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Abstract. Methods to induce non-thermal atmospheric pressure plasma filaments are presented with re-
lated properties for micro, streamer and prevented spark discharges, respectively, induced in planar Dielec-
tric Barrier Discharges with one electrode covered by dielectric material (mono-DBD) or point-to-plane
Corona. Two mechanisms of nano-particles formation are depicted from aerosol size distributions and TEM
analysis. 0.1–10 mJ prevented spark discharges produce 10–100 nm droplets ejected from melted craters as
well as nucleated primary particles and subsequent 10–100 nm agglomerates, by nucleation and coagula-
tion in expanding vapor jets. With smaller energy per filament, 0.1–10 µJ micro-discharges and 0.1–100 µJ
streamers, the initial local vapor fluxes emitted from spots of interaction between plasma filaments and
electrodes are reduced. Subsequent smaller primary particle density limits the local coagulation in the
vapor plume since 2–10 nm non-agglomerated crystalline metal nano-particles are produced in mono-DBD
with Au, Ag and Cu electrode. Besides, the evolution of the aerosol size from primary nano-particles to
agglomerates with transit time suggests slow coagulation of these primary metal particles in mono-DBD.
Aerosol properties depend on the energy per filament and on the electrode. The final size is controlled by
plasma parameters and transit time in and after the plasma. The aim is to underline emerging applica-
tions of atmospheric pressure plasmas for the production of tailored particles with tunable size, composition
and structure with non-thermal plasma filaments to control the resulting properties of nano-powders and
materials. Production rates and related energetic yields are compared.

1 Introduction

Suspended liquid or solid particles in gases present large
interfacial surface per unit gas volume used for heat ex-
change, filtration and heterogeneous chemistry, as well as
for the production of nano-particles at atmospheric pres-
sure. So-called aerosol processes leading to products from
reactants with at least one step including aerosols are cost-
effective, environment friendly without liquid by-products
and energy efficient. Since high purity particles, more eas-
ily collected from gases than from liquids, are produced,
some aerosol processes are scaled up for daily production
of hundreds of tons of TiO2 nano-powders and others are
integrated in chemistry, energy, environment and health
industry [1–8]. If nano-powders are used to save raw ma-
terial, size-dependent properties of nano-materials are re-
ported for tailored nano-particles smaller than 50 nm with
mono-dispersed size distributions (geometric standard de-
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viation < 1,2 [1]). Hence, ideal nano-materials produc-
tion process should control particle size, composition and
structure of both primary nano-particles and subsequent
agglomerates.

To produce nano-materials, suspended primary nano-
particles can only be formed by evaporation of liquid
droplets leading to crystallized solute (spray drying) or
by condensation of vapors also called gas-to-particle con-
version. The so-called homogeneous nucleation occurs in
gases when the saturation vapor pressure is overcome
(as for crystallization above a saturation solute concen-
tration), when vapors are rapidly quenched by the carrier
gas. Nucleation is a bottom-up route producing suspended
nano-particles with unique composition, generally agglom-
erated. Indeed, classical nucleation processes such as
flames, lasers and plasmas lead to agglomerated primary
nano-particles [1–8].

For physical nucleation of solid materials by cooling
of expanding vapor plumes, laser and sparks trigger the
saturation and produce nanometer-sized particles. In that
case, vapors are emitted from solid surface vaporized by
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short successive interactions between the surface and the
laser or the plasma confined in a filament due to reduced
diffusion at atmospheric pressure. This surface of interac-
tion is hereafter referred to as spot with diameters from
tenth to hundreds micrometers for plasma filaments. The
related high power densities (>1012 W m−2) lead to
concentrations of diffusive primary nano-particles
(>108 cm−3) which are favorable for fast coagulation with
subsequent formation of agglomerates of primary nano-
particles. Mechanisms of vapor formation by ion sputter-
ing and/or evaporation are not addressed here, as already
discussed in [7].

In order to limit the coagulation, smaller initial den-
sity of nucleated nano-particles is achieved by reducing
the power density in the spot to limit the initial vapor
flux from solid surfaces. To do so, non-thermal plasma
filaments such as micro-discharges induced in millimeter
plane-to-plane Dielectric Barrier Discharges (DBD), as
well as more energetic streamer and prevented spark dis-
charges induced in centimeter asymmetric point-to-plane
gaps, are used.

This paper focuses on plasma filaments (streamer,
prevented spark and micro-discharges) on metal and
dielectric oxides, for the production of nano-particles by
non-reactive nucleation in carefully conditioned gas
(i.e., without any organic vapor). Other nano-powders
production processes by nucleation in thermal sparks [2]
or by reactive nucleation in non-thermal plasmas with
gaseous precursors, as well as particle processing by
injection in non-thermal plasmas for electro-deposition or
for functional coatings by post-discharge reactivity [9],
or in thermal plasmas for purification and surface coat-
ings [2] are not covered in this paper. For the chemical
route of nucleation from gas-phase reactions in DBD,
the reader can refer to [7,10–12] for gaseous pollution
control and to [1,2,10,11,13,14] for the production of
pure nano-particles by precursors injection in the
plasma.

Different means to induce atmospheric pressure plasma
filaments are presented with related electro-thermal
properties in compact, low-cost and simple discharge
arrangements for the production of nano-particles from
the surface of a bulk solid material. Nano-particle
formation mechanisms are defined from collective
online aerosol size distribution measurements and TEM
analysis. Droplet ejection from melted craters is observed
with prevented spark discharges only, whereas local
nucleation and coagulation in expanding vapor plumes
emitted from spots on surfaces submitted to any plasma
filament occur even with less energetic streamers and
micro-discharges.

Key parameters of formation and growth of particles
by nucleation and coagulation in plasmas are presented.
Composition, size and structure of primary nano-particles
and agglomerates are related to plasma parameters, to
physico-chemical properties of materials and to transit
times in and after the plasma. Finally, production rates,
energetic yields and related powders properties are
compared.

2 Production means and properties
of non-thermal plasma filaments

Different non-thermal plasmas can be induced by the
so-called streamer discharge with filamentary structures,
based on electron avalanches sustained by a high and con-
fined space-charge field [15]. This ionization wave propa-
gates at some 107 cm/s and leads to a conductive plasma
filament for a few tens of nanoseconds [16]. To maintain
the non-thermal state of the plasma filament (Telectron <<
Tgas), the transition to thermal spark must be avoided by
limiting the current intensity (e.g., <100 mA DC in air at
Standard Temperature and Pressure, STP).

Micro-discharges in AC dielectric barrier discharge (see
Fig. 1a) are generated using plane-to-plane millimeter gaps
with a dielectric material inserted between the electrodes
or deposited on at least one electrode. The production
of metal nano-particles implies to use metal on one side
and dielectric material on the other, in so-called mono-
DBD. Thin and transient filaments (diameter ∼100 μm,
duration ∼20 ns) are homogeneously distributed in space
during half of each half-AC period. Each filament can
be considered as local ion/electron, excited species and
vapors sources. One important feature of these micro-
discharge filaments is the constant energy per filament,
whatever the applied potential and the frequency in the
range 1–60 kHz [17]. This allows one to perform post-
discharge macroscopic measurement of aerosol produced
by a controlled number of similar plasma filaments to eval-
uate the production per filament. However, the energy per
micro-discharge can be varied from 0.1 to a few micro-
joules with the gas composition and density (i.e., with gas
temperature at standard pressure), as well as with the
specific capacitance of the gap.

Streamer discharges can be induced in asymmetric
point-to-plane gaps: when the positive sharpest electrode
is polarized either in DC or transiently by a
sub-microsecond voltage pulse, shorter than the time re-
quired for the streamer-to-spark transition depicted in
Figure 1b. Below the spark threshold potential, no spark
occurs and successive streamers filaments are developed
in the gap. Small pF gap capacitance limits the energy
delivered in the filament which is too small to sustain the
formation of a thermal spark. The energy consumption for
the streamer development, released from the capacitance
(C0 between the point and all earthed parts), induces a
fall of potential. C0 is then recharged by the regulation ca-
pacitance. Meanwhile, there is a small increase in the tem-
perature up to a few hundreds of degrees above ambient
temperature as mentioned in Table 1. For a given inter-
electrodes gap length, the energy per 10–100 ns streamer
filament evolves with the potential from 0.1 to 10 μJ [18].

Prevented spark discharges: Above the DC spark
threshold potential, thermal sparks develop if the current
is not limited. However, the current increase and the re-
lated thermalization can be limited with an appropriate
external electrical regulation circuit – see (RC)regulation

in Fig. 1b. In that case, the streamer is followed by a
prevented spark, depicted in Figure 1b. Indeed, during
the dead time between the streamer and the prevented
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Fig. 1. (Color online) Pictures, setups to induce non-thermal plasma filaments and related current pulses in: (a) micro-discharges
in plane-to-plane AC DBD. (b) Streamer and prevented spark discharges in DC point-to-plane gap (Cregulation = 120 pF,
R = 107 and Rregulation = 5×105 Ω) [7].

Table 1. Set of properties of non-thermal plasma filaments (micro, streamer and prevented spark discharges).

Micro-discharges in AC DBD Streamer discharges prevented spark discharges in DC CORONA

Gap geometry Plane-to-plane Point-to-plane
Electrodes Metal + dielectric material Metal point and metal or dielectric plane
Gap width 0.1 to few millimeter 5–20 mm

E (J per filament) 0.1–10 µJ 0.1–10 µJ 0.1–10 mJ
Filament diameter (µm) <100 10 to few hundreds 100 to few thousands
Plasma temperature (K) Tamb. + 50 Tamb. + [50; 400] few thousands

spark, the gas density decreases in the filament, until E/N
reaches values which for the ionization dominates over
electron attachment. The current and related tempera-
tures of the plasma and probably of the spot strongly
depend on resistors (R, Rregulation) and capacitances
(Cregulation, C0). In such a case, the current increase is
“fed” by Cregulation without allowing the spark thermaliza-
tion, because the energy stored in Cregulation is delivered
through a control resistance Rregulation, in the so-called
non-thermal prevented spark discharges with energy per
filament up to 10 mJ and neutral gas temperature in the
filament below 2000 K at atmospheric pressure [18,19].

3 Nano-particle production mechanisms
in plasma filaments

3.1 General setup and aerosol measurements

The experimental setup is presented in Figure 2. Plasma
reactors are fed with 1–10 lpm N2 at STP. Reactive nucle-
ation from gaseous impurities conversion into condensable
species by reactive non-thermal plasmas can be suppressed
using filtered dry inert or non-reactive gases. Then what-
ever 99.99–99.999% purities used, similar aerosol measure-
ments are performed and detected aerosol can only be
produced by physical nucleation of vapors emitted from
spots of plasma filaments.

Particle size distributions and number concentration:
Since local nucleation and coagulation conditions vary in
time and space around each vapor source, collective mea-
surement has to be performed on suspended particles for
statistical meaning. The aerosol size distribution is

measured online with a Scanning Mobility Particle Sizer
(SMPS) and concentration with a Condensation Particle
Counter (CPC), for particles with diameter higher than
3 nm. Both modal diameter (highest concentration per
diameter class) and geometric standard deviation of size
distribution were measured.

Collection for TEM analysis: The aerosol is collected
on TEM grids at 0.3 lpm, downstream the plasma aerosol
generator by diffusion, thermophoresis and image force
during 15 min at particle number concentration of
107 cm−3. Indeed, additional characteristics, such as the
size of primary nano-particles and the shape of agglomer-
ates, were derived from TEM pictures, the atomic compo-
sition from nano-probe EDX and the crystalline structure
from Selected Area Electron Diffraction (SAED).

3.2 Physical nucleation and agglomeration
in expanding vapor jets/clouds

It is shown that composition, size and structure of pri-
mary nucleated nano-particles are related to electrode ma-
terial, plasma parameters and transit times in and after
the plasma. The aerosols produced by prevented spark,
streamer and micro-discharge filaments are compared.

3.2.1 DC streamer and prevented spark discharges →
agglomerated metal nano-particles

Aerosol size distributions are shown in Figure 3a for 5 μJ
streamers and for 0.1–0.5 mJ prevented spark discharges
produced in N2 on metals. Both primary nucleated nano-
particles smaller than 5 nm and agglomerates are
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Fig. 2. (Color online) General setup for aerosol production studies versus electro-thermal properties of plasma filaments.
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Fig. 3. (Color online) (a) Particle size distributions from 5 µJ streamer and 0.1–0.5 mJ prevented spark discharges. (b) TEM
pictures of agglomerates of 5 nm primary particles of copper from the plane and 100–500 nm solidified drops from the rhodium
point and from the copper plane produced by prevented spark discharges.

produced by these plasma filaments, reaching the cath-
ode plane electrode.

Figure 3a also shows that higher vapor flux, nucleation
rate, and local primary nucleated nano-particles density
lead to faster coagulation when primary nano-particle con-
centration increases with the energy per filament, varying
from 5 μJ streamer to sub-mJ prevented spark discharges.

Finally, EDX analysis confirms that both primary
nucleated and agglomerated nano-particles collected down-
stream the plasma are composed of metal from the elec-
trodes. This confirms the origin of vapors produced by
interaction of transient energy flux deposited by plasma
filaments on electrode surface.

Properties of primary nucleated nano-particles pro-
duced in N2 can be controlled, since:

– the nature of the electrode surface controls the final
chemical composition of nano-particles;

– the energy per filament depends on gap geometry, DC
applied potential and controls the initial vapor flux
from the surface and subsequent diameter and concen-
tration of primary nucleated nano-particles.

The growth dynamic of primary nano-particle into
agglomerates is identical to the one that takes place in

classical nucleation processes. Indeed, high particle
concentration leads to particle growth by Brownian coag-
ulation. As a consequence, the initial bimodal size distrib-
ution of nucleated and agglomerated nano-particles turns
into the so-called unimodal self preserving size distribu-
tion, as shown in Figure 3a for higher energy per prevented
spark discharge [1,20,21]. Hence, interaction of plasma fil-
aments with surface in carefully conditioned gases without
any organic vapor leads to transitory bimodal number size
distributions corresponding to nucleation and agglomera-
tion modes. Nucleation occurs close to the vapor source
leading to nanometer primary particles, which then coag-
ulate, as recently shown in thermal sparks [6]. Hence, the
final size and properties (fractal dimensions and porosity)
of agglomerates depend on the initial vapor flux and on
the post-production growth and losses in and downstream
the plasma reactor.

Figure 3b and related EDX analysis show 10–100 nm
agglomerates of 5 nm primary particles of copper from
the plane with a 20 nm modal diameter as depicted in
the related size distribution in Figure 3a for 0.5 mJ pre-
vented spark discharge (8 mm gap at 19 kV). Figure 3b
also shows 100–500 nm solidified drops from the rhodium
point and from the copper plane. Since there is no shoulder
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in this size range on the related number size distribution of
Figure 3a, the solidified droplets are produced in much
lower concentration than the primary and agglomerated
nano-particles. The mechanism of production of these big-
ger nano-droplets is discussed below (cf. Sect. 3.3).

To sum up, the mass per filament of material vapor-
ized from the surface is confirmed to depend on the en-
ergy per discharge filament [7]. That is the reason why we
focus on the nucleation with “low energy” discharge fila-
ments to reduce the local vapor flux, nucleated primary
nano-particles density and subsequent agglomeration, to
prevent the size distribution from enlargement and more
dispersed related properties of such nano-powders
produced in sparks.

3.2.2 Micro-discharges → non-agglomerated nucleated
metal nano-particles

For micro-discharges from 0.1 to 1 μJ induced in DBD,
the number of filaments per half-period, the mean surface
temperature and particle concentration increase with volt-
age at constant energy per filament. Non-agglomerated
particles from mono-DBD with gold electrode of a few
square centimeters and transit times in the ms range have
a mean size of about 4 nm (cf. Fig. 4a). Here, particle size
distributions were determined from the TEM images by
counting at least 500 particles. The size distribution was
fitted with a log-normal distribution to define the modal
particle diameter and the geometrical standard deviation
(σ). From the concentric circles on SAED image, the 2.355
and 2.039 Å lattice constants can be attributed to (1 1 1)
and (0 0 2) reflection planes of crystalline gold.

Figure 4b shows particle size distributions from mono-
DBD for different gap lengths, normalized for comparison.
This normalization consists in dividing the relative den-
sity of particles dN/N, measured for each diameter step
(ddp) by the width of the diameter step (ddp or dlog dp

with linear or logarithmic × scales) to prevent from shape
modification of the size distribution eventually induced by
particles number concentration measurements over differ-
ent size steps along the size distribution. The modal di-
ameter increases with the gap length, as expected from
higher energy per micro-discharge in larger gaps. Hence,
the energy per filament in DBD which depends on the
gap geometry and dielectric properties (gap length, spe-
cific capacitance related to thickness and permittivity of
dielectric material [3,9]) controls the local initial vapor
flux from surfaces. The mass of material vaporized per
filament depends on the energy per filament, for micro-
discharges as for streamer and prevented spark discharges,
depicted above. In addition, for the same energy per fil-
ament, more concentrated aerosols are produced, i.e., the
production rate (in g h−1) increases when higher evapora-
tion rates are reached for metals with lower latent heat of
vaporization and higher saturation vapor pressure. Hence,
alumina nano-particles are produced in mono-DBD with
alumina as dielectric material, in much smaller concentra-
tion than metal nano-particles, as derived from EDX.

With micro-discharges, the production of non-
agglomerated metal nano-particles has been achieved with
different metals at constant energy per filament and num-
ber of filaments per half-period in mono-DBD of a few
square centimeters. Here, primary aerosol is smaller
than 5 nm for gold, silver and copper mono-DBD, sup-
porting that the initial local vapor flux from spots of in-
teraction between plasma filaments and electrodes was
successfully reduced using micro-discharges, with subse-
quent smaller primary particle density which limits the
local coagulation.

Final size distributions of the so-formed aerosols also
depend on the number of filaments per half-period, which
can be varied within one order of magnitude with the
applied voltage and more markedly with the surface of
electrodes. Indeed, Figure 5 shows spherical agglomerates
with modal diameter from 10 to 20 nm, made of a few 5 nm
primary particles, for transit increased from ms (discussed
above for mono-DBD of a few square centimeters) to 50 s
in a 0.25 m2 mono-DBD. This evolution of the aerosol size
from primary nano-particles to agglomerates with transit
time suggests slow coagulation of these primary metal par-
ticles in mono-DBD. This confirms that agglomeration of
less concentrated primary nano-particles can be controlled
or even suppressed in “low energy” micro-discharge fila-
ments, contrary to streamer and prevented spark
discharge filaments, where high initial density of nano-
particles and fast agglomeration lead to larger 10–100 nm
aggregates (cf. Fig. 3).

3.3 Prevented spark discharges → melted craters
and nano-droplet ejection

With energy ranging from 0.5 to few millijoule prevented
spark discharge filaments, sub-micron-sized craters are ob-
served on metal electrode, as depicted in Figure 6a. Droplet
ejection mechanism has recently been proposed [22] to
account for the 10 to few hundreds nm solidified metal
droplets observed on the electrode of prevented spark dis-
charge as well as in the collected aerosol (cf. Fig. 3b).
Indeed, micro-droplet ejection has been observed from
thermal spark filaments with energy and diameters higher
than those of prevented spark discharge filaments. This
has been attributed to the recoil force from the solid bot-
tom of the micron-sized crater on melted metal [23]. These
spherical solidified drops are much less concentrated than
the primary nucleated nano-particles and agglomerates,
since there is no shoulder in this size range on the re-
lated size distribution of Figure 3a produced by prevented
spark discharge, where the modal diameter is related to
agglomerates.

3.4 Production rate and cost of nano-powder
formation by non-thermal plasma filaments

Production rates are higher with more energetic prevented
spark (0.1–1 mg Cu/h/point) than with micro-discharges
(10–100 mg Cu/h per m2). Conversely, the energy cost per
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gram of nano-powder is 10–100 times higher for prevented
spark discharge than for micro-discharges in DBD, but
still much lower than for thermal sparks (of the order of
J ng−1). Indeed, in hotter prevented spark than streamer
and micro-discharges, a greater part of the input power is
dissipated into gas heating.

As a result, non-thermal plasma filaments may be used
as nano-material production processes at reduced energy
cost. However, large DBD of few hundred square meters
would be required to reach production rates of the or-
der of g h−1. This is not excluded since such produc-
tion rate is large for nanotechnologies with respect to
the added value of nano-products and since large surface
mono-DBD exists and may be recycled. Indeed, such

industrial mono-DBDs were used until the last decade
for ozone production. With electrode surface up to a few
hundred square meters per system, these industrial mono-
DBD ozonizers may be tested for aerosol production
processes in pure gases.

Prevented spark discharges also have great potential-
ities since higher production rates can be reached. More-
over, prevented spark discharges allow one to control
accurately the formation conditions (heating/cooling rates
and intensities) to study the properties of nano- and ag-
glomerated particles. The possible control of the quality
of nano-products (size, composition, crystalline structure
of primary particles and agglomeration) by prevented
spark discharges may be tested to produce very high added
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value crystalline metal, dielectric oxides or polymer nano-
particles at atmospheric pressure. Indeed, electro-thermal
properties of the prevented spark discharge are controlled
by an electrical circuit, the voltage and the gap geome-
try as well as by the gas flow and injection in the gap, as
depicted in Section 2.

Finally, the development of nano-material production
processes will also depend on the process stability. The
issue of electrode material depletion still has to be ad-
dressed to keep the electrode position, the gap length and
the related electric field, discharge currents and tempera-
tures as constant as possible with minimum raw material
losses. Continuously renewed electrode is already used in
commercial spark generator and may be used as well for
prevented spark discharges.

4 Conclusion

This paper intends to underline emerging applications of
atmospheric pressure plasmas for the production of tai-
lored particles with tunable size, composition and struc-
ture to control the resulting properties of nano-powders
and materials. Indeed, nano-materials with size-dependent
properties can be produced with non-thermal plasma
filaments if fast coagulation is limited either by immediate
on-line post-production processing or at a concentration
lower than 107 cm−3:

– The energy deposited in the spot of discharge fila-
ments controls the local vapor flux from each filament
(with voltage in asymmetric gap and with gap length
in Dielectric Barrier Discharges), the subsequent lo-
cal particle concentration and the related growth by
“fast” agglomeration in the vapor cloud to produce
nucleated nano-powders with tailored size.

– Two mechanisms of formation of nano-particles by
plasma filaments on metal electrodes have been de-
picted from aerosol size distributions and TEM analy-
sis of collected particles: 0.1–10 mJ prevented spark
discharges produce 10–100 nm droplets ejected from
melted craters as well as nucleated primary particles
and subsequent 10–100 nm agglomerates, formed by
nucleation and coagulation in expanding vapor jets.
With smaller energy per filament, 0.1–10 μJ micro-
discharges and 0.1–100 μJ streamers, the initial local
vapor fluxes emitted from spots of interaction between
plasma filaments and electrodes are reduced. Subse-
quent smaller primary particle density limits the local
coagulation rate in the vapor plume since 2–10 nm non-
agglomerated crystalline metal particles are produced
in mono-DBD of a few square centimeters with Au,
Ag and Cu. Besides, 10–20 nm agglomerates may be
formed by slow coagulation by increasing the transit
time in larger mono-DBD.

Hence, aerosol with narrow size distribution can be
produced at atmospheric pressure by non-thermal
plasma filaments to reach size-dependent properties of
nano-materials with high specific surface area of any
composition (polymer, metal, multi-metal oxides, nitrides,
carbides and borides).

An interesting feature of prevented spark discharge
is that thermal gradients around each filament can be
tuned to define the cooling rate of vapors and the
structure of the primary nano-particle (e.g., with spark
in water [10]). More generally, new non-thermal plasmas
at atmospheric pressure, such as the micro-hollow cathode
micro-plasmas, micro-wave guided filament have been de-
veloped in the last decade and may be used to reach higher
production rates of nano-powders by reactive nucleation.
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