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A Game Theoretic Approach for Stable Network
Topologies in Opportunistic Networks

Nils Bulling, Michael Köster, Matei Popovici

Abstract

Opportunistic networks (ON) are particular types of delay-tolerant networks in
which users/network entities participate in order to propagate information. Besides
the advantages of these networks (e.g. decentralization, independence of communi-
cation infrastructure) they raise new problems regarding for example effectiveness,
message routing, message delivery, security issues, and trust. In this paper we in-
troduce a formal description of an ON and of optimal communication topologies,
for the non-cooperative and cooperative settings. We follow a game theoretic ap-
proach and allow users to express properties about how their messages should be
handled in the network by means of a logical language (for instance, message pri-
vacy may be achieved by requiring that network nodes with internet access should
be avoided on the communication path). We determine the complexity of associ-
ated verification and synthesis problems of network topologies.

1 Introduction

The ever increasing use of online social networking services together with the pop-
ularity of new generation smart-phones and of other smart mobile devices are causing
mobile networks to be overloaded. In order to solve this problem, novel communication
methods and new types of network architectures, such as delay-tolerant [4] and oppor-
tunistic networks [14, 12] have emerged. Traditionally, delays are seen as networking
problems caused by connectivity interruptions. In the conventional setting they are the
exception. However, in delay-tolerant networks they are the rule: messages are (delib-
erately) delayed, and offloaded to alternative communication routes, in order to relieve
wireless and mobile networks of data traffic [9, 11].

An opportunistic network is a particular type of delay-tolerant network in which par-
ticipants are mobile and able to communicate at limited range (e.g. humans carrying
wireless communication devices). It is assumed that: (i) global Internet access is not
available, (ii) end-to-end connectivity between any two participants is not generally
possible and (iii) the entire network might be disconnected, i.e. certain groups of par-
ticipants might be outside the communication range of other groups from the network.
In this setting, communication occurs opportunistically: whenever two devices are in
proximity, they will consider this as an opportunity to exchange messages. Moreover,
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the participants’ mobility is exploited in order to transmit messages between discon-
nected groups of users. According to this store-carry-and-forward mechanism [1], a
message is stored in user A’s buffer and is carried around until A is in communication
range with another user B. When this happens, the message is forwarded to user B and
the process is repeated until the final destination is reached, or the message is outdated.

One of the main advantages of opportunistic networks is the fact that they are: (i) de-
centralized, (ii) independent of any communication infrastructure and (iii) inexpensive.
Opportunistic networks also raise new problems regarding for example effectiveness,
message routing in such a dynamic environment, maximizing message delivery, secu-
rity issues, and trust. Moreover, not all network topologies are desirable nor stable
because (i) users may wish to avoid specific routes/users and (ii) users lack incentives
to provide services (e.g. message forwarding) to other users.

In this paper we address these two problems and propose a game-theoretic commu-
nication model for opportunistic networks, in which each user (or each group of users)
has certain communication preferences which express the users’ goals and also restric-
tions on the network. Instead of using rankings or other community-dependent metrics,
we use the temporal logic CTL for expressing these preferences. The advantage of this
approach is that it allows a flexible description of various preferences like reachability
or avoidance properties.

The contributions of this paper are a game-theoretic analysis of optimal (or stable)
network topologies1 for message forwarding and related complexity results. The op-
timal topology should minimize communication costs, while satisfying the players’
goals. We model a network topology as the outcome of a strategic game in which the
actions of each player consist of establishing communication channels. Then, optimal
topologies correspond to game theoretic solution concepts; that is, in informal terms,
a topology is stable if no agent or player has an incentive to deviate from the given
topology. In this paper, we consider individual and group rationality, each leading to a
different notion of optimality/stability.

We consider both a cooperative and a non-cooperative setting. Often cooperation is
required as players are usually not able to achieve their goals by themselves. Apart from
the game theoretic modelling approach, the complexity results regarding verification
and synthesis problems of optimal topologies form the main technical results of this
paper. Finally, we would like to note that a lot of work in this area has focused on game
theoretic methods for package forwarding and routing strategies. Our work should not
only be understood as yet another analysis but in particular as a pre-processing step.
We propose a way for finding an optimal network topology and once it has been found
existing methods for package routing and forwarding can be applied on top of it.

The paper is structured as follows: In Section 2 we introduce the basic ingredients
of an opportunistic network (ON), motivate our game theoretic approach, define the
opportunistic network game, and put game theoretic solution concepts in the context
of optimal topologies. In Section 3 we propose a computational setting based on the
temporal logic CTL (computation tree logic). In Section 4 we analyse the complexity

1In this paper, we use the term “optimal” to refer to “stability criteria” in a game theoretic sense.
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of verification and synthesis problems. Finally, in Section 5 and 6 we discuss related
work and conclude, respectively.

About the paper. This paper is an extended version of [2]; in particular, we discuss
the following shortcoming contained in the original paper:

• In the original setting, the non-cooperative solution concepts (Nash and strong
Nash Equilibrium) are limited because players do usually have no incentive to set
up channels for others. In non-trivial cases, actions containing no communication
channels set for other players would always be preferred due to lower costs.

In order to address this shortcoming, we modify the utility function (cf. Definition 2.14)
by introducing incentives for players to help other players. The new factor |SAT(O)|

|N | to-
gether with a scaling factor β describes the incentive for player i to help other players
fulfilling their goals. The β value allows specifying a player’s degree of interest in the
satisfaction of the goals of other players. For β = 1 a player is fully interested in helping
other players whereas for β = 0 a player is not interested at all whether other players’
goals are satisfied or not. We note, that this new definition of utility function incorpo-
rates a cooperative component to the non-cooperative setting. It is worth pointing out
that the value of β is defined by the opportunistic network application and not by the
players themselves. Hence, the players have two choices: accept the given value of β
and to “use” the opportunistic network or not to take part in the opportunistic network.
For a fixed β, players still remain selfish and do only care about their utility, which now
takes into account other players goals.

Moreover, in this paper we clarify that our approach is rather a communication pro-
tocol (which players cannot influence) than a decision process of each player. Thus, the
system is responsible for processing user preferences and computing the appropriate
actions. Also, it can be done in a decentralized way assuming that the computation is
deterministic and exactly the same for all players. We also mention the use of a conver-
sion function that models the correlation between costs and the value of a player’s goal.
Also, we correct errors and slightly modify the examples.

2 Optimal Opportunistic Networks

In this section we introduce an opportunistic network (ON), motivate our game the-
oretic approach, define the opportunistic network game which is used to determine
optimal topologies. The concept of optimality depends on the specific solution con-
cept at hand and reflects different stability conditions of a topology. An ON is defined
over an opportunistic network frame (ONF) which models the participants of an ON (to
which will henceforth also refer as players), the locations they can reach, the possible
connections (or channels) they can establish, and a cost for each such channel. Play-
ers have the intention to send messages to one or several locations, but are interested
in enforcing restrictions on the way messages are delivered. These restrictions include
prohibiting specific players (or rather characteristics of players) on the message deliv-
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ery path, requiring the existence of several paths towards destination, or restricting the
path’s length.

2.1 Opportunistic Networks
An opportunistic network frame (ONF) essentially defines a set of players P and their
abilities to communicate with each other. We use a neighborhood functionN : P → 2P

to model the players with whom a (communication) channel can be established; that is,
N(i) is the possibly empty set of players with whom i can set up a channel. We require
that i 6∈ N(i). The establishment of a channel from player i to player j has cost c(i, j).
The cost function c can aggregate a number of internal and external factors related to
players such as bandwidth consumption, trust level, resource usage etc. Finally, each
player i attempts to satisfy a certain goal φi. Goals give players the ability to impose
restrictions on how messages are forwarded. One such restriction could be that any path
to the destination must not include certain players.

The value function v quantifies the value of a player’s goal. The values are subjective
to the agents and can be of various origin. In this paper, we do not discuss this issue in
more detail.

Definition 2.1 (Opportunistic Network Frame). An opportunistic network frame (ONF)
is given by F = (P,N,Props, c, I, (φi)i∈P , v) where

• P is a finite set of players;

• N : P → 2P is a neighborhood function. N(i) is the set of neighbors with which
i can establish channels. We require that i 6∈ N(i), i.e. players cannot establish
channels with themselves.

• Props is a set of propositional symbols that represent different user properties.

• I : P → 2Props is a valuation function assigning, for each player i, a set of
propositions which are true for player i.

• A partial cost function c : P × P → R≥0. c(i, j) is the cost for player i of
establishing a channel with player j. The value c(i, j) ≥ 0 must be defined for
any two players i 6= j provided that j ∈ N(i). Moreover, c(i, i) = 0 for all
players i.

• φi is the goal for player i.

• A value function v : P → R models the value of a player’s goal.

Remark 2.2 (Conversion function). We note that a goal of a player is of qualitative
nature; the value function, on the other hand, adds to the qualitative objective a quan-
titative dimension. Now, it can be the case that the value and cost functions produce
values of types which cannot (easily) be compared. For instance, the cost function may
measure the transmission power required to send a message or the expected number of
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lost packets, while the value function may measure the available battery on a mobile de-
vice. For this reason, we assume the existence of a conversion function f : R≥0 → R≥0
which makes the values f(v(i)) and c(j, k) comparable for any players i, j and k.

However, in the follow we consider, for the sake of readability, the conversion func-
tion as identity function.

A proposition p ∈ Props can for instance represent certain real world locations
or a communication channel (e.g. a wifi hotspot, a mobile connection, etc.) which a
player can access. A possible goal of a player could be the following: Player 1 wants
to access a specific communication channel. In particular, goals can also be understood
as restrictions on communication paths and network topologies.

Remark 2.3 (Player goals). In ONF each player has a single goal. It is rather straight
forward to extend the setting to a set of goals, one for each player, and to assign different
values to each goal. However, for a clearer presentation, we do only consider the single
goal setting in this paper.

In our particular setting, goals are expressed using the language of computation tree
logic (CTL). CTL is, in our opinion, a natural choice since model checking CTL-
formulae can be done in polynomial time. Thus, it brings no significant overhead to the
computational complexity of our solution concepts, described in Section 4. However,
the general framework is not dependent on CTL and can be used with other suitable
languages for specifying goals. For this reason, we defer the introduction of CTL and
the formal definition of goal satisfaction to Section 3.

1

Net1

2
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Figure 1: A simple opportunistic network frame.

Example 2.4 (Simple ONF). Consider the ON with 4 players shown in Figure 1. The
scenario describes two partially disconnected networks modeled by the propositions
Net1 and Net2, respectively. Player 1, which is a member of Net1 is unable to com-
municate directly with player 4, which is a member of Net2. Players 2 and 3 are
members of both Net1 and Net2 and thus can communicate with any other player.
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Player 3 has access to Internet, and player 4 to a virtual private network, denoted
as VPN. We model this scenario as a ONF where the set of propositions Props =
{Net1,VPN,Net2, Internet} describes all existing networks and the valuation function
defined as I(1) = {Net1}, I(2) = {Net1,Net2}, I(3) = {Net1,Net2, Internet} and
I(4) = {Net2,VPN} describes what networks are accessible for each player.

The dashed arrows describe all possible communication channels which can be es-
tablished, and they are labeled with their corresponding costs. Therefore: N(1) =
N(4) = {2, 3}, N(2) = {1, 3, 4} and N(3) = {1, 2, 4}. The costs are c(1, 2) =
c(2, 1) = 6, c(1, 3) = c(2, 4) = c(3, 1) = c(3, 4) = c(4, 2) = c(3, 2) = 1, c(4, 3) = 0
and c(2, 3) = 8.

Let us assume that player 1 wants to send a message to the VPN. In order to do so,
one possible path is (1, 3, 4), i.e. to send the message from player 1 over player 3 to
player 4. However, let us moreover assume that player 1 requires that its message must
not pass through any node which has access to Internet. We will refer to this goal as
φ1. The single path that obeys this restriction is (1, 2, 4).

Similarly, player 2 has the goal–to which we refer to as φ2–of sending a message to
the Internet. Players 3 and 4 have no communication goals. The goal values for the
players are, v(1) = 40, v(2) = 20 and v(3) = 0, v(4) = 0, respectively.

Remark 2.5. We formally model the absence of a communication goal, as a goal which
is implicitly satisfied without taking any action (in logical terms: a tautology).

As seen in Example 2.4, the optimality of a certain network topology depends on
several issues. We may, for instance, call a topology optimal if all the players’ goals
are satisfied, or if the costs are minimal and the goal of a particular player is satis-
fied. We discuss optimality in more detail in Section 2.2. In what follows, we describe
topologies as structures which depend on a certain ONF. We assume players have the
intention of sending messages to one or several other players. Furthermore, we expect
that destinations are not (always) directly reachable, and that messages must be routed
via intermediate players. Whenever this is the case, a message will cross a sequence
of players, from source to destination. A transition i k−→ j in a topology represents a
directed communication channel in which player i forwards one (or several) messages
generated by or on behalf of player k, to player j. j is the next-hop (as in relay net-
works) on the message delivery path. It might be the case that i = k, if j is the first
hop on the message path. The cost of setting a channel is captured by c(i, j), and it has
to be put up by the sender, i.e. player i in this very case. Since we assume players are
self-interested, setting up communication links and relaying messages for other players
requires some kind of incentive, as we will further see.

Each player’s goal expresses one (or several) destinations that should be reached,
or can also enforce certain restrictions on how these destinations are reached. The
expressiveness of the goals depends on the concrete goal language used. Possible re-
strictions/goals include, for example, channel P should be accessible via at most two
hops or channel P should be accessible via a path that doesn’t pass through node/player
i (i.e. player i should not be able to receive the message sent), etc. We note however
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that a player k can only formulate goals that involve forwarding its own messages, i.e.
it can only express preferences regarding edges of the form i

k−→ j in the topology.
In the remainder of this paper we assume that F = (P,N,Props, c, I, (φi)i∈P , v) is

an opportunistic network frame, as described by Definition 2.1.

Definition 2.6 (F-topology, Tops(F)). An F-topology is a labeled transition system
TF = (P,−→,Props, I) where P is the set of nodes and −→⊆ P × P × P where we
require that (i, i, i) ∈→ for all i ∈ P and that c ∈ N(a) if (a, b, c) ∈→ and a 6= c. The
elements Props and I are taken from F . We write a b−→ c for (a, b, c) ∈−→. The relation
a

b−→ c models a b-labeled transition from a to c.
The set of all F-topologies is denoted Tops(F). We write T instead of TF if F is

clear from context.

The reflexive loops i i−→ i are due to technical reasons. They model a player’s
possibility to do nothing.

Remark 2.7 (F-topologies and labeled transition systems). Labeled transition systems
are often used to describe the states of a certain system, and labeled transitions rep-
resent possible actions which can be taken, in order to reach some state from another.
We would like to emphasize that in our setting, nodes in a F-topology represent players
and their properties. Edges correspond to the possible communication channels they
can establish.

Proposition 2.8. We have |Tops(F)| ≤ 2|P|
3

.

Definition 2.9 (Opportunistic Network). An opportunistic network (ON) is a tuple
O = (F , T ) consisting of an opportunistic network frame F and an F-topology
T ∈ Tops(F).

Intuitively, an opportunistic network O is obtained by taking one possible instantia-
tion of the opportunistic frame F . Such an instantiation consists of labeled transitions
between players. The label stands for the player on whose behalf the message is for-
warded.

Example 2.10. (Simple ON) We continue Example 2.4. Figure 2 shows an ON in
which the goal φ1 (we recall that φ1 expresses the goal of reaching VPN without ever
visiting a node in which Internet holds) of player 1 is violated. The violation is caused
by the labeled transition 1

1−→ 3 which causes player 1’s messages to be forwarded to
player 3 who has access to Internet. Also, we would like to emphasize that player 1
sets two channels to player 3: one for itself and one on behalf of player 2.

Our ultimate goal is to use our approach for real-world communication. As com-
munication is costly (e.g. because of limited battery power or network usage fees) the
costs of a network have to be taken into account as well. For this purpose, we introduce
the cost of a network which is defined as the sum of all established channel costs. This
allows to compare networks to each other.
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Figure 2: A simple opportunistic network. The reflexive edges (i.e. i i−→ i for all players
i) are omitted to improve the readability.

Definition 2.11 (Cost). LetO = (F , T ) be an ON. The cost of player i inO is defined
as the costs of all outgoing edges from player i, i.e. cost i(T ) =

∑
(i,k,j)∈→ c(i, j)

where i is fixed. The total cost of ON O is defined as cost(O) =
∑

i∈P cost i(T ).

Remark 2.12 (Summing up Costs). Notice that according to Definition 2.11, when-
ever two or more communication channels are established to the same player, the cost
of each such channel is added. Clearly, there are also settings in which the other ex-
treme, that the same channel can be used by arbitrarily many users, makes good sense.
Currently, we are working on a more realistic setting which takes into account a more
sophisticated cost scheme.

Given this definition we can ask what is the best ON? Is it the one with the minimal
costs? This depends on the behavior of the players, e.g. whether they are social, strictly
self-interested, cooperative, or non-cooperative. Notice that a player may not uncon-
ditionally follow the satisfaction of its goal. If the player’s costs exceed the value of
its goal the player may be better off not establishing a link at all. Players often reason
strategically. In particular, this is the case if costs are involved and network nodes be-
long to different organizations, which often is a realistic scenario in opportunistic nets
and relay networks.

Example 2.13 (Cost of an ON). In our example (Figure 2), the individual costs cost i(O)
and the overall costs cost(O) are given as follows: cost1(O) = 2, cost2(O) = 6,
cost3(O) = 1, cost4(O) = 0 and cost(O) = 9. The channel costs are included in the
definition of the ONF shown in Figure 1.

2.2 What does an optimal solution look like?
In this section we informally discuss properties of optimal ONs. It is straightforward
that optimality is highly affected by: (i) the goal fulfillment of a player, (ii) the goal
value, (iii) the players’ costs, and (iv) other players’ goal fulfillment (depending on
the parameter β, cf. Definition 2.14). Given a player i who participates in creating a
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topology T by setting up channels, we require a measure of its profit in T , i.e. a utility
value, which takes into account the properties (i-iv).

Rational players usually prefer topologies in which they get higher utility over those
in which they get less utility. However, they can only set up a channel with their (di-
rectly accessible) neighbours and thus depend on the other players’ actions in most of
the cases. Therefore, it might be the case that achieving an optimal topology requires
the contribution of other players and a certain deal of compromise. For instance, play-
ers might be required to accept higher costs, in order for their goals to become satisfied
at all. As a result, finding optimal topologies amounts to finding the optimal compro-
mises, the ones that are acceptable by each player. In other words, players act in a
highly strategic manner.

Game theory offers a framework for analysing such strategic interactions. There-
fore, one natural solution is to make use of game theoretic solution concepts for non-
cooperative and cooperative games to analyse and to determine optimal topologies. This
approach has already been followed by many researchers. We discuss related work in
Section 5.

In the non-cooperative setting we model players with different degrees of selfishness,
which always prefer the topology awarding them the greatest utility. The first solution
concept we study, the Nash equilibrium, describes ON optimality in terms of individual
stability. The question we ask is whether a player will accept setting (some of) its
channels given the set of channels set by all the other players.

We easily notice that individual deviation is a limited means for a player to achieve
a desirable outcome, therefore we turn to a stronger solution concept, the strong Nash
equilibrium, to address group deviations. In contrast to the Nash equilibrium solution
concept, we ask whether a group can deviate to increase its payoff. The intuition is
that players can partly communicate to find solutions in which each of the deviating
group members is better off. This is quite a strong assumption and is relaxed by the last
optimality concept we consider: the core.

The core, which is rather a cooperative concept, is used to examine group deviations
which allows for the transfer of utility between players. In our opinion, this concept
is more sensible than the strong Nash equilibrium: if players are already assumed to
jointly deviate, why should they not be able to agree on a payoff division which is
beneficial for all members? We would like to note that we are not concerned with the
actual payoff distribution here. An ON which does not satisfy the requirements of the
core describes an unstable network. The instability is caused by a group of (deviating)
players which can achieve a strictly higher group utility than the sum of the utilities
of each individual member in the ON. In this paper we are only considering whether
such a group utility can be achieved and do not discuss the construction of a fair payoff
distribution.

We would like to note that there is a strong relation between these solution concepts.
Indeed, we claim that a topology in the core is also strong Nash optimal and that every
strong Nash optimal topology is also Nash optimal. A formal treatment is left for future
research.

9 Technical Report IfI-12-03
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2.3 The Opportunistic Network Game
In Section 2.2 we motivated the use of game theory to give a characterisation of optimal
ONs, that is, optimal topologies for an ONF. If we assume no cooperation between
players, in particular no payoff distribution, the utility of a player is given by the value
of its goal, if satisfied, weighted with a factor describing the incentive to contribute
to the goals of other players minus the costs of the channels established by this very
player.

Definition 2.14 (Utility ui(O)). The utility of player i in the ON O is defined as

ui(O) =

{ (
β |SAT(O)|

|P| + (1− β)
)
v(i)− cost i(O) if φi is satisfied in O,

−cost i(O) otherwise.

where SAT(O) = {j : φj is satisfied in O}, and β ∈ [0, 1] is a scaling factor.
We say that a player i (strictly) prefersO overO′ iff ui(O) > ui(O′); then, we write

O �i O′. Analogously, we define �i with respect to ≥. (We would like to note that in
Section 4 we will be more concrete about what “satisfaction” means wrt. to a specific
language to express goals.)

Remark 2.15 (The scaling factor β and non-cooperative players). The scaling factor
β describes the player’s attitude concerning the satisfaction of other players’ goals.
In the examples that follow, we consider β to be 0 (completely indifferent to whether
or not the goals of other players are satisfied), 1 (completely motivated to help other
players satisfying their goals) and 0.5 (in-between). Thus, an agent becomes more
indifferent (resp. more interested) to satisfying other players’ goals, if β → 0 (resp.
β → 1). However, even if players are fully interested, they only help others if their
goal is satisfied and has a strictly positive value. Note that for β = 0 we get the setting
described in [2].

Finally, we note that for β > 0 the definition of the utility function contains a coop-
erative flavor. Again, we would like emphasize that that the value of β is defined by the
opportunistic network application and not by the players themselves.

Moreover, players are also selfish in the sense that if their individual goal is not
satisfied they have no incentive to set up any communication channel.

Remark 2.16 (Utility-Value Dependency). The overall Utility
∑
ui(O) is always smaller

than or equal to the sum of all values the players get when their goals are achieved, i.e.,∑
ui(O) ≤

∑
v(i). This can easily seen as follows:∑

i∈P ui(O) ≤
∑

i∈P(β |SAT(O)|
|P| + (1− β))v(i)− cost i(O)

≤
∑

i∈P(β + (1− β))v(i)− cost i(O)
=

∑
i∈P v(i)− cost i(O)

≤
∑

i∈P v(i).

The costs of a player depend on the channels it creates. From a game theoretic
perspective these are the actions of the player, i.e. an action of a player is a set of tran-
sition/channels. But when it comes to an implementation of our approach, the system
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is responsible for processing user preferences, and computing the appropriate actions
for each player (in a centralized or distributed fashion). Therefore, setting up channels
is the task of the system, which users cannot directly control. However, they can indi-
rectly modify the system behaviour, by modifying their preferences. Thus, the system
can be rather seen as a communication protocol each player has to follow.

Definition 2.17 (Actions). The F-actions of player i in an ONF F are given by:

Actionsi = 2{i
j−→ k | j ∈ P and k ∈ N(i)}. We define Actions = ×i∈PActionsi.

An element a ∈ Actions is called F-action profile. We omit F if clear from context.

It is easy to see that each action tuple gives rise to an F-topology and thus to an ON.

Definition 2.18 (F(a)). Given an F-action profile a = (a1, . . . , a|P|) we use F(a) to

refer to the ON (F , T ) where T = (P, (
⋃

i∈P ai) ∪ {i
i−→ i | i ∈ P},Props, I).

Now it is easy to see that for each ON O = (F , T ) there is an F-action a such that
O = F(a) and vice versa. Hence, we define the utility for player i for an F-action
profile a as the utility of i in F(a):

(?) ui(a) := ui(F(a)).

We are ready to associate an ONF with a strategic game:

Definition 2.19 (Opportunistic Network Game). LetF be an ONF. TheF-opportunistic
network game (ONG), is given by the tuple GF = (F ,Actions, u) where:

• Actions is the set of F-action profiles defined in Def. 2.17 and

• u : P ×Actions → R is the payoff function defined in (?).

We do also lift the preference relations � from Definition 2.14 to action profiles: a �Fi
a′ iff F(a) �i F(a′). Relation �Fi is defined analogously.

Example 2.20 (Simple ONG). The scenario from Example 1 formulated as an ONG
GF = (F ,Actions, u) looks as follows:

• F is defined as in Example 2.4,

• Actions1 = 2{1
j−→2,1

j−→3|j∈P}, Actions2 = 2{2
j−→1,2

j−→3,2
j−→4|j∈P}, Actions3 =

2{3
j−→1,3

j−→2,3
j−→4|j∈P}, Actions4 = 2{4

j−→2,4
j−→3|j∈P}.

• The following action profile a ∈ Actions results in the ON from Fig. 2:
a = ({1 1−→ 3, 1

2−→ 3}, {2 2−→ 1}, {3 1−→ 4}). Let β = 0. The utility of this action
profile is given by:

u1(a) = −2,
u2(a) = 20− 6 = 14,
u3(a) = 0− 1 = −1,
u4(a) = 0− 0 = 0.
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If the agents are more cooperative (β = 1
2 ) it changes to:

u1(a) = −2,
u2(a) = 1

2 ·
3
4 · 20 + (1− 1

2 ) · 20− 6 = 11.5,
u3(a) = 1

2 ·
3
4 · 0 + (1− 1

2 ) · 0− 1 = −1,
u4(a) = 1

2 ·
3
4 · 0 + (1− 1

2 ) · 0− 0 = 0.

Finally, if the agents are fully cooperative (β = 1) it becomes:

u1(a) = −2,
u2(a) = 1 · 34 · 20 + (1− 1) · 20− 6 = 9,
u3(a) = 1 · 34 · 0 + (1− 1) · 0− 1 = −1,
u4(a) = 1 · 34 · 0 + (1− 1) · 0− 0 = 0.

In the following section we discuss how we can use ONGs to find optimal ONs.

2.4 Optimal Solutions for Non-Cooperative Players
In this section we discuss classic solution concepts of non-cooperative game theory.
That is, players choose their actions independently from each other and no payoff divi-
sion takes place.

Definition 2.21 (Nash equilibrium). A Nash equilibrium of an ONG G is an action
profile a∗ ∈ Actions such that, for each player i ∈ P and all actions ai ∈ Actionsi we
have that (a∗−i, a

∗
i ) �i (a∗−i, ai).

Intuitively, a Nash equilibrium is a stable action profile, i.e., given the actions of the
other players, no player can individually deviate and increase its payoff.

Example 2.22 (Nash solution). We continue Example 2.20. First of all, notice that
player 4’s and player 3’s goal value are zero, therefore player 3 will not set up any
channel since the costs would decrease his utility. A channel from player 4 to player
3, however, costs nothing, thus player 4 has no incentive to deviate from the choice of
setting (or not setting) such a channel, no matter what other players do. Additionally,
player 4 will not establish a channel to player 2 because it would decrease its utility.
Thus, we have two distinct scenarios: (i) player 4’s action contains 4

2−→ 3 (which
helps satisfying player 2’s goal) or (ii) player 4’s action is an arbitrary member of O =

2{4
i−→3|i∈{1,3,4}}.

Depending on β we can compute different Nash equilibria. For example, for β = 1
the following set of strategy profiles contains Nash equilibria: S1 ∪S2 ∪S3 ∪S4 where

S1 = {(∅, {2 2−→ 3}, ∅, X) | X ∈ O},
S2 = {(∅, {2 2−→ 4}, ∅, {4 2−→ 3}, X) | X ∈ O}, and
S3 = {({1 1−→ 2, 1

2−→ 3}, {2 2−→ 1, 2
1−→ 4}, ∅, X) | X ∈ O}

S4 = {({1 1−→ 2}, {2 1−→ 4, 2
2−→ 4}, X ∪ {4 2−→ 3}) | X ∈ O}.
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Let us refer to the following action profiles as follows:

NE1 = (∅, {2 2−→ 3}, ∅, ∅) ∈ S1

NE2 = (∅, {2 2−→ 4}, ∅, {4 2−→ 3}, ∅) ∈ S2

NE3 = ({1 1−→ 2, 1
2−→ 3}, {2 2−→ 1, 2

1−→ 4)}, ∅, ∅) ∈ S3

NE4 = ({1 1−→ 2}, {2 1−→ 4, 2
2−→ 4}, {4 2−→ 3}) ∈ S4

Figure 3 shows the ONs associated with NE2 and NE3 and Figure 4(a) shows NE4.
To increase readability, we have omitted all propositions except Internet and VPN.

Note that in the case of NE2, player 2 cannot deviate from 2
2−→ 4 to obtain a better

payoff as player 4 has set the channel 4
2−→ 3. This profile give player 2 utility 14.

This scenario emerging from NE2 leaves player 1 with its goal unsatisfied, however the
player has no better alternative, given the actions of the other players. The utility values
for β = 1 are given in the following: For β = 1 (fully interested):

a ∈ S1 : u1(a) = u3(a) = u4(a) = 0
u2(a) = 3

4 · 20 + 0 · 20− 8 = 7

a ∈ S2 : u1(a) = u3(a) = u4(a) = 0
u2(a) = 3

4 · 20 + 0 · 20− 1 = 14

a ∈ S3 : u1(a) = 4
4 · 40 + 0 · 40− 6− 1 = 33

u2(a) = 4
4 · 20 + 0 · 20− 6− 1 = 13

u3(a) = u4(a) = 0

a ∈ S4 : u1(a) = 4
4 · 40− 6 = 34

u2(a) = 4
4 · 20− 2 = 18

u3(a) = u4(a) = 0

Finally, Figure 4(b) shows a network which does not correspond to a Nash equilib-
rium because player 2 would be better off removing the channel to player 3.

Also for other values of β some Nash equilibria disappear. For example, for β = 0,
NE2 remains a Nash equilibrium whereas NE4 is no longer a Nash equilibrium although
it offers a higher utility for player 2. In Example 2.32 we will see that the profile NE4

is in the core of the same game.

A nice property of the Nash Equilibrium is that it ensures efficiency concerning the
ON, i.e., it removes channels that are unnecessary and/or channels that are set to fulfil
a goal, which is already fulfilled by a better path. In Fig. 4(b) the channel 2

2−→ 3 is
redundant since the goal of player 2 is already fulfilled by a = ({2 2−→ 1}, {1 2−→ 3}).

Remark 2.23 (Limitations of Nash Equilibrium). We can easily notice that, as β ap-
proaches 0, we obtain fewer Nash Equilibria. In Example 2.22, for values of β which
are strictly lower than 1

10 , the action profiles from S3 are no longer Nash Equilibria,
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Figure 3: For β = 1, Figure (a) shows Nash Equilibrium NE2; and Figure (b) the Nash
equilibrium NE3. Again, we omit the reflexive edges in the interpretation as ON, cf.
Definition 2.18.
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Figure 4: For β = 1, Figure (a) shows the Nash Equilibrium NE4; and Figure (b)
a slightly modified ON that is not a Nash Equilibrium. Again, we omit the reflexive
edges in the interpretation as ON, cf. Definition 2.18.

since Player 1 may now achieve a higher utility by not setting the channel 1
2−→ 3, even

though the goal of Player 2 is now not satisfied. The situation is the same from Player
2’s perspective (and regarding the channel 2

1−→ 4), but for values of β lower than 1
5 .

When β is 0, no player will set channels for others, given that the channel costs and
goal values are non-zero. In these situations, the only Nash Equilibria that exist are
those associated to players which satisfy their goals by themselves, or in which cost-
free channels are involved. In Example 2.22 this is the case with the Nash Equilibria
from S1 and NE2, respectively.

It is easy to see that players may not behave very cooperative in the case of Nash
equilibria. If a player’s goal cannot be satisfied, the player has no incentive to establish
any non cost-free channels:

Proposition 2.24. Suppose a∗ is a Nash equilibrium such that player i’s goal is not
satisfied or v(i) = 0 in F(a∗); then for all communication channels i

j−→ k ∈ a∗i the
following is true: c(i, k) = 0. This holds for any value of β.
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Proposition 2.24 captures the intuition that players are not expected to exhibit altru-
ism, in the absence of any payoff incentive. If it was the case that c(i, k) > 0, for some

channel i
j−→ k, then player i would be better of by not setting such a channel, and

therefore a∗ is not a Nash equilibrium.

Definition 2.25 (Strong Nash equilibrium). A strong Nash equilibrium of an ONG G
is an action profile a∗ ∈ Actions such that, there is no coalition C ⊆ P and no joint
action aC ∈ ×i∈CActionsi such that we have that:

(a∗−C , aC) �i (a∗−C , a
∗
C) for all i ∈ C and

(a∗−C , aC) �i (a∗−C , a
∗
C) for some i ∈ C.

The strong Nash equilibrium a∗ is a Nash equilibrium where no coalition can be
formed that can cooperatively deviate from the action profile such that all of the mem-
bers of the coalition get a payoff at least as high as in a∗ and at least one deviating
player gets a strictly better payoff. The difference between a Nash and a strong Nash
equilibrium is that in order to ensure the property, in the latter case we have to take
all possible coalition deviations into account while for the former only single player
deviations have to be considered. This means that strong Nash equilibria are more sta-
ble then Nash equilibria but also more restrictive. Concerning the ONG a drawback of
the (strong) Nash equilibrium is that as soon as a player’s goal is not satisfied it only
executes actions without negative costs, i.e., the player becomes (more or less) passive.
This is a direct consequence of Proposition 2.24.

Remark 2.26 (Strong Nash and group deviations). Notice that, given β = 1 (fully
interested in other players goals), the Nash Equilibrium of NE3 does not ensure the
highest possible utility for Player 2, despite having his goal fulfilled. But in order to
achieve a better utility, the actions of Player 2 are not sufficient. However, players 2
and 4 can jointly achieve such an outcome.

Example 2.27 (Strong Nash Equilibrium). For β = 1 there is a unique strong Nash
Equilibrium in the previous example, which is shown in Figure 5: ({1 1−→ 2}, {2 1−→
4, 2

2−→ 4}, {4 2−→ 3}) (indeed this is NE4 from Figure 4). The Nash Equilibria from
S1 and S3 as well as NE2 are not strong, since the coalition C = {1, 2, 4} will always
prefer the action profile ({1 1−→ 2}, {2 1−→ 4, 2

2−→ 4}, {4 2−→ 3}).

2.5 Optimal Solutions for Cooperative Players
In the previous solution concepts a player is not willing to deviate if the deviation would
not increase its individual utility. This holds, even if the overall sum of the utilities of the
deviating group would be much higher. So, what if players cooperate and are allowed
to transfer utility, to set up side payments? We define the utility of a group as follows
(without explaining how the payoff is actually divided).
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Definition 2.28 (Group utility). Let X ⊆ P be a group of players andO be an ON. We
define uX(O) =

∑
i∈X ui(O). As before we define the group utility of action profiles

a ∈ Actions as uX(a) = uX(F(a)). Similarly, we also lift the preference relations �i

�i to groups of players, �X and �X , respectively.

Example 2.29 (Group utility). The group utility of the ON shown in Fig. 3(b) is:
u(O) = u(1, a)+u(2, a)+u(3, a)+u(4, a) where a = ({1 1−→ 2, 1

2−→ 3}, {2 2−→ 1, 2
1−→

4}, ∅, ∅). For β = 0 : u(O) = 46, for β = 1
2 : u(O) = 52 and for β = 1 : u(O) = 46.

Similarly, the group utility of the ON shown in Fig. 3(a) is u(O) = 19, u(O) = 16, 5
and u(O) = 14, respectively.

Finally, we lift the strong Nash equilibrium concept to the setting in which players
can transfer payoff. Now, a player may establish channels even if its goal is not satisfied.

Definition 2.30 (Core). The core of an ONG consists of the set of all action profiles a
such that there is no coalition X ⊆ P and no action profile a′ which agrees with a for
all players P\X such that a′ �X a.

Remark 2.31 (Core). We would like to note that our notion of core is somewhat differ-
ent from the standard game theoretic notion: We assume that the players who are not
deviating stick to their actions. Currently, we are also working on a slightly different
definition of the core which is more in line with its game theoretic counterpart: the de-
viating coalition on its own (without using channels from players outside the coalition)
must be better off.

Example 2.32 (Core). We continue Example 2.29. The action profile ({1 1−→ 2}, {2 1−→
4, 2

2−→ 4}, {4 2−→ 3}) yields a group utility of u(O) = 40 + 20 − (6 + 1 + 1) = 52
under β = 1 and is the only member of the core.

1

2

3

Internet

4

VPN

2
1

2

1

Figure 5: The core.

Intuitively, the core provides the best topology T in Tops(G) regarding the (social)
payoff of all players and adds some stability assumptions.

Remark 2.33 (Limitations of the core). Note that the core will not contain ONs in
which players abandon their own goal for helping others (apart for trivial cases in
which helping comes for free).
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3 Computational Setting
In the following, we introduce the temporal logic CTL (Computation Tree Logic) for
expressing players’goals in an ON.

3.1 Preferences as Temporal Formulae
In this section we define a goal of an player to be expressed as a CTL-formula. In the
following, we review the syntax and semantics of the logic.

The language of CTL [3] is given by all formulae generated by the grammar:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E(ϕ U ϕ) | E gϕ | E2ϕ.

where p ∈ Props is a proposition. The Boolean connectives are defined by their usual
abbreviations. The basic temporal operators are U (until) and g (in the next state).
The path quantifier E (there is a path) allows to existentially quantify over possible sys-
tem behaviors; that is, in our case, over communication paths. The dual universal path
quantifier A (for all paths) and the additional temporal operators 3 (eventually) and 2

(always from now on) can be defined as macros: 3ϕ ≡ > U ϕ, A gϕ ≡ ¬E g¬ϕ,
A2ϕ ≡ ¬E3¬ϕ, and Aϕ U ψ ≡ ¬E((¬ψ) U (¬ϕ ∧ ¬ψ)) ∧ ¬E2¬ψ.

Example 3.1 (Goals). The goals of Example 2.4 can be expressed as CTL-formulae
as follows: φ1 = E(¬Internet U (VPN∧A2¬Internet)), φ2 = E3Internet, and φ3 =
φ4 = >. We would like to note that one could imagine other formalizations capturing
the informal (and ambiguous) description of goal φ1. Here, we actually express that
no node with internet access is visited until VPN is true and then, that on all possible
extensions it is not possible to visit a node with internet access via a channel established
on behalf of player 1.

The standard semantics of CTL is defined over Kripke structures. Given a F-
topology T we simply ignore the labels and interpret the resulting structure as Kripke
structure. This is done by adjusting the definition of a path.

Definition 3.2 (Communication path). A communication path λ = i0i1 · · · ∈ Pω in T
is an infinite sequence of players/nodes that are interconnected by channels; that is, for
all j = 0, 1, 2, . . . , there exists some k ∈ P (not necessary the same, for all j) such that
ij

k−→ ij+1. We use λ[j] to denote the jth player (ij) on path λ (starting from j = 0)
and λ[j,∞] to denote the subpath of λ starting from j (i.e. λ[j,∞] = λ[j]λ[j+ 1] . . . ).
We write Λ(i) to refer to the set of all paths that start with player i.

Let T be a F-topology and i ∈ P be a player/node in T . The semantics of CTL-
formulae is given by the satisfaction relation |=CTL defined below:

T , i |=CTL p iff p ∈ I(i) and p ∈ Props;

T , i |=CTL ¬ϕ iff T , i 6|=CTL ϕ;

T , i |=CTL ϕ ∧ ψ iff T , i |=CTL ϕ and T , i |=CTL ψ;
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T , i |=CTL E gϕ iff there is a path λ ∈ Λ(i) such that T , λ[1] |=CTL ϕ;

T , i |=CTL E2ϕ iff there is a path λ ∈ Λ(i) such that T , λ[j] |=CTL ϕ for every
j ≥ 0;

T , i |=CTL Eϕ U ψ iff there is a path λ ∈ Λ(i) such that T , λ[j] |=CTL ψ for some
j ≥ 0, and T , λ[k,∞] |=CTL ϕ for all 0 ≤ k < j.

Finally, we define the satisfaction of goals in an ON. The idea is that player i’s goal is
satisfied if the underlying topology in which only channels intended for i are considered
satisfies its goal. We also note that the goal formula is interpreted in a communication
path starting from player i. (Note that the definition of satisfaction is also used within
an ONG.)

Definition 3.3 (Satisfaction in ON). Let O = (F , T ) be an ON. For a player i ∈ P
we write T |i to refer to the F-topology in which each transition (k, l,m) ∈→ with
l 6= i is removed. The goal φi of player i is satisfied in O, denoted by O |= φi, iff
T |i, i |=CTL φi.

In the following we give some examples to illustrate the usefulness of CTL for ex-
pressing goals. Subsequently, in Section 4 we show that CTL has good computational
properties regarding ONs, cf. Proposition 4.3.

Example 3.4. Notice that goals φ1 and φ2 described in Example 3.1 are both satisfied in
the topology T from Fig. 3 (b). T |1, 1 |=CTL φ1 since there exists the communication
path λ = 1, 2, 4, 4, . . . on which Internet is not true until (i) VPN is true and (ii)
Internet can never be true (on any path) further on. Similarly, the communication path
λ = 2, 1, 3, 3, . . . is a witness for T |2, 2 |=CTL φ2. For illustration we consider a few
other goals:

• A3VPN requires that on all paths (set for player 1) VPN must be accessible.
This is not true in Fig. 3(b), but is true if the channel 3

1−→ 4 would have been
established.

• E2(VPN ∨ E gInternet) expresses that on all paths from player 1 and at each
hop-node, VPN is true or Internet is accessible via a direct neighbour. This goal
is satisfied in T |1 if the path λ = 1, 2, . . . would exist in T |1.

4 Complexity of Finding Optimal Solutions
In the following we analyze the complexity of finding optimal opportunistic networks.
Throughout this section we assume that we are given the ONF F = (P, N,Props, c, I,
(φi)i∈P , v) with goals given as CTL-formulae, theF-topology T and thatO = (F , T )
is an ON. Moreover, we use GF to refer to the F-opportunistic network game.

Complexity results are always with respect to the size of the input. As input we take
an ON or an ONF. We measure the size of both objects in terms of the number of players
and the sum of the lengths of the goal formulae.
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Definition 4.1 (Size). We use |φi| to denote the length of the formula. The size of O
and ofF is defined as |P|+

∑
i∈P |φi| (i.e. the sizes are given by the number of players

and the sum of the lengths of all goal formulae).

We note that the number of transitions in T is polynomial in the number of players
(more precisely, ≤ |P|3, also cf. Proposition 2.8). This justifies that we base the size of
the input solely on the number of players and lengths of the formulae.

Definition 4.2 (Optimal opportunistic networks). Given an ON O = (F , T ) we say
that O is Nash-optimal (resp. strong Nash-optimal, core-optimal) if the action profile
a ∈ Actions with F(a) = T is a Nash equilibrium (resp. a strong Nash equilibrium,
in the core) of the F-opportunistic network game GF .

4.1 Verification of Optimal Solutions
The following result follows immediately from [3]:

Proposition 4.3 ([3]). For any player i ∈ P , checking whether O |= φi is P -complete
with respect to the size of O.

Now we turn to checking whether a given opportunistic network is Nash-optimal.

Proposition 4.4 (Checking Nash optimality). Checking whether O is Nash-optimal is
coNP-complete for all values of β.

Proof. Membership: We show that the complement is in NP. Let O be the given ON
and let a be the action profile with F(a) = O. We guess a player and an action ai of
i, i.e. a set of channels. Let a′ be the action profile a with ith action replaced by ai.
We then check whether F(a′) is preferred by the current player to O. If so, O is not
Nash-optimal. By Proposition 4.3 the latter can be done in deterministic polynomial
time.

Hardness: We reduce the Minimum Cover Problem2 to the complement of our prob-
lem. Given a set S, the subsets S1, . . . Sn ⊆ S, and a value m ≤ n, we introduce a
propositional symbol pu ∈ Props exactly for each element u ∈ S. We note that Props
is finite as S is finite. For each subset Sk, we introduce a player ik such that pu ∈ I(ik)
iff u ∈ Sk. These players all have the same goal: >. We define a special player i∗

having as goal φ∗ = ∧p∈PropsE gp (this is a finite conjunction because Props is fi-
nite). The player can establish a channel with all other players. v(i∗) has value m + 1
and c(i∗, i) = 1, for all i 6= i∗. All other costs and values are set to zero. We denote
by a the action profile in which each player sets no edge, and by O the resulting ON.
Then, there is a covering of the universe U with m subsets from S1, . . . Sn iff O is not
Nash-optimal. Now we have: there is a covering of S iff i∗ can satisfy its goal with
positive utility (by setting channels to all players/elements in the covering) iff O is not

2Minimum cover [7] takes as input a finite set S and subsets S1, . . . Sn of S as well as an integer m ≤ n.
The question is wether there are Si1 , . . . , Sim such that

⋃
j=1,...m Sij = S. This is an NP-complete

problem. Note that Sij and Sik may be equal for some 1 ≤ j, k ≤ m.

19 Technical Report IfI-12-03



Complexity of Finding Optimal Solutions

Nash-optimal. Finally, we note that the goals of all players apart from i∗ are trivially
true. Hence, the value of β does not matter.

The proof for the next proposition is done in the very same way with the only dif-
ference that one guesses a set of players and their actions (instead of a player and an
action).

Proposition 4.5 (Checking strong Nash optimality). Checking whether O is strong
Nash-optimal is coNP-complete for all values of β.

Proposition 4.6 (Checking core optimality). Checking whether O is core-optimal is
coNP-complete for all values of β.

Proof. Membership: We show that non-membership is in NP. We guess a tuple (C, a′C)
where C ⊆ P is a set of players and a′C ∈ ×i∈CActionsi an action profile of C. Let a
be the action profile with F(a) = O and let a′′ be a with C’s actions replaced by a′C ,
i.e. a′′ = (a−C , a

′
C). Now, we can construct F(a′′) and check whether a′′ �FC a in

deterministic polynomial time. So, we have shown that the problem of core-optimality
is in coNP. Hardness: The same construction as in the proof of Proposition 4.4 works.

4.2 Synthesis of Optimal Solutions
In the last section, we have shown that the verification problems are all coNP-complete.
The synthesis problem refers to the problem of constructing an optimal solution and not
to just checking wether we are given one. Formally, we are given an ONF F , one of the
three optimality concepts C (i.e. Nash, strong Nash, core) and would like to construct a
F-topology T such that O = (F , T ) is C-optimal.

Firstly, we introduce the associated decision problem to each of the three synthe-
sis/function problems: Does there exist a F-topology such that O = (F , T ) is C-
optimal?

It is easy to see that the synthesis problem is at least as hard as the associated decision
problem. Formally, we have the following result:

Theorem 4.7 (Synthesis problems). Let F be an ONF. The decision problem whether
there is a F-topology T such that (F , T ) is Nash-optimal (resp. strong Nash-optimal,
core-optimal) is in ΣP

2 .
Moreover, if such a F-topology T exists it can be computed by a non-deterministic

Turing machine which runs in polynomial time and which has access to a NP-oracle.

Proof. We show that all decision problems are in ΣP
2 : We guess a F-topology in non-

deterministic polynomial time and check whether it is optimal wrt. one of the three
optimality notions (cf. Propositions 3-5). This shows that the problem is in NPcoNP =
NPNP = ΣP

2 . Now it is also obvious that the synthesis problem can be implemented
by a non-deterministic Turing machine which runs in polynomial time and which has
access to an NP-oracle.
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Finally, we also claim hardness for the decision problems:

Claim 4.8. : The decision problem whether there is a F-topology T such that (F , T )
is Nash-optimal (resp. strong Nash-optimal, core-optimal) is ΣP

2 -complete.

Remark 4.9 (Discussion on the complexity). The complexity results justify our choice
of CTL to express goals. The model checking/verification problem of CTL is only P -
complete and the expressiveness of the language is still sufficient to express interesting
properties. Richer languages like CTL∗ and LTL do already have a PSPACE-
complete model checking problem. Also the complexities of the optimality checks and
decision problems are in line with complexity results for finding Nash equilibria etc. in
strategic games and one cannot hope for better worst-case complexity results [8]. (Note
that in our setting the number of actions is exponential in the size of an opportunistic
network frame F .)

5 Related Work
In this section we discuss related work. In [15] routing and forwarding protocols in
wireless ad-hoc networks are considered. Similar to our approach, strategic games are
used as models. The authors show that there is no forwarding-dominant protocol and
propose cooperation-optimal protocols as solution for non-cooperative selfish players.
Similarly, the authors in [6] analyze Nash equilibria of packet forwarding strategies in
a fixed network topology. Unlike other existing game-theoretic approaches, which are
aimed at describing how communication can be established in ad-hoc (or opportunistic)
networks, our work is not focused on defining routing schemes or forwarding strategies.
We consider such information to be known: the neighbourhood function N describes
all possible channels, and the cost function may encapsulate measurable channel pa-
rameters such as throughput, required emitting power, etc.

Our method is focused on taking player preferences into account, when establishing
routes in any particular type of ad-hoc network. As already seen, using languages such
as CTL, players have the ability to enforce certain restrictions on how messages should
be forwarded. Depending on the particular network at hand, our framework can be used
as a standalone tool for establishing a communication network, or as a complement to
existing routing and forwarding strategies which can now be defined on top of our
established (optimal) topologies.

The impact of offloading mobile data traffic from 3G networks is discussed in [9]
and efficient algorithms are proposed. Next, in [11] the routing problem in a delay-
tolerant network with path failures is considered. The authors introduce a framework
for studying the effectiveness of sending the same message over different paths in or-
der to maximise the delivery rate. In this approach, the expected failure of a path is
governed by a certain probability distribution. The work from [10] extends this setting.
Path failures are replaced by a mobility model, which takes into account the players’
social relationships, and assigns metrics such as popularity ranking or centrality (the
importance of a node in a metric). Using this mobility model, routing performance and
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efficiency are improved [10]. An alternative approach, based on a Markovian model of
mobility, is discussed in [1].

Quality of service (QoS) is considered in [13], from the perspective of individual
selfishness: players may often be reluctant to participate in an opportunistic network,
either for personal security issues, or for avoiding the consumption of battery power
or computational resources. The model from [13] uses competitive markets in order to
enforce optimal player QoS in an opportunistic network.

The results from [10, 13, 9] show that the behaviour of an opportunistic network is
heavily dependent on the human factor. The algorithms from [10] exploit social struc-
tures within a community, whereas [13] exploits the idea of a self-interested player
which is willing to compromise, in order to achieve some benefit (QoS). It is expected
that humans’ involvement in the way communication occurs in an opportunistic net-
work will increase, and the player’s choice in the way messages are routed will be
equally important as other performance factors.

In contrast to [10, 1] our modeling approach does not attempt to build a mobility
model. We rather assume that the set of locations which are reachable by a player are
known. As a result, our setting relies on existing methods such as [1, 11], for detecting
these locations (or selecting the most likely reachable ones).

6 Conclusions
As opportunistic networks become more popular, players would like to have more con-
trol over the way their messages are delivered in the network. As a result, routing meth-
ods that maximise delivery should also be complemented by preference-based routing
mechanisms. Our approach exploits the expressiveness of CTL for formulating rout-
ing preferences, and uses standard game-theoretic tools in order to characterize sta-
ble/optimal topologies. The solution concepts we study explore different sides of sta-
bility: against individual deviation and group deviation. For the latter, we also consider
the case when groups might decide to exchange payoff.

Future work: A limitation of our setting, is that it captures a snapshot of the evolution
of an opportunistic network: the number of players, and the way they can communi-
cate is fixed. It would be interesting to see how a dynamically changing set of players
affect the stability, and also whether computing new equilibria/network topologies can
make use of previously computed ones. Currently, goals are evaluated with respect to
the player’s position and can only express properties of the player’s message deliver
path. It would be interesting to explore games in which this restriction is removed, and
thus giving players the ability to specify properties of other player’s message delivery
paths; that is, a player’s preferences can take into account other players’ communica-
tion. Currently, we are also working on a prototypical implementation of our approach
to compare it with existing routing mechanisms. For practical use it is also important to
assess the computational complexity and run-time behavior as well as the usability. The
latter involves issues such as: how can users not familiar with logics like CTL spec-
ify properties and how can this be done on pocket devices such as mobile phones? To
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address these issues one can for example use graphical notation for CTL-formulae [5]
for describing basic goals such as: p must be accessible on some path of q must not be
accessible on any path.
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