
IFI TECHNICAL REPORTS
Institute of Computer Science,

Clausthal University of Technology

IfI-05-03

Clausthal-Zellerfeld 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45269184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heterogeneous Temporal Probabilistic Agents∗

Jürgen Dix Sarit Kraus V.S. Subrahmanian

Clausthal University of Technology, Institut für Informatik
Julius-Albert-Str. 4, 58678 Clausthal, Germany, dix@tu-clausthal.de

Bar-Ilan Univ. and University of Maryland
Dept. of CS, Ramat-Gan, 52900 Israel, sarit@macs.biu.ac.il
Department of Computer Science, University of Maryland

College Park, MD 20742, vs@cs.umd.edu

Abstract

To date, there has been no work on temporal probabilistic agent reasoning on top
of heterogeneous legacy databases and software modules. We will define the con-
cept of a heterogeneous temporal probabilistic (HTP) agent. Such agents can be
built on top of existing databases, data structures, and software code bases without
explicitly accessing the internal code of those systems and can take actions compat-
ible with a policy or operating principles specified by an agent developer. We will
develop a formal semantics for such agents through the notion of a feasible tem-
poral probabilistic status interpretation (FTPSI for short). Intuitively, an FTPSI
specifies what all an HTP agent is permitted/forbidden/obliged to do at various
times t. As changes occur in the environment, the HTP agent must compute a new
FTPSI. HTP agents continuously compute FTPSI’s in order to determine what
they should do and hence, the problem of computing FTPSI’s is very important.
We give a sound and complete algorithm to compute FTPSI’s for a very large class
of HTP agents called strict HTP agents. In a given state, many FTPSI’s may exist.
These represent alternative courses of action that the HTP agent can take. We pro-
vide a notion of an optimal FTPSI that selects an FTPSI optimising an objective
function and give a sound and complete algorithm to compute an optimal FTPSI.

1 Introduction
Past works on reasoning about time and uncertainty overwhelmingly assume (i) that
the state of the world is represented in some uniform (usually in logic) way selected
by the designer of the reasoning mechanism, and (ii) that all data in the state can be

∗This work was supported in part by the Army Research Lab under contract DAAL0197K0135, the CTA
on Advanced Decision Architectures, by ARO contract DAAD190010484, and by DARPA/RL contract num-
ber F306029910552 and by NSF grant IIS0222914.

1

2 Dix et al.

directly manipulated by the reasoning paradigm. Unfortunately, in today’s world, these
assumptions are true only in a small class of applications.

First, note that most real world systems must manipulate existing databases and must
use existing, tried and tested code. For example, a simple stock market application that
requires reasoning about time and uncertainty (when will a given stock reach a given
price?) may access a wide variety of legacy sources. These may include databases
(e.g. of past stock performance, past Dow Jones data, performance of similar stocks
in the past, etc.), stock market models encoded as legacy code that analyzes stock per-
formance (numerous such models exist), and corporate risk assessment programs (of
which numerous models exist). In order for an agent to recommend stock portfolios to
individual or corporate investors, it needs to leverage all these existing, proven data-
bases and software modules. We are not aware of any existing method for temporal
probabilistic reasoning that can explicitly do this.

Second, most real world data systems only provide limited access to their data. In
other words, many corporate databases only allow third party programs to access their
database through programs that they provide. There are at least two good reasons for
this. The database may be owned by a third party who only wants their data accessed
by code that they have written (and hence trust). In addition, they may not want all of
their data to be accessible to third parties (e.g. their databases may contain profiles of
the clients which they may want to keep hidden). If the state of the world is contained
in such data sources, this means that a reasoning program only has access to that state
via third party function calls. We are not aware of any existing method to reason about
time and uncertainty that can support this.

Third, consider a simple corporate employee database. Such a database almost
always has at least ten columns (including fields like firstname, lastname
(with domain string), social security number (with domain all 9 digit integers), as
well as many other fields like streetnum, streetname, zip, projectid,
salary, hire-date, and many more. Even if we consider just these three fields
and assume the length of strings to be at most 10 characters long. we have a total state
space of 2610×2610×109. This is an enormous state space for what almost all database
managers would consider a very tiny database ! Real databases (e.g. the US military’s
GCCS and MIDB databases, or Walmart’s inventory database) are orders of magnitude
larger. We are not aware of any existing method to reason about time and uncertainty
that can reason about such large state spaces. Furthermore, almost every commercial
database supports an SQL API (application program interface) which means autho-
rized users can update the database via appropriate programs containing SQL updates
statement - this in turn is an infinite set of possible statements. An attempt to treat this
via a tree-like search space will encounter a difficult scalability problem because of the
infinite branching of such a tree (in addition to the enormous number of states).

In this paper, we propose the concept of heterogeneous temporal probabilistic (HTP)
software agents that address the above shortcomings of past paradigms:

1. HTP agents provide a syntax within which agents that perform temporal and

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 3

probabilistic reasoning on top of legacy databases and data sources can be pro-
grammed with application specific action policies. To date, we have seen no sin-
gle uniform syntax to perform temporal-probabilistic reasoning on top of legacy
pieces of code. There are certainly applications (e.g. [Chalupsky et al., 2001])
which use Markov decision processes [Puterman, 1994] to make decisions on top
of specific information sources, but no principles to do this across arbitrary data-
bases and/or legacy software applications have been articulated to our knowl-
edge.

2. HTP agents are defined directly in terms of the application program interfaces
(API ’s) that a third party piece of code and/or database provides. Note that vir-
tually every decent commercial software package has an API . This allows HTP
agents to support the goal of encoding decision making policies in the presence
of limited access to state information. No paradigm we are aware of to date can
do this.

3. The state of an HTP agent consists of whatever data is stored inside the data
structures of the code on top of which the agent is built. This state may or may
not reflect information about the state of the real world, but it is the set of all
computational objects that the program is aware of. HTP agents consist of a set
of rules that are built on top of the underlying code’s API calls in such a way
that they can automatically take actions in response to changes in their state.
Such actions can include for example, updates, alerts, modifying requests and
processing them, and virtually anything that can be executed by a piece of code.

4. We provide a formal syntax and a formal semantics for this. The semantics is
defined in terms of a structure called a feasible temporal probabilistic (FTP)
status interpretation (FTPSI for short) . FTPSI’s extend the concept of a feasible
status set defined in [Eiter et al., 1999]—as feasible status sets themselves extend
various well known semantics in logic programming, our semantics extends those
semantics as well.

5. An HTP agent continuously executes a decision cycle. The HTP agent ensures
that it’s state always satisfies various integrity constraints. Changes (i.e. updates)
to their state can occur in many ways. For instance, the receipt of a message
changes the state of their messaging data structures. Likewise, the tick of a clock
can change the state of the current time variable. When such changes occur, the
HTP agent must find a set of actions to perform that satisfies various require-
ments (described later on in the paper). These requirements could include condi-
tions that must hold (now), conditions that may hold with some probability (now
or in the future). The execution of the actions must not cause any integrity con-
straints to be violated by the resulting state. And so on. The agent then executes
these actions (or schedules them for future execution). When state changes occur
in a future state, the same computations are performed based on the new state.

Technical Report IfI-05-03

4 Dix et al.

Thus the agents are engaged in a continuous cycle of detect state change −→
determine what actions to perform now or in the future (via computation of an
FTPSI) −→ execute such actions or schedule them for future execution −→ de-
tect state change Supporting this decision cycle is a key part of our system.
When an update occurs, the agent automatically computes a “feasible temporal
probabilistic status interpretation (FTPSI)” that tells it what to do now in re-
sponse to the given change as well as what actions to take in the future (of course
a later update can cause those decisions to be revisited).

6. As there has been no formal syntax and semantics for performing temporal-
probabilistic reasoning on top of arbitrary legacy pieces of code, there have been
no provably sound and complete algorithms for this purpose. We provide a sound
and complete algorithm for computing FTPSI’s. Past works that provide com-
pleteness results for temporal probabilistic reasoning that we are aware of assume
that the data on top of which the reasoning is performed is represented in some
uniform fashion chosen by the designer of the reasoning system (usually logic).
It is very rare in the corporate/military world to have the opportunity to decide
how all the data should be stored. Usually legacy data sources need to be used.
Furthermore, legacy applications that provide various kinds of reasoning capabil-
ities need to be leveraged not re-implemented from scratch. Past work generally
assumes that all the reasoning involved is performed by them whereas our par-
adigm allows legacy reasoners (e.g. route planners, sensing programs, etc.) to
participate in the reasoning process.

The goal of this paper is therefore quite simple: provide a programming language
within which agents that must make decisions involving time and uncertainty can
be programmed by programmers do so in the presence of (and leveraging) legacy
databases, data structures and software programs. We provide a syntax for such
HTP agents and a semantics along with appropriate soundness and completeness
results.

Throughout this paper (excluding the related work section), we use the word “rea-
soning” to describe determining how to take actions now or in the future based on
the data the agent currently has access to via zero or more legacy data sources and
based on leveraging existing software programs. HTP agents can be built on top of
any such legacy data sources of existing software applications independently of what
those software applications compute. All kinds of classical AI frameworks traditionally
called reasoning such as image processing, predictions, Markov decision processes,
abduction, AI planning, operations research, decision theoretic planning, could be rep-
resented by these legacy programs. The agent developer can encode whatever rules he
wants his agents to follow by leveraging whichever of these resources he has access to.

Our group has built two applications (one jointly with BBN, Lockheed
Martin, US Navy and several other partners [Mittu and Ross, 2003], the other
jointly with BBN, BAE Systems, Fantastic Data and several other partners

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 5

[T. Hammel and Rogers, 2003]) to track battlefield information and take actions based
on what is seen. For example, in the first application [Mittu and Ross, 2003], spatio-
temporal-probabilistic predictions are made about where an enemy submarine will be
at future points in time. This is done on the basis of sensor data as well as using third
party (legacy) code describing the reliability of the sensors as well as commercial legacy
code for performing predictions, as well as terrain databases describing the coastline in-
volved. Where and when to intercept the enemy submarine is a problem involving rea-
soning about time and probabilities in the presence of the legacy databases and legacy
software code bases described above. This problem was solved using the principles de-
scribed in this paper. In the second application again, we used live ground sensor data to
identify enemy vehicles in a road network, predict where they might be going based on
properties of the road network, and determining how and where to intercept the enemy
based on existing resources available for interception.

Our work builds on top of the IMPACT agent platform [Subrahmanian et al., 2000].
In IMPACT , agents manage a set of data types/structures (including a message box)
through a set of application program interface (API) function calls. The state of the
agent at a given point in time is a set of objects belonging to these data types. Each
agent has a set of integrity constraints that its state must always satisfy. When an agent’s
state changes (due to external events such as receipt of a message), the agent tries to
modify its state so that the integrity constraints are satisfied. To do this, it has a suite of
actions, and an agent program that specifies the operating principles (what is permitted,
what is forbidden, what is obligatory, etc., and under what conditions?). We emphasise
that our framework is not static. HTP agents extend the above agents so as to reason
about time and uncertainty, and make decisions based on such analyses. HTP agents
continuously engage in the following computational cycle: identify changes to state
→ compute FTPSI → take actions prescribed by FTPSI → identify changes to state
→ Thus, the computation of FTPSI’s is a continuous ongoing process intended to
handle updates and changes in agent state in a manner that is consistent with the rules
of behaviour the agent developer intended.

2 Motivating Examples
In this section, we first present a detailed energy trading example to motivate our re-
search. We then present a (less detailed) stock trading example. Both examples will be
used throughout the paper to motivate the basic definitions introduced here.

2.1 Energy Market example
Consider an energy market (such as those to trade energy in markets such as the US
and the UK). Energy producers in such a market tend to make major decisions based on
predicted future demand. In general, uncertainty in energy (and other) markets can be
expressed via statements of the form: The probability that there will be demand for D

Technical Report IfI-05-03

6 Dix et al.

units of item I at price P is p. Demand curves—used extensively in economics—are a
graphical representation of a set of such statements.

Usually, short term demand in energy markets is invariant to price fluctuations. Thus,
in the context of energy markets, demand related data involves statements of the form
“The Boston energy market will need K1 Megawatts per hour of energy between 4 and
5pm tomorrow with probability p1, K2 Megawatts per hour of energy between 4 and
5pm with probability p2 . . .” and so on. Of course, many similar such statements could
be made for other time slots. Most regions are served by multiple energy producers.
Energy distributors use auction mechanisms to determine which vendors to buy energy
from in a given time slot. Things are somewhat more complex than laid out here because
of additional constraints. For example, a distributor cannot place an order for a huge
amount of energy from one company in the 10-11am time slot, and leave the adjacent
time slots (9-10,11-12, etc.) with an order of zero units of energy (as such machines
require a “ramp up” time and a “ramp down” time which is often expensive).

Executives of such energy producing companies need to continuously reason in the
presence of time and uncertainty. For example, they need to determine how much to ask
for a Megawatt of energy in a given time slot in tomorrow’s auction market. By pric-
ing energy too high (and getting too greedy), they may get orders for lower quantities.
Likewise, by pricing energy too low, they may lose profits. Thus, they need to make
decisions based not only on their perception of how much energy will be needed in the
future (e.g. tomorrow), but also based on their perception of what their competitors will
do. Furthermore, updates are important: as new data becomes available, old decisions
may need to be discarded and replaced with newer ones. In this paper, we show how
problems such as this may be modelled using our temporal probabilistic agent frame-
work. We do not solve this problem, as that is not the purpose of this paper. Rather,
the ability to reason automatically and simultaneously about time and probabilities in
a setting which requires access to heterogeneous data sources and software sources in
such a setting is important for agents. We will use a simplified version (presented in
Appendix A of [Wolfram, 1998]) of such a market.

Suppose there are two energy generators. Generator 1 has one unit of ca-
pacity with constant marginal cost c. Likewise, generator 2 has one unit of
capacity with constant marginal cost c, but it also has m (where m > 0)
additional units of capacity with zero marginal cost. Demand is assumed
to be stochastic and varies between m + 1 and m + 2 with probability φ
and 1 − φ, respectively (0 < φ < 1). In other words, generator 2’s m
units with zero marginal cost are always used and depending on demand,
either one or both of the generators’ units) with marginal costs equal to c
are used. We assume that the generators simultaneously submit process p1

and p2 for their two units with marginal costs c before the level of demand
is realised. The two units are ranked according to the submitted prices and
once demand is realised, the marginal unit sets the price for all units used
in this period. The generator offer prices are constrained to be below some

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 7

price Pmax.

2.2 Stock Market Example

Consider a very simple agent that tracks stocks and executes trades automatically for
clients. A specific client may wish to trade stocks based on some simple rules. For
example, if a prediction program predicts that a given stock is going to go up to $50
per share with a high probability (e.g. 80% or more) sometime during the next 10-20
days and the user already owns this stock, then she may want to buy the stock sometime
in the next 9 days. However, if the user does not own this stock (and if it is consistent
with the user’s diversified investment strategy) then the user may want a 90% (or more)
probability that the stock will go up to $50 in order to buy it. Note that again, updates
can occur naturally—tomorrow, the same prediction program may say that the given
stock will only go up to $ 30 per share instead of $ 50. The decision to buy the stock in
the next 9 days may need to be revised by the agent.

Throughout this paper, we will use this simple example to motivate the need for tak-
ing actions automatically during the presence of temporal uncertainty. As will become
clear, our notion of temporal probabilistic agents can be easily used to write far more
sophisticated agents with more complex rules than those described above.

3 Temporal Probabilistic Code Call’s

In examples such as the energy example above, agents need to be able to make deci-
sions based on the data stored in various legacy data sources. Furthermore, in arriving
at these decisions, they may use capabilities provided by various software packages.
[Eiter et al., 1999]1 represent a piece of software code as a pair S =def (TS ,FS) where
TS is a finite set of types and F_S is a finite set of API functions whose input and out-
put types are drawn from TS . They also introduce the concept of a code call which is
a simple syntax to access the data and functionality of such legacy data and software
sources. In this section, we introduce the concept of a temporal probabilistic code call
(TPCC) using which we may reason about sources that provide temporally uncertain
information.

We first start by recapitulating the notion of a code call.

Definition 3.1 ((Code Call (cc))) Suppose S =def (TS ,FS) is some software code,
f ∈ FS is a predefined function with n arguments, and d1, . . . , dn are objects or vari-
ables such that each di respects the type requirements of the i’th argument of f . Then,
S : f (d1, . . . , dn) is a code call. A code call is ground if all the di’s are objects.

1Henceforth, we use terminology introduced in a series of previous papers. To make the paper self con-
tained, all necessary definitions are given in an appendix.

Technical Report IfI-05-03

8 Dix et al.

A code call atom is an expression of the form in(a, S : f (d1, . . . , dn)) where a is
either a variable or a constant and S : f (d1, . . . , dn) is a code call. Such a code call
atom says that a is in the set of objects returned by S : f (d1, . . . , dn).

A code call executes an API function and returns as output a set of objects of the
appropriate output type.

For example, in the energy domain, energy : demand(A) is a code call that intu-
itively returns the energy demand in area A. in(d, energy : demand(A)) is an example
code call atom.

Code calls are often used to formulate more complicated conditions and to express
relationships between several variables.

Definition 3.2 ((Code Call Condition (ccc))) A code call condition χ is defined as fol-
lows:

1. Every code call atom is a code call condition.

2. If s, t are either variables or objects, then s = t is a code call condition.

3. If s, t are either integers/real valued objects, or are variables over the inte-
gers/reals, then s < t, s > t, s ≥ t, s ≤ t are code call conditions.

4. If χ1, χ2 are code call conditions, then χ1 &χ2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic code
call condition.

Instead of giving examples of code call conditions, we first generalise them to temporal
probabilistic code call and provide examples of those.

Notice that in our energy example, a code call of the form energy : demand(A)
may be uncertain about the answer. For example, it may say that the demand for energy
in area A in the 10am to 11am time slot tomorrow is 5 MegaWatts (with probability
20-25%), 6 MegaWatts (with probability 35-50%), and 7 (with probability 20-40%).
Similar statements may be made for other time slots as well. In this case, what is hap-
pening is that the code call returns a set of random variables, one associated with each
time point.

Definition 3.3 ((Coherent set of random variables)) A random variable RV of type
τ is a pair RV = (Obj , ℘) where Obj is a finite set of elements of type τ and ℘ is a
probability distribution over Obj that assigns real numbers in the unit interval [0, 1] to
members of RV such that Σo∈Obj℘(o) ≤ 1.

A set S of random variables of type τ is coherent iff whenever we consider two
distinct (Obj 1, ℘1), (Obj 2, ℘2) ∈ S, it is the case that Obj 1 ∩ Obj 2 = ∅.

Intuitively, when a set {(Obj 1, ℘1), . . . (Objn, ℘n)} of random variables is returned
by some code call, then we interpret this as saying that some object in Obj 1 is in the

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 9

answer, some object in Obj 2 is in the answer, and so on. Note that the answers returned
by a code call depend on the agent’s state. A code call may return one set AnsAnsAns(t) of
random variables at time t. This reflects the answer to the code call based on the state
of the agent at time t. If a message arrives within an infinitesimal amount of time after t
(but before t + 1), the answer AnsAnsAns(t + 1) returned at time t + 1 may not be the same as
AnsAnsAns(t). This is because the receipt of a message causes the state of the agent to change
(in particular the contents of its mailbox has changed). In general, if any update is made
to the state of the agent between time t and t + 1, AnsAnsAns(t + 1) may be different from
AnsAnsAns(t).

The precise probability that an object o ∈ Obj i is in the answer is given by ℘i(o).
The condition of coherence requires that no object occur in two sets Obj i,Obj j above.
The reason for this is that if o occurs in both Obj i and Obj j , then to compute the
probability that o appears in the answer, we need to combine the probabilities ℘i(o)
and ℘j(o). How to combine these two probabilities depends upon our knowledge of the
dependencies between the objects in the sets Obj i,Obj j .

Example 3.4 Let us return to our stock market example. Consider a code call
stock : up(P) asking for an estimate of the stocks that will go over the value P to-
morrow. This code call may return two random variables.

RV1 = 〈{IBM,HP}, ℘1〉.
RV2 = 〈{GM, Ford}, ℘2〉.

This says that either the value of IBM’s stock or HP’s stock will go over the P tomorrow
and either the value of GM’s stock or Ford’s stock will go over P tomorrow. If we assume
that ℘1 assigns 0.5 to both IBM and HP and ℘2 assigns 0.7 to GM and 0.3 to Ford then,
we know for example that the probability of the value of IBM’s stock to go over P is 0.5.

However, suppose that this code call return the following two random variables.

RV′
1 = 〈{IBM, HP}, ℘1〉.

RV′
2 = 〈{IBM, Ford}, ℘2〉.

If we assume that ℘1 assigns 0.5 to both IBM and HP and ℘2 assigns 0.7 to Ford
and 0.3 to IBM then what is the probability that the value of IBM will go over P to-
morrow? There is no simple answer to this question, without making various types of
independence assumptions (or other assumptions). This is why we have the require-
ment of coherence. Note, that it is still not simple even in the first example to answer the
question of the probability that both the value of HP and the value of GM will go over
P.

We are now ready to introduce the concept of a TP code call.

Definition 3.5 ((Temporal probabilistic cc (TPCC))) A temporal probabilistic code
call based on cc , denoted ccTP, returns a mapping from natural numbers to coherent
sets of random variables of type τ .

Technical Report IfI-05-03

10 Dix et al.

Suppose we have a code call stock : over(C, P) which ordinarily returns as output,
a member of {true, false} indicating whether the company C’s stock price is P or
more. A TPCC based on this code call would return a mapping as output. This mapping
would associate with each time point t, a coherent set of random variables. For example,
at time 1 it may return only one random variable, ({true, false}, δu) saying that at
time 1 there is a 50% probability of the stock being greater than or equal to P (i.e., δu

is the uniform distribution function). At time 2, it may return the same set, but with
the distribution ℘(true) = 0.8, ℘(false) = 0.2 indicating that there is now an 80%
probability of C’s stock exceeding P.

In the energy domain, a TPCC based on the code call energy : demand(A) that
originally returned a demand, returns a mapping from time points (periods) to random
variables of the form {{m+1,m+2}, p}, where p(m+1) = φ and p(m+2) = 1−φ.
The actual value of φ may be different for different time periods.

In the rest of this paper, we often write cc to denote both ordinary code calls as well
as TPCC’s. The intended meaning should be clear from context.

It is well known that even if we know the exact probabilities of two events e1, e2,
it is not always easy to obtain a precise point probability for the conjunction or dis-
junction of these events, though it is possible to obtain a “tightest” possible interval
for these probabilities (cf. [Boole, 1854], [Fagin et al., 1990]). In general, depending
upon exactly what is known about the two events, the probabilities of their conjunc-
tion and disjunction can be computed in many different ways. The following defini-
tion (due to [Lakshmanan et al., 1997]) proposes the notion of a probabilistic conjunc-
tion/disjunction strategy which provides an abstract view of how to obtain probabilities
of conjunctive/disjunctive events.

Given two probability intervals [L1, U1] and [L2, U2], we say that [L1, U1] ≤
[L2, U2] iff L1 ≤ L2 and U1 ≤ U2.

Definition 3.6 ((Probabilistic conj/disj strategy)) Let events e1, e2 be associated
probabilistic intervals [L1, U1] and [L2, U2] respectively. Then a probabilistic conjunc-
tion strategy (probabilistic disjunction strategy) is a binary operation ⊗ (⊕) which
uses this information to compute the probabilistic interval [L,U] for event “e1 ∧ e2”
(“e1∨e2”). When the events involved are clear from context, we use [L,U] = [L1, U1]⊗
[L2, U2] to denote (e1 ∧ e2, [L,U]) = (e1, [L1, U1]) ⊗ (e2, [L2, U2]) and we use
[L,U] = [L1, U1]⊕[L2, U2] to denote (e1∨e2, [L,U]) = (e1, [L1, U1])⊕(e2, [L2, U2]).
Every strategy must conform to the following postulates:

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 11

Generic postulates (∗ ∈ {⊗,⊕})
1. Commutativity ([L1, U1] ∗ [L2, U2]) = ([L2, U2] ∗ [L1, U1])

2. Associativity (([L1, U1] ∗ [L2, U2]) ∗ [L3, U3]) =
([L1, U1] ∗ ([L2, U2]) ∗ [L3, U3]))

3. Monotonicity ([L1, U1] ∗ [L2, U2]) ≤ ([L1, U1] ∗ [L3, U3])
if [L2, U2] ≤ [L3, U3]

Probabilistic Conjunction postulates
4.a. Bottomline ([L1, U1]⊗ [L2, U2])

≤ [min(L1, L2), min(U1, U2)]

5.a. Identity ([L1, U1]⊗ [1, 1]) = [L1, U1]

6.a. Annihilator ([L1, U1]⊗ [0, 0]) = [0, 0]

7.a. Ignorance ([L1, U1]⊗ [L2, U2]) ⊆
[max(0, L1 + L2 − 1), min(U1, U2)]

Probabilistic Disjunction postulates
4.b. Bottomline ([L1, U1]⊕ [L2, U2]) ≥

[max(L1, L2), max(U1, U2)]

5.b. Identity ([L1, U1]⊕ [0, 0]) = [L1, U1]

6.b. Annihilator ([L1, U1]⊕ [1, 1]) = [1, 1]

7.b. Ignorance ([L1, U1]⊕ [L2, U2]) ⊆
[max(L1, L2), min(1, U1 + U2)]

A detailed explanation of why these axioms are reasonable axioms for probabilistic
reasoning is given in [Lakshmanan et al., 1997]. Another approach towards combina-
tion strategies, which concentrates especially on a clean probabilistic semantics is given
in [Eiter et al., 2001]. Both approaches generalise the well known concepts of triangular
norms and co-norms which are used for similar purposes. Conjunction and disjunction
strategies are more general than T-norm axioms because of additional requirements like
Bottomline and Monotonicity.

Each agent has a set of actions that the agent is capable of executing. Actions change
the state of the agent. An action has five components: (1) a name α(X1, ..., Xn) where
the Xi’s are variables, (2) a precondition, (3) an add list, (4) a delete list, all three of
which consist of a set of code calls and temporal probabilistic code calls, and (5) an
action code which is a body of code that executes the action. Each agent has a notion of
concurrency specifying how to combine a set of actions into a single action, and a set of
action constraints that define the circumstances under which uncertain actions may be
concurrently executed. A formal model of such agents (with no time and no uncertainty)
is given in [Eiter et al., 1999]. For simplicity, we assume (in this paper) that an action
has no duration (see [Dix et al., 2001] for how to handle actions with durations).

Definition 3.7 ((Status condition, Status set)) If α(~t) is an action, and Op ∈
{P,F,W,Do ,O}, then Opα(~t) is called a action status atom. If A1, . . . , An are sta-
tus atoms, then (A1 ∧ . . . ∧ An) is a action status condition. A status set is a finite set
of ground action status atoms.

Pα means α is permitted. Fα means α is forbidden. Doα means α is actually done.

Technical Report IfI-05-03

12 Dix et al.

Oα means α is obligatory, and Wα means that the obligation to perform α is waived.

4 Syntax of HTP Agent Programs
Our main aim in this section is to define temporal probabilistic agents. A first step
is to extend ccc’s and status conditions (Definition 3.7) to annotated versions of them
(Definition 4.5). We start with the notion of a temporal expression te which may be
used to denote time points. Time in our model is discrete because computers clocks
are discrete and because it makes computation somewhat easier. Logical agent pro-
gramming frameworks that use continuous time models are presented in, for example,
[Reiter, 1998]—however, these frameworks are unable to deal with leveraging legacy
code and assume all data is stored in logic.

Definition 4.1 ((Temporal interval (ti): [te1, te2]) (1) Every integer is a temporal ex-
pression. (2) Xnow is a temporal expression. (3) If te1, te2 are temporal expressions,
then so is (te1 + te2).

If te1, te2 are temporal expressions, then [te1, te2] is a temporal interval, denoted ti.
It denotes the set of all time points between te1 and te2.

For example, 5, Xnow +3 and Xnow +Xnow +13 are all temporal expressions. We will as-
sume that there is an oracle that automatically assigns a value to Xnow (in an implemen-
tation, this can be done by looking at the system clock). Hence, a temporal expression
can always be evaluated to a value.

It is easy to see that for two temporal intervals, their intersection is also a temporal
interval.

Temporal intervals [te1, te2] can also be seen as constraints for a time variable t:
te1 ≤ t ≤ te2.

For example, [Xnow + 2, Xnow + 7] is a temporal interval ti. Thus, if Xnow = 3, then
[Xnow + 2, Xnow + 7] = {5, 6, 7, 8, 9, 10}.

We assume the existence of a special set of variables called probabilistic variables.
Each of these variables is denoted Xi and ranges over real values in the unit interval
[0, 1]. We also assume the existence of some set of function symbols, each with an
associated arity—these function symbols are pre-interpreted and map [0, 1]a to [0, 1]
for appropriate arities a.

Definition 4.2 ((Probabilistic interval (pi): [`1, `2])) (1) Every real number in the
unit interval [0, 1] is a probabilistic item. (2) Every probabilistic variable Xi is a prob-
abilistic item. (3) If `1, . . . , `n are probabilistic items and f is an n-ary probabilistic
function symbol, then f(`1, . . . , `n) is a probabilistic item.

If `1, `2 are probabilistic items, then [`1, `2] is called a probabilistic interval.

For example, if X is a probabilistic variable, then X+1
2 is an example of a probabilistic

item. [X, X+1
2] is a probabilistic interval.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 13

Definition 4.3 ((Probability distribution function (pdf) δ on a ti))
Suppose ti =[te1, te2] is a time interval. A probability distribution function (pdf)
w.r.t. ti is a mapping δ from 〈Xnow, ti〉 to [0, 1] such that for all values t0 of Xnow:
Σt∈[te1(t0),te2(t0)]δ(t) = 1 (here the expressions tei(t0) are the values of tei when Xnow
is replaced by the value t0.

We also write 〈[te1, te2], δ〉 to emphasise the fact that δ is a pdf over [te1, te2].

The above ingredients form the basic building blocks of our temporal probabilistic
agents. We are now ready to start putting these building blocks together in a step-by-step
effort to define HTP agent programs. We start with the notion of a TP-annotation.

Definition 4.4 ((TP-annotation [⊗, 〈[t1, t2], δ〉, [`1, `2]])) A TP-annotation is a triple
[⊗, 〈[t1, t2], δ〉, [`1, `2]] where ⊗ is a probabilistic conjunction strategy, 〈[t1, t2], δ〉 is
a temporal interval with a pdf δ over it, and [`1, `2] is a probabilistic interval. A TP-
annotation is ground if `1, `2 are ground.

For example, [⊗ig, 〈[Xnow + 2, Xnow + 7], δu〉, [X, X+1
2]] is a TP-annotation where ⊗ig

represents the “ignorance” conjunction strategy and δu represents the uniform distrib-
ution. This annotation is not ground due to the presence of the variable X. However,
[⊗ig, 〈[Xnow + 2, Xnow + 7], δu〉, [0.3, 0.5]] is considered to be ground.

We are now ready to define a temporal probabilistic extension of a code call con-
dition. We also define an extension of the notion of a status condition to the temporal
probabilistic case.

Definition 4.5 ((TP-CCC, TP-ASC)) If χ is a (ground) code call condition (ccc),
(A1 ∧ . . . ∧ An) is a (ground) action status condition, and [⊗, 〈[t1, t2], δ〉, [`1, `2]]
is a (ground) annotation, then χ : [⊗, 〈[t1, t2], δ〉, [`1, `2]] is a (ground) TP CODE CALL
CONDITION (TP-CCC), and (A1 ∧ . . . ∧ An) : [⊗, 〈[t1, t2], δ〉, [`1, `2]] is a (ground)
TP ACTION STATUS CONDITION (TP-ASC).

The following is an example TP code call condition:

in(c, d : f (a, b)) : [⊗ig, 〈[Xnow + 2, Xnow + 7], δu〉, [X,
X + 1

2
]].

This condition says that there is a probability in the probabilistic interval [X, X+1
2] that

at some time point between Xnow +2 and Xnow +7, the code call d : f (a, b) will return c
in its output. Furthermore, for any specific time point in this time interval, the specific
probability that c will be returned is uniformly distributed. Similarly,

(
Do buy(ibm) ∧ Do sell(lucent)

)
: [⊗ig, 〈[Xnow + 2, Xnow + 7], δu〉, [X,

X + 1
2

]]

is an TP action status condition. It says that there is a probability in the interval
[X, X+1

2] that at some time point in the temporal interval [Xnow + 2, Xnow + 7], the agent

Technical Report IfI-05-03

14 Dix et al.

will both buy IBM stock and sell Lucent stock. Furthermore, the probability of both
events occurring is computed from their individual probabilities by using the conjunc-
tion strategy of ignorance. In the energy domain the TP code call condition

in(m + 1, energy : demand(bal)) : [⊗ig, 〈[Xnow, Xnow + 2], δu〉, [0.4, 0.7]]

says that there is a probability of 40% to 70% that the demand in Baltimore will be
m + 1 units sometime between Xnow and Xnow +2. Similarly,

DoBid(c + 5, bal) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉, [0.6, 0.8]]

says that there is a probability between 0.6 and 0.8 that today or tomorrow the generator
will bid the price c + 5 for Baltimore.

We are now ready to define temporal probabilistic rules. As in IM-
PACT [Subrahmanian et al., 2000], the head of a rule is a status atom. The body of
a rule is a conjunction of TP-ASC’s and TP-CCC’s.

Definition 4.6 ((TP-rule)) A (ground) temporal probabilistic (TP) rule is an expres-
sion of the form

SA0 ← tpccc1 ∧ . . . ∧ tpcccn ∧ asc1 ∧ . . . ∧ ascn,

where SA0 is a (ground) TP-ASC containing only one status atom in it,
tpccc1, . . . , tpcccm are (ground) TP-CCC’s and asc1, . . . , ascn are (ground) TP-
ASC’s.

A temporal probabilistic (TP) rule is strict if any annotation that appears in the
rule and is associated with a status atom is of the form [⊗, 〈ti, δ〉, [1, 1]]. We also write
[⊗, 〈ti, δ〉] for such rules.

TP rules are used to determine what all actions an agent is permitted to do, obliged
to do, forbidden from doing, etc. at a given time. Strict rules allow rule bodies to
contain uncertainty about what is true in an agent state (and when)- however, the
agent’s decisions are not allowed to be uncertain. This is the case when the agent
apply deterministic polices in which an agent is either going to do something (or is
obliged/permitted/forbidden to do something) with certainty. If a designer of an agent
would like his agent to act in a non-deterministic way, then he can implement an action
of “flipping a coin” and use the result of the action to make a decision on what other
actions to take (see an example in Section 5.1). In the rest of the paper we will consider
only strict rules and thus will shorten the annotation to [⊗, 〈ti, δ〉].

Definition 4.7 ((TP Agent Program (T PP))) A temporal probabilistic agent pro-
gram (denoted by T PP) is a finite set of TP rules.2

2Note that we consider only strict rules.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 15

Example 4.8 ((Stock example: T PP)) The following two rules encode the simple
stock example described earlier.

Do buy(X) : [⊗ig, 〈[Xnow, Xnow + 5], δu〉] ←
in(X, stock :myportfolio())) : [⊗ig, 〈[Xnow, Xnow], δu〉] ∧
in("yes", stock : over(X, 50)) : [⊗ig, 〈[Xnow + 10, Xnow + 20], δu〉, [0.8, 1]]

Do buy(X) : [⊗ig, 〈[Xnow, Xnow + 3], δu〉] ←(
in("no", stock :myportfolio()) ∧
in("ok", stock : diversify(X))

)
: [⊗ig, 〈[Xnow, Xnow], δu〉] ∧

in("yes", stock : over(X, 50)) : [⊗ig, 〈[Xnow + 10, Xnow + 20], δu〉, [0.9, 1]]

The first rule says that if stock X is in my current portfolio and it is expected (with
80% probability or more) to go over $50 per share sometime between day 10 and 20
from now, then buy this stock in the next 5 days. The second rule says that if the stock
is not in my current portfolio and acquiring it is consistent with the goal to maintain a
diversified portfolio, then we should buy the stock in the next 3 days as long as there is
an over 90% probability of its going up to $50 per share.
Updates. It is important to note that neither of these rules, by themselves, say what is
true in the current agent state. The current state might say that stock X is in fact in my
current portfolio and the current prediction says that it will go up to over $50 in 10 to
20 days from now. Thus, the agent may conclude now that it should execute a “buy”
order on this stock in the next 5 days. But it may not execute the buy order just yet. On
the next day, an update occurs to the stock database which may lead to the estimation
that the stock will only rise to $40. This will invalidate the inference that the stock must
be bought in the next five days (of course, in the event the stock was already bought on
the preceding day, this might trigger some other actions not shown above).

Example 4.9 ((Energy example: T PP)) The following rule encodes a simple rule for
a generator in the energy example.

PBid(Pmax, bal) : [⊗ig, 〈[Xnow, Xnow + 5], δu〉] ←
in(m + 2, energy : demand(bal)): [⊗ig, 〈[Xnow, Xnow + 5], δu〉, [0.9, 1]]

The rule says that the generator is permitted to bid the highest price between Xnow and
Xnow +5, if there is a probability between 0.9 and 1 that the demand in Baltimore at
some time between Xnow and Xnow +5 will be m + 2.

FBid(X, bal) : [⊗ig, 〈[Xnow, Xnow], δu〉] ← X > Pmax

This rule says that the generator is forbidden to bid a price that is higher than Pmax

now.
Updates. Let us say that on day d, the energy demand estimator says that there is a 99%

Technical Report IfI-05-03

16 Dix et al.

probability that the demand for energy in Baltimore tomorrow (day d + 1) is m + 2.
In this case, on day d, the agent is permitted to bid the highest price on the energy.
However, suppose the agent does not actually place the bid on day d. Now, on day
d + 1, the energy demand estimator, as a consequence of updates to market data, may
estimate that there is only an 80% probability that the demand for energy in Baltimore
some time between day d + 1 and d + 6 is m + 2. On day d + 1 therefore, the agent
can no longer infer that it is permitted to bid the maximum amount on the energy. So it
cannot place such a bid on day d + 1. Example 5.20 later in the paper will show how
this kind of update is handled by our semantics.

Incorporating Third Party Updating Mechanisms. Both the above examples explain,
intuitively, how updates are handled in our framework. We only handle updates to data
rather than updates to the agent’s rules themselves. We believe the vast majority of
updates will be updates in state, rather than in rules and hence we do not focus on
updates to the rules themselves. Remember that an update to an agent state occurs
every time the agent receives a message, as well as at any time one of the data structures
associated with the agent changes.

Note that if beliefs of an agent are represented in an agent, they must be
represented as data stored in some data structure the agent has. In this case,
these beliefs can be updated using any classical mechanism for updating beliefs
(e.g. [Friedman and Halpern, 1997], Jeffrey’s revision rule, etc.). For example, suppose
updatebel is a function (with two arguments—a set of beliefs to be updated and a set
of updates) that implements some belief updating strategy, and suppose BEL is a set
of beliefs stored in some data structure of the agent and suppose U is a set of updates
to the agent’s state. Then the desired belief updating mechanism can be easily encoded
in an agent via a rule similar to:

Do updatebel(BEL, u) ← in(X, agent : getcurrbeliefs())&
in(U, agent : getcurrupdates()).

A major strength of our approach is that we do NOT force all programmers to some
prefixed set of actions. They can add whatever actions they want to the agent. In the
situation above, they could make updatebel() be any classical mechanism to update
beliefs.
Incorporating Third Party Planners. Suppose an agent developer wants to invoke a
third party method for decision making using a Markov Decision Process (under some
conditions). In this case, this MDP code can be invoked directly within our framework.
As in the case of updating mechanisms discussed above, we can simply add a rule of
the form

Domdp(〈arguments〉) ← 〈condition〉.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 17

5 Semantics of HTP Agents
Though the reader may be tempted to infer that the rules given above are read in terms
of usual logical inference, it will soon be clear that things are somewhat more complex.

5.1 Agent Decision Cycle
The primary contribution of this section is the concept of a feasible temporal proba-
bilistic status interpretation (FTPSI for short). Informally speaking, an FTPSI is a
semantical structure that specifies what the agent is permitted to do, forbidden from
doing, obliged to do, and actually plans to do at any time instance i. Thus, any given
FTPSI says what the agent will do at time 1, 2, 3, etc. Note however that even though
I may be an FTPSI at time t, if some updates occur, I may no longer be an FTPSI
at time t + 1. At any given point t in time, the agent must find an FTPSI and take the
actions (now) that FTPSI says it should take. As time passes, the agent continues to
take the prescribed actions until an externally caused state change (update) occurs. At
this point, the agent computes a new FTPSI and acts according to that. This cycle is
repeated forever by the agent. The agent’s decision cycle may be summed up as follows:

HTP Agent Decision Cycle

1. t = 0;

2. FTPSIt = compute initial FTPSI w.r.t. original state;

3. while true do

(a) execute all actions to be executed by FTPSIt(t);

(b) t + +;

(c) if an externally triggered state change occurred between time t and t + 1
then compute a new FTPSIt;

(d) else FTPSIt = FTPSIt−1;

4. end

In the above decision cycle an externally triggered action is one that the agent did not
execute. Examples of externally triggered actions include receipt of messages, clock
ticks, updates to a database by some third party and so on.
Note that our HTP agent syntax does not explicitly allow for stochastic actions. How-
ever, such actions can be easily programmed within our framework. For example, sup-
pose the agent developer has written some set S of rules for his or her agent. One
way to introduce stochastic actions is as follows. Introduce a new piece of code called

Technical Report IfI-05-03

18 Dix et al.

stochastic with two functions: one function takes an action α and a list of ground ar-
guments for it as input, and returns a unique code for that action. This can be done by
any one of many standard encoding mechanisms. The other function takes a code as
input and randomly assigns 0 or 1 to it. Then, for each action α, the agent developer can
automatically add the following two rules to S. A special action called cache() stores
action codes in a cache called tempcache.

Do cache(Code) ← Pα(~X) ∧
in(Code, agent : stochastic_encode(α, ~X)).

Doα(X) ← in(Code, agent : tempcache()) ∧
in(1, agent : stochastic_toss(Code)).

Note that many variations of this kind of stochastic action are possible.
The main aim of this section is to formally define what constitutes an FTPSI.

5.2 Satisfaction of TP ccc’s and TP asc’s
Definition 5.1 ((Possible answer situations)) Consider an agent state O, a code call
cc, a set TTT of time points, and an object o whose type is the same as cc’s output type.
The possible answer situations of cc w.r.t. TTT and o, denoted pas(cc, o,TTT) is the set

{(t,Obj , ℘) | t ∈ TTT and (Obj , ℘) ∈ ccTP(t) and o ∈ Obj}.

In other words, the possible answer situations w.r.t. TTT and o are all random variables that
contain o, indexed by all time points in TTT. It is easy to see that when TTT is a singleton,
because of the coherence requirement on TPCC’s, pas(cc, o,TTT) is either the empty set
or a singleton.

Example 5.2 ((Energy example: possible answer situations))
Consider the temporal probabilistic code call energy : demand(bal). Suppose it re-
turns:

• {{m + 1,m + 2}, p0} for the time point tnow where p0(m + 1) = 0.25 and
p0(m + 2) = 0.75.

• {{m + 1,m + 2}, p1} for time point tnow +1 where p1(m + 1) = 0.35 and
p1(m + 2) = 0.65

• {{m + 2}, p2} for the time point tnow +2 where p2(m + 2) = 1.

In this case:

pas(energy : demand(bal),m + 1, {tnow, tnow + 1, tnow + 2}) =
{(tnow, {m + 1,m + 2}, p0), (tnow + 1, {m + 1,m + 2}, p1)}

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 19

Definition 5.3 ((Answer time probabilities)) Consider an agent state O, a code call
cc, a time point t, and an object o whose type is the same as cc’s output type. The
probability that o is in the answer of cc at time t, denoted prob(o, cc, t), is given by:

prob(o, cc, t) =
{

℘(o) if pas(cc, o, {t}) = {(t,Obj , ℘)}
0 otherwise.

Intuitively, prob(o, cc, t) specifies the probability that object o is in the re-
sult of code call cc at time t. Considering the cc of Example 5.2, prob(m +
1, energy : demand(bal), tnow) = 0.25.

We have now formally defined what it means for an object o to be contained in a
temporal probabilistic code call. Note that in the basic case (no time, no probability),
this is simple membership relation. However in the temporal probabilistic case, things
are far more complex because we have to (1) check whether there is a random variable
containing o in the answer to the TPCC, and (2) determine the probability of o w.r.t. such
a random variable.

The above definition specifies the probability that an object o is in the answer to a
code call at time t. However, in order to give a semantics for HTP agent programs,
we must specify what it means for a TP-CCC to be satisfied in an agent state. Clearly,
we can only define a probability of satisfaction of a TP-CCC by an agent state. How-
ever, as TP-CCC’s involve conjunctions, we need to consider probabilistic conjunction
strategies in such a definition. This is because the probability with which a conjunction
of code call atoms is satisfied is dependent upon the dependencies, if any, between the
events represented by them.

Definition 5.4 ((Satisfaction of TP-CCC’s at fixed time t: prob(χ,O, t))) The prob-
ability with which a stateO satisfies a code call condition χ at time t under conjunction
strategy ⊗, denoted prob(χ,O, t) is given by ⊗in(o, cc)∈χprob(o, cc, t), where ⊗ is the
conjunction strategy associated with χ.

Recall that the state of an agent can change frequently. When such changes (or updates)
occur, TP-CCC’s that were satisfied prior to the change may no longer be satisfied after
the change (and vice versa).

Example 5.5 ((Energy: (Satisfaction of TP-CCC’s at fixed time))
Consider an agent whose state is O. Suppose energy : demand(bal) returns {{m +
1,m+2}, p0} for the time point tnow where p0(m+1) = 0.25 and p0(m+2) = 0.75.

Consider energy : demand(ann). Suppose it returns {{m + 1,m + 2}, q0} for the
time period tnow where q0(m + 1) = 0.85 and q0(m + 2) = 0.15.

Consider χ = in(m + 2, energy : demand(bal)) & in(m + 2, energy : demand(ann))
where the conjunction strategy used is that of independence (⊗ind). Then,
prob(χ,O, tnow) = 0.75 ∗ 0.15.

When we consider a ground TP code call of the form in(o, cc) : [⊗, 〈ti, δ〉, [`, `′]], we
may need to consider multiple time points. For example, ti may have two solutions,

Technical Report IfI-05-03

20 Dix et al.

t = t1 and t = t2. The probability that o is in the answer returned by cc is the prob-
ability that o is in the answer returned by cc at time t1 (event e1) or at time t2 (event
e2). However, we have no information about dependencies between these two events.
Are they independent? Is there some kind of correlation between these events? Are we
completely ignorant about the relationship between these two events? In general, we are
attempting to evaluate the probability of a disjunction of two events, given information
about the probability of the individual events involved. To do this, we assume that every
agent has an arbitrary but fixed probabilistic disjunction strategy ⊕ that it uses.

We now define two notions of satisfaction of TP-CCC’s by an agent state. We use
O |= tpccc where tpccc is a TP-CCC to denote that tpccc is true now or in the past,
while O |=now tpccc is used to denote the fact that it is satisfied at the current time,
now.

Definition 5.6 ((Satisfaction of TPCCC’s)) Suppose O is an agent state and ⊕ is a
fixed probabilistic disjunction strategy. Our definition of satisfaction is by induction on
the structure of the TP-CCC.

1. O satisfies a ground TP-CCC χ : [⊗, 〈ti, δ〉, [`, `′]], denoted O |= χ :
[⊗, 〈ti, δ〉, [`, `′]] iff ` ≤ ⊕{prob(χ,O, t) | t ∈ ti} ≤ `′,

2. O satisfies a ground TP-CCC χ : [⊗, 〈ti, δ〉, [`, `′]] with respect to tnow and the
past, denoted O |=now χ : [⊗, 〈ti, δ〉, [`, `′]] iff ` ≤ ⊕{prob(χ,O, t) | t ∈ ti, t ≤
tnow} ≤ `′,

3. O satisfies a conjunction tpccc1 ∧ tpccc2 of TP-CCC’s iff O |= tpccc1 and
O |= tpccc2.

4. O satisfies (∀x)F iff O |= F [x/c] where c is a constant of the same type as x
and F [x/c] denotes the replacement of all free3 occurrences of x in F by c.

The definition of the last two cases for |=now is identical to that of |=.

Example 5.7 ((Energy: Satisfaction of TPCCC’s))
Consider the agent state O of Example 5.5. Suppose energy : demand(bal) returns:

• {{m+1,m+2}, p0} for time tnow where p0(m+1) = 0.25 and p0(m+2) = 0.75

• {{m+1,m+2}, p1} for time tnow+1 where p1(m+1) = 0.35 and p1(m+2) =
0.65.

In this case

O |= in(m + 2, energy : demand(bal)) : [⊕ind, 〈[Xnow, Xnow + 1], δ〉, [0.4, 0.7]].

This is because:
3We do not formally define free occurrences here but refer the reader to the standard definition which may

be readily adapted to our case.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 21

• [Xnow, Xnow + 1] = {Xnow, Xnow + 1};

• prob(m + 1, energy : demand(bal), tnow) = 0.25;

• prob(m + 1, energy : demand(bal), tnow + 1) = 0.35;

• Applying ⊕ind to these events we obtain: 0.25 + 0.35 − 0.25 ∗ 0.35 = 0.5125
which is between 0.4 and 0.7.

However,

O 6|=now in(m + 2, energy : demand(bal)) : [⊕ind, 〈[Xnow, Xnow + 1], δ〉, [0.4, 0.7]].

Here, we need to consider only tnow and we see that

prob(m + 1, energy : demand(bal), tnow) = 0.25

which is less than 0.4.

5.3 HTP status models
We now define the formal semantics of HTP agents. The formal semantics is given via a
concept of a feasible TP status interpretation. These are mathematical structures which
we will define in this section. Intuitively, a feasible TP status interpretation specifies, for
each time point, a set of status atoms which are true at that time point. Of course, not any
such set will suffice—rather the set must satisfy various “feasibility” requirements. The
goal of this section is to provide such a definition of a feasible TP status interpretation.

We start by noting that in the preceding section, we have already provided a seman-
tics for TP-CCC’s. In order to give a formal semantics for HTP agents, we need to
define a semantics for TP-ASC’s as well. The notion of a TP-status interpretation given
below is used to define a semantics for TP-ASC’s.

Definition 5.8 ((TP-status interpretation (TPSI)))
A TP-status interpretation (TPSI for short) is a mapping ρ that maps natural numbers
to status sets.

Thus, given any time point t, ρ(t) is a status set. Intuitively, if ρ(3) =
{Oα,Doα,Pα,Fβ}, then this means that according to the TP-status interpretation
ρ, at time instant 3, α is obligatory/done/permitted, while β is forbidden. Similarly, if
ρ(4) = {Pα} then according to the temporal status set, at time 4, α is permitted.

We now define what it means for a TP status interpretation to satisfy an TP action
status condition.

Definition 5.9 ((Satisfaction of TP-ASC’s)) Suppose ρ is a TP-status interpretation.
To define the meaning of a TP-ASC, we proceed by induction on the structure of a
TP-ASC and distinguish between a status atom and a conjunction of status atoms.

Technical Report IfI-05-03

22 Dix et al.

• The probability with which ρ satisfies a status atom Opα at time t is

prob(Opα, ρ, t) =
{

1 if Opα ∈ ρ(t)
0 otherwise.

• The probability with which ρ satisfies a status condition % = (A1,∧ . . . ∧ An)
w.r.t. a given conjunction strategy⊗ and at a given time t, denoted prob⊗(%, ρ, t)
is given by:

prob(A1, ρ, t)⊗ prob(A2, ρ, t)⊗ · · · ⊗ prob(An, ρ, t).

• Suppose (A1 ∧ . . . ∧ An) : [⊗, 〈ti, δ〉] is a status condition.

ρ satisfies (A1 ∧ . . . ∧ An) : [⊗, 〈ti, δ〉] at time t w.r.t. ⊕
iff

⊕{prob⊗(A1 ∧ . . . ∧ An, ρ, t) | t ∈ ti} = 1.

Note that for status atoms, a TPSI either satisfies it (probability 1) or not (probability
0). For status conditions however, other probabilities can arise as well. The reason for
this is that status atoms are either true or not.

Definition 5.10 Suppose SA0 ← tpccc1 ∧ . . . ∧ tpcccn ∧ asc1 ∧ . . . ∧ ascn is a
ground TP-rule, ρ is a TP-status interpretation and O is the current agent state.

ρ satisfies the above ground rule in state O iff either:

1. O does not satisfy tpccc1 ∧ . . . ∧ tpcccn with respect to now and the past, or

2. ρ does not satisfy asc1 ∧ . . . ∧ ascn or

3. ρ satisfies SA0.

ρ satisfies a rule r iff it satisfies all ground instances of r. ρ satisfies a TP program
T PP iff for each temporal probabilistic agent rule r ∈ T PP , ρ satisfies r.

Example 5.11 (Energy: TP-status interpretation) Consider the following very simple
table describing a TP-status interpretation ρ of a generator agent.4

4For simplicity of the examples, we do not consider the precondition and the add and delete lists of the
actions in the energy example.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 23

i ρ(i)
0 {FBid(Pmax , bal), PProduce(m, bal),

OProduce(m, bal),DoProduce(m, bal)}
1 { PProduce(m + 1 , bal), PBid(c + 5 , bal),

DoProduce(m + 1 , bal), DoBid(c + 5 , bal), }
2 { Do Produce(m + 1 , bal) }
3 {OProduce(m + 1 , bal),DoProduce(m + 1 , bal),

P Produce(m + 1 , bal), P Bid(c + 7 , bal),
P Bid(Pmax , bal) }

4 {FBid(Pmax + 1 , bal),
P Produce(m + 1 , bal),
Do Produce(m, ann) }

4 < i < 9 { FBid(Pmax + 1 , bal), }
i > 9 ∅

Suppose we also consider a simple description of the stateO of the generator agent.
As in the previous examples energy : demand(A) returns a mapping from time points
(periods) to random variables of the form {{m + 1,m + 2}, p}, where p(m + 1) = φ
and p(m + 2) = 1− φ. The actual values are specified in the following table:

Time bal ann
p(m + 1) p(m + 2) q(m + 1) q(m + 2)

0 0.30 0.70 0.60 0.40
1 0.40 0.60 0.60 0.40
3 0.25 0.75 0.85 0.15
4 0.35 0.65 0.90 0.10

Suppose tnow = 3 and the agent uses ⊕ind as its fixed probabilistic disjunction
strategy. ρ satisfies the following rules in O:

•
PBid(Pmax, bal) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉] ←

in(m + 2, energy : demand(bal)): [⊗ig, 〈[Xnow, Xnow + 5], δu〉, [0.9, 1]]

ρ satisfies the rule because it satisfies PBid(Pmax, bal) :
[⊗ig, 〈[Xnow, Xnow + 1], δu〉].

•
OBid(c + 5, bal) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉] ←
PBid(c + 5, bal): [⊗ig, 〈[Xnow, Xnow], δu〉]

ρ satisfies the rule because it does not satisfy PBid(c + 5, bal) :
[⊗ig, 〈[Xnow, Xnow], δu〉].

Technical Report IfI-05-03

24 Dix et al.

ρ does not satisfy the following rule:

OBid(Pmax, bal) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉] ←
in(m + 2, energy : demand(bal)): [⊗ig, 〈[Xnow, Xnow + 1], δu〉, [0.9, 1]]

ρ does not satisfy the rule because O satisfies

in(m + 2, energy : demand(bal)) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉, [0.9, 1]]

but does not satisfy

OBid(Pmax, bal) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉].

An agent may record the actions it took (or was obliged to take, forbidden from
taking etc.) in the past. This leads to the notion of an action history.

Definition 5.12 ((Action History acthist)) An action history acthist for an agent is a
partial function from {0, 1, ..., tnow} to status sets.

Intuitively, an action history specifies what the agent has done in the past. As action
histories are partial (rather than total) functions, the agent developer has the flexibility
to choose to store none, some or all status atoms associated with the agent’s past.

Example 5.13 (Energy: Action History)

i acthist(i)
0 {FBid(Pmax , bal),

P Produce(m, bal),
OProduce(m, bal),DoProduce(m, bal)}

1 P Produce(m + 1 , bal),PBid(c + 5 , bal),
Do Produce(m + 1 , bal), DoBid(c + 5 , bal), }

2 ∅

An action history and a TP-status interpretation both make statements about action
status atoms. Therefore they need to be compatible.

Definition 5.14 ((History-Compatible TPSI)) Suppose the current time is tnow and
acthist(·) denotes the action history of an agent, and suppose ρ is a TPSI. ρ is said to
be action history-compatible at time tnow iff for all t < tnow, if acthist(t) is defined,
then ρ(t) = acthist(t).

In other words, for a TPSI to be compatible with an action history, it must be consistent
with the past history of actions taken by the agent and with commitments to do things
in the future that were made in the past by the agent. The action history of example 5.13
and the TP-status interpretation of example 5.11 are compatible.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 25

5.4 Feasible Temporal Probabilistic Interpretations
Let us consider an agent a that uses a TP-interpretation ρ to determine what actions it
should take, and when it should take these actions. Not all such interpretations make
sense. For example we must impose conditions that ensure an action is not both per-
mitted and forbidden at the same time (deontic conditions as formalised in Definitions
5.17, 5.16). Furthermore, such an interpretation ρ must be closed under the rules of
the TP program. The main results of this section are Definition 5.19, which states the
conditions we need, and Theorem 5.21, which determines the complexity of verifying
them for a given TP-interpretation.

An important requirement about feasibility is that actions scheduled for the future
need to be executable. For example, it does not make sense for an agent to decide to
execute the action Do sell(ibm, 100) (i.e. sell 100 shares of IBM) 5 days from now if
the agent does not have 100 shares to sell at that time. In order for conditions such as
this to be incorporated into our definition of feasibility, we need to have a concept of
expected future states. This notion is defined below.

Definition 5.15 ((Expected States at time t: EO(t))) Suppose the current time is
tnow, O is the agent state and ρ is a TP-status interpretation. The agent’s expected
states are defined as follows: EO(tnow) = O,

• For all time points t > tnow, EO(t) is the result of concurrently executing
{α |Doα ∈ ρ(t− 1)} in state EO(t− 1).

As described earlier in Section 5.1 on the agent decision cycle, at any given point i in
time, the agent has a “current” feasible temporal probabilistic status interpretation ρi.
The expected future states of the agent at times t ≥ i are defined in terms of the current
FTPSI ρi. The state EO(i + 1) at time i + 1 is obtained by concurrently executing all
actions of the form Doα ∈ ρ(i) in the state of the agent at time i. The state EO(i + 2)
is obtained by concurrently executing all actions of the form Doα ∈ ρ(i + 1) in the
state of the agent at time i + 1, i.e. in the state EO(i + 1), and so on. Thus, at any
given time point i, the set of possible future states of the agent is fixed. There is no
nondeterminism.

In contrast, in many existing mechanisms like Markov Decision Processes (MDP),
the system reasons about all possible things that could happen in the future
[Boutilier et al., 1999]. This is impractical to do in many applications. For example,
let us return to the case of a stock database agent. In the real world, this agent is likely
to support a code call called stock : sql() which ships any SQL query or update to the
underlying DBMS. Virtually any such update could arise. As a consequence, if we used
a state space based approach (as a Markov decision process might do), there would be
an infinite branching factor for each node in the tree as the set of potential events that
could occur is infinite.

This clearly explains the difference between MDP ’s and our framework. We do not
attempt to reason about all possible things that could happen in the world in future.

Technical Report IfI-05-03

26 Dix et al.

Rather we reason about what changes we plan to bring about in the world in the future.
This may be shaped by our predictions about what the future might bring. E.g. the
predictive component of the stock example predicts that the stock price for a given stock
will exceed $50 in 10-20 days with probability higher than 0.8. It may also predict that
it will only reach $40 in 10-20 days with probability 0.2. Our decision on whether to
buy the given stock may depend on both prediction. Likewise, the predictive component
of our energy example predicts what the demand for energy in Baltimore might be in
the future, and our decision on what to bid is based on that prediction.

The definition of TP deontic consistency below requires, for example, that at all
times t, we cannot have deontic conflicts. Furthermore, for time points t ≥ tnow in the
past, if an action is permitted at that time, then the precondition of that action must be
true in the state expected at that time. A similar condition holds for the past. This is the
gist of the following definition.

Definition 5.16 ((TP Deontic Consistency)) Suppose O is the agent state. A TP-
status interpretation ρ is said to be TP deontically consistent at time tnow iff it satisfies
the following conditions for all time points t (in the following, Pre(α) stands for the
preconditions of the action α):

(1) Oα ∈ ρ(t) → Wα /∈ ρ(t);
(2) Pα ∈ ρ(t) → Fα /∈ ρ(t);

(3) if t ≤ tnow, Pα ∈ ρ(t), then prob(Pre(α),O, t) = 1,

(4) if t > tnow, Pα ∈ ρ(t), then prob(Pre(α), EO(t), t) = 1.

The first two conditions express the underlying meaning of the deontic atoms: at any
given point in time, and for any action, if the agent is obliged to perform the action, then
it means that the obligation to perform the action has not been waived. Conditions (3)
and (4) formalise the intuition that a permitted action should have a precondition that
is true (with probability 1). While (3) talks about current or past time points, condition
(4) refers to future time points (and thus has to use the notion of expected states). Thus,
if ρ(4) = {Pα,Fα}, then ρ cannot be TP-deontically consistent.

The reader would have noticed that conditions (3) and (4) in the preceding definition
only apply to actions which are permitted. Surely, the same conditions should also apply
to actions that are to be done or obligatory (i.e. when Doα or Oα are true at time i)
? We define below, the notion of TP-deontic closure which accomplishes this. Given a
set S of status atoms, let D-Cl(S) be the smallest superset S′ of S such that Oα ∈
S′ → Pα ∈ S′. Likewise, let A-Cl(S) be the smallest superset S∗ of S such that (i)
Oα ∈ S∗ → Doα ∈ S∗ and (ii) Doα ∈ S∗ → Pα ∈ S∗. We say that set S is
deontically closed iff S = D-Cl(S) and action closed iff S = A-Cl(S).

The following definition explains what it means for a TP-status interpretation to be
closed under the deontic modalities.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 27

Definition 5.17 ((TP Deontic/Action Closure)) ρ is said to be TP deontically closed
at time tnow iff for all time points t: D-Cl(ρ(t)) = ρ(t). ρ is said to be TP action
closed at time tnow iff for all time points t: A-Cl(ρ(t)) = ρ(t).

It is easy to see that the TP-interpretation ρ of example 5.11 is both TP-deontically
consistent and deontically and action closed.

For a temporal probabilistic status set to be feasible, it must satisfy the additional
requirement of TP-state consistency. We assume that an agent has a set of integrity
constraints IC of the form: ψ ⇒ χ where ψ is a code call condition, and χ is an atomic
code call. These constraints are evaluated in the state. They say that an agent must never
transition to a state that violates any of these constraints. 5

Definition 5.18 ((TP State Consistency)) ρ is said to be TP-state consistent at time
tnow iff for each integrity constraint ψ ⇒ χ in IC for all t ≤ tnow for every legal
assignment of objects from O to the variables of ψ and χ either prob(ψ,O, i) 6= 1 or
prob(χ,O, t) = 1

A feasible TPSI is like a model of a classical logic theory.

Definition 5.19 ((Feasible TPSI (FTPSI))) Suppose the current time is tnow, T PP
is a TP program, O is an agent state, acthist is an action history and IC is a set of
integrity constraints. A TP-status interpretation ρ satisfying ρ(i) 6= ∅ for only finitely
many i is said to be feasible with respect to the above parameters, denoted by FTPSI,
iff

(1) ρ satisfies all rules in T PP ,

(2) ρ is TP deontically consistent at time tnow,

(3) ρ is TP deontically and action closed at time tnow,

(4) ρ is TP-state consistent at time tnow,

(5) ρ is action history compatible at time tnow.

Recall again that we would like the agent’s decision cycle to always ensure that a valid
state (one where the integrity constraints are satisfied) is reached by in accordance with
the agent’s agent program. The key idea behind FTPSI’s is that whenever a state change
occurs (e.g. when the agent receives a message, or when the clock ticks, or when an
update is made), the agent computes a new feasible TPSI ρ and concurrently executes
all actions α such that Doα ∈ ρ(tnow). ρ also specifies what actions are to be executed
at time tnow+1, tnow+2, . . . and so on. However if an update occurs between time tnow
and tnow + 1, then the agent computes a new FTPSI ρ′ and the actions it takes at time

5[Eiter et al., 1999] also allows agents to have a set, possibly empty, of action constraints. It has been
shown [Subrahmanian et al., 2000] that action constraints can be expressed as integrity constraints, and hence,
we do not consider them in this paper.

Technical Report IfI-05-03

28 Dix et al.

tnow + 1 will be those that are specified by ρ′(tnow + 1). Thus, updates are evaluated
and handled on an ongoing basis via the computation of new FTPSI’s that specify what
actions must be taken when an update occurs. We note that an agent may have zero, one,
or many FTPSI’s in a given state. Later (Section 7), we give a mechanism to choose
between multiple FTPSI’s using an objective function.

We demonstrate the updates using the following example.

Example 5.20 Suppose the generator’s TP program, T PP , contains the following
rule:

DoProduce(m, ann)[⊗ig, 〈[Xnow, Xnow + 1], δu〉] ←
in(m + 1, energy : demand(ann)) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉, [0.95, 1]]

Suppose that originally the agent’s state is as specified in example 5.11, tnow = 3
and the agent uses ⊕ind as its fixed probabilistic disjunction strategy. Suppose that in
order to satisfy the rule above, DoProduce(m, ann) ∈ FTPSI3(4), as specified in the
TP-status interpretation of example 5.11.

Suppose that an external update of the agent state occurred (e.g., new data about
weather condition arrived) and the actual values of {{m + 1,m + 2}, p}, and
{{m + 1,m + 2}, q}, are as specified in the following table (the new and modified
values are emphasised):

Time bal ann
p(m + 1) p(m + 2) q(m + 1) q(m + 2)

0 0.30 0.70 0.60 0.40
1 0.40 0.60 0.60 0.40
3 0.25 0.75 0.85 0.15
4 0.35 0.65 0.85 0.15
5 0.35 0.65 0.60 0.10

After the update, when tnow = 4 the agent will compute FTPSI4. In the new state,

in(m + 1, energy : demand(ann)) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉, [0.95, 1]]

is not satisfied. Thus, DoProduce(m, ann) will not belong to FTPSI4(4).

Theorem 5.21 ((Complexity)) Suppose the current time is tnow, T PP is a TP pro-
gram, O is an agent state, acthist is an action history and IC is a set of integrity
constraints.

1. The problem of checking whether a given TPSI ρ is feasible or not, can be done
in polynomial time.

2. The problem of checking whether a feasible TPSI ρ exists, is NP-complete.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 29

Proof: These complexity results rely on several assumptions about the under-
lying software code and the active domains of objects considered. These as-
sumptions, as well as the effect of having no integrity constraints, are discussed
in [Subrahmanian et al., 2000, Eiter et al., 2000] and we refer the interested reader to
these papers.

Checking feasibility of a given TPSI ρ reduces to checking all the conditions in
Definition 5.19. Obviously, action history compatibility, deontic consistency, deontic
and action closedness, as well as TP state consistency can all be checked in linear
time. So it remains to check closedness under the rules. But this is also a linear check,
since we fix the underlying temporal probabilistic agent program. Therefore, due to our
assumptions about the underlying software code, we get at most polynomial complexity
overall.

By what we have just shown, the existence problem is certainly in NP (we can
guess a candidate and then verify it in polynomial time). NP completeness follows
immediately from the respective result for ordinary (non TP) programs as first proved
in [Eiter et al., 2000].

6 FTPSI Computation
The preceding section defines a formal semantics based on the concept of a feasible
TP-status interpretation. We now show how FTPSI’s can be constructed for finite strict
TPP’s.

The method and techniques we are applying here extend those used
in [Dix et al., 2001]. The key part of the algorithm is a fixpoint operator. A huge differ-
ence is that the fixpoint operator is completely different from that in [Dix et al., 2001].
As a consequence, though many of the results in this section are similar in statement as
those in [Dix et al., 2001], the proofs are completely different.

Since we are considering only strict rules, for simplicity, we assume that an annota-
tion associated with a status condition is of the form ti where ti is a temporal interval.
In addition, if ti is a singleton [t, t], we will use the annotation [t].

In the following, we will consider sets of status atoms of the form Op(α) : [t, t′]
and refer to them as temporally constrained status atoms. We also write Op(α) : ti if the
special form of ti is not important. The fixpoint operator to be defined below is operating
on such sets.

Definition 6.1 ((Temporally constrained status sets tc-T S)) A temporally con-
strained status set tc-T S consists of status atoms of the form Op(α) : ti. We also call
status atoms of the form Op(α) : [t], where t is an integer, singleton TP status atoms.

It is straightforward to construct a TP-status interpretation from a set of singleton
TP status atoms tc-T S:

Op(α) ∈ ρ(t) iff Op(α) : [t] ∈ tc-T S.

Technical Report IfI-05-03

30 Dix et al.

In this case, ρ and tc-T S are compatible.
However, if tc-T S is a temporally constrained TP status atoms set, there are several

TP-status interpretations that can be constructed based on it and the notion of compati-
bility is defined as follows.

Definition 6.2 ((TPSI Compatible with tc-T S)) A TP-status interpretation ρ is
compatible with tc-T S iff for every Op α : ti in tc-T S, there is a solution i ∈ ti
such that Op α ∈ ρ(i).

We denote the set of all TP-status interpretations that are compatible with tc-T S by
Comp-tc-T S.

There are an infinite number of TP-status interpretations that are compatible with a
given tc-T S. For example, the TP-status interpretation of Example 5.11 is compatible
with

{ FBid(Pmax, bal)[0, 6],
DoProduce(m + 1 , bal)[0, 3],
FBid(Pmax + 1 , bal)[4,∞],

}
In addition, there could be infinitely many temporally constrained TP status atom sets
that are compatible with a given ρ. We denote the subset of the singleton status atoms
of tc-T S by Singl(tc-T S).

Furthermore, we will say that tc-T S has a given property, e.g., it is feasible, iff its
compatible ρ is feasible. Thus, given a program, T PP , an agent state,O, and an action
history acthist, our goal is to construct a feasible tc-T S. We will use tc-T S and its
corresponding ρ synonymously.

In Subsection 6.1 we introduce our main technical machinery for constructing feasi-
ble tc-T S: a fixpoint operator which possesses a least fixpoint. All feasible tc-T S are
compatible with this fixpoint (Theorem 6.8) and thus we have reduced our problem to
finding all compatible sets. This requires further technical notions which are introduced
in Subsection 6.2 and finally lead to Algorithm 6.9 which is shown to be sound and
complete (Theorem 6.16).

6.1 The Fixed point operator
In this section, we consider the problem of constructing a feasible tc-T S based on a TP
program, T PP , an agent state, O, and an action history acthist.

A cursory examination of the definition of a feasible tc-T S (Definition 5.19) re-
veals that most of the conditions are simple checks that can be easily incorporated in
the construction process. The main exception to this happy state of affairs is the first
condition—that of closure under the rules in the TP program. This is because when a
rule causes atoms to be added to ρ(i), for some i ≥ tnow, it may cause other rules to
fire, which in turn may cause other atoms to be added to ρ(i), for some i ≥ tnow. This
in turn may cause additional rules to fire, and so on.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 31

We therefore take advantage of well-known methods from logic program-
ming [Lloyd, 1987], and we construct a suitable monotone fixpoint operator and relate
its least fixpoint DT P ↑ω with feasible TP-status interpretations.

The iterative construction of this fixpoint is nothing but a mathematical description
of the well known “loop” construct in programming languages. These methods allow
us to mathematically model the transitive closure of forward chaining rules in an ele-
gant way. For readers not familiar with this approach, we add some explanations. The
fixpoint operator of Definition 6.3 below, when applied to a set tc-T S, gives us the
result of simultaneously applying all the rules in our TP program once. Thus, to get the
transitive closure, we have to iterate this operator. We are therefore interested in its least
fixpoint, if it exists: this fixpoint would then constitute the transitive closure of all the
rules. The existence of this fixpoint follows immediately, using the famous theorem of
Knaster/Tarski [Tarski, 1955], because the operator itself will turn out to be monotone.

Thus, we first define a fixpoint operator. The definition uses the notion of modalities
implying modalities defined as follows: O implies both Do and P, Do implies P and
all modalities imply themselves.

We emphasize the fact that we are only considering strict programs (so all probabil-
ities in action status conditions are equal to 1). However, arbitrary probability intervals
can occur in TP-CCC’s.

We also assume in the following, w.l.o.g., that all intervals 〈ti, δ〉 are such that δ is
nonzero in the whole interval (otherwise we can write it as a finite union of intervals in
the required form).

Definition 6.3 ((Operator DT P)) Let T PP be a TP program, O a state and tc-T S a
set of temporally constrained TP status atoms. Then we define DT P(tc-T S) to be the
following set of temporally constrained TP status atoms:

{Op ′ α : [ti′] | Op α : [⊗, 〈ti, δ〉] ← tpccc1 ∧ . . . ∧ tpcccn

∧%1 : [⊗, 〈ti1, δ1〉] ∧ . . . ∧ %m : [⊗, 〈tim, δm〉]
is a ground instance of a rule in T PP and
(I) for all 1 ≤ i ≤ n: O |=now tpccci and
(II) for all 1 ≤ i ≤ m:

If %i = Opiαi

then there exists Op′iαi1 : [ti′i] in tc-T S s. t.:
(1) Op′i implies Opi,
(2) ti′i ⊆ tii and

If %i = Opi1
αi1 ∧ . . . ∧Opik

αik

then there exist ti ∈ tii
and for 1 ≤ j ≤ k: Op′ij

αij : [ti] in tc-T S

s. t. Op′ij
implies Opij

.and
(III) ti′ = [ti ∧ t ≥ tnow] and Op implies Op′. }

As the above definition is quite complex, we provide a simple example below to show
how it works.

Technical Report IfI-05-03

32 Dix et al.

Example 6.4 ((Energy example: Operator DT P)) Suppose the generator’s TP pro-
gram, T PP , contains the following rules:

r1: DoBid(c + 5 , bal)[⊗ig, 〈[Xnow, Xnow + 3], δu〉]←
in(m + 2, energy : demand(bal)) : [⊗ig, 〈[Xnow, Xnow + 1], δu〉, [0.9, 1]]

r2: OProduce(m, bal)[⊗ig, 〈[Xnow, Xnow + 2], δu〉]←
PBid(c + 5 , bal)[⊗ig, 〈[Xnow, Xnow + 5], δu〉]

Suppose tnow = 3 and the agent’s state is as specified in example 5.11 and there are
no integrity constraints.

DT P(∅) = { PBid(c + 5 , bal)[3, 6],
DoBid(c + 5 , bal)[3, 6]}

In order to find a fixed point we need to iterate the operator. This is traditionally done
by first starting out with the TP-interpretation that assigns the empty set to each time
point, and then iteratively firing rules and adding to these sets. However, we do not start
the operator by assigning ∅ to all time points t. This is because part of the TP-status
interpretation we want to construct is already determined by acthist. Therefore we de-
fine tc-T Sstart to be the set of singleton TP status atoms that corresponds to acthist. In
some situations we will add to tc-T Sstart status atoms that may belong to the feasible
TP-status interpretation. We now define the iterations of DT P .

Definition 6.5 ((Iterations of DT P)) Let T PP be a strict TP program, and O be an
agent state. The iterations of DT P are defined as follows:

DT P ↑0 = tc-T Sstart.

DT P ↑(j+1) = DT P(DT P ↑j).

DT P ↑ω =
⋃

j

DT P ↑j .

When tc-T Sstart is not clear from the context, we will use the notation DT P ↑ω

(tc-T Sstart) to explicitly specify it.

Example 6.6 ((Energy example: Iterations of DT P) We continue with example 6.4
and assume that tc-T Sstart = ∅.

• DT P ↑0= ∅ since tc-T Sstart = ∅.

• DT P ↑(1)= DT P(DT P ↑0) = DT P(∅). This was computed in Example 6.4:

DT P ↑(1) = { PBid(c + 5 , bal)[3, 6],
DoBid(c + 5 , bal)[3, 6]}

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 33

• Applying the rules again we get:

DT P ↑(2) = DT P ↑(1) ∪
{OProduce(m, bal)[3, 5],
DoProduce(m, bal)[3, 5],
PProduce(m, bal)[3, 5], }

• For all j > 2, DT P ↑(j)= DT P ↑(2).
• DT P ↑ω= DT P ↑(2)

The following result tells us that DT P is monotone and continuous w.r.t. subset inclu-
sion and hence, by the Tarski-Knaster theorem, is guaranteed to have a least fixpoint
which equals DT P ↑ω .

Theorem 6.7 ((Least fixpoint of DT P)) DT P is a monotone and continuous operator.
Hence, DT P ↑ω is its least fixpoint.

Proof: We first show monotonicity:

tc-T S1 ⊆ tc-T S2 ⇒ DT P(tc-T S1) ⊆ DT P(tc-T S2).

Suppose Op α : ti ∈ DT P(tc-T S1). Then there is a rule in T PP having a ground
instance of the form

Op α : ti ← tpccc1 ∧ . . . ∧ tpcccn ∧ %1 : ti1 ∧ . . . ∧ %m : tim

such that for all 1 ≤ i ≤ m, there exist Op′ij
αij : tiij in tc-T S1 such that condi-

tions (I)-(III) hold and ti has the required form. But in this case, as tc-T S1 ⊆ tc-T S2,
all the Op′ij

αij : tiij are also in tc-T S2 and hence, the conditions for Op α : ti ∈
DT P(tc-T S2) hold.

We now consider continuity. Let tc-T S1 ⊆ tc-T S2 ⊆ · · · ⊆ tc-T Sn ⊆
tc-T Sn+1 ⊆ · · · be an ascending chain of temporally constrained temporal status sets.
Then:

DT P(
⋃

i

tc-T Si) =
⋃

i

DT P(tc-T Si).

>From monotonicity of DT P , it is immediate that

DT P(
⋃

i

tc-T Si) ⊇
⋃

i

DT P(tc-T Si).

Hence, we only need to show that DT P(
⋃

i tc-T Si) ⊆
⋃

i DT P(tc-T Si). Suppose
Op′α : ti ∈ DT P(

⋃
i tc-T Si). Then there is a rule in T PP having a ground instance

of the form

Op α : ti ← tpccc1 ∧ . . . ∧ tpcccn ∧ %1 : ti1 ∧ . . . ∧ %m : tim

Technical Report IfI-05-03

34 Dix et al.

such that for all 1 ≤ i ≤ m, there exist Op′ij
αij

: tiij
in

⋃
i tc-T Si such that conditions

(I)-(III) hold and ti has the required form. As m is finite, there must exist an integer r
such that the above conditions are satisfied by tc-T Sr. In this case, we have Op′ij

αij
:

tiij ∈ DT P(tc-T Sr) and we are done.
The statement is now an immediate consequence of the Tarski-Knaster theo-

rem [Lloyd, 1987] that states that if f is a continuous function on a complete lattice,
then f ↑ω is the least fixpoint of f . Here, DT P is a continuous function, and the set of
all TP status sets is a complete lattice under set inclusion.

We are now ready to show that DT P ↑ω has the properties of TP deontic and action
closure, and also that all feasible temporal probabilistic status sets must be compati-
ble with DT P ↑ω . These properties will later help us in computing feasible temporal
probabilistic status sets.

Theorem 6.8 Let T PP be a strict temporal probabilistic agent program, and O a
state.

1. There is a TPSI ρ compatible with DT P ↑ω which is TP deontically closed and
temporally action closed.

2. If ρ is a feasible TPSI, then it is compatible with DT P ↑ω.

Proof:

1. Let XO be the set of all ti status atoms of the form Oα : ti in DT P ↑ω . Let XP

be the set of all ti status atoms of the form Pα : ti in DT P ↑ω . Each atom Oα : ti
in XO must be in DT P ↑j for some integer j, but then, as O implies P, the same
rule used to place Oα : ti in DT P ↑j must also have been used to insert Pα : ti
into DT P ↑j which means Pα : ti ∈ XP. One may now construct a ti status set
ρ′ as follows: for each Oα : ti ∈ DT P ↑ω , insert Oα,Pα into ρ′(j) where j is
the smallest integer which is contained in ti. For all other modalities Op 6= O, if
Opα : ti in DT P ↑ω , insert Opα into ρ′(j) where j is the smallest integer which
is in ti. It is easy to see that ρ′ is compatible with DT P ↑ω and ρ′ is temporally
deontically consistent.

2. Similar to the proof of the previous item.

3. Suppose ρ is a feasible temporal status set which is not compatible with DT P ↑ω .
We will attempt to derive a contradiction. We call a ti status atom Opα : ti a rogue
atom iff Opα /∈ ρ(i) for all i’s that are in ti. Let Rogues be the set of all rogue
atoms associated with ρ(i), and let

j = min{r |Opα : ti ∈ DT P ↑r and Opα : ti ∈ Rogues}.

We proceed by induction on j.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 35

j=0: In the base case, we obtain an absurdity immediately as DT P ↑ 0 = ∅ and
hence cannot contain any rogue atoms.

j=s+1: As no rogues occur in DT P ↑s, we know that ρ is compatible with
DT P ↑s.As Opα ∈ DT P ↑s+1, there must exist a rule in T PP having
a ground instance of the form shown in Definition 6.3 and satisfying the
conditions stated there. Clearly, each interval ti status atom in the body of
this rule is satisfied by ρ, i.e. for each ti status atom Opiαi : tii in the body
of this rule, rho(ti) contains Opiαi where ti ∈ tii. As ρ is feasible, by
the “closure under program rules” condition in the definition of feasibility,
it must satisfy the head of this rule, but to do this, it must satisfy the con-
straint attached to the rule head, which coincides with ti. This contradicts
our assumption.

6.2 Feasible Temporal Probabilistic Interpretation Algorithm
Given the above theorem, it may seem that a TPSI that is compatible with DT P ↑ω is
a good candidate for constructing a feasible TP-status interpretation. Thus, in order to
find a feasible TP-status interpretation, we could:

1. first compute the least fixpoint of DT P and then

2. select from amongst the compatible TP-status interpretations, those that satisfy
the other requirements for feasibility.

We follow this intuition in Algorithm 6.9 below. This algorithm uses a subroutine called
ComputeTPI described later in Definition 6.11. Whenever an agent’s state changes,
this algorithm will be executed to find a new feasible TP-status interpretation. The
agent then concurrently executes all actions α such that Doα is in the computed fea-
sible temporal probabilistic status interpretation at time tnow using the notion of con-
currency described in [Subrahmanian et al., 2000] (these details are omitted as they are
not relevant for the purposes of this paper).

The FTPSS algorithm terminates as soon as a feasible TP-interpretation is found. It
maintains a set, Seen , of compatible TP interpretations seen thus far—if the algorithm
is “still running” this means that none of the compatible TP interpretations examined
thus far is feasible, and hence, we need to continue trying to find a new compatible TP
interpretation that is feasible. More precisely, the algorithm works by:

(1) Iteratively modifying a set tc-T S This is a set of temporally constrained TP
atoms. Initially, it is determined by acthist and set to

tc-T Sstart :=
⋃

{i s.t. acthist(i) is defined}
{Opα[i] | Opα ∈ acthist(i)},

in accordance with Theorem 6.8.

Technical Report IfI-05-03

36 Dix et al.

(2) Checking for feasibility Once the ComputeTPI procedure has generated a new
candidate (to be described below), this set is checked for feasibility. If it is fea-
sible, a solution has been found. If not, this set is added to the set Seen and the
procedure goes on.

Algorithm 6.9 ((Feasible Temporal Probabilistic Status Set Computation))

FTPSS(T PP ,acthist,O)

(? Input: (1) a strict T PP , ?)
(? (2) the history acthist, and ?)
(? (3) the state O ?)
(? Output: (1) a feasible temporal probabilistic status set, if one exists ?)
(? (2) “No” otherwise ?)

1. tc-T Snew = DT P ↑ω (tc-T Sstart).

2. done := false;

3. Seen := ∅;

4. while ¬done do

(a) TPSI := ComputeTPI(tc-T Snew,T PP , O,Seen);

(b) if TPSI = “No” then return “No”.

(c) if FeasTPI(Singl(TPSI)) then done := true else Seen := Seen ∪
{TPSI};

5. return Singl(TPSI).

Before turning to the ComputeTPI procedure, we describe the feasibility check in more
detail.

Lemma 6.10 ((Feasibility Check FeasTPI)) Given a finite set of singleton TP status
atoms tc-T S that is closed under the program rules of T PP , it is possible to check
whether it is feasible. We will therefore assume that there is a FeasTPI algorithm that
checks whether tc-T S is

1. TP deontically consistent at time tnow,

2. TP deontically and action closed at time tnow,

3. TP state consistent at time tnow.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 37

It returns true if all these requirements are met—otherwise it returns false.

Proof: It is possible to develop such an algorithm since we require TPSI’s to be finite.
Thus, we only need to check these conditions for finitely many time points t. Note that
we do not have to check for history compatibility (as required in Definition A.7) nor for
closure under the rules of T PP: these conditions are guaranteed by the ComputeTPI
procedure (to be explained below).

Before stating our main procedure ComputeTPI in full detail, we first describe the
required input-output behaviour to ensure that Algorithm 6.9 is correct and complete.

Definition 6.11 ((Input and Output of ComputeTPI))
The ComputeTPI function takes as input (1) a set tc-T S of temporally constrained TP
status atoms, (2) a strict temporal probabilistic program T PP , (3) a state O and (4) a
set Seen of TP-status interpretations which are closed under the rules of T PP .

It either returns a TP status interpretation closed under the rules of T PP , compat-
ible with tc-T S, and different from the sets in Seen , if such a set exists, or “No” (if no
such TP status set exists).

Thus, we are confronted with the problem of implementing ComputeTPI. In order
to do so, we need to construct a TP status set TPSI which is compatible with tc-T S
and which is closed under the rules of T PP .

The reader may wonder why we cannot simply take the least fixpoint DT P ↑ω

(tc-T Sstart) for this purpose. Unfortunately, we cannot do so because DT P ↑ω

(tc-T Sstart) is in general not solution-closed (as defined below).

Definition 6.12 ((Solution Closed)) A set F of temporally constrained TP status
atoms is said to be solution-closed iff

for all Opα : ti ∈ F : there is i ∈ ti and Opα : [i] ∈ F

For example, Doα1[ti1] and Doα2[ti2] may both be such that no status atom of the
form Doα1[t1] and Doα2[t2] are present in tc-T Snew where t1, t2 are contained in
ti1, ti2 respectively. ti1, ti2 may have lots of solutions but we can pick a hitting set of their
set of solutions and add those temporally constrained TP status atoms to tc-T Snew to
remove the “reasons” for solution closure to fail. This process may in turn cause new
status atoms to be derivable (i.e. tc-T Snew may not be closed under program rules after
the addition of these atoms) and hence the process must be repeated.

Definition 6.13 ((TP Hitting Set)) Suppose tc-T S is a set of temporally constrained
TP status atoms. A TP hitting set, H , for tc-T S is a minimal set of singleton ground
TP status atoms of the form Op α : [i] such that:

For every Op α : ti ∈ tc-T S, there is an TP atom of the form Op α : [i] in
H such that i ∈ ti, and if i < tnow, then Op α ∈ acthist(i).

Technical Report IfI-05-03

38 Dix et al.

We use chs(tc-T S) to denote the set of all TP hitting sets for tc-T S.

We will use a subroutine called find_member_chs(tc-T S) which finds a member
of chs(tc-T S) that is not a subset of tc-T S. If no such element exists, it returns “No”.
We do not specify the implementation of this algorithm as it can be easily implemented
(using standard hitting set algorithms [Cormen et al., 1989]).

Unfortunately, blindly adding elements of a hitting set to the current candidate set
may destroy the closure under the rules condition: this is because there may be more TP
atoms available and thus more rules could fire and entail still more new TP atoms. This
problem can be taken care of by adding these atoms to the program and getting a new
program T PPnew (see (2)(d)(ii)(A) in Algorithm 6.14). We then apply our operator
DT P to T PPnew (see (2)(d)(ii)(B) in Algorithm 6.14). Note that new atoms which
violate the solution-closed requirement may still be generated. We repeat this process
until either

1. all TP atoms have a solution in the current H∗ (see (2)(d)(ii)(C) in Algo-
rithm 6.14), or

2. we reach a fixpoint H∗. This fixpoint yields a better candidate tc-T Snew and we
have to re-iterate the whole process, by first computing a hitting set of tc-T Snew

and then computing the iterations of our operator DT P .

Algorithm 6.14 (ComputeTPI(tc-T S, T PP,O,Seen))
ComputeTPI(tc-T S, T PP,O,Seen)

(? Input: (1) a set of temporally constrained TP status atoms tc-T S ?)
(? (2) a strict T PP , (3) the state O and ?)
(? (4) a set Seen of TP status sets, ?)
(? Output: (1) a compatible TP status set not in Seen which is ?)
(? closed under the rules of T PP (if one exists) ?)
(? (2) “No” otherwise ?)

1. done := false; found := false; Loc_Seen := Seen;
tc-T Snew := tc-T S; H∗ := ∅, done_inner := false;

2. while ¬done ∧ ¬found do

(a) if done_inner then
i. H = find_member_chs(tc-T S,Loc_Seen);

ii. if H = “No” then done:= true;
iii. done_inner:= false

(b) else
i. H = find_member_chs(tc-T Snew,Loc_Seen);

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 39

ii. if H = “No” then done_inner= true;

(c) Loc_Seen := Loc_Seen ∪ {H};

(d) if H 6= “No” then

i. H? = H; changed =true;
ii. while ¬found ∧ changed do

A. T PPnew = T PP ∪ H?; oldH? = H?;
B. H? = DT PPnew

;
C. if H? /∈ Loc_Seen ∧ H? is solution closed

then found = true
else changed = (oldH? 6= H?);

iii. Loc_Seen := Loc_Seen ∪ {H∗}; tc-T Snew := H∗

3. if found then return H? else return “No”.

The following lemma states that the above implementation of Algorithm 6.14 satis-
fies the output conditions of Definition 6.11.

Lemma 6.15 Suppose the find_member_chs(tc-T Snew,Loc_Seen) algorithm is
correctly implemented. Then:

1. If algorithm ComputeTPI returns a temporal status set H∗, then H∗ satisfies the
output conditions of Definition 6.11.

2. If algorithm ComputeTPI returns “No”, then there is no temporal status set sat-
isfying the output conditions of Definition 6.11.

Proof: There are two while loops in the algorithm above. The outer loop (step 2 of
the algorithm), considers the possible hitting sets of the original tc-T S. The variable
“done” is false as long as not all the hitting sets were considered.

For each hitting set of the original tc-T S, the inner while loop (2(d)ii of the algo-
rithm), tries to find a solution-closed superset H∗ of the hitting set. This is done using
DT P after adding the hitting set to T PP and assigning it to T PPnew (2(d)iiB). It itera-
tively adds the result of applying DT P to T PP (2(d)iiA). When H∗ cannot be enlarged
any more and still a solution wasn’t found, a hitting set of H∗ (which is assigned to
tc-T Snew (2(d)iii)) is found (2(b)i) and the process continues until success or until it is
clear that the chosen H can’t be extended any more.

Theorem 6.16 ((Algorithm 6.9 is Correct and Complete))
Algorithm 6.9 generates a feasible TP status set (if one exists).

Proof: Suppose Algorithm 6.9 returns tc-T S. In this case, tc-T S is compatible via
step (4)(a), and feasible via step (4)(c).

Technical Report IfI-05-03

40 Dix et al.

Conversely, suppose Algorithm 6.9 returns “No”. In this case, we know that
ComputeTPI returned “No” which means that it was unable to find a TP status set
compatible with DT P ↑ω . But this means that all TP status set compatible with DT P ↑ω

are in Seen which means none of them is feasible.

7 Optimal Feasible Temporal Probabilistic Status Sets
As the reader has undoubtedly noticed by now, in a given state, an agent can have zero,
one, or many FTPSI’s. The agent is required to choose one and act according to the
status atoms in that FTPSI. Thus far, we have proceeded under the assumption that the
agent will arbitrarily choose one. In this section, we suggest that the agent choose one
based on an objective function.

Definition 7.1 ((Objective function (objf))) Suppose a is a given agent. An objective
function objf for a is a mapping that takes as input, a state (for agent a) and an FTPSI,
and returns as output, a non-negative real number.

Intuitively, we will think of an objective function as assigning a cost to the choice of
a given FTPSI. This cost has two components—the actions in FTPSI and the unde-
sirability of the state that results if we choose to act in accordance with the FTPSI in
question.

Definition 7.2 ((Optimal FTPSI)) Suppose a is a given agent and objf is an objective
function for a. Given any FTPSI S w.r.t. agent a and state O, we use result(S,O) to
denote the new state that results by executing all the Do actions in S(tnow) w.r.t. the
current state O.

An FTPSI S is optimal w.r.t. a given agent state O and objf iff there is
no other FTPSI S′ for agent a in state O such that objf(result(S′,O), S′) <
objf(result(S,O), S).

Intuitively, as we are thinking of minimising the cost associated with the choice of an
FTPSS over other possible FTPSS’s, the above definition requires us to minimise objf.

The following algorithm modifies the FTPSS algorithm so as to compute an opti-
mal feasible temporal probabilistic status interpretation w.r.t. a given agent and a given
objective function.

Algorithm 7.3 ((Optimal Feasible Temporal Probabilistic Status Int. Computation))
OptFTPSS(T PP ,acthist,O,objf)

(? Input: (1) a strict T PP , ?)
(? (2) the history acthist, ?)
(? (3) the state O, and ?)

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 41

(? (4) objective function objf ?)
(? Output: (1) an optimal FTPSI if one exists ?)
(? (2) “No” otherwise ?)

1. tc-T Snew = DT P ↑ω (tc-T Sstart).

2. done := false;

3. Seen := ∅;

4. bestSol = NIL; bestCost = ∞;

5. while ¬done do

(a) TPSI := ComputeTPI(tc-T Snew,T PP , O,Seen);
(b) if TPSI = “No” then done := true;
(c) else

i. Seen := Seen ∪ {TPSI};
ii. if FeasTPI(Singl(TPSI)) then

A. if objf(result(O, TPSI)) < objf(result(O, bestSol)) then
• bestSol := TPSI
• bestCost := objf(result(O, TPSI)

return Singl(TPSI).

Theorem 7.4 ((Correctness of OptFTPSS)) Suppose an agent a has a temporal prob-
abilistic agent program T P , action history acthist and current state O. Suppose objf
is an objective function Then:

1. If a has at least one FTPSI, then algorithm OptFTPSS(T P, acthist,O, objf)
will find an optimal FTPSI wrt. objf.

2. If OptFTPSS(T P, acthist,O, objf) returns “No” then the agent has no FTPSI
in the current state.

Proof: (1) Suppose a has at least one FTPSI. Every FTPSI will be eventually gener-
ated by Step 5(a) via the ComputeTPI invocation. When a feasible FTPSI is found,
step 5(c)(i)(A) checks if the value of the objective function on this FTPSI is less than
that of the current best solution. If so, it updates both the bestCost variable and the
bestSol value. Otherwise this FTPSI is not as good as the current best solution. Hence,
when the algorithm terminates in Step 5(b), all FTPSI’s have been examined and the
bestSol variable has the best FTPSI.

(2) Immediate from the above. If “NIL” is returned, this means that all FTPSI’s com-
patible with DT P ↑ω (tc-T Sstart) were examined and none was found to be feasible.

Technical Report IfI-05-03

42 Dix et al.

8 Related Work

The work reported in this paper focuses on decision making in the presence of uncer-
tainty in time. Over the years, there has been extensive work on uncertainty manage-
ment and temporal reasoning. To put our work in the correct context, we list below
various issues associated with time and uncertainty that were considered in previous
research. To demonstrate the main issue of each category, we discuss shortly a few of
the works that belong to it. Several of the works mentioned below consider more than
one issue. We categorise a paper according to the main issue it considered. The main
issue of our paper is the development of agent mechanisms to determine how to take
actions now or in the future, and thus it belongs to the last category in the list. However,
in each category we will mention how we addressed the category’s issue in the context
of building our mechanism for agent decision making.

Reasoning about the interactions between time and uncertainty
For example, [Lehmann and Shelah, 1982] developed a probabilistic temporal
logic. [Dubois et al., 1991] have studied the integration of uncertainty and time
– they extend the well-known possibilistic logic theory [Dubois and Prade, 1994,
Dubois et al., 1991, Dubois and Prade, 1989] to a “timed possibilistic logic”.

[Halpern and Tuttle, 1992] study the semantics of reasoning about distributed
systems when uncertainty is present. They develop a logic where a process has
knowledge about the probability of events which facilitates decision-making by
the process.

[Kifer and Subrahmanian, 1992] show how uncertainty (including point, as well
as interval based fuzzy logics) and time can be integrated via their annotated
logics. In particular, they establish that various forms of temporal reasoning due
to Shoham [Shoham, 1988] can be captured in their framework.

The basic blocks provided to our agent to reason on time and probability is the
temporal probabilistic code calls. The advantage of using this technique is the
ability to build agents on top of legacy code.

Reasoning about the interactions between time and beliefs
For example, [Fagin et al., 1995, Fagin et al., 1990] proposed modal logics of
time and beliefs that can be used to model the behaviour of different types of dis-
tributed systems, e.g., systems that have perfect recall about the past, and those
that have bounded recall.

[Thomas et al., 1991] have developed a framework for integrating beliefs, time,
commitment, desires and multiple agents.

[Gmytrasiewicz and Durfee, 1992] have developed a logic of knowledge and be-
lief to model multiagent coordination. Their framework permits an agent to rea-
son not only about the world and its own actions, but also to simulate and

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 43

model the behaviour of other agents in the environment. In a separate pa-
per [Gmytrasiewicz et al., 1991], they show how one agent can reason with a
probabilistic view of the behaviour of other agents so as to achieve coordination.

[Friedman and Halpern, 1997] introduced a semantic based framework to model
belief change. This framework combines temporal and epistemic modalities
with a notion of plausibility, allowing to examine the changes of beliefs over
time. They show belief revision and belief update fit into their framework
[Friedman and Halpern, 1999].

In this paper we do not model the beliefs of an agent, but rather provides the
agent with a mechanism to use probabilistic estimations of the legacy code the
agent is built on top off. Updates are made to the data, which in turn yields new
estimations.

Reasoning about time, action and change
For example, [E. Sandewall, 1994] developed techniques based on the concept of
fluents for reasoning about actions and change. In his framework, existing and
new logics can be described, compared and analyzed.

Karlsson and his colleagues that were inspired and motivated by Sande-
wall’s work developed a class of narrative-based temporal action logics (TAL)
[Doherty et al., 1998].

Dean and Kanazawa have studied the integration of probability and time with
a view to developing efficient planning techniques [Dean and Kanazawa, 1988,
Kanazawa, 1991]. Their main interest is in how probabilities of facts and events
change over time. Similarly, [Haddawy, 1991, Haddawy et al., 1995] develops a
logic for reasoning about actions, probabilities, and time and use it as a basis foe
efficient planning.

[Hanks and McDermott, 1994] presented a system that uses probabilistic model
to reason about the effects of agent’s proposed actions. The system is able to
answer questions of the form “is the probability that φ will hold in the world at
time t is greater than r?”

[Baral et al., 2002] presented a language to reason about actions in a probabilistic
setting. The main feature of their model is its use of static and dynamic causal
laws, and use of unknown (or background) variables – whose values are deter-
mined by factors beyond their model.

We adopted IMPACT ’s approach to model actions in which their is no uncertainty
with respect to how an action will change the agent’s state. It is specified by the
add and delete lists and the action’s code. However, we extended the add and the
delete lists of an action to include temporal probabilistic code calls. We do not
consider planning in this paper, but rather focuses on the agents programming
and agents’ decision making. However, our framework could be used to develop
agents that can do planning as is demonstrated in [Dix et al., 2003].

Technical Report IfI-05-03

44 Dix et al.

Analyzing and modelling uncertain temporal data
This research includes techniques such as Kalman filtering that addresses the
question of how does one update a “best” estimate for the state of a system as new,
but still inaccurate, data arrived [Scientific, 2003]. It also includes techniques for
modelling the evolution of a system from data such as time series analysis and
forecasting techniques [Arsham, 2003].

We do not consider the problem of data analysis, but allow agents to be built on
top of any software modules that perform such analysis.

Building action policies across time in the presence of uncertainty
The main goal of our paper has been to develop a framework that provides an
agent with mechanisms to determine how to take actions now or in the future.
The decision is based on the uncertain data the agent currently has access to
via zero or more legacy data sources and based on leveraging existing software
programs. The decision of what to do may change as the data changes based on
external events. Thus, in the rest of this section we will compare our work with
other works that belong to this category.

The work on MetaTem [Barringer et al., 1990] and its successor, Concurrent
MetaTem [Fisher, 1994] are closely related to our work as they developed a logical
framework to provide agents with temporal rules to decide on what to do. No proba-
bilities are processed in their work—when probabilities are ignored, the relationship of
their work to our framework has been cleanly described in [Dix et al., 2001].

The Independent Choice Logic (ICL) of Poole [Poole, 1997] is another very inter-
esting approach. ICL is a semantic framework that allows for independent choices and
a logic program that gives the consequence of choices. Various techniques such as in-
fluence diagrams and structured Markov decision processes can be embedded in ICL.
However, the goal of ICL, as explicitly stated by Poole, is to be used as a specification
for agents that act in a world and make observations of that world and as a modelling
tool for dynamic environments with uncertainty. It does not discuss the computation
issues related to building agents nor provides tools to be used by agents acting in un-
certain environments.

MDP ’s can be applied for the construction of optimal or approximately optimal poli-
cies under uncertainty. In order to model a problem using MDP ’s there is a need to
define: (i) a state space; (ii) a set of possible actions (iii) a state transaction (iii) in case
of POMDPs–observations (iv) a reward function.

[Boutilier et al., 1999] describe a number of ways in which intensional representa-
tions can be exploited to solve MDP ’s effectively without enumeration all of the state
space (e.g., the structured policy iteration algorithm [Boutilier et al., 1995], or explic-
itly specifying all the transaction and reward functions. However, even when using these
methods, the modelling process is highly time consuming. Using our approach a sys-
tem designer does not need to model the agent state. In our framework, the state of an
agent consists of whatever data is stored inside the data structures of the code on top of

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 45

which the agent is built. Prediction about the future could be done using any available
software packages. Instead of specifying a transaction function, in our framework the
designer provides the agent with temporal probabilistic rules. If necessary, the designer
can provide the agent with an objective function that it will use when choosing between
several possible set of actions that are supported by the rules.

[Boutilier et al., 2000] propose the DTGolog model for robot programming on top
of MDP ’s. DTGolog allows the agents designer to partially specify a control program
in a high-level, logical language. This designer’s program directs the search of the MDP
module. The joint goal of our paper and that of the Boutilier et al. is to provide agent’s
designer with a suitably high-level language to program its agent while allowing the
agent some latitude in choosing its actions in real time. However, while their agent can
be built only on top of MDP ’s, we provide a framework to build agents on top of any
legacy code.

Finally, [Dix et al., 2000] developed an extension of IMPACT to make decisions in
the presence of uncertainty alone, and [Dix et al., 2001] extend agent programs to han-
dle purely temporal reasoning. This paper extends the above papers in the following
significant ways.

1. There is a great difference between the syntax of both [Dix et al., 2000] and
[Dix et al., 2001] and this paper. The notion of a TP-annotation provided in this
paper is new, as are the definitions of TP-CCC’s and TP-ASC’s. This in turn
causes the syntax of TP agent programs to be very different from those in both
[Dix et al., 2000, Dix et al., 2001].

2. As a consequence, the semantics of HTP agents uses structures that are very
different from those in either of the above two papers.

3. Our use of a fixpoint operator to characterise the semantics of TP agents
is derived from a long body of work in logic programming. The fact that
a fixpoint operator is used in this paper provides a superficial similarity
to the papers [Dix et al., 2001, Dix et al., 2000]. However, as the syntax and
semantical structures s of HTP agents are different from the frameworks
in [Dix et al., 2000, Dix et al., 2001], it follows that our fixpoint operator is also
very different. As a consequence, the proofs of our main theorems are very differ-
ent from [Dix et al., 2001, Dix et al., 2000], although the statements in the main
theorems and lemmas resemble those in classical logic programming.

4. We have also introduced in this paper, the notion of optimal feasible tempo-
ral probabilistic status sets, a notion that is not dealt with in [Dix et al., 2001,
Dix et al., 2000].

Technical Report IfI-05-03

46 Dix et al.

References
[Arsham, 2003] Arsham, H. (2003). Time Series Analysis and Forecasting Techniques.

http://obelia.jde.aca.mmu.ac.uk/resdesgn/arsham/opre330Forecast.htm.

[Baral et al., 2002] Baral, C., Tran, N., and Tuan, L. (2002). Reasoning about actions
in a probabilistic setting. In Proc. of AAAI’02, pages 507–512, Edmonton, Alberta,
Canada. AAAI Press.

[Barringer et al., 1990] Barringer, H., Fisher, M., Gabbay, D., Gough, G., and Owens,
R. (1990). METATEM: A framework for programming in temporal logic. In
de Bakker, J. W., de Roever, W. P., and Rozenberg, G., editors, REX Workshop, vol-
ume 430 of Lecture Notes in Computer Science. Springer.

[Boole, 1854] Boole, G. (1854). The Laws of Thought. Macmillan, London.

[Boutilier et al., 1999] Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic
planning: Structural assumptions and computational leverage. Journal of Artificial
Intelligence Research, 11:1–94.

[Boutilier et al., 1995] Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploit-
ing structure in policy construction. In Mellish, C., editor, Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence, pages 1104–1111,
San Francisco. Morgan Kaufmann.

[Boutilier et al., 2000] Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S. (2000).
Decision-theoretic, high-level agent programming in the, situation calculus. In Proc.
of AAAI-00, pages 355–362.

[Cattell, R. G. G., et al., 1997] Cattell, R. G. G., et al. (1997). The Object Database
Standard: ODMG-93. Morgan Kaufmann, San Mareo, California.

[Chalupsky et al., 2001] Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J., Py-
nadath, D., Russ, T., and Tambe, M. (2001). Electric elves: Applying agent tech-
nology to support human organizations. In Hirsh, H. and Chien, S., editors, IAAI.
AAAI.

[Cormen et al., 1989] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1989). Intro-
duction to Algorithms. MIT Press and McGraw-Hill Book, Cambridge, Mass.

[Dean and Kanazawa, 1988] Dean, T. and Kanazawa, K. (1988). Probabilistic Tempo-
ral Reasoning. In Proceedings AAAI, pages 524–529, St. Paul, MN, USA. AAAI
Press / The MIT Press.

[Dix et al., 2001] Dix, J., Kraus, S., and Subrahmanian, V. (2001). Temporal agent
reasoning. Artificial Intelligence, 127(1):87–135.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 47

[Dix et al., 2003] Dix, J., Munoz-Avila, H., Nau, D., and Zhang, L. (2003). IMPACT-
ing SHOP: Putting an AI planner into a Multi-Agent Environment. Annals of Math-
ematics and AI, 4(37):381–407.

[Dix et al., 2000] Dix, J., Nanni, M., and Subrahmanian, V. (2000). Probabilistic agent
reasoning. ACM Transactions of Computational Logic, 1(2):201–245.

[Doherty et al., 1998] Doherty, P., Gustafsson, J., Karlsson, L., and Kvarnstrom, J.
(1998). (TAL) temporal action logics: Language specification and tutorial. Elec-
tronic Transactions on Artificial Intelligence, 2:3-4:273–306.

[Dubois et al., 1991] Dubois, D., Land, J., and Prade, H. (1991). Towards Possibilistic
Logic Programming. In Proceedings of the Eigth International Conference on Logic
Programming, pages 581–595, Paris, France. MIT Press.

[Dubois and Prade, 1989] Dubois, D. and Prade, H. (1989). Processing Fuzzy Tempo-
ral Knowledge. IEEE Transactions on Systems, Man and Cybernetics, 19(4):729–
744.

[Dubois and Prade, 1994] Dubois, D. and Prade, H. (1994). Possibilistic logic. In Gab-
bay, D., Hogger, C., and Robinson, J., editors, Handbook of Logic in Artificial In-
telligence and Logic Programming Vol. 3, Nonmonotonic and Uncertain Reasoning,
pages 439–513. Oxford University Press.

[E. Sandewall, 1994] E. Sandewall (1994). Features and Fluents: The Representation
of Knowledge about Dynamical Systems.

[Eiter et al., 2001] Eiter, T., Lukasiewicz, T., and Walter, M. (2001). A Data Model
and Algebra for Probabilistic Complex Values. Annals of Mathematics and Artificial
Intelligence, 33(2-4):205–252.

[Eiter et al., 1999] Eiter, T., Subrahmanian, V., and Pick, G. (1999). Heterogeneous
Active Agents, I: Semantics. Artificial Intelligence, 108(1-2):179–255.

[Eiter et al., 2000] Eiter, T., Subrahmanian, V., and Rogers, T. (2000). Heterogeneous
Active Agents, III: Polynomially Implementable Agents. Artificial Intelligence,
117(1):107–167.

[Fagin et al., 1995] Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (1995). Reasoning
about Knowledge. MIT Press, Cambridge, Massachusetts. 2nd printing.

[Fagin et al., 1990] Fagin, R., Halpern, J. Y., and Megiddo, N. (1990). A logic for
reasoning about probabilities. Information and Computation, 87(1/2):78–128.

[Fisher, 1994] Fisher, M. (1994). A survey of Concurrent METATEM —, the language
and its applications. In Gabbay, D. M. and Ohlbach, H. J., editors, Temporal Logic
— Proceedings of the, First International Conference, volume 827 of Lecture Notes
in Computer Science. Springer.

Technical Report IfI-05-03

48 Dix et al.

[Friedman and Halpern, 1997] Friedman, N. and Halpern, J. Y. (1997). Modeling
belief in dynamic systems, part I: Foundations. Artificial Intelligence Journal,
95(2):257–316.

[Friedman and Halpern, 1999] Friedman, N. and Halpern, J. Y. (1999). Modeling be-
lief in dynamic systems, part II: Revision and update. Journal of Artificial Intelli-
gence Research, 10:117–167.

[Gmytrasiewicz and Durfee, 1992] Gmytrasiewicz, P. and Durfee, E. (1992). A Logic
of Knowledge and Belief for Recursive Modeling. In Proceedings of the 10th Na-
tional Conference on Artificial Intelligence, pages 628–634, San Jose, CA. AAAI
Press/MIT Press.

[Gmytrasiewicz et al., 1991] Gmytrasiewicz, P., Durfee, E., and Wehe., D. (1991). A
Decision-Theoretic Approach to Coordinating Multiagent Interactions. In Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence, pages 62–
68, Sydney, Australia. Morgan Kaufmann.

[Haddawy, 1991] Haddawy, P. (1991). Representing Plans under Uncertainty: A Logic
of Time, Chance and Action. PhD thesis, University of Illinois. Technical Report
UIUCDCS-R-91-1719.

[Haddawy et al., 1995] Haddawy, P., Doan, A., and Goodwin, R. (1995). Efficient
Decision-Theoretic Planning: Techniques and Empirical Analysis. In Besnard, P.
and Hanks, S., editors, UAI, pages 229–236. Morgan Kaufmann.

[Halpern and Tuttle, 1992] Halpern, J. Y. and Tuttle, M. (1992). Knowledge, Probabil-
ity and Adversaries. Technical report, IBM. IBM Research Report.

[Hanks and McDermott, 1994] Hanks, S. and McDermott, D. (1994). Modeling a dy-
namic and uncertain world I: Symbolic and, probabilistic reasoning about change.
Artificial Intelligence, 65(2):1–55.

[Kanazawa, 1991] Kanazawa, K. (1991). A Logic and Time Nets for Probabilistic
Inference. In Proceedings AAAI-91, pages 360–365, Anaheim. AAAI Press / The
MIT Press.

[Kifer and Subrahmanian, 1992] Kifer, M. and Subrahmanian, V. (1992). Theory of
Generalized Annotated Logic Programming and its Applications. Journal of Logic
Programming, 12(4):335–368.

[Lakshmanan et al., 1997] Lakshmanan, V., Leone, N., Ross, R., and Subrahmanian,
V. (1997). ProbView: A Flexible Probabilistic Database System. ACM Transactions
on Database Systems, 22(3):419–469.

[Lehmann and Shelah, 1982] Lehmann, D. and Shelah, S. (1982). Reasoning with time
and chance. Information and Control, 53:165–198.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 49

[Lloyd, 1987] Lloyd, J. (1984, 1987). Foundations of Logic Programming. Springer-
Verlag, Berlin, Germany.

[Mittu and Ross, 2003] Mittu, R. and Ross, R. (2003). Building upon the coalitions
agent experiment (coax) - integration of multimedia information in gccs-m using
impact. In Proceedings 9th International Workshop on Multimedia Information Sys-
tems, pages 35–44, Ischia, Italy.

[Poole, 1997] Poole, D. (1997). The independent choice logic for modelling multiple
agents under uncertainty. Artificial Intelligence, 94(1-2):7–56.

[Puterman, 1994] Puterman, M. (1994). Markov Decision Processes: Discrete Dy-
namic Programming. Wiley & Sons, Chicester, New York, Brisbane.

[Reiter, 1998] Reiter, R. (1998). Sequential temporal golog. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Sixth International Confer-
ence (KR’98), pages 547–556, Trento, Italy. Morgan Kaufman.

[Scientific, 2003] Scientific, T. (2003). Kalman Filter References.
http://www.taygeta.com/kalrefs.html.

[Shoham, 1988] Shoham, Y. (1988). Reasoning about Change. MIT Press, Cambridge,
Mass.

[Siegal, 1996] Siegal, J. (1996). CORBA Fundementals and Programming. John Wiley
& Sons, New York.

[Subrahmanian et al., 2000] Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S.,
Özcan, F., and Ross, R. (2000). Heterogenous Active Agents. MIT-Press, Cambridge,
Mass.

[T. Hammel and Rogers, 2003] T. Hammel, B. Y. and Rogers, T. (2003). Fusing live
sensor data into situational multimedia views. In Proceedings 9th International
Workshop on Multimedia Information Systems, pages 145–156, Ischia, Italy.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285–309.

[Thomas et al., 1991] Thomas, B., Shoham, Y., Schwartz, A., and Kraus, S. (1991).
Preliminary Thoughts on an Agent Description Language. International Journal of
Intelligent Systems, 6(5):497–508.

[Wolfram, 1998] Wolfram, C. D. (1998). Strategic bidding in a multi-unit auction:
An empirical analysis of bids to supply electricity. RAND Journal of Economics,
29(4):703–72.

Technical Report IfI-05-03

50 Dix et al.

A Core Theory of IMPACT
In IMPACT , each agent a is built on top of a body of software code (built in any
programming language) that supports a well–defined application programmer interface
(either part of the code itself, or developed to augment the code). Hence, associated
with each agent a is a body of software code defined as follows.

Definition A.1 ((Software Code)) We may characterise the code on top of which an
agent is built as a triple S = (Ta,Fa, Ca) where

1. Ta is the set of all data types managed by S ,

2. Fa is a set of predefined functions which makes access to the data objects man-
aged by the agent available to external processes, and

3. Ca is a set of type composition operations. A type composition operator is a
partial n-ary function c which takes types τ1, . . . , τn as input, and yields a type
c(τ1, . . . , τn) as output. As c is a partial function, c may only be defined for
certain arguments τ1, . . . , τn, i.e., c is not necessarily applicable on arbitrary
types.

When a is clear from context, we will often drop the subscript a. Intuitively, Ta is the
set of all data types managed by a. Fa is the set of all function calls supported by the
application programmer interface (API) of the agent’s legacy code. Ca is the set of ways
of creating new data types from existing data types. This characterisation of a piece of
software code is widely used (cf. the Object Data Management Group’s ODMG stan-
dard [Cattell, R. G. G., et al., 1997] and the CORBA framework [Siegal, 1996]). Each
agent also has a message box having a well–defined set of associated code calls that can
be invoked by external programs.

Definition A.2 ((State of an Agent)) The state of an agent a at any given point t in
time, denoted Oa(t), consists of the set of all instantiated data objects of types con-
tained in Ta.

An agent’s state may change because it took an action, or because it received a message.
Throughout this paper we will assume that except for appending messages to an agent
a’s mailbox, another agent b cannot directly change a’s state. However, it might do so
indirectly by shipping the other agent a message requesting a change.

Queries and/or conditions may be evaluated w.r.t. an agent state using the notion of a
code call atom and a code call condition defined in Section 3 (Definitions 3.1 and 3.2).
An integrity constraint is an implication whose consequent is a code call atom, and
whose antecedent is a code call condition. Appendix A contains a detailed definition.

Each agent has an action-base describing various actions that the agent is capable of
executing. Actions change the state of the agent and perhaps the state of other agents’
msgboxes. An action has five components: (i) a name α(X1, . . . , Xn) where n ≥ 0 and

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 51

X1, . . . , Xn are variables, (ii) a precondition which is a code call condition, (iii) an add
list which is a set of code call atoms, (iv) a delete list which is a set of code call atoms,
and (v) an action method (in the strict sense of object–oriented programming) which
is a possibly imperative body of code that implements the action. An instance of an
action is obtained by applying a substitution to components (i)–(iv) of an action which
causes all these components to become ground (i.e., variable free). As usual, an action
instance can be executed when the appropriate instance of the precondition is true in the
current agent state, and the new state that results is just like the current state except that
the ground atoms in the add list instance become true, while the ground atoms in the
delete list instance become false. For more detailed definitions, the reader is referred to
[Eiter et al., 1999].

Each agent has an associated “notion of concurrency” conc, which takes a set of ac-
tions and an agent state as input, and produces as output, a single action that reflects the
combination of all the input actions. [Eiter et al., 1999] provide examples of three dif-
ferent notions of concurrency. We will sometimes abuse notation and write conc(S,O)
to denote the new state obtained by concurrently executing the actions in S in state O.

Each agent has an associated set of action constraints that define the circumstances
under which certain actions may be concurrently executed. As at any given point t in
time, many sets of actions may be concurrently executable, each agent has an Agent
Program that determines what actions the agent can take, what actions the agent cannot
take, and what actions the agent must take. Agent programs are defined in terms of
status atoms defined below.

Definition A.3 ((Agent Program)) An agent program P is a finite set of rules of the
form

A ← χ& L1 & . . . & Ln

where χ is a code call condition and L1, . . . , Ln are status literals.

Various semantics of agent programs are well described in [Eiter et al., 1999] as well
as in [Subrahmanian et al., 2000]. They are not needed in the sequel, as all newly in-
troduced semantics will be discussed at length. But understanding the framework of
ordinary agent programs obviously helps to get a better picture of the extension de-
scribed in this paper.

Definition A.4 ((Deontic and Action Consistency)) A status set S is called deonti-
cally consistent, iff it satisfies the following rules for any ground action α:

• If Oα ∈ S, then Wα /∈ S

• If Pα ∈ S, then Fα /∈ S

• If Pα ∈ S, then OS |= ∃∗Pre(α), where ∃∗Pre(α) denotes the existential clo-
sure of Pre(α), i.e., all free variables in Pre(α) are governed by an existential
quantifier. This condition means that the action α is in fact executable in the state
OS .

Technical Report IfI-05-03

52 Dix et al.

A status set S is called action consistent, if S,OS |= AC holds.

Besides consistency, we also wish that the presence of certain atoms in S entails the
presence of other atoms in S. For example, if Oα is in S, then we expect that Pα is
also in S, and if Oα is in S, then we would like to have Doα in S. This is captured by
the concept of deontic and action closure.

Definition A.5 ((Deontic and Action Closure)) The deontic closure of a status S, de-
noted D-Cl(S), is the closure of S under the rule

If Oα ∈ S, then Pα ∈ S

where α is any ground action. We say that S is deontically closed, if S = D-Cl(S)
holds.

The action closure of a status set S, denoted A-Cl(S), is the closure of S under the
rules

If Oα ∈ S, then Doα ∈ S

If Doα ∈ S, then Pα ∈ S

where α is any ground action. We say that a status S is action-closed, if S = A-Cl(S)
holds.

The following straightforward results shows that status sets that are action-closed are
also deontically closed, i.e.,

Definition A.6 ((Operator AppP,OS (S))) Suppose P is an agent program, andOS is
an agent state. Then, AppP,OS (S) is defined to be the set of all ground action status
atoms A such that there exists a rule in P having a ground instance of the form r :
A ← L1& . . . &Ln such that

1. B+
as(r) ⊆ S and {L : ¬L ∈ B−

as(r)} ∩ S = ∅, and

2. every code call cc ∈ B+
cc(r) succeeds in OS , and

3. every code call cc ∈ {L : ¬L ∈ B−
cc(r)} does not succeed in OS , and

4. for every atom Op(α) ∈ B+(r) ∪ {A} such that Op ∈ {P,O,Do }, the action
α is executable in state OS .

Note that part (4) of the above definition only applies to the “positive” modes
P,O,Do . It does not apply to atoms of the form Fα, as such actions are not executed,
nor does it apply to atoms of the form Wα, because execution of an action might be
(vacuously) waived, if its prerequisites are not fulfilled.

Our approach is to base the semantics of agent programs on consistent and closed
status sets. However, we have to take into account the rules of the program as well as
integrity constraints. This leads us to the notion of a feasible status set.

INSTITUT FÜR INFORMATIK

TEMPORAL PROBABILISTIC AGENTS 53

Definition A.7 ((Feasible Status Set)) Let P be an agent program, and let OS be an
agent state. Then, a status set S is a feasible status set for P on OS , if the following
conditions hold:

(S1) (closure under the program rules) AppP,OS (S) ⊆ S;

(S2) (deontic/action consistency) S is deontically and action consistent;

(S3) (deontic/action closure) S is action closed and deontically closed;

(S4) (state consistency) O′S |= IC, where O′S = apply(Do (S),OS) is the state
which results after taking all actions in Do (S) on the state OS .

Definition A.8 ((Groundedness; Rational Status Set)) A status set S is grounded, if
there exists no status set S′ 6= S such that S′ ⊆ S and S′ satisfies conditions (S1)–(S3)
of a feasible status set.

A status set S is a rational status set, if S is a feasible status set and S is grounded.

Definition A.9 ((Reasonable Status Set)) Let P be an agent program; let OS be an
agent state, and let S be a status set.

1. If P is a positive agent program, then S is a reasonable status set for P on OS , if
and only if S is a rational status set for P on OS .

2. The reduct of P w.r.t. S and OS , denoted by redS(P,OS), is the program which
is obtained from the ground instances of the rules in P over OS as follows.

(a) First, remove every rule r such that B−
as(r) ∩ S 6= ∅.

(b) Remove all atoms in B−
as(r) from the remaining rules.

Then S is a reasonable status set for P w.r.t. OS , if it is a reasonable status set of
the program redS(P,OS) with respect to OS .

Notational Conventions.
As this paper involves heterogeneous data sources, deontic modalities, actions, logical
methods, and temporal reasoning, all of which are complex subjects of research in their
own right, it is inevitable that the paper is heavy on notation. We end this section with
two tables listing the terminology used. While Table 1 contains the basic notation al-
ready introduced in [Eiter et al., 1999, Subrahmanian et al., 2000], Table 2 points to the
new notions introduced in this paper.

In addition, we note that agents always appear in the agent font while functions
and constants in software packages are written in italics. Variables and types come
in typewriter font: in(X, agent : function(const1 , Var2)). Actions α are denoted by
lower Greek letters. Calligraphic letters are used for meta objects, which are whole

Technical Report IfI-05-03

54 Dix et al.

Notation Description Definition
Sa software code on top of which a is built Def. A.1
T a
S data types of software code Sa Def. A.1
Fa
S function of software code Sa Def. A.1

Ca
S type composition operations Def. A.1
OS(t) state of an agent at time t Def. A.2
in(X, cc) code call atom indicating that (X ∈ cc) Def. 3.1
χ code call condition Def. 3.2
Opα(~t) status atom, e.g., Pα,Oα,Doα,Wα Def. 3.7
Li status literal, e.g., Pα and ¬Pα Def. 3.7
IC integrity constraints Sec. 1
AC action constraints Sec. 1

Table 1: Glossary 1: Basic Notation

collections of objects: T a
S , OS(t), IC, T P . Boldface is also used for meta-theoretic

notions: operators like DT P , closures like D-Cl(),A-Cl(), and the deontic modalities
P, Do , O, P, W .

The newly introduced temporal expressions and all things that have to do with time
are put into a sans serif font to distinguish them from our base terminology: tnow, te, ti,
acthist, tc-T S, [te1, te2].

Probabilistic items are written in a curly font: `1, `2, δ, [`1, `2]. Sets of objects are
again written in boldface: pas, TTT.

Both time and probability come together in the notion of a TP annotation:
[⊗, 〈[t1, t2], δ〉, [`1, `2]].

INSTITUT FÜR INFORMATIK

Notation Description Definition
RV(Obj , ℘) random variable Def. 3.3
S coherent set of RV’s Def. 3.3
τ type of a code call Def. 3.3
ccTP temporal probabilistic code call based on cc Def. 3.5
⊗ (⊕) probabilistic conjunction (disjunction) strategy Def. 3.6
te temporal expression, e.g., 5, Xnow + 3 Def. 4.1
ti temporal interval, e.g., [te1, te2] Def. 4.1
` probabilistic item, e.g. X+1

2
Def. 4.2

pi probabilistic interval, e.g., [`1, `2] Def. 4.2
δ probability distribution function (pdf) Def. 4.3
[⊗, 〈ti, δ〉, [`, `′]] TP-annotation Def. 4.4
χ : [⊗, 〈ti, δ〉, [`, `′]] TP-CCC Def. 4.5
(A1 ∧ . . . ∧ An) : [⊗, 〈ti, δ〉, [`, `′]] TP-ASC Def. 4.5
[⊗, 〈ti, δ〉] TP-annotation for strict programs Def. 4.6
T PP TP agent program Def. 4.7
pas(cc, o,TTT) set of possible answer situations Def. 5.1
FTPSI feasible TP status interpretation Def. 5.19
acthist action history Def. 5.12
EO(t) expected states at time t Def. 5.15
tc-T S temporally constrained status set Def. 6.1
Comp-tc-T S TP-status interpr. compatible with tc-T S Def. 6.2
DT P operator applying T PP on tc-T S once Def. 6.3
H TP hitting set Def. 6.13
chs(tc-T S) set of temp. constr. hitting sets for tc-T S Def. 6.13

Table 2: Glossary 2: Notions wrt. Temporal Probabilistic Approach.

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de
URL: http://www.in.tu-clausthal.de/∼wjamroga/techreports/

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. habil. Torsten Grust (Databases)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Dr. Michaela Huhn (Economical Computer Science)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Agent Systems)
Prof. Dr.-Ing. Dr. rer. nat. habil. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Virtual Reality)

