. Then every type II eigenvector v = (x | z | y)T

of P
(d)
n for eigenvalue λ 6= −1 takes the form

c · vT = (x1, x2, . . . , xt, 1, . . . , 1, xt, . . . , x2, x1)

for some c ∈ R, c 6= 0. �

Proof. Let w.l.o.g. v2 = (x̃ | 11 | ỹ)T be a given type II eigenvector of P
(d)
n for

eigenvalue λ 6= −1. Choose P as the permutation matrix that reverses the canonical
vertex order of P

(d)
n . Then v3 = Pv2 − v2 is of type I.

Suppose that λ is simple. Then v3 = 0 because otherwise v2 and v3 would be a
pair of linearly independent vectors in a one-dimensional vector space. Therefore
Pv2 = v2 so that v2 takes the claimed form.

Now assume that λ is a multiple eigenvalue. We can find a corresponding type I
eigenvector v1 = (x | 0 | y)T . But then by Theorem 6.18,

Pv2 − v2 = µv1 (150)

and therefore 






x̃t − x̃1

x̃t−1 − x̃2
...

x̃1 − x̃t








= µ








x1

x2
...
xt








. (151)

Summing up all components in equation (151) yields

0 = µ

t∑

i=1

xi. (152)



74 6. Distance powers P
(d)
n of paths

Assume that µ 6= 0. Then from the previous equation and by similar reasoning for
y we get

Jtx = 0, (153a)

Jty = 0. (153b)

Substituting equations (153a) and (153b) into equations (142a) and (142c), respec-
tively, we deduce

L̃ty = λ̃x, (154a)

R̃tx = λ̃y. (154b)

with λ̃ = λ + 1. We may rearrange these equations as follows,

(R̃tL̃t)y = λ̃2y, (155a)

(L̃tR̃t)x = λ̃2x. (155b)

We observe that

L̃tR̃t =











0 . . . . . . . . . 0
... 1 . . . . . . 1
...

... 2 . . . 2
...

...
... etc.

0 1 2 t − 1











. (156)

The matrix R̃tL̃t can be derived from L̃tR̃t by reversing the order of all row and
column indices.

Exploiting the structure (156), the first component of equation (155b) reads

0 = λ2x1 (157)

so that x1 = 0. The second component reads

Jtx − x1 = λ2x2 (158)

so that x2 = 0. Now subtract the second component from the third to get

Jtx − x1 − x2 = λ2(x3 − x2) (159)

and therefore x3 = 0. If we continue the subtraction of adjacent components we
finally find x = 0. Likewise, we can show y = 0 so that we arrive at a contradiction.

We may therefore assume µ = 0 so that v3 = 0. But now again, we have Pv2 = v2

so that the proof is complete. �
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Lemma 6.21. Let n
2

< d < n − 1 and v = (x | 0 | y)T with x = (xi) be a type I

eigenvector of P
(d)
n for eigenvalue λ 6= 1. Then,

x1 6= 0 6= xt.

�

Proof. Let n
2

< d < n − 1 and A be the canonical adjacency matrix of P
(d)
n .

Consider an eigenvector v of Ã = A + I for eigenvalue λ̃ = λ + 1 6= 0. Looking at
component t + 1 of

Ãv = λ̃v (160)

it becomes clear that the component sum of v equals zero.

From Theorem 6.18 and Lemma 6.17 we derive that v may only assume two possible
forms.

We therefore need to consider four cases:

Case 1. Assume x1 = 0 and v = (x1, . . . , xt, 0, . . . , 0, xt, . . . , x1)
T .

Case 2. Assume xt = 0 and v = (x1, . . . , xt, 0, . . . , 0, xt, . . . , x1)
T .

Case 3. Assume x1 = 0 and v = (x1, . . . , xt, 0, . . . , 0,−xt, . . . ,−x1)
T .

Case 4. Assume xt = 0 and v = (x1, . . . , xt, 0, . . . , 0,−xt, . . . ,−x1)
T .

We will only prove the first case because the remaining cases can be treated analo-
gously.

Let x1 = 0 and v = (x1, . . . , xt, 0, . . . , 0, xt, . . . , x1)
T . Consider the components

t, 2, t − 1, 3, . . . of equation (160):

λ̃xt = 2
∑

xi − x1 ⇒ xt = 0

λ̃x2 =
∑

xi + xt ⇒ x2 = 0

λ̃xt−1 = 2
∑

xi − x1 − x2 ⇒ xt−1 = 0

λ̃x3 =
∑

xi + xt + xt−1 ⇒ x3 = 0
...

...

(161)

from which we conclude x = 0 and therefore v = 0, a contradiction. �

Theorem 6.22. Let n
2

< d < n − 1. Then every eigenvalue λ 6= −1 of P
(d)
n is

simple. �
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Proof. Let n
2

< d < n − 1 and A be the canonical adjacency matrix of P
(d)
n .

Suppose that λ 6= −1 is a multiple eigenvalue of P
(d)
n . By Theorem 6.19 its multiplic-

ity is two. Thus, there exists a basis B = {v1, v2} of Eig(λ; P
(d)
n ) with v1 = (x | 0 | y)T

and v2 = (x̃ | 11 | ỹ)T .

Lemma 6.21 ensures that we can find two linear combinations v2 +µv1 such that the
first or the t-th component of the result vanishes, respectively. Since v2 + µv1 is a
type II eigenvector it must be a multiple of v2 by choice of our basis B. Consequently,
we may assume x̃1 = x̃t = 0.

Let Ã = A + I and λ̃ = λ + 1 6= 0. Consider component t of

Ãv2 = λ̃v2 (162)

which reads (∑

x̃i + s +
∑

x̃i

)

− x̃1 = λ̃x̃t. (163)

If we look at component t + 1 of equation (162) we see that the first term on the
left hand side of equation (163) equals λ̃ so that

0 = x̃1 = λ̃ 6= 0, (164)

a contradiction. �

Corollary 6.23. Let n
2

< d ≤ n − 1. Then

µ = 2(n − d)

holds for the number µ of distinct eigenvalues of P
(d)
n . �

Proof. For d = n − 1 the graph P
(d)
n is complete so that µ = 2. Otherwise, the

result follows directly from Theorems 6.15 and 6.22. �

Now that we know that all eigenvalues λ 6= −1 of P
(d)
n are simple, it is easy to see

that any corresponding type I eigenvector takes an antisymmetric form:

Lemma 6.24. Let n
2

< d < n− 1 and let v = (x | 0 | y)T be an eigenvector for the

simple eigenvalue λ 6= −1 of P
(d)
n . Then:

1. v = (x1, . . . , xt, 0, . . . , 0,−xt, . . . ,−x1)
T ,

2. λ = x1

xt
− 1,

3. x2 = 0 ⇔ λ = 0 ∧ λ = −2.

�
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Proof. Let n
2

< d < n− 1 and A be the canonical adjacency matrix of P
(d)
n . Also,

let Ã = A + I and λ̃ = λ + 1 6= 0. Then we have

Ãv = λ̃v. (165)

Now we can reason as follows:

1. Observe Lemma 6.17 and assume to the contrary that v takes a symmetric
form. Comparing components 1 and t + 1 of equation (165) we find x1 = 0,
which contradicts Lemma 6.21.

2. Recalling that the component sum of x vanishes, we just have to consider
component s + t + 1 of equation (165).

3. By Lemma 6.21 we have xt 6= 0. Assume w.l.o.g. that xt = 1. Then we have
x1 = λ̃. The result now follows by substituting this equation into the difference
of the components 1 and 2 of equation (165).

�

Example 6.25. Let d ≤ n
2
. Then the smallest examples of multiple eigenvalues of

P
(d)
n are shown in table 4.

n d λ

8 2 −1
9 3 −2
14 6 0

Table 4: Smallest examples of multiple eigenvalues of P
(d)
n , d ≤ n

2

�

We have shown a number of interesting results on eigenvalues and eigenvectors of
distance powers of paths. But so far we have only covered the case n

2
< d < n − 1.

The previous example hints that for 1 ≤ d ≤ n
2

there are only three possible multiple
eigenvalues. We have confirmed this by a number of experiments and therefore close
this section with the following conjecture:

Conjecture 6.26. Let 1 ≤ d ≤ n
2
. Then every eigenvalue λ 6∈ {−2,−1, 0} of P

(d)
n

is simple. �
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6.4 Almost complete distance powers of paths

We have already taken advantage of the fact that for d >
⌊

n
2

⌋
there is an s-clique in

P
(d)
n whose vertices are adjacent to all other vertices of the graph. Therefore there

exists a graph H such that

P (d)
n = Kk ∗ H, (166)

where the asterisk denotes the complete product (join) of two graphs.

Example 6.27.

P
(3)
6 = K2 ∗ P4

P
(4)
6 = K4 ∗ N2

P
(3)
7 = K1 ∗

P
(4)
7 = K3 ∗ P4

P
(5)
7 = K5 ∗ N2

�

It is easy to see that the previous example can be generalised as follows:

Lemma 6.28.

P (n−3)
n = Kn−4 ∗ P4 for n ≥ 4,

P (n−2)
n = Kn−2 ∗ N2 for n ≥ 3.

�

The following theorem allows direct computation of the characteristic polynomial of
any graph that is the join of two other graphs.

Theorem 6.29. [7] Let G1, G2 be two graphs with n1 and n2 vertices, respectively.
Then,

χG1∗G2(x) =(−1)n2χG1(x)χG2
(−x − 1)

+ (−1)n1χG2(x)χG1
(−x − 1)

− (−1)n1+n2χG1
(−x − 1)χG2

(−x − 1).

�
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Corollary 6.30. [11],[40] For i ∈ {1, 2} let Gi be a graph on ni vertices that is
regular of degree ri. Then,

χG1∗G2(x) =
χG1(x)χG2(x)

(r1 − x)(r2 − x)
((r1 − x)(r2 − x) − n1n2) .

�

Proof. Use Theorem 2.36 to simplify Theorem 6.29. �

Now we can determine the characteristic polynomial for some almost complete dis-
tance powers of paths.

Theorem 6.31. Let n ≥ 5. Then,

χ
P

(n−2)
n

(x) = (−1 − x)n−3(−x) [(n − 3 − x)(−x) − 2(n − 2)] ,

χ
P

(n−3)
n

(x) = (−1 − x)n−5(x2 + x − 1)
[
(n − 5 − x)(x2 + 3x + 1) − 2x(x + 1)2

]
.

�

Proof. Observing that

χKn−2(x) = (n − 3 − x)(−1 − x)n−3,

χN2(x) = (−x)2,
(167)

the first part follows directly from Corollary 6.30 and Lemma 6.28 because Kn−2

and N2 are regular.

Noting that Kn−4 = Nn−4 and P4 = P4, we only need to verify that

χKn−4(x) = (n − 5 − x)(−1 − x)n−5,

χNn−4(x) = (−x)n−4,

χP4(x) = (x2 − x − 1)(x2 + x − 1).

(168)

Then the second result follows from Lemma 6.28 and Theorem 6.29 by straightfor-
ward calculation. �

Remark 6.32. Note that both P
(n−2)
n and P

(n−3)
n have some eigenvalues that de-

pend on n and others that occur for any choice of n.

For example, P
(n−2)
n always has the two fixed eigenvalues λ1 = 0 and λ2 = −1. On

the other hand, its other two eigenvalues,

λ3,4 =
1

2
n − 3

2
±
√

n2 + 2n − 7,

depend on n. �
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6.5 Eigenspaces E0, E
−1, E0, and E

−1

Lemma 6.33. Let n
2

< d ≤ n − 1. Then for P
(d)
n the following statements hold:

1. dim E0 ≤ 1,

2. P
(d)
n is bipartite,

3. dim E−1 = s − 1 and dim E0 = s.

�

Proof. For d = n − 1 the results can be easily checked by hand.

Let therefore n
2

< d < n− 1. We see from Theorem 6.22 that eigenvalue λ = 0 is at
most simple.

As noted in section 6.4 the graph P
(d)
n contains an s-clique whose vertices are adjacent

to all other vertices of the graph. With respect to the canonical vertex ordering,
we also see that between the first t and the last t vertices there are no adjacencies.
Consequently, the complement of P

(d)
n consists of s isolated vertices and a bipartite

main component that has 2t vertices. Overall, the complement is bipartite.

From Theorem 6.15 we already know dimE−1 = s−1. A basis of E−1 necessarily only
consists of vectors with vanishing component sum. Therefore, according to Theorem
3.1 we have E−1 ⊆ E0. Now construct a vector that is one on the isolated vertices
of the complement and zero on the vertices of its main component. Obviously, this
yields an eigenvector from E0 with non-vanishing component sum. Hence, because
of Theorem 3.2 the proof is complete. �

Before we proceed to our next theorem it is necessary to provide some technical
lemmas which the proof of the theorem will rely on.

Lemma 6.34. The linear system
















0 −1 −1 −1 −1 −1 −1 . . . −1 0

−1 −1 −2 −2 −2 −2 −2 . . . −2 −1

−1 −2 −2 −3 −3 −3 −3 . . . −3 −2

−1 −2 −3 −3 −4 −4 −4 . . . −4 −3

−1 −2 −3 −4 −4 −5 −5 . . . −5 −4
...

...
... etc.

...

−1 −2 −3 −k


















6. Distance powers P
(d)
n of paths 81

with coefficient matrix of dimension (k + 1) × (k + 1) is solvable for k ≥ 0 if and
only if k 6≡ 3 mod 6.

In this case, the solution is

(ν, 1 − ν, . . . , 1, ν,−1 + ν,−1,−ν, 1 − ν, 1, ν)T , ν ∈ R if k ≡ 0 mod 6,
(−1, 0, . . . , 0, 1, 1, 0,−1,−1, 0, 1, 1, 0)T if k ≡ 1 mod 6,
(−2,−1, . . . , 1, 2, 1,−1,−2,−1, 1, 2, 1,−1)T if k ≡ 2 mod 6,
(1, 2, . . . ,−2,−1, 1, 2, 1,−1,−2,−1, 1, 2)T if k ≡ 4 mod 6,
(0, 1, . . . ,−1, 0, 1, 1, 0,−1,−1, 0, 1, 1)T if k ≡ 5 mod 6.

�

Proof. Gaussian forward elimination yields a system of the form




















−1 −1 −2 −2 −2 −2 −2 −2 −2 −2 . . . −2 −1

0 −1 −1 −1 −1 −1 −1 −1 −1 −1 . . . −1 0

0 0 1 0 0 0 0 0 0 0 . . . 0 −1

0 0 0 −1 −1 −2 −2 −2 −2 −2 . . . −2 −3

0 0 0 0 −1 −1 −1 −1 −1 −1 . . . −1 −2

0 0 0 0 0 1 0 0 0 0 . . . 0 1

0 0 0 0 0 0 −1 −1 −2 −2 . . . −2 −1

0 0 0 0 0 0 0 −1 −1 −1 . . . −1 0

etc.




















(169)

whose pattern repeats every 6 rows.

Depending on k, different situations occur for the subsequent backward substitution.
It is straightforward to check that the solutions are as claimed. �

Corollary 6.35. The homogeneous variant of the linear system from Lemma 6.34
has a nontrivial solution if and only if 3|k. In this case, the general solution vector
is

(. . . ,−ν, 0, ν, ν, 0,−ν,−ν, 0, ν)T , ν ∈ R.

�

Proof. For k ≡ 0 mod 6 we have a nontrivial solution to the non-homogeneous
linear system from Lemma 6.34. Simply subtract a particular solution (e.g. for
ν = 0) to find the homogeneous solution. For k ≡ 3 mod 6 an inconsistency
arises which implies that there exists a nontrivial solution to the homogeneous linear



82 6. Distance powers P
(d)
n of paths

system. This solution can be determined in a straightforward manner. Thus, the
general homogeneous solution vector is

(ν,−ν, . . . , 0, ν, ν, 0,−ν,−ν, 0, ν)T , ν ∈ R, if k ≡ 0 mod 6,

(−ν,−ν, . . . , 0, ν, ν, 0,−ν,−ν, 0, ν)T , ν ∈ R, if k ≡ 3 mod 6.
(170)

�

Remark 6.36. Note that the vectors from Lemma 6.34 can be constructed by a
sign alternating sequence of coordinate triplets (the leftmost triplet probably being
truncated),

(r̃ | − r | . . . | r | − r | r)T ,

for example choose r = (−1, 1, 2) and r̃ = (1, 2) for k ≡ 4 mod 6. �

Lemma 6.37. Let A be adjacency matrix of P
(n−1)
2n , n ∈ N. Then

11 6∈ Im(J − A)

if and only if n ≡ 4 mod 6. Further, if (J − A)v = 11 holds for v = (vi), then

2n∑

i=1

vi =







−2 if n ≡ 5 mod 6,

0 if n ≡ 0 mod 6,

1 if n ≡ 1 mod 6,

2 if n ≡ 2 mod 6,

4 if n ≡ 3 mod 6.

�

Proof. The condition 11 ∈ Im(J − A) translates to the linear system

[
In Rn 11
Ln In 11

]

. (171)

Gaussian forward elimination of the submatrix Ln yields
[

In Rn 11
Nn Mn xn

]

, (172)

xn ∈ Rn, with
[

Mn xn

]
(173)

resembling the system from Lemma 6.34 for k = n − 1. Every solution of (173) can
be uniquely extended to a solution of (172) by backward substitution starting at
row n of the system (172).
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For n ≡ 1 mod 6 it turns out that the extended solution vector takes the form

(r | − r | r | . . . | − r | r̃ | − r | r | − r | r)T (174)

with r = (1 − ν, 1, ν) and r̃ = (1 − ν, ν). It is clear that the component sum of this
vector equals the component sum of r̃ which in turn equals one.

Assume n 6≡ 1 mod 6. Then, given a solution vector from Lemma 6.34 the extension
process simply prepends its reverse. The component sums are readily verified. �

Lemma 6.38. Consider the graph P
(n−1)
2n for n ∈ N. Then,

dim E0 =

{

2 if n ≡ 1 mod 6

0 else
.

For n ≡ 1 mod 6 a basis of E0 is given by two vectors as in formula (174) for
r = (1, 1, 0), r̃ = (1, 0) and r = (0, 1, 1), r̃ = (0, 1) respectively. �

Proof. Let A be the canonical adjacency matrix of P
(n−1)
2n and v ∈ E0. We observe

that

(J − A)v = 11

⇔ Jv − 11 = Av = 0

⇔ 11T v = 1.

(175)

From the proof of Lemma 6.37 we see that this is the case if and only if n ≡ 1
mod 6. Choosing ν = 1 and ν = 0, respectively, for the solution vector (cf. Lemma
6.34) we acquire the basis. �

Theorem 6.39. Let bn
2
c ≤ d ≤ n − 1.

Then P
(d)
n is singular if and only if either

1. n ≡ 1 mod 12 ∧ (d = n+1
2

∨ d = n−1
2

) or

2. n − d ≡ 2 mod 6 (equivalently, t ≡ 1 mod 6).

In these cases we have dim E0 = 1. �
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Proof. Let A be the canonical adjacency matrix of P
(d)
n .

According to Remark 6.16 there exist two possible types of eigenvectors v ∈ E0.

Case 1. Assume w.l.o.g. that v = (x | 1, . . . , 1 | y).

Consider the system Av = 0. We can move the center columns to the right hand
side and omit redundant rows to get the linear system





Jt − It L̃t −s11
11T 11T −(s − 1)

R̃t Jt − It −s11



 . (176)

Now we subtract the center row from every other row and then remove the center
row from the system so that it forms a separate condition. Finally invert the sign
of the system. This yields the equations

(J2t − Ã)x̃ = 11, (177a)

11T x̃ = −(s − 1). (177b)

The matrix Ã equals the canonical adjacency matrix of the graph P
(t−1)
2t . Therefore

we are looking for a vector x̃ that fulfils the conditions of Lemma 6.37 and also has
the prescribed component sum of −(s − 1). Because of bn

2
c ≤ d we have d ≥ n−1

2

and therefore s ≥ 1. For s > 3 the prescribed component sum is strictly less than
−2, which is not possible.

Checking the cases s ∈ {1, 2, 3} we see that E0 contains a type II eigenvector if and
only if either

s = 3 ∧ t ≡ 5 mod 6 (178)

or
s = 1 ∧ t ≡ 0 mod 6. (179)

But this means that either n ≡ 1 mod 12 and d = n+1
2

or n ≡ 1 mod 12 and
d = n−1

2
.

Case 2. Assume v = (x | 0, . . . , 0 | y).

Consider the system Av = 0. We can move the center columns to the right hand
side, omit redundant rows, and remove the center row from the system so that it
forms a separate condition. We obtain the linear system

Ãx̃ = 0, (180a)

11T x̃ = 0 (180b)

with Ã as in case one. From Lemma 6.38 it follows that Ã is singular if and only
if t ≡ 1 mod 6, which is equivalent to n − d ≡ 2 mod 6. Since both given basis
vectors have component sum one, there exists a basis of Ker Ã that contains exactly
one vector with vanishing component sum. With respect to equation (180b) we
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see that by inserting s zero entries in the middle we can extend this vector to an
eigenvector spanning E0 of P

(d)
n .

Note that requiring n−d ≡ 2 mod 6 and d = n±1
2

, we find that necessarily n ≡ 3 or 5
mod 12 so that the conditions derived from cases one and two are indeed mutually
exclusive. �

Corollary 6.40. Let bn
2
c ≤ d ≤ n − 1. Then E0 6= {0} of P

(d)
n is spanned by a

type I vector if and only if the first condition of Theorem 6.39 holds.

In this case we have E0 ⊆ E−1, otherwise E−1 = {0}. �

In table 5 the results of Theorem 6.39 are illustrated. The boxed dimension numbers
arise from the first condition of the theorem.

Remark 6.41. Note that the the proof of Theorem 6.39 is constructive so that
using Lemma 6.34 we can easily determine a basis of E0 if P

(d)
n is singular. �

Example 6.42. The vector

(2, 1,−1,−2,−1, 1, 2, 1,−1,−2,−1, 1, 1, 1,−1,−2,−1, 1, 2, 1,−1,−2,−1, 1, 2)T

spans E0 for the graph P
(13)
25 . Note that since its component sum is one it cannot

be contained in E−1 which in turn must be trivial. �

Theorem 6.43. Let bn
2
c ≤ d ≤ n − 1. Then for P

(d)
n we have

dim E−1 =

{

1 if t ≡ 1 mod 3

0 else
.

�

Proof. Let bn
2
c ≤ d ≤ n − 1 and A be the canonical adjacency matrix of P

(d)
n .

Then v ∈ E−1 is equivalent to v = (vi) = (x | z | y)T being a solution of the linear
system (J − A)v = 0 which takes the form





It Nt,s Rt 0
Ns,t Is Ns,t 0
Lt Nt,s It 0



 . (181)
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n
d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 0
3 1 0
4 1 0
5 0 1 0
6 0 1 0
7 0 0 1 0
8 0 0 1 0
9 0 0 0 1 0
10 0 0 0 1 0
11 0 0 0 0 1 0
12 0 0 0 0 1 0

13 1 1 0 0 0 1 0
14 0 0 0 0 0 1 0
15 1 0 0 0 0 0 1 0
16 1 0 0 0 0 0 1 0
17 0 1 0 0 0 0 0 1 0
18 0 1 0 0 0 0 0 1 0
19 0 0 1 0 0 0 0 0 1 0
20 0 0 1 0 0 0 0 0 1 0
21 0 0 0 1 0 0 0 0 0 1 0
22 0 0 0 1 0 0 0 0 0 1 0
23 0 0 0 0 1 0 0 0 0 0 1 0
24 0 0 0 0 1 0 0 0 0 0 1 0

25 1 1 0 0 0 1 0 0 0 0 0 1 0
26 0 0 0 0 0 1 0 0 0 0 0 1 0

Table 5: Dimensions of E0 for P
(d)
n , n = 2, . . . , 26, d = bn

2
c, . . . , n − 1

If we consider the differences of adjacent rows and compare the results from the
upper and lower t rows it becomes obvious that v1 = 0 would imply v = 0.

Let us therefore assume that v1 = c 6= 0. Use this value to move the leftmost column
of system (181) to the right hand side. Also separate the first row from the rest of
the system. This yields





It Nt,s−1 R̃t 0
Ns−1,t Is−1 Ns−1,t 0

L̃t Nt,s−1 It −c11



 , (182a)

11T y = −c. (182b)

Next perform Gaussian forward elimination on the submatrix L̃t, which gives us the
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system




It Nt,s−1 R̃t 0
Ns−1,t Is−1 Ns−1,t 0

Nt Nt,s−1 Mt 0



 . (183)

The matrix Mt resembles the coefficient matrix of the linear system from Lemma
6.34 for k = t − 1. Applying Corollary 6.35 we see that the prescribed component
sum (182b) can be achieved for suitable values of ν, yielding a partial solution vector
y. Observe that this is possible since according to equation (170) the component
sum of y is ν if t ≡ 1 mod 6 and ν − ν + 0 + ν = ν if t ≡ 4 mod 6. To complete
the proof it suffices to note that using system (183) we can completely determine v

from the partial vector y. �

Remark 6.44. From rows t + 1 to t + s of (181) it follows directly that E−1 only
contains type I vectors.

Comparing Theorems 6.39 and 6.43 we see that for t ≡ 1 mod 6 we have dim E0 =
dim E−1. Consequently, in this case they contain only vectors whose component
sum vanishes.

Again, note that the proof of Theorem 6.43 is constructive. It is therefore straight-
forward to obtain a basis of E−1. �

Our combined findings are exemplified in table 6.

d 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
t mod 6 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0
dim E0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
dim E−1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
dim E−1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
dim E0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Table 6: Dimensions of E0, E−1, E0 and E−1 for P
(d)
29

6.6 Common eigenvectors

In this section we investigate common eigenvectors of two different distance powers
of a given path.

We say that two matrices R, S have a common eigenvector v if there exist numbers
λ, µ ∈ R such that

Rv = λv,

Sv = µv.
(184)
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It is possible to tell precisely when this is the case:

Theorem 6.45. [42] Two matrices R, S have a common eigenvector if and only if

⋂

s,t∈N

Ker[Rs, St] 6= {0}.

�

Note that [X, Y ] = XY − Y X is the Lie bracket.

If we try to solve the common eigenvector problem (184) under the constraint µ = 0,
the condition from the previous theorem can be substantially simplified:

Theorem 6.46. [42] Given two matrices R, S ∈ Rn×n there exists a number λ ∈ R
such that

Rv = λv,

Sv = 0

if and only if
n−1⋂

j=0

Ker(SRj) 6= {0}.

�

Our next step is to apply the notion of common eigenvectors to graphs, in particular
to distance powers of paths. Two graphs G, H are said to have a common eigen-
vector if any (and consequently every) pair of adjacency matrices A(G), A(H) has a
common eigenvector.

Although Theorem 6.45 provides a very powerful criterion it is very cumbersome to
analyse the terms Ker[Rs, St]. However, we can use the simpler criterion of Theorem
6.46 to obtain some interesting introductory properties.

Theorem 6.47. Every graph P
(d)
n possesses an eigenvector with vanishing compo-

nent sum, i.e. an eigenvector that is perpendicular to 11. �

Proof. Let A be an adjacency matrix of P
(d)
n . Choose R = A + I and S = J .

Consider the matrices SRj . We will prove by induction on j that for all j = 0, 1, . . .
the columns of SRj are multiples of 11 and, further, that for i = 0, . . . , n − 1 the
columns number s + i and n − i of SRj are identical.
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For j = 0 the case is trivial. Assume that the claim is valid for some j ∈ N0. By
the induction hypothesis it follows that all rows of SRj are identical. Therefore, the
inner products that form a column of (SRj)R are all identical so that the columns
of SRj+1 are all multiples of 11. Now since column 1 + i of the matrix A is the
reverse of column n − i for i = 0, . . . , n − 1, the inner products with rows 1 + i and
n − i of SRj , respectively, are both the same by the induction hypothesis so that
the columns number s + i and n − i of SRj+1 are identical. Due to the structure of
SRj we have

(SRj)(1, 0, . . . , 0,−1)T = 0 (185)

for all j ∈ N0 so that
⋂

Ker(SRj) 6= {0}.

Since R has the same eigenvectors as A and because of

x ⊥ 11 ⇔ x ∈ Ker J (186)

we see that the proof is complete. �

Note that this statement is clear if there exists a multiple eigenvalue (for which we
can always construct an eigenvector with vanishing component sum), but far less
obvious if all eigenvalues are simple.

Corollary 6.48. The graphs P
(d)
n and P

(n−1)
n have a common eigenvector. �

Proof. We may assume that d < n− 1. The graph P
(n−1)
n = Kn is regular and has

the two eigenvalues −1 and n − 1. The eigenspace corresponding to the degree of
regularity is spanned by 11 so that

Rn = Span{11} ⊕ Eig(−1; P (n−1)
n ), (187)

i.e. the orthogonal complement of Span{11} is an eigenspace of P
(n−1)
n . Since P

(d)
n

possesses an eigenvector with vanishing component sum it must therefore also be an
eigenvector of P

(n−1)
n . �

Now we will turn our attention to the question whether two successive distance
powers P

(d)
n and P

(d+1)
n can have a common eigenvector. Our first goal is to derive

necessary conditions for the existence of a common eigenvector.

Note that by s, t we denote the values associated with P
(d)
n , not P

(d+1)
n .

Theorem 6.49. Let n ≥ 3 and d ≥ bn
2
c. Suppose that P

(d)
n and P

(d+1)
n have a

common eigenvector. Then the difference of the respective eigenvalues is either −1,
0, or 1. �
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Proof. Let A1 and A2 be the canonical adjacency matrices of P
(d)
n and P

(d+1)
n ,

respectively. Suppose that v is a common eigenvector of A1 and A2, i.e. A1v = λ1v

and A2v = λ2v. Then it follows that

(A2 − A1)v = (λ2 − λ1)v. (188)

We see that

A2 − A1 =





Nt Nt,s It

Ns,t Ns Ns,t

It Nt,s Nt



 . (189)

Let v = (x | z | y)T with x, y ∈ Rt and z ∈ Rs. Then

(A2 − A1)v = (y | 0 | x)T . (190)

Now compare equations (188) and (190). We get

(λ2 − λ1)x = y, (191a)

(λ2 − λ1)y = x, (191b)

(λ2 − λ1)z = 0 (191c)

If z 6= 0 we can see from equation (191c) that necessarily λ1 = λ2. Now suppose
that z = 0. Inserting equation (191a) into equation (191b) we find

(λ2 − λ1)
2x = x (192)

and therefore |λ2 − λ1| = 1. This completes the proof. �

Corollary 6.50. Let n ≥ 3 and d ≥ bn
2
c. Further, let A1 and A2 be the canonical

adjacency matrices of P
(d)
n and P

(d+1)
n , respectively.

Then, the eigenspaces of A2 − A1 are spanned as follows:

Eig(−1; A2 − A1) = Span{(ei | 0 | − ei)
T : i = 1, . . . , t},

Eig(1; A2 − A1) = Span{(ei | 0 | ei)
T : i = 1, . . . , t},

Eig(0; A2 − A1) = Span{(0 | ei | 0)T : i = 1, . . . , s}.
.

�

Proof. Let v = (x | z | y)T with x, y ∈ Rt and z ∈ Rs. Then v fulfils equation
(188) if and only it fulfils the system (191a) to (191c). Using these equations, it is
easy to check that the given (obviously linearly independent) set of vectors indeed
consists only of eigenvectors. Note that these are the only eigenspaces of A2 − A1

since their dimensions sum up to n. �
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Remark 6.51. It is possible to extend Theorem 6.49 to accommodate the case
n ≥ 4 even and d = n

2
− 1 as well. This requires only minor modification to the

original proof. �

Theorem 6.52. Let n ≥ 3 and d ≥ bn
2
c. Then P

(d)
n and P

(d+1)
n have exactly s − 1

linearly independent common eigenvectors.

These vectors lie in the eigenspaces of eigenvalue −1 of both path powers. For
example, choose vectors (0 | ei − ei+1 | 0)T with i = 1, . . . , s − 1. �

Proof. Let A1 and A2 be the canonical adjacency matrices of P
(d)
n and P

(d+1)
n ,

respectively. Since every common eigenvector of A1 and A2 is also an eigenvector
of A2 −A1, we can use Corollary 6.50 to check which eigenspaces of A2 − A1 admit
common eigenvectors of A1 and A2.

Consider v ∈ Eig(1; A2 − A1). From Corollary 6.50 we deduce that

v = (x | 0 | x)T (193)

for some x ∈ Rt. Inserting this vector into A1v = v we can use (138) to derive the
homogeneous linear system,





L̃t + Jt − 2It

2Js,t

R̃t + Jt − 2It



 (194)

for the components of vector x. Now subtract the upper part of the system from
the lower part and divide row n − t by 2. If we restrict ourselves to the last t + 1
rows of the system, we arrive at

[
11T

R̃t − L̃t

]

. (195)

By Gaussian forward elimination we see that this is equivalent to
[
Rt

0T

]

. (196)

But since system (196) has maximum rank and is equivalent to (195) which is part
of system (194) we see that necessarily x = 0 and therefore v = 0. Consequently,
Eig(1; A2 − A1) admits no common eigenvectors of A1 and A2.

Analogously, we come to the same conclusion for Eig(−1; A2 − A1).

By Corollary 6.50 the structure of Eig(0; A2 − A1) is such that it only admits mul-
tiples of (0 | 11 | 0)T as type II eigenvectors and no type I eigenvectors at all. But

A1(0 | 11 | 0)T = (s11 | (s − 1)11 | s11)T 6= λ(0 | 11 | 0)T (197)



92 6. Distance powers P
(d)
n of paths

for any choice of λ ∈ R. Recollecting Theorem 6.15 and Remark 6.16 it becomes
clear that Eig(0; A2 − A1) cannot contain common eigenvectors of A1 and A2 for
any eigenvalue other than λ = −1. Consequently, the only option that remains is to
look for common eigenvectors that belong to the common eigenvalue −1.

But from Corollary 6.50 we immediately obtain

Eig(0; A2 − A1) = Span{(0 | 11 | 0)T} ⊕ Eig(−1; A1) (198)

since every vector can be uniquely written as the sum of a multiple of 11 and a vector
with vanishing component sum.

Thus, because of Eig(−1; A1) ⊆ Eig(−1; A2) we see that Eig(0; A2 − A1) affords s−1
linearly independent common eigenvectors as claimed. �

Remark 6.53. For Theorem 6.52 it is also possible to modify the proof slightly
such that the case n ≥ 4 even and d = n

2
− 1 is covered. It turns out that in this

case P
(d)
n and P

(d+1)
n do not share a common eigenvector. �

Having considered consecutive distance powers of paths, we will now take a look at
common eigenvectors of Pn and P

(d)
n . We start by deriving a necessary condition.

As a first application we will settle the case d = 2 before we finally deal with the
problem in full generality.

Lemma 6.54. Let n ≥ 4. Define functions f1 and f2 as follows:

fq(x; n, d) =

d+q
∑

m=1

sin

(
mxπ

n + 1

)

sin
(

qxπ
n + 1

) − 1

Then,
f1(x) = f2(x) for x = 1, 2, . . . , n

is a necessary condition for Pn and P
(d)
n sharing a common eigenvector. �

Proof. Let A be the canonical adjacency matrix of P
(d)
n . From Theorem 5.6 we

can construct a basis of eigenvectors {v(1), . . . , v(n)} of Pn. We have to check if any

eigenspace of Pn allows an eigenvector of P
(d)
n . But since all eigenvalues of Pn are

simple, we just need to insert each basis vector v = v(j) into the equation Av = λv.
From the first and second component of this system we find that

λ = f1(j; n, d) = f2(j; n, d) (199)

Interpreting the terms fq(j; n, d) as continuous functions, we see that necessarily
f1(x) = f2(x) for x = 1, 2, . . . , n. �
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Corollary 6.55. Let n ≥ 4. Then Pn and P
(2)
n have no common eigenvectors. �

Proof. We will abbreviate

ϕ =
jπ

n + 1
. (200)

Let d = 2 and consider the functions f1, f2 from Lemma 6.54. Using the trigono-
metric equations [4]

sin(2α) = 2 sin α cos α,

sin(3α) = 3 sin α − 4 sin3 α,

sin(4α) = 8 cos3 α sin α − 4 cosα sin α.

(201)

we can write

f1(j; n, 2) =
sin (2ϕ) + sin (3ϕ)

sin ϕ

= 2 cos ϕ + 4 cos2 ϕ − 1

(202)

and

f2(j; n, 2) =
sin ϕ + sin (3ϕ) + sin (4ϕ)

sin (2ϕ)

=
1

2 cosϕ
+

(

2 cosϕ − 1

2 cosϕ

)

+
(
4 cos2 ϕ − 2

)

= 2 cosϕ + 4 cos2 ϕ − 2.

(203)

Thus, we see that

f1(j; n, 2) − f2(j; n, 2) = 1, (204)

which makes it impossible to fulfil the necessary condition of Lemma 6.54. �

Corollary 6.56. Let 2 ≤ d ≤ 5 and n ≥ 4. If Pn and P
(d)
n have a common

eigenvector, then necessarily it belongs to Eig(−1; P
(d)
n ). �

Proof. We will only prove the case d = 5. For d ∈ {2, 3, 4} the proof technique is
essentially the same but easier to carry out.

Using abbreviation (200) and equations similar to (201) we find that

f1(j; n, 5) =
sin (2ϕ) + sin (3ϕ) + . . . + sin (6ϕ)

sin ϕ

= 4 cos ϕ − 8 cos2 ϕ − 24 cos3 ϕ + 16 cos4 ϕ + 32 cos5 ϕ

(205)
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and

f2(j; n, 5) =
sin ϕ + sin (3ϕ) + sin (4ϕ) + . . . + sin (7ϕ)

sin ϕ

= 8 cosϕ − 12 cos2 ϕ − 32 cos3 ϕ + 16 cos4 ϕ + 32 cos5 ϕ + 1.

(206)

Let u = cos ϕ. Then it follows that

f1(j; n, 5) − f2(j; n, 5) = −4u + 4u2 + 8u3 − 1, (207)

which is a polynomial p(u). To fulfil the condition of Lemma 6.54 we need to look
for the roots of p(u) = 0, which can be computed explicitly and are all real. It is
straightforward to verify that both f1 and f2 only take the value −1 for any of these
roots. �

In figure 8 the graphs of f1 and f2 are shown for some examples to illustrate Corol-
laries 6.55 and 6.56. From the third plot we see that the proof of Corollary 6.56
cannot be applied for d ≥ 6.
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Figure 8: Graphs of fq(x; n, d) for P
(2)
8 , P

(5)
9 and P

(6)
9

The next lemma shows how zero entries of eigenvectors may induce exclusion criteria.

Lemma 6.57. Let v = (vi) be an eigenvector of Pn. Suppose that vj = 0 for

minimal j < n
2
. Then v cannot be an eigenvector of P

(j+1)
n . �

Proof. Let v = (vi) be an eigenvector of Pn with vj = 0 for minimal j < n
2
. By

Theorem 5.11 we know that

v = (v1, . . . , vj−1, 0,−vj−1, . . . ,−v1, 0, v1, ∗)T . (208)

Let A be the canonical adjacency matrix of P
(j+1)
n . Requiring Av = λv, we get from

the j-th component of this system that

λvj =

(
2j+1
∑

i=1

vi

)

− vj (209)
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and further, by equation (208) and the fact that vj = 0,

0 =

2j+1
∑

i=1

vi =

(
j
∑

i=1

vi

)

+ 0 +

(
j
∑

i=1

(−vi)

)

+ 0 + v1 = v1. (210)

But this contradicts Remark 5.12. �

We will now finally settle the question when a path and one of its non-complete
distance powers share a common eigenvector.

Theorem 6.58. Let n
2

< d < n − 1. Then Pn and P
(d)
n have no common eigenvec-

tors. �

Proof. Let A, B be the canonical adjacency matrices of Pn and P
(d)
n , respectively.

Further, let v = (vi) with Av = λv and Bv = µv.

First we observe that s ≥ 3. Therefore, by Theorems 6.15 and 6.22 we see that µ is
simple if and only if µ 6= −1.

Suppose that µ is simple, which implies µ 6= −1. Then according to Remark 6.16
the central s components of v must all be equal (again, note s ≥ 3). Since v is also
an eigenvector of Pn we know from Theorem 5.6 that w.l.o.g.

vk = sin

(
kjπ

n + 1

)

(211)

for some j ∈ {1, . . . , n}. Consider three consecutive central components of v. The
arguments of their sine terms differ by at most

sin

(
2jπ

n + 1

)

< 2π. (212)

But since these three components are all equal, it would require the sine function
to attain identical values at three different positions within an interval less than its
period. This is impossible.

Now suppose that µ is a multiple eigenvalue, i.e. µ = −1. By Theorem 6.15 we see
that all but the central s components of v must be zero. In particular this means
v1 = 0, which contradicts Remark 5.12.

�
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7 Circuits

In this section we will study some spectral properties of circuits Cn. These have
been thoroughly studied in literature, but we receive some useful insight before we
proceed to distance powers of circuits.

Throughout this section we will assume canonical vertex ordering of Pn and Cn.

Using our knowledge of paths we can easily determine eigenvectors and eigenvalues
of arbitrary circuits:

Theorem 7.1. [40]. Let {v(1), . . . , v(n)} be a basis of eigenvectors of Pn with corre-
sponding eigenvalues λ1, . . . , λn. Then, the vectors
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constitute a basis of eigenvectors of C2n+2, the respective eigenvalues being

2,−2, λ1, λ1, . . . , λn, λn.

�

Proof. The constructed vectors are obviously linearly independent (remember Re-
mark 5.12). Using the summation rule 6 it is easy to check that they are indeed
eigenvectors. �

Theorem 7.2. Let n ≥ 3 be odd. Let M = {v(1), . . . , v(k)} be a maximal subset
of a basis of eigenvectors of Pn−1 for the respective eigenvalues λ1, . . . , λk such that
v1 = −vn−1 for all v ∈ M .

Then k = n−1
2

and a basis of eigenvectors of Cn is given by
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for the respective eigenvalues

2, λ1, λ1, . . . , λk, λk.

�

Proof. Observe that n − 1 is even and Pn−1 is bipartite. We know from Theorem
2.23 and Remark 5.12 that all eigenvalues of Pn−1 can be paired (λ,−λ) and that
for exactly one eigenvalue of each pair all eigenvectors v = (vi) satisfy v1 = −vn−1.
Hence, k = n−1

2
.

The constructed vectors are obviously linearly independent. Using the summation
rule 6 it is easy to check that they are indeed eigenvectors.

�

Since circuits Cn are circulant graphs their spectrum is also known explicitly. The
following Theorem is simply a reformulation of Theorem 2.34:

Theorem 7.3. The eigenvalues of Cn are

λr = 2 cos

(
2πr

n

)

, r = 0, 1, . . . , n − 1.

All eigenvalues of modulus 2 are simple, the other eigenvalues are double. �

Proof. Because of λr ∈ R it follows immediately from Corollary 2.33 that

λr = <
(

n∑

j=2

ajω
(j−1)r

)

=
n∑

j=2

aj cos

(
2π(j − 1)r

n

)

= cos

(
2πr

n

)

+ cos

(
2π(n − 1)r

n

)

= 2 cos

(
2πr

n

)

(213)

The multiplicities are clear from the symmetry of the cosine function. �

We will conclude this section with an analysis of the eigenspaces E0, E−1, E−1, and
E0. Note that E0 = E−1 and E−1 = E0 because Cn is regular of degree 2.
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Theorem 7.4. Let n ≥ 4.

1. The circuit Cn is singular if and only if 4|n. In this case,

E0 = Span{(1, 0,−1, 0, 1, 0, . . . ,−1, 0)T , (0,−1, 0, 1, 0,−1 . . . , 0, 1)T}.

2. λ = −1 is an eigenvalue of Cn if and only if 3|n. In this case,

E−1 = Span{(1, 0,−1, 1, 0,−1, . . .)T , (0, 1,−1, 0, 1,−1, . . .)T}.

�

Proof. By Theorem 7.3,

0 = λr ⇔ 2πr

n
=

π

2
⇔ r =

n

4
∈ Z ⇔ 4|n (214)

Assume that 4|n. Then Cn is singular, and we know that dim E0 = 2. Use the
summation rule 6 to check that the two given vectors indeed span E0.

With respect to the second claim of the theorem we see that

−1 = λr ⇔ 2πr

n
=

π

3
⇔ r =

n

3
∈ Z ⇔ 3|n (215)

Again, the summation rule verifies the validity of the given basis of E−1. �

Remark 7.5. Note that E0 consists of all vectors x = (xi) with

x1 = −x3 = x5 = −x7 = . . .

and
x2 = −x4 = x6 = −x8 = . . . .

Let A be the canonical adjacency matrix of Cn. Then these conditions are reflected
in rows 1, 3, 5, . . . and rows 2, 4, 6, . . . of the system Ax = 0.

By consideration of the differences of consecutive rows we also see that any vector
from E−1 must have the form

(a, b, c, a, b, c, . . .)T

with numbers a, b, c ∈ R. �
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8 Distance powers C(d)
n of circuits

In this section we will investigate the eigenspaces E0 and E−1 of the graphs C
(d)
n .

Without further notice, we will restrict ourselves to non-complete powers, i.e. we
will tacitly assume that d < n

2
− 1.

Note that E0 = E−1 and E−1 = E0 since C
(d)
n is regular.

Distance powers of circuits are circulant, therefore we can use Corollary 2.33 to
establish their spectrum.

Theorem 8.1. The eigenvalues of C
(d)
n are exactly

λr =

d∑

j=1

cos

(
2πrj

n

)

+

n−1∑

j=n−d

cos

(
2πrj

n

)

, r = 0, . . . , n − 1.

�

Proof. Apply Corollary 2.33 for the canonical adjacency matrix of C
(d)
n . �

Although we can explicitly compute the eigenvalues of C
(d)
n it is somewhat intricate

to predict the occurrence of a prescribed eigenvalue. In the following, we will develop
criteria to determine whether 0 or −1 are eigenvalues of C

(d)
n .

Throughout, let us abbreviate ω = e2πi r
n .

8.1 Singularity of C(d)
n and C

(d)
n

Let us abbreviate

Sn,d,r =

d+1∑

j=2

ωj−1, Tn,d,r =

n∑

j=n+1−d

ωj−1.

These terms correspond to the sums that occur in Theorem 8.1.

Theorem 8.2. C
(d)
n is singular if and only if there exists some r ∈ {1, 2, . . . , n− 1}

such that
Sn,d,r + Tn,d,r = 0.

Equivalently, there need to exist integers 1 ≤ r < n and l ∈ N0 such that

dr = ln ∨ 2(d + 1)r = (2l + 1)n.

�
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Proof. We may assume 1 ≤ r < n (which implies ω 6= 1).

The first claim is simply a rewrite of Theorem 8.1.

For the second claim observe that

Sn,d,r = ω

d−1∑

j=0

ωj = ω
ωd − 1

ω − 1
(216)

and

Tn,d,r = ω

d∑

j=1

ωn−j = ωn

d∑

j=1

ωj = ω
ωd − 1

ω − 1
. (217)

If we write

Ω = ω
ωd − 1

ω − 1
(218)

we see that
Sn,d,r + Tn,d,r = Ω + Ω. (219)

Consequently,
Sn,d,r + Tn,d,r = 0 ⇔ <(Ω) = 0. (220)

Let ϕ = 2πr
n

so that ω = eiϕ (note that ϕ > 0). Substituting x = cos ϕ and y = sin ϕ

it follows that

ω

ω − 1
=

x + iy

x − 1 + iy
=

(x + iy)(x − 1 − iy)

(x − 1)2 + y2
=

1

2
− y

2(1 − x)
i. (221)

Also,
ωd − 1 = cos(dϕ) − 1 + i sin(dϕ). (222)

Substituting equations (221) and (222) into equation (218) we get

<(Ω) =
1

2
(cos(dϕ) − 1) +

y

2(1 − x)
sin(dϕ)

=
1

2

(

(cos(dϕ) − 1) +
sin ϕ

1 − cos ϕ
sin(dϕ)

)

.

(223)

Thus,

<(Ω) = 0 ⇔ (cos(dϕ) − 1) (1 − cos ϕ) + sin ϕ sin(dϕ) = 0

⇔ cos(dϕ) + cos ϕ − cos ϕ cos(dϕ) + sin ϕ sin(dϕ) = 1

⇔ cos(dϕ) + cos ϕ − cos ((d + 1)ϕ) = 1

⇔ cos ((d + 1)ϕ) − cos(dϕ)

ϕ
=

cos ϕ − cos 0

ϕ

(224)

The final equation of (224) allows a geometric interpretation. We require the slopes
of two particular secant lines of the cosine function to be equal. In this case, due to
the nature of the cosine curve there are only two possible constellations for which
the slopes are the same. Either both secant lines must be apart by a nonvanishing
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multiple of 2π or their endpoints, if projected onto the same period of the cosine
curve, must be point symmetrical with respect to π

2
. The first condition means that

dϕ = 2πl and the second yields (d + 1)ϕ = π + 2πl. The result now follows by
combining (220) and (224). �

Corollary 8.3. Let C
(d)
n be nonsingular. Then,

gcd(n, d) = 1.

�

Proof. Assume a = gcd(n, d) > 1. Then there exist integers n′, d′ such that
n = an′, d = ad′ and n′ < n. Choose r = n′ and l = d′. It follows that

dr = ad′n′ = d′n = ln (225)

and therefore by Theorem 8.2 (note r < n) we see that C
(d)
n must be be singular. �

Corollary 8.4. Let gcd(n, d) = 1. Then C
(d)
n is singular if and only if there exist

numbers r ∈ {1, 2, . . . , n − 1} and l ∈ N0 such that

2(d + 1)r = (2l + 1)n.

�

Proof. Let gcd(n, d) = 1. Suppose we have found two integers that satisfy the
singularity conditions of Theorem 8.2. We have to rule out the case dr = ln.
Assuming dr = ln it follows that n|dr. But because of gcd(n, d) = 1 we get n|r so
that n ≤ r, a contradiction. �

Let ord(p, n) denote the order of the prime divisor p with respect to n, i.e.

ord(p, n) = max{j ∈ N0 : pj|n}.

We will now prove that the order of 2 as a divisor of n and d+ 1 plays a crucial role
for the singularity of C

(d)
n so that Theorem 8.2 can be rephrased as follows:

Theorem 8.5. The graph C
(d)
n is singular if and only if either

gcd(n, d) > 1

or
gcd(n, d) = 1 ∧ ord(2, d + 1) < ord(2, n)

holds. �
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Proof. Let C
(d)
n be singular. Assume gcd(n, d) = 1. Then by Corollary 8.4 there

exist integers 1 ≤ r < n and l ∈ N0 such that 2(d + 1)r = (2l + 1)n. Since 2l + 1 is
odd it follows that

1 + ord(2, d + 1) ≤ ord(2, n). (226)

For the converse statement we need to consider two cases.

Case 1. Assume that gcd(n, d) > 1. Then singularity of C
(d)
n follows from Corollary

8.3.

Case 2. Assume that gcd(n, d) = 1. Let κ < ν for κ = ord(2, d+1) and ν = ord(2, n).
Then there exist integers u and v such that

d + 1 = 2κv ∧ 26 | v (227)

and
n = 2νu ∧ 26 | u. (228)

Let a = gcd(u, v) so that u = au′ and v = av′ for suitable integers u′, v′. Now, if we
choose

r = 2ν−(κ+1)u′,

l =
1

2
(v′ − 1)

(229)

we get r < n by virtue of 2ν−(κ+1) < 2ν and u′ < u. Further,

2(d + 1)r = 2(2κv)2ν−(κ+1)u′ = 2νv′au′ = v′(2νu) = (2l + 1)n (230)

so that by Corollary 8.4 the result follows. �

Corollary 8.6. Let ord(2, n) ≤ 1. Then gcd(n, d) = 1 is a necessary and sufficient

condition for C
(d)
n being nonsingular. �

Proof. Let ord(2, n) ≤ 1. Then if C
(d)
n is singular, it follows from Corollary 8.3

that gcd(n, d) = 1.

Conversely, assume that gcd(n, d) = 1. Then from Theorem 8.5 we infer that
ord(2, d + 1) < ord(2, n) is a necessary and sufficient condition for the singular-

ity of C
(d)
n . We see that ord(2, n) = 0 is impossible. Suppose that C

(d)
n is singular

and that ord(2, n) = 1. Then we have ord(2, d + 1) = 0. But this means that 2 is a
divisor of d, which contradicts gcd(n, d) = 1. �

Our studies so far exhibit a strong link with the topic of vanishing sums of roots of
unity. We will therefore take some time to investigate this matter a little further.
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Let αi ∈ C denote m-th roots of unity, i.e. αm
i = 1. Then for m ∈ N we define

W (m) =

{

k ∈ N0 : ∃(α1, . . . , αk)

k∑

i=1

αi = 0

}

so that W (m) is the set of all numbers k ∈ N0 for which there exists a vanishing
sum of exactly k roots of unity.

Lemma 8.7. Let m = pa1
1 · . . . · par

r be a decomposition of m ∈ N into maximal
prime powers such that all exponents are strictly positive. Then,

pi ∈ W (m)

and
r∑

i=1

bipi ∈ W (m)

for every choice of weights bi ≥ 0. �

Proof. Let ωi denote the primitive pi-th root of unity. Because of

pi−1
∑

k=0

ωk =
1 − ω

pi

i

1 − ωi

= 0 (231)

and pi|m it follows that pi ∈ W (m). Consequently, every linear combination of these
sums vanishes as well so that

∑
bipi ∈ W (m). �

A fundamental theorem on vanishing sums of roots of unity states that in Lemma
8.7 we have already found all elements of W (m):

Theorem 8.8. [31] Let m = pa1
1 · . . .·par

r be a decomposition of m ∈ N into maximal
prime powers such that all exponents are strictly positive. Then,

W (m) =

{
r∑

i=1

bipi : bi ≥ 0∀i = 1, . . . , r

}

.

�

We will use Theorem [31] to prove the following Theorem. Note that if we omit

reference to the complements of C
(d)
n , we can also show this as a corollary to Theorem

8.5.

Theorem 8.9. Let n ≥ 3 be prime. Then the graphs C
(d)
n and their complements

are nonsingular. �
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Proof. Let n ≥ 3 be prime. Further, let a = (ai) be the first column vector of the

canonical adjacency matrix of C
(d)
n . Note that ai ∈ N0. According to Corollary 2.33

there needs to exists some integer 0 ≤ r < n such that

n∑

j=2

ajω
(j−1)r = 0 (232)

for C
(d)
n to be singular. Thus, we are looking for a vanishing sum of at least one and

not more than n − 1 roots of unity. But since n is prime we see from Theorem [31]
that W (n) = N0∀n, rendering it impossible to find such a vanishing sum.

The graph C
(d)
n is regular of degree 2d. According to Theorem 2.36, the complement

C
(d)
n has eigenvalues

µ0 = n − 2d − 1,

µr = −1 −
n∑

j=2

ajω
(j−1)r, r = 1, . . . , n − 1.

(233)

Clearly, µ0 6= 0. Let formally a1 = 1. Then

µr =
n∑

j=1

ajω
(j−1)r, r = 1, . . . , n − 1. (234)

Since C
(d)
n is not the complete graph at least one of the aj must be zero. Therefore

we can use the same argument as in the first part of the proof. �

8.2 Eigenvalue multiplicities

Next we will study eigenvalue multiplicities of distance powers of circuits. The first
theorem in this section states that the multiplicity of the eigenvalue λ = −1 is the
same both for C

(d)
2n and C

(n−d−1)
2n :

Theorem 8.10. Let 1 ≤ d ≤ n − 1. Then

dim Eig(−1; C
(d)
2n ) = dim Eig(−1; C

(n−d−1)
2n ).

�

Proof. Let a = (ai) and b = (bi) be the respective first columns of the canonical

adjacency matrices of the graphs C
(d)
2n and C

(n−1−d)
2n . Setting a1 = 1 we see that

a = (1, 1, . . . , 1
︸ ︷︷ ︸

d

, 0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

d

)T ∈ R2n,

b = (0, . . . , 0
︸ ︷︷ ︸

n−d

, 1, . . . , 1
︸ ︷︷ ︸

d

, 1, 1, . . . , 1
︸ ︷︷ ︸

d

, 0, . . . , 0)T ∈ R2n.
(235)
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Let λ0, . . . , λn−1 be the eigenvalues of C
(d)
2n obtained from Corollary 2.33. Likewise,

let λ̃0, . . . , λ̃n−1 be the eigenvalues of C
(n−1−d)
2n . Then,

λr = −1 ⇔
2n∑

j=2

ajω
(j−1)r = −1 ⇔

2n∑

j=1

ajω
(j−1)r = 0

⇔
2n∑

j=1

ajω
(j+n−1)r = 0 ⇔

2n∑

j=1

bjω
(j−1)r = 0 ⇔ λ̃r = 0.

(236)

The result now follows because of E−1 = E0 for C
(n−1−d)
2n . �

Theorem 8.11.

1. Let n be odd. Then λ = 2d is the only simple eigenvalue of C
(d)
n .

2. Let n be even. If λ is a simple eigenvalue of C
(d)
n , then

λ = 2d ∨ λ = 2 ∨ λ = 0.

If λ = 0 is a simple eigenvalue of C
(d)
n , then the number d must necessarily be

even.

�

Proof. Let v = (vi) be an eigenvector for the simple eigenvalue λ of C
(d)
n . Let P

be the matrix of the automorphism that shifts the vertex numbering modulo n by
exactly one. Then Pv is also an eigenvector of C

(d)
n and therefore must be a multiple

of v because λ is simple. Thus,







v1
...

vn−1

vn








= µ








v2
...
vn

v1








(237)

for some real number µ 6= 0. By repeated substitution we get

v1 = µv2 = µ2v3 = . . . = µn−1vn = µnv1 (238)

so that necessarily µn = 1. For all n ∈ N we see that µ = 1 yields the eigenvector 11,
which corresponds to the degree of regularity. For even n we get µ = −1 as a second
possible solution and the vector (1,−1, 1,−1, . . .)T as eigenvector candidate. It is
readily checked that for even d the candidate is an eigenvector for λ = 0 whereas for
odd d it is an eigenvector for λ = −2. �



108 8. Distance powers C
(d)
n of circuits

Remark 8.12. The previous Theorem provides a generalisation of the result on
eigenvalue multiplicites of circuits (cf. Theorem 7.3) to the class of circuit powers.

�

Corollary 8.13. A distance power C
(d)
n , d > 1, cannot be bipartite. �

Proof. See Theorems 2.22 and 2.23. �

8.3 Structure of E0

In this section we will take a closer look at some properties of E0 = Ker C
(d)
n if n is

a power of two.

Let b = 11 ∈ R2s

and n = 2r with s < r. Then we can construct the vector

vs,r = (b | − b | b | − b | . . . | b | − b)T ∈ Rn. (239)

Note that for the components vj of vs,r this means

vj = (−1)d2−sje. (240)

Extend the index range of the components vi of vs,r to the set of all integers by
identifying vi = vj if i ≡ j mod n.

In the following, we show that such eigenvectors can be found in every kernel of C
(d)
n

if n is a power of two. The first theorem treats the case of d being odd.

Theorem 8.14. Let n = 2r and d + 1 = 2s · (2t + 1) for fixed s ∈ N, t ∈ N0. Then,

vs,r ∈ Ker C(d)
n .

�

Proof. The sum of 2d + 2 consecutive components of v vanishes because

2d + 2 = 2(2t + 1)2s (241)

states that we add 2(2t+1) blocks ±b of alternating signs (note 2d+2 ≤ n) so that

0 =

m0+2d+2∑

m=m0+1

vm (242)
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for any m0 ∈ Z. According to (239) we have vm0+2d+2 = −vm0+d+1 since 2s|(d + 1).
Therefore, we may write the previous equation as

0 =
m0+2d+1∑

m=m0+1

vm − vm0+d+1. (243)

But the right hand side of this equation is exactly the inner product of the m0-th
row of the canonical adjacency matrix of C

(d)
n with vector v. �

Corollary 8.15. Every graph C2r is singular. �

Now let d be even.

Theorem 8.16. Let n = 2r and d = 2s+1t for fixed s, t ∈ N0.

Then,
vs,r ∈ Ker C(d)

n .

�

Proof. Let w be any column of the canonical adjacency matrix of C
(d)
n . Then for

the computation of wT vs,r exactly two groups of d consecutive components of vs,r

are summed up. But because of 2s+1|d this sum contains only pairs of blocks ±b so
that wT vs,r = 0. �

Corollary 8.17. Let n = 2r and d = 2s+1(2t + 1). Then,

vs′,r ∈ KerC
(d)
2r ∀s′ = 0, 1, . . . , s.

�

Experiments suggest that for any choice of n and d the eigenspace C
(d)
n allows a

basis of very simple structure. We will therefore end this section with the following
conjecture:

Conjecture 8.18. For C
(d)
n there exist bases of E0 and E−1 that only contain vec-

tors with entries 0, 1, or −1. �



110 8. Distance powers C
(d)
n of circuits



9. Eigenvector iteration for λmax 111

9 Eigenvector iteration for λmax

This section describes the iterative computation of an eigenvector for the largest
eigenvalue of a given (preferably connected) graph. In [7] a theorem by T. H. Wei
is quoted that describes such an iteration (cf. Theorem 9.13). Is is neither proven nor
are the necessary prerequisites stated in full. The original source [44] is referenced
by a number of papers on ranking theory (e.g. [26], [34]), but it is also claimed to be
unpublished. But even if one of these papers offers a proof of the theorem it usually
remains superficial and does not cover the prerequisites in detail, e.g. [30].

It turns out that the key to understanding is the so-callced power method, a standard
tool in numerical linear algebra [21],[35]. The method and its geometry have been
thoroughly studied [36]. Unfortunately, this fact seems to go unnoticed in literature
on ranking theory.

In the following, we will clarify the matter.

To motivate the general idea of the power method let A ∈ Rn×n, A 6= 0, be diago-
nisable and let B = {x1, . . . , xn} be a basis of Rn consisting of eigenvectors of A for
the respective eigenvalues λ1, . . . , λn. Then every vector v ∈ Rn is a unique linear
combination of the xi, say

v =
n∑

i=1

µixi (244)

with µi ∈ R. It follows that

Akv =
n∑

i=1

λk
i µixi. (245)

Suppose that µi 6= 0 for at least one eigenvalue λi of largest modulus. Letting
k → ∞ we see that only the terms containing the eigenvalues λi of largest modulus
essentially contribute to Akv, i.e.

lim
k→∞

‖λk
i µixi‖

‖Akv‖ = 0 (246)

if |λi| < max |λj|. Note that the norm ‖ · ‖ may be chosen arbitrarily.

Based on this reasoning, we may define the following iterative procedure which
is commonly known as the power method. The aim we have in mind is that the
iterates generated should converge towards an eigenvector of an eigenvalue of largest
modulus.

Algorithm 9.1. (Power Method)

Choose a suitable initial vector v 6= 0 and iterate as follows,

v0 :=
v

‖v‖ , vi+1 :=
Avi

‖Avi‖
.

�
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Note that if A is diagonisable we have Ker Ai = Ker A for all i ∈ N. Therefore, the
iteration of Algorithm 9.1 is well-defined if v 6∈ Ker A.

The norm chosen for the power method gives rise to an inner product and, further,
to a notion of angles, especially orthogonality. Unless stated otherwise, the norms
etc. used in the remainder of this section coincide with this choice.

Let us now weaken the conditions on A ∈ Rn×n and besides A 6= 0 only assume that
the characteristic polynomial χA splits into linear factors over R. To make certain
that the iteration is well-defined it is necessary to require v 6∈ KerAn.

From the theory of the Jordan normal form we know that there exists a decompo-
sition of Rn into a direct sum of A-cyclic subspaces. Let U be one of these subspaces
and assume w.l.o.g. that A has Jordan normal form. If we denote by A|U the
matrix of the restriction of the endomorphism belonging to A to the subspace U

(with respect to the same basis) we see that

A|U =








λ 1
. . .

. . .

. . . 1
λ








= λI + N (247)

for some eigenvalue λ of A and a nilpotent matrix N with N s = 0, s = dim U .

For λ 6= 0, k ≥ s − 1 and ṽ ∈ U it follows from the binomial theorem that

(A|U)kṽ =
k∑

j=0

(
k

j

)

λk−jN j ṽ = λk

s−1∑

j=0

λ−j

(
k

j

)

N j ṽ. (248)

If for example ṽ = (0, . . . , 0, 1)T , then








λ 1
. . .

. . .

. . . 1
λ








k






0
...
0
1








= λk








λ−s+1
(

k

s−1

)

...

λ−1
(

k

1

)

λ0
(

k

0

)








= λk

(
k

s − 1

)

w̃(k) (249)

with w̃(k) ∈ Rs.

For k → ∞ we see that the first component of the vector w̃(k) becomes nonzero and
that the ratio of two consecutive components is unbounded. Normalising the vectors
w̃(k) we get a sequence that converges to the first unit vector. Since the first vector
of the canonical basis of U is an eigenvector for λ we see that the application of the
power method within U yields a sequence of vectors converging to an eigenvector
for λ.

This argument can be extended to arbitrary vectors ṽ ∈ U , ṽ 6= 0.
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Thus, we arrive at

(A|U)kṽ = µλk

(
k

α

)

w(k), (250)

where 0 ≤ α ≤ s−1 and µ 6= 0. The variable µ depends only on ṽ and λ. Moreover,
w(k) converges to an eigenvector w ∈ U for the eigenvalue λ.

If the power method is applied globally, then for increasing k the weights λk
(

k

α

)

become negligible unless λ is an eigenvalue of largest modulus.

If both λ and −λ are eigenvalues of largest modulus, then we obtain the following
representation:

Ak = λk

(
k

α

)( r∑

i=1

µiw
(k)
i + (−1)k

s∑

j=1

νju
(k)
j + z(k)

)

(251)

with 0 ≤ α ≤ n − 1 and constants µi, νj that only depend on v and λ.

We see that wi := lim
k→∞

w
(k)
i is an eigenvector for eigenvalue λ, uj := lim

k→∞
u

(k)
j is an

eigenvector for eigenvalue −λ, and lim
k→∞

z(k) = 0.

If either λ or −λ is not an eigenvalue of largest modulus, then equation (250) sim-
plifies accordingly.

Let

g(k) :=

r∑

i=1

µiw
(k)
i ,

k(k) :=
s∑

j=1

νju
(k)
j ,

g := lim
k→∞

g(k),

h := lim
k→∞

h(k).

(252)

If g 6= 0, then g is an eigenvector for eigenvalue λ. But g 6= 0 is assured if v has a
nonzero component in Ker(A − λI)n. For h we have an analogous situation.

Using the above definitions, we have

vk =
Akv

‖Akv‖ =
g(k) + (−1)kh(k) + z(k)

‖g(k) + (−1)kh(k) + z(k)‖ . (253)

Several conclusions can be drawn from equation (253). Let us assume that A always
satisfies the conditions stated above. Also, if by ρ we denote the spectral radius of
A, then we require that the initial vector v has a nonzero component in Ker(A −
ρI)n + Ker(A + ρI)n.
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Denote by d(x, U) the distance of x ∈ Rn to the subspace U ⊆ Rn with respect to
the given norm.

Theorem 9.2. Let (vi)i∈N0 be the iterates generated by the power method 9.1.
Then,

lim
k→∞

d(vk, Eρ + E−ρ) = 0. (254)

�

Proof. By equation (253), it follows that

d(vk, Eρ + E−ρ) =
z(k)

‖g(k) + (−1)kh(k) + z(k)‖ , (255)

which tends to zero for n → ∞. [...]

DAS GILT SO NICHT! WIR K”ONNEN NICHT VORAUSSETZEN, DASS z(k)

AUS DEM ORTHOGONALEN KOMPLEMENT DER EIGENR”AUME KOMMT.
�

Theorem 9.3. Let A ∈ Rn×n be a matrix whose characteristic polynomial χA splits
into linear factors over R. For suitable v let (vi)i∈N0 be the iterates generated by the
power method 9.1. Let Rn = S ⊕ T with subspaces S, T such that S is the sum of
all eigenspaces belonging to eigenvalues of largest modulus and T a suitable vector
space complement. For i ∈ N0 let vi = xi +yi with unique vectors xi ∈ S and yi ∈ T .

Then the iterates vi converge towards S if x0 6= 0. To be more precise,

lim
k→∞

‖yk‖ = 0. (256)

�

Proof. This follows directly from equation (253). �

Theorem 9.4. 1. If v has a nonzero component in Ker(A − ρI)n, but not in
Ker(A + ρI)n, then the sequence of the power method iterates converges to a
normalised eigenvector with eigenvalue ρ.

2. If v has a nonzero component in Ker(A + ρI)n, but not in Ker(A− ρI)n, then
the sequences of the even or odd iterates generated by the the power method
each converge to a normalised eigenvector with eigenvalue −ρ.

�



9. Eigenvector iteration for λmax 115

Proof. It suffices to note that in the first case we have

vk =
g(k) + z(k)

‖g(k) + z(k)‖ → g

‖g‖ ∈ Eρ (257)

whereas in the second case we have

v2k =
h(2k) + z(2k)

‖h(2k) + z(2k)‖ → h

‖h‖ ∈ E−ρ,

v2k+1 =
−h(2k+1) + z(2k+1)

‖ − h(2k+1) + z(2k+1)‖ → − h

‖h‖ ∈ E−ρ.

(258)

�

Theorem 9.5. If v has a component in Ker(A − ρI)n + Ker(A + ρI)n, then

lim
k→∞

‖Avk‖ = ρ, (259)

provided that the limit exists. �

Proof. This follows directly from the fact that

v2k =
g(2k) + h(2k) + z(2k)

‖g(2k) + h(2k) + z(2k)‖ → g + h

‖g + h‖ ,

v2k+1 =
g(2k+1) − h(2k+1) + z(2k+1)

‖g(2k+1) − h(2k+1) + z(2k+1)‖ → g − h

‖g − h‖

(260)

so that

‖Av2k‖ → ‖Ag + Ah‖
‖g + h‖ = ρ

‖g − h‖
‖g + h‖ ,

‖Av2k+1‖ → ‖Ag − Ah‖
‖g − h‖ = ρ

‖g + h‖
‖g − h‖ .

(261)

Since the limit of ‖Avk‖ exists we known that all subsequences converge to the same
limit. By comparison of the limits of the two subsequences above, the theorem
follows. �

Although we may determine the spectral radius of A from Theorem 9.5 it is impor-
tant to note that the sequence of the vectors vk may not converge to a fixed vector at
all. However, the following theorem shows that at least certain sums and differences
of consecutive iterates do converge provided that Eρ ⊥ E−ρ.
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Theorem 9.6. Let Eρ ⊥ E−ρ with respect to the chosen norm.

1. If v has a nonzero component in Ker(A−ρI)n, then the sequence (vk+vk+1)k∈N0

converges to an eigenvector for eigenvalue ρ.

2. If v has a nonzero component in Ker(A + ρI)n, then the sequence (v2k −
v2k+1)k∈N0 converges to an eigenvector for eigenvalue −ρ.

�

Proof. Again, we make use of equation (253). In this case the vectors g and h as
defined in (252) are normalised and perpendicular eigenvectors for eigenvalues ρ and
−ρ, respectively.

Consequently,
‖g − h‖2 = (g − h)2 = g2 + h2 = ‖g + h‖2. (262)

As the denominator in equation (253) converges to ‖g + h‖, the assertion becomes
obvious. �

Corollary 9.7. Let Eρ ⊥ E−ρ with respect to the chosen norm. Then the limit
mentioned in Theorem 9.5 exists. �

Proof. Revisit the proof of Theorem 9.5 and observe that additionally ‖g − h‖ =
‖g + h‖. �

In the following, we will assume that A is symmetrical. Since then A is diagonisable
over R we have mutually perpendicular eigenspaces (with respect to the standard
inner product).

In consideration of equation (253) the following property of the power method ap-
plied to a symmetrical matrix is easy to see:

Theorem 9.8. Let (vk)k∈N0 be the iterates generated by Algorithm 9.1 for an initial
vector v. If S is a matrix whose column vectors form a basis of the sum space of the
eigenspaces belonging to all eigenvalues of A except those of largest modulus, then

lim
k→∞

‖ST vk‖ = 0.

�
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Moreover, we may state another may to determine the spectral radius of A from the
sequence of the vk:

Theorem 9.9. Let ρ be the spectral radius of A and assume that the Euklidean
norm is used. Then

lim
k→∞

|vT
k Avk| = ρ. (263)

�

Proof. This follows from the properties of the Rayleigh quotient and the fact
that ‖vk‖ = 1. �

Now we turn our attention to graphs. Let us assume that A is the adjacency matrix
of an undirected graph with at least one edge. Then A is diagonalisable and all
its eigenvalues are real. Therefore, there exist at most two eigenvalues of largest
modulus. But by Theorem 2.22 we know that −λmax is an eigenvalue of a connected
graph if and only if it is bipartite.

We conclude that for non-bipartite graphs we can easily achieve convergence of the
power method:

Theorem 9.10. Let G be a graph such that for each component of G with the
same spectral radius the largest eigenvalue is only simple and that the component is
non-bipartite. Choosing a vector v such that it is not perpendicular to Eig(λmax; G),
the iterates vk generated by the power method 9.1 then converge to a normalised
eigenvector v∞ for the eigenvalue λmax of A. The restriction of v∞ to any component
of G is either non-positive or non-negative. �

Proof. This follows directly from the previous theorems and the Perron-Frobenius
Theorem 2.7. �

Corollary 9.11. Let v ≥ 0. Then a vector v∞ ≥ 0 is obtained as a unique solution,
provided that the power method converges. �

Theorem 9.12. Let G be a bipartite graph such that its largest eigenvalue is simple.
Choose a vector v such that it is not perpendicular to Eig(λmax; G), and compute
iterates vk using the power method 9.1.

Then the sequence (wk)k∈N with

wk = vk + vk−1

converges to an eigenvector w∞ for the eigenvalue λmax of A. �
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Proof. Assume λ1 ≤ . . . ≤ λn and write v as in equation (244).

From equations (245) and (246) it follows directly that

lim
k→∞

∥
∥
∥
∥

1

λ2k
max

A2kv0 − (µ1x1 + µnxn)

∥
∥
∥
∥

= 0,

lim
k→∞

∥
∥
∥
∥

1

λ2k+1
max

A2k+1v0 − (−µ1x1 + µnxn)

∥
∥
∥
∥

= 0.

(264)

We see that the subsequences of the even and odd iterates converge separately so
that the sum sequence wk converges to a multiple of xn. �

Alternatively, one may shift the spectrum of the adjacency matrix of G so that there
is only one eigenvalue of largest modulus. One could then use the power method
on A + εI, ε > 0. But this only yields the largest eigenvalue of A, not a suitable
eigenvector.

We can now prove the initially mentioned theorem by T. H. Wei and also state
correct prerequisites:

Theorem 9.13. [44] Let G be connected and non-bipartite. Let Nk(i) denote the
number of all walks of length k starting from vertex xi. Then for k → ∞ the vector

sk =
1

n∑

j=1

Nk(j)
· (Nk(1), Nk(2), . . . , Nk(n))T

, k ∈ N,

converges to a positive eigenvector for the largest eigenvalue of G. �

Proof. Choose the norm

‖(x1, . . . , xn)T‖ =

n∑

j=1

|xj|. (265)

If A is the adjacency matrix of G we have precisely (cf. Theorem 2.11)

sk =
Ak11

‖Ak11‖ (266)

and therefore vk = sk if we apply the power method for the initial vector v = 11. To
prove convergence of the iteration it suffices to show that 11 is not perpendicular to
Eig(λmax; G). By Theorem 2.7 we know that

Eig(λmax; G) = Span{z} (267)

for some vector z > 0. But 11T z = 0 is impossible since z > 0 and 11 > 0. �



9. Eigenvector iteration for λmax 119

If G is regular we see that all sk are identical and eigenvectors for the degree of
regularity. In this case, Theorem 9.13 is valid even if G is bipartite.

The results of this section can be extended to directed graphs. For strongly con-
nected digraphs it is known that their maximum eigenvalue is simple since they have
irreducible adjacency matrices so that Theorem 2.7 can be applied. For the conver-
gence of the power method (provided that the initial vector is chosen suitably) we
need to ensure that there is only one eigenvalue of largest modulus.

Theorem 9.14. Let G be a strongly connected digraph. Then λmax is the only
eigenvalue of largest modulus if and only if there exists a number k ∈ N such that
between any pair of (not necessarily distinct) vertices of G there exists a directed
walk of length k from the first vertex to the second. �

Proof. Let A be the adjacency matrix of G. Since G is strongly connected the
matrix A is nonnegative and irreducible. But according to [16] the matrix A is
primitive (i.e. it has only one eigenvalue of largest modulus) if and only if Ak > 0
for some k ∈ N. The result now follows from Theorem 2.11. �
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10 Conclusion

In the previous chapters a number of interesting structural results have been ob-
tained. However, some questions remain unanswered and may possibly be the start-
ing point of future research. One strong conjecture is 6.26, which claims that for
1 ≤ d ≤ n

2
every eigenvalue λ 6∈ {−2,−1, 0} of P

(d)
n is simple. The techniques used

for n
2

< d < n− 1 cannot be applied any more since they rely on the fact that there
exist at least two vertices that are adjacent to all other vertices.

The second interesting open topic is the existence of simple bases for certain eigen-
spaces. For a simply singular forest we have shown that its kernel can be spanned
by a vector with entries only from {0, 1,−1}. Conjecture 4.10 states that this is
probably true for every singular forest. A similar claim is made for distance powers
C

(d)
n of circuits (cf. Conjecture 8.18).



122 10. Conclusion



A. List of Figures 123

A List of Figures

1 Partitioning tree vertices by their distance from a fixed leaf . . . . . . 33

2 Graph with E−1 6⊆ E0 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Example trees with (a) E−1 % E0, (b) E−1 = E0 and (c) E−1 $ E0 . 34

4 The spectrum of the paths P2, . . . , P22 . . . . . . . . . . . . . . . . . 45

5 Bounds for the maximum eigenvalue of P
(d)
14 . . . . . . . . . . . . . . 65

6 Separation of the maximum eigenvalue of P
(d)
20 . . . . . . . . . . . . . 67

7 Eigenvalue interlacing of P
(d)
n and C

(d)
n+d for P

(3)
18 and P

(6)
18 . . . . . . . 68

8 Graphs of fq(x; n, d) for P
(2)
8 , P

(5)
9 and P

(6)
9 . . . . . . . . . . . . . . . 94



124 A. List of Figures



B. List of Tables 125

B List of Tables

1 Dimensions of E0, E−1, E0 and E−1 for the paths P2, . . . , P20 . . . . . 53

2 Dimensions of E0, E−1, E0 and E−1 for the graphs 2P2, . . . , 2P15 . . . 56

3 Dimensions of E0, E−1, E0 and E−1 for Pn ∪ Pn+1, n = 1, . . . , 12 . . . 57

4 Smallest examples of multiple eigenvalues of P
(d)
n , d ≤ n

2
. . . . . . . . 77

5 Dimensions of E0 for P
(d)
n , n = 2, . . . , 26, d = bn

2
c, . . . , n − 1 . . . . . . 86

6 Dimensions of E0, E−1, E0 and E−1 for P
(d)
29 . . . . . . . . . . . . . . 87



126 B. List of Tables



C. Symbols 127

C Symbols

α(G) independence number of G

δ(G) minumum degree of graph G

∆(G) maximum degree of graph G

γG(v) degree of vertex v in graph G

µ(x; G) matching polynomial of graph G

χA(x) characteristic polynomial of matrix A

χ(x; G) characteristic polynomial of graph G

χ(G) chromatic number of graph G

ω(G) size of a maximum clique of G

d(x, y) distance of vertices x,y in graph G

ei i-th standard unit vector
m(G, k) number of matchings of size k in graph G

rk A rank of matrix A

AT transpose of matrix A

A−1 inverse matrix of A

A∗ adjugate of matrix A

11n all-ones vector of size n

Cn cicuit with n vertices
Jk,l all-ones matrix of size k × l

E(G) edge set of graph G

Eλ eigenspace for eigenvalue λ of the given graph
Eig(λ; G) eigenspace for eigenvalue λ of graph G

Eλ eigenspace for eigenvalue λ of the complement of the given graph
G(k) k-th distance power of graph G

In identity matrix of size n × n

Im A image of the endomorphism defined by matrix A

KerA kernel (null space) of the endomorphism defined by matrix A

Kn complete graph with n vertices
Lk all-ones lower triangular matrix of size k × k

L̃k all-ones strictly lower triangular matrix of size k × k

L(G) line graph of graph G

NG(v) neighbourhood of vertex v in graph G

Nk,l all-zero matrix of size k × l

Pij unique path between two vertices of a tree
Pn path with n vertices
Uk all-ones upper triangular matrix of size k × k
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