
Stepwise Enabling of AUGUSTUS for
MediGRID
Dietmar Sommerfeld1, Thomas Lingner2 and
Harald Richter3

IfI Technical Report Series IfI-07-12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45269182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI ReviewBoard

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelli-
gence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Economical Computer Science)
Prof. Dr. Niels Pinkwart (Economical Computer Science)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)

Stepwise Enabling of AUGUSTUS for MediGRID

Dietmar Sommerfeld1, Thomas Lingner2 and
Harald Richter3

1 Gesellschaft für wissenschaftliche DatenverarbeitungmbHGöttingen
Am Fassberg, 37077 Göttingen, Germany

dsommer@gwdg.de
2 Department of Bioinformatics, University of Göttingen

Goldschmidtstr. 1, 37077 Göttingen, Germany
thomas@gobics.de

3 Department of Informatics, Clausthal University of Technology
Arnold-Sommerfeld-Str. 1, 38678 Clausthal-Zellerfeld, Germany

harald.richter@tu-clausthal.de

Abstract

In the past years researchers from many domains have discovered Grid
technology as it opens up new possibilities to solve more complex prob-
lems than with traditional cluster computing. In this report we examine
the process to enable the life science application AUGUSTUS for execu-
tion inMediGRID. The gridification process starts with providing the se-
curity requirements and running the application manually using Grid
middleware. Afterwards, the application is described as workflow of sub-
sequent program executions, which is automatically distributed on ap-
propriate Grid resources by a workflow engine. Finally, we show how
a graphical user interface for end users is created by means of a portal
framework.

1 Introduction

Grid computing is the modern key technology to solve large-scale compu-
tational problems by using distributed heterogeneous resources. It is a spe-
cial kind of distributed computing with a focus on the use of computing and
data resources across existing administrative domains. Grids provide a new
quality of service in resource sharing and problem solving. They allow the
utilization of resources at a large number of distributed sites belonging to
different organizations. Within a Grid, all members form a new administra-
tive domain called Virtual Organization (VO).
If an application needs more resources than a single computing center

can provide the application needs to be gridified, i.e. distributed to several

1

Introduction

sites. Gridification is the process of enabling an application for execution on
a Grid.
Gridification not only allows to execute an application that is too large

for one site. It additionally reduces the execution time of smaller jobs that
would fit into the site by acquiring resources from outside that were not ac-
cessible before. Usually resources in computing centers are not fully utilized.
Such unused resources can bemade available to theGrid. Additionally, com-
putational loads are never constant, andwithGrid computing anoverloaded
computing center canmigrate jobs to sites with less load. The latter two facts
increase the efficiency of a computing center. Finally, if a machine in a com-
puting center is unavailable jobmigration enhances reliability.
The number of resourcesmade available via Grid technology will increase

because many public research institutes will not have the means to set up
large local clusters anymore. Instead, computational projects will be funded
that buy computing power from a Grid.
Theworkdescribed in this reportwas carried outwithin theGermanMedi-

GRID project. MediGRID is part of the German e-Science initiative D-Grid.
The aim of the project is to provide a community Grid for researchers in
the fields of medicine, biomedical informatics, and life sciences. Four types
of pilot applications were selected for the first phase of MediGRID: bioin-
formatics, image processing, biomedical ontology, and clinical research ap-
plications. Researchers in the MediGRID community usually do not have a
computer science background, therefore the usability of the Grid-solution is
very important.
Distributed resources used for scientific computing are veryheterogeneous.

This refers to their hardware architecture as well as their software basis in-
cluding operating system, resource management system and database sys-
tem. To be able to handle the heterogeneity, a Grid middleware is employed
which provides a common software basis on which the development of dis-
tributed applications can be settled. Middleware is a software layer between
the operating system and the applications, and is present on all machines
taking part in the Grid. The Grid middleware provides the basic services to
use the resources and enables a uniform access to the underlying software ar-
chitecture. Furthermore, it takes care of establishing a secure network envi-
ronment and supports the construction of user-friendly interfaces like Grid
portals.
TheMediGRID project uses theGlobus Toolkit 4 (GT4) [Foster, 2005] as its

Grid middleware. Globus Toolkit is one of the most popular Grid middle-
wares and the basis of many Grid projects all around the world. In version 4,
the architecture of the toolkit was completely changed and it is now imple-
mented with stateful web services as specified by the Web Services Resource
Framework (WSRF) [Foster et al., 2005]. The services implemented by GT4
are compliant to theOpenGrid ServicesArchitecture [Foster et al., 2002] stan-
dardization effort. OGSA services are in particular responsible for security re-

DEPARTMENTOF INFORMATICS 2

ENABLING AUGUSTUS FORMEDIGRID

quirements, execution and data management, monitoring and resource dis-
covery.
On top of the basic GT4 middleware, MediGRID employs further special-

ized middleware services. The most important one is an advanced workflow
system for orchestrating the distributed executionof applications onGrid re-
sources. An applicationworkflow consists of several subsequent program ex-
ecutions and intermediate data transfers. Workflows allow the modeling of
sequences of programs and the dependencies between them. We will show
how application workflows are created and how they are executed on the
Grid by theworkflow system. Additionally, inMediGRID a portal framework
is employed to provide an appropriate graphical user interface.
This report describes the gridification of a life science application. The

gridification process involves the user interface, the workflow system and
GT4 as required components. It does not require changes to the application
source code. We examine the process with AUGUSTUS [Stanke et al., 2006a]
as an example from the field of bioinformatics.
There aremany life science applications fromdifferent researchfieldswhich

have the same software architecture properties as AUGUSTUS. For example,
analysis of time series like electroencephalograms, processing of image data
as in gene-expression micro-array experiments and simulation of complex
biological or chemical systems can be considered as similar gridification can-
didates.
The report is organized as follows: in section 2, we describe an AUGUSTUS

application run and how the computation is distributed on clusters without
using Grid middleware. Section 3 explains the execution of applications on
a Grid using the services of GT4. Section 4 introduces the workflow system
and shows what descriptions are necessary to enable automatic application
runs on Grid resources. Section 5 describes how graphical user interfaces for
Grid applications can be created using portlets, and in Section 6, the report
concludes with a summary.

2 AUGUSTUS

AUGUSTUS [Stanke et al., 2006a] is a DNA sequence-based gene-prediction
program for eukaryotes, i.e. organisms with a cell nucleus. It is typical for
a whole class of bioinformatic applications. Gene prediction is the first and
most important step in analysis of newly sequenced organisms.
The program is data- but not function parallel, thus it can easily be dis-

tributed and executed in parallel. AUGUSTUS uses sophisticated statistical
modeling and prediction algorithms which are computationally demand-
ing. The program does not require user interaction and can be run unat-
tended. Input and output data is accessed from a central data storage reposi-
tory. An application run consists of several phases which are separated by i/o

3 Technical Report IfI-07-12

AUGUSTUS

operations that address files. Via these files, data exchange between phases
is done. The computing phases are loosely coupled, i.e. they have little com-
munication in relation to the computation.
AUGUSTUS can be used as an ab initio program, which means that the

prediction is based solely on the input DNA sequence. As a second possi-
bility, the software may also incorporate hints on the gene structure com-
ing from extrinsic sources such as BLAST [Altschul et al., 1990] andDIALIGN
[Brudno et al., 2003] search results [Stanke et al., 2006b]. AUGUSTUS is used
in several genome sequencingprojectsworldwide [Ghedin et al., 2007][Nene et al., 2007].
In case of ab initio use of AUGUSTUS, the command line programhas two

mandatory arguments: the queryfile and the species. Thequeryfile contains
the inputDNA sequences in uncompressed (multiple) FASTA [Pearson, 1990]
format. The species parameter denotes where the DNA sequences originate
from, e.g. human, fruit fly, baker’s yeast, etc. There are several further pa-
rameters which influence the way the genes are predicted. The output of
AUGUSTUS is written to stdout which is the command line output. The out-
put is compatible to the General Feature Format which can be visually inter-
preted bymeans of a genomebrowser [Stein et al., 2002]. A typical command
line looks like:

augustus --species=human example.fa > outputfile

Running AUGUSTUS on a single local computer is relatively easy. Never-
theless, depending on the number and length of sequences and the param-
eter values, the gene prediction can be computationally very intensive. For
example, the application to the human genome with its 3 billion base pairs
can take up to several weeks. A simple way of speeding up the computation
without modifying the program source code is to parallelize the computa-
tion. This can be done by splitting the input file into smaller files which
contain fewer sequences, and to run the program on these input files sepa-
rately. Long sequences can be split into several smaller sequences if a suitable
overlap according tomaximum gene size is used. In order to interpret them,
the results can be transformed into gene maps in graphical representation
via gff2ps [Abril and Guigo, 2000].
Data parallelization provides the possibility to distribute the computation

across several machines, for example the nodes of a local cluster. Typically,
these nodes have a commonfile system, so the handling of input and output
data is easy. Still a greater effort is necessary for handling the batch system
and for checking if all submitted jobs are executed properly.
The organizational effort increases if local resources are not sufficient for

the demands of the computation. In this case, further suitable resource providers
have to be found to support the computation. If this succeeds, their resources
are used to support the processing. For the AUGUSTUS application, this
means splitting the input data and distributing them tomultiple sites where

DEPARTMENTOF INFORMATICS 4

ENABLING AUGUSTUS FORMEDIGRID

the program shall run. It is required to have access to and knowledge about
the potentially different resource management systems if Grid computing is
not used. Afterwards, the output files have to be transferred back to the user
for result analysis.
Doing all these steps manually is tedious and time-consuming. The bene-

fit of the parallelization is the overall decrease in turnaround time, allowing
to tackle larger problem sizes which can not be accomplished with limited
local resources. Some of the organizational problems, such as the handling
of user accounts on multiple sites, can be solved by the middleware layer of
the Grid.

3 Executing AUGUSTUS on the Grid

The first step before we can execute AUGUSTUS on the Grid is to provide for
authentication and authorization. The Grid security infrastructure (GSI) of
GT4 is based on a public key infrastructure. This means, every user and ev-
ery server in the Grid is authenticated by a pair of public and private key.
The public keys are signed by trusted certificate authorities (CA) and then
become X.509 [Tremblett, 1999] identity certificates. Thus, the first step if
one wants to use Grid resources, is to get a user certificate from a CA that
is recognized by the Grid’s security policy. Afterwards one has to become
a member of the Grid’s Virtual Organization (VO) and thus a member of
the Grid. There are several solutions for VOmembership registration. Medi-
GRID uses the VOMRS [Demchenko et al., 2006] solution. VO membership
is necessary to get an authorization for the servers of the Grid. The autho-
rization is achieved with so-called grid-mapfiles that are present on every
machine. They contain one line for every Grid user which states the distin-
guished name of the user’s certificate and an UNIX account:1

"/C=DE/O=GridGermany/OU=Gesellschaft fuer wissenschaftliche Datenverar\
beitung mbH/CN=Dietmar Sommerfeld" dgmd0010

The pair of user certificate and private key is called Grid credential. To
prevent the private key from leaving its secure environment on the User’s
computer, it is used to sign the public key of a new pair of short-lived proxy
credentials. Afterwards, these proxy credentials are used to authenticate the
user in the Grid. When a user accesses a server with his proxy credentials,
first, the authenticity of the proxy certificate is checked, and afterwards the
server looks for the distinguished name in the grid-mapfile and then maps
the user onto the respective local UNIX account. Thereafter, all user actions
are performed under that account and with its specific permissions. Besides

1Note that we use the backslash character \ to denote a line break because of limitations in
text width.

5 Technical Report IfI-07-12

Executing AUGUSTUS on the Grid

authorization and authentication, the GSI provides secure communication
via TLS [Dierks and Allen, 1999] and enables single sign-on, which means
that a user only has to log-on once at one machine with his proxy creden-
tials. Afterwards, he can use any service on any server in the Grid during the
validity period of his proxy credentials (usually twelve hours).
The next step is the resource discovery to find a suitable machine for the

execution of the application. For this purpose, each GT4 instance on any
host in the Grid provides a Monitoring and Discovery Service (MDS). This
service collects basic resource information about the host such as the ser-
vices provided, processor speed, available memory and operating system.
Each local MDS is typically configured to send an upstream of its informa-
tion to another server which aggregates the data of several machines. This
way, a hierarchical structure is formed with local MDS instances at the bot-
tom and a central MDS at the top. In MediGRID, the central server has the
WebMDS front-end installed which can be accessed with a web browser. For
this, WebMDS uses XSLT transformations to convert the XML data of MDS
into HTML pages. Additionally, MDS can be accessed using the wsrf-query
command-line client. For example, the following commandqueries theMDS
on the local machine:

wsrf-query -s https://localhost:8443/wsrf/services/DefaultIndexService

In general, the specific application is not installed initially on the gridma-
chines and therefore has to be deployed first. There are several approaches
for application deployment in the Grid. First of all, the application develop-
ers need interactive access to every kind of machine the application shall be
executed on. This is necessary for the compilation and for testing in the re-
spective runtime environment. InMediGRID, it is planned to have so-called
interactive nodes which have the same software installation as the actual
worker nodes. The standard deployment method is to have a common soft-
ware stack on allmachines in theGrid. In this case, the applicationprograms
are pre-installed by the systemadministrators. The other possibility is to do a
dynamic deployment at runtime by transferring already compiled executa-
bles from a software repository to the execution hosts. Finally, one could
even imagine to copy the source code and to compile the application just in
time before execution. Dynamic approaches promise a greater flexibility in
adaptation and a quicker employment of new resources. The disadvantage
is the organizational effort and the time required for setting up the applica-
tions at every target system. Due to theheterogeneousnature of theGrid, dy-
namic deployment is also error prone. That is why we will suppose that the
AUGUSTUS application is already installed, thus we can conclude resource
discovery by choosing one server from the list of available machines.
Now the input data has to be transferred to the execution host. For data

transfers, the Globus Toolkit provides GridFTP which works similar to the
normal FTP and uses GSI for data encryption and credential-based access to

DEPARTMENTOF INFORMATICS 6

ENABLING AUGUSTUS FORMEDIGRID

the machines. The command line client is called globus-url-copy. An addi-
tional functionality is the capability of third party transfers. These are file
transfers between two machines initiated by a third host. GridFTP is a pre
web-service component and already existed in GT2. Its web service coun-
terpart is called Reliable File Transfer (RFT). RFT requires a database such as
Postgres where it stores the status of the transmissions for an error recovery
if a transfer fails.
Once all preparations are done, the job can be submitted. The execution

management service of GT4 is calledWS-GRAM (Web Service Grid Resource
Allocation andManagement). WS-GRAM offers a variety of options. A stan-
dard command line to execute AUGUSTUS is:

globusrun-ws -submit -F https://localhost:8443/wsrf/services/\
ManagedJobFactoryService -s -so outputfile -c /augustus_path/augustus \
--species=human example.fa

This is equivalent to the example of section 2 and executes the command
on the local machine using the GT4 middleware for job submission instead
of the UNIX shell. The working directory is the home directory of the Grid
user, thus the input and output files are located there. The default job man-
ager (called factory type) is “Fork”, which means a new UNIX process is cre-
ated for the job. Other job managers of WS-GRAM enable job submission to
PBS, LSF or LoadLeveler resourcemanagement systems [Czajkowski et al., 1998].
For more complex jobs, GT offers a XML-based job description language

called Resource Specification Language (RSL). Its most important capability
is to include file transfers into the job description. The transfers before and
after job execution are called stage-in and stage-out. WS-GRAM relies on RFT
to do these transfers. Further RSL possibilities include definition of thework-
ing directory, redirection of the console output and subsequent deletion of
files. The job description in Fig. 1 executes AUGUSTUS with the same argu-
ments as before, but also includes the necessary file transfers. It should be
noted, that all file locations are specified from the perspective of the execu-
tion host, not of the submission host. The job is submitted with the follow-
ing command line:

globusrun-ws -submit -F https://executionhost:8443/wsrf/services/\
ManagedJobFactoryService -f rsl-job-description.xml

As we can see, the Grid solves many of the problems we encountered with
cluster computing. A Grid user only needs one certificate to access all re-
sources of the VO in the same way. WS-GRAM is a single executionmanage-
ment service for the diverse batch systems on all sites of the VO. It makes
data transfers less laborious by integrating them into the job description.
On the other hand, resource discovery and selection still have to be done

manually with theGlobus services. These are difficult tasks if there aremany

7 Technical Report IfI-07-12

Running AUGUSTUS with the workflow system

<job>
<executable>/opt/medigrid/augustus/augustus</executable>
<directory>${GLOBUS_USER_HOME}</directory>
<argument>--species=human</argument>
<argument>example.fa</argument>
<stdout>${GLOBUS_USER_HOME}/outputfile</stdout>
<stderr>${GLOBUS_USER_HOME}/stderr</stderr>
<fileStageIn>
<transfer>
<sourceUrl>gsiftp://submissionhost/tmp/example.fa</sourceUrl>
<destinationUrl>file:///${GLOBUS_USER_HOME}/example.fa
</destinationUrl>

</transfer>
</fileStageIn>
<fileStageOut>
<transfer>
<sourceUrl>file:///${GLOBUS_USER_HOME}/outputfile</sourceUrl>
<destinationUrl>gsiftp://submissionhost/tmp/outputfile
</destinationUrl>

</transfer>
</fileStageOut>
<fileCleanUp>
<deletion>
<file>file:///${GLOBUS_USER_HOME}/example.fa</file>
<file>file:///${GLOBUS_USER_HOME}/outputfile</file>

</deletion>
</fileCleanUp>

</job>

Figure 1: Example RSL job description document (see text).

resource providers, and if a load balancing between the sites is desired. Fur-
thermore, the above example only covers a single execution of AUGUSTUS.
In case of splitting data for parallel processing, multiple instances of the ap-
plication have to be run. Implicit data transfers are not performed automati-
cally, and job monitoring remains a tedious task, as there is no user-friendly
interface to check the status of submitted jobs. All these issues have a greater
significance, the more complex the job scenario is. If our computation con-
sists e.g. of a workflow of parallel branches with subsequent program execu-
tions and intermediate data transfers, GT services are not sufficient anymore
and we need a workflowmanagement for high-level application steering.

4 RunningAUGUSTUSwiththeworkflowsys-
tem

In MediGRID, the execution of complex compound applications is fully au-
tomated by the Grid Workflow Execution Service (GWES) [Hoheisel, 2005].

DEPARTMENTOF INFORMATICS 8

ENABLING AUGUSTUS FORMEDIGRID

This is a flexible workflow orchestration infrastructure which is also used in
several other EuropeanGrid projects, e.g. K-WfGrid, CoreGrid, and Instant-
Grid.
The control and data flow between the application components is mod-

eled as a graph structure basedon the Petri net formalism [Hoheisel and Alt, 2006].
Petri nets consist of places (symbolized by circles) and transitions (symbol-
ized by squares). Places and transitions are connected by directed edges and
always alternate with each other. In the workflow, transitions stand for pro-
gram executions while places represent input and output data. Places are
marked with so-called tokens if the data is available and transitions can only
be activated (also called fired) when all input places have a token. When the
transition is started, one token from every input place is taken, andwhen the
transition is completed one token is given to every output place.
The first step to run AUGUSTUS with the GWES is to set up graphically

a workflow for the application by creating its Petri net graph. It is recom-
mended to draw the graph as the first step. The graph of a workflow with
two parallel AUGUSTUS invocations is displayed in Fig. 2.

Figure 2: AUGUSTUS Petri net graph displayed in GWUI applet.

The second step is to convert the Petri net graph manually into the XML-
based Grid Workflow Description Language (GWDL) [Alt et al., 2006]. The
GWDL description is equivalent to the graphical representation. It is nec-
essary for interpretation by the workflow engine. The description consists
of a set of XML tags which specify all the data places and transitions. The
edges between places and transitions are specifiedwithin the transition tags.
A shortened description of the AUGUSTUS workflow is given in Fig. 3. The

9 Technical Report IfI-07-12

Running AUGUSTUS with the workflow system

complete description can be found in appendix A.1.
The inputPlace and outputPlace tags connect the transitionwith the spec-

ified places. Every edge is named with a string called edgeExpression. The
operation tag within the transition clause denotes which program will be
executed by the transition. In order to set up the workflow, the user has to
specify an abstract program class only. When the GWES is invoked, it ini-
tializes the workflow and does a resource matching. This means, it searches
for all available instances of that program class. For this, MediGRID employs
a resource XML-database that contains information about the existing pro-
gram instances and the software installed on each machine. Both types of
descriptions are specified by means of the XML-based D-Grid Resource De-
scription Language (D-GRDL) [Wolf, 2007].
The software resource description is necessary to find out which software

class a program instance belongs to. It also contains the path to the ex-
ecutable file. During resource matching, GWES first queries the resource
database and retrieves a list of all program instances matching the abstract
program class. Thus, the next step in gridifying is to provide for the software
resource descriptions of all different program instances. For servers with an
identical software version installed at the same path the same D-GRDL de-
scription applies. An example software resource description for AUGUSTUS
is given in Fig. 4.
The second step in resource matching is to get a list of all machines where

oneof the instances is installed. This requires thehardware descriptionwhich
lists all program instances provided by the machine. Furthermore, it also
contains static machine information and utilization data. The machine de-
scriptions are created and updated automatically by a resource monitoring
daemon. An example hardware resource description is given in A.2.
Based on the current utilization of themachines, GWES automatically se-

lects Grid nodes for the execution of the jobs in the workflow. After the re-
source selection is completed byGWES, the programClassExecution tag con-
tains a sub-entry such as:

<pe:programExecution hardware="hardware:medigrid-srv.gwdg.de_PBS"
software="software:medigrid-augustus-2-0" quality="0.75"
selected="true"/>

Now the Petri net description can be interpreted byGWES.GWESprovides
automatic file staging, i.e. it organizes all necessary data transfers so that data
is available at each hardware resource on which a job is scheduled and ready
to execute. For the file transfers, GWES uses RFT from the underlying GT4
middleware.
Tomake sure thatGWES can execute all kinds of command-line programs,

a common parameter syntax is necessary. Therefore, all executables are en-
capsulated with wrapper scripts to pass arguments such as input and output

DEPARTMENTOF INFORMATICS 10

ENABLING AUGUSTUS FORMEDIGRID

<?xml version="1.0" encoding="UTF-8"?>
<workflow xmlns="http://www.gridworkflow.org/gworkflowdl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.gridworkflow.org/gworkflowdl
http://www.gridworkflow.org/kwfgrid/src/xsd/gworkflowdl_1_0.xsd">
<description>AUGUSTUS MediGRID Workflow</description>
<property name="resource.repository.collection">/db/dgrdl</property>
<place ID="fastainput0">
<token><data>
<file xsi:type="xsd:string">gsiftp://139.18.18.60//tmp/augustus/\
HS04636</file>

</data></token>
</place>
<place ID="parameter0">
<token><data>
<param xsi:type="xsd:string">--species=human</param>

</data></token>
</place>
<place ID="outputdestination0">
<token><data>
<param xsi:type="xsd:string">gsiftp://139.18.18.60//tmp/\
HS04636.gff</param>

</data></token>
</place>
<place ID="augustusoutput0"/>
<place ID="result0"/>
<transition ID="augustus0">
<description>Augustus worker 0</description>
<inputPlace placeID="parameter0" edgeExpression="param"/>
<inputPlace placeID="fastainput0" edgeExpression="input"/>
<outputPlace placeID="augustusoutput0" edgeExpression="stdout"/>
<operation>
<pe:programClassExecution
xmlns:pe="http://www.gridworkflow.org/gworkflowdl/\
programclassexecution"
softwareClass="urn:dgrdl:software:medigrid-augustus">

</pe:programClassExecution>
</operation>

</transition>
<transition ID="transfer0">
<description>file transfer 0</description>
<inputPlace placeID="augustusoutput0" edgeExpression="source"/>
<inputPlace placeID="outputdestination0" edgeExpression="destination"/>
<outputPlace placeID="result0" edgeExpression="transferFileReturn"/>
<operation>
<ws:WSClassOperation xmlns:ws="http://www.gridworkflow.org/\
gworkflowdl/wsclassoperation">
<ws:WSOperation
wsdl="http://portal.medigrid.izbi.uni-leipzig.de:9081//gwes/\
services/FileTransfer?wsdl"
operationName="transferFile" selected="true"/>

</ws:WSClassOperation>
</operation>

</transition>
</workflow>

Figure 3: D-GRDL workflow description for AUGUSTUS with a single input
sequence.

11 Technical Report IfI-07-12

Running AUGUSTUS with the workflow system

<?xml version="1.0" encoding="UTF-8"?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://portal2.medigrid.izbi.uni-\
leipzig.de:9081/gwes/xsd/instantgrid-d-grdl.xsd"
uri="software:medigrid-augustus-2-0">
<ofClass uri="urn:dgrdl:software:medigrid-augustus"/>
<name>Augustus</name>
<description>AUGUSTUS gene prediction program</description>
<simpleProperty ident="executable" type="string" unit="">
/opt/medigrid/augustus/augustus.sh

</simpleProperty>
<simpleProperty ident="score">101.0</simpleProperty>

</resource>

Figure 4: Software resource description for AUGUSTUS.

files and program parameters in always the same way. A listing for an exam-
ple wrapper script is given in Fig. 5. The parameters of the wrapper script
comply with the edgeExpressions in the workflow. Command line output
can be redirected using stdout and stderr. GWES automatically creates the
WS-GRAM job descriptions to submit Globus jobs that in turn execute the
wrapper scripts. If a job is not finished successfully, the fault management
of the workflow system automatically selects another suitable resource and
submits the job again.
TheGWES software package also includes a graphical interface calledGrid

WorkflowUser Interface (GWUI) which allows the user to monitor and steer
the processing of the workflow (see Fig. 2). GWUI is implemented as a Java
applet and accessed via a web browser. It displays how the tokens move
through theworkflow graph as the transitions are executed. The bottom line
shows the current workflow state and contains buttons to suspend, resume
or stop the workflow. Furthermore, the current state can be stored in GWDL
format. By clicking into the graph the properties of tokens, places and tran-
sitions can be inspected and manipulated. For transitions e.g. it is possible
to select one of the available resources manually.
Most of the problems that existwith the basicGlobusmiddleware are solved

with the use of the workflow system. Once an application is gridified for
GWES, the complete execution process is automated. This includes resource
discovery and selection, implicit data transfers between job executions as
well as the job submission. GWES provides a much higher quality of ser-
vice than GT4 and delivers the scalability and performance for complex ap-
plication workflows comprising of parallel computational branches. Addi-
tionally, GWUI offers an improved usability and better overview of the status
during workflow execution.
However, some effort remains as workflow descriptions have to be cre-

ated for every application run. Furthermore, users are required to have Grid

DEPARTMENTOF INFORMATICS 12

ENABLING AUGUSTUS FORMEDIGRID

#!/bin/bash
#
AUGUSTUS wrapper script

program location
MEDIGRID_HOME = /opt/medigrid
AUGUSTUS=$MEDIGRID_HOME/augustus
AUGUSTUS_BIN=$AUGUSTUS/augustus

function usage {
echo "### USAGE: $0 -param "parameters" -input inputfile"

}

PARAM=${2}
INPUT=$4

if [! -r "$AUGUSTUS_BIN"]; then
echo "### Error: executable ’augustus’ not found in path"
exit 1

fi

export AUGUSTUS_CONFIG_PATH=$AUGUSTUS/config
exec $AUGUSTUS_BIN $PARAM $INPUT
echo "### AUGUSTUS done ###"

Figure 5: AUGUSTUS wrapper script for execution on grid machines.

knowledge and direct access to a Grid machine. It is advisable to provide
the functionality of the application within a graphical user interface (GUI)
that can be accessed with a web browser. Such a GUI can be realized with a
Grid-enabled web portal.

5 Creating a graphical user interface

MediGRID uses GridSphere [Novotny et al., 2004] which is a framework to
establish Grid portals. GridSphere provides central access to Grid resources
and services by a single world-wide accessible user interface. Inside a Grid
portal, small applications can runwhich are calledportlets [Diaz and Rodriguez, 2004].
InMediGRID, portlets provide access to services fromGlobus andMediGRID.
Each applicationwill have its own portlet as an easy-to-use graphical user in-
terface (GUI).
Development of a GridSphere portlet starts with the creation of a Grid-

Sphere project which sets up a project directory and some basic portlet con-
figuration files inXML format. After editing the configuration files, the port-
let user interface and logic can be developed by means of Java Server Pages
(JSP) and a portlet Java class, respectively. The AUGUSTUS portlet is based on

13 Technical Report IfI-07-12

Creating a graphical user interface

GridSphere’s action provider model. The action provider model and the as-
sociated actionportlet interface provide thepossibility to separate the graph-
ical layout from the portlet logic. The GUI consists of several JSPs which
contain the layout description in HTML, and action components fromGrid-
Sphere’s user interface tag-library. These components, e.g. links, buttons
and form fields, can be accessed within the Java class. An application usage
scenario is implemented as a series of requests and responses. The basic JSP
code of the job configuration page of the AUGUSTUS portlet is given in ap-
pendix A.4.
The AUGUSTUS portlet consists of three main stages: job configuration,

workflow execution, and result presentation. Within the job configuration
stage (see Fig. 6), the user can upload a (compressed) multiple FASTA se-
quencefile and configure somebasicAUGUSTUSpredictionparameters. Users
usually do not access the portlet from aGridmachine, thus the input file has
to be transferred from the user’s computer to aGridmachine. At present, the
upload is done via HTTPS and the portal server is used for temporary storage.
Another option would be to upload the input data to a Grid storage element
with a suitable upload client. After submission by the user, the AUGUSTUS
parameters are retrieved from the user interface components and stored in a
parameter string.
The splitting of the input file according to the number of available single

sequences is done on the portal server. On one hand, splitting is very fast in
comparison to gene prediction. On the other hand, splitting on an arbitrary
Grid machine would require splitting software on this machine and addi-
tional data transfers within theGrid. Furthermore, the input file would have
to be parsed twice because the workflow has to be specified fully within the
portlet before invocation. The single sequences are stored as files in a tempo-
rary directory on the portal server. Their file names can be used directly as
data tokens for the input places of the Grid workflow.
In the workflow execution stage, the GWDL-compliant workflow docu-

ment as shown in A.1 is automatically created using the StringTemplate Java
library fromStringTemplate.org. For the creationof theworkflowdocument,
a template for a single AUGUSTUS invocation is duplicated according to the
number of sequences, and the variables within the template are replaced by
real filenames and instances. An example template document for one AU-
GUSTUS invocation is given in A.3. The variables which have to be replaced
are surrounded by dollar signs. In the end, the resulting workflow document
is concatenated with the corresponding header. The JAVA code for workflow
template extension according to the number of input sequences is given in
A.5.
After the Grid workflow has been created, it can be initiated using the

GWES Java API. The JAVA code for workflow initiation within the portlet is
shown in A.6. Then, the GWES executes it according to the specified steps
and returns either an execution success or an error code. The progress of

DEPARTMENTOF INFORMATICS 14

ENABLING AUGUSTUS FORMEDIGRID

Figure 6: Screenshot of the job configuration stage in the AUGUSTUS portlet
in theMediGRID portal at http://portal.medigrid.de.

Figure 7: Screenshot of the result stage in the AUGUSTUS portlet.

15 Technical Report IfI-07-12

Conclusion

the workflow execution can be monitored by means of the GWUI Java ap-
plet. With this applet, the graphical interface of the workflow engine can
conveniently be integrated into the portlet to provide the user with status
information and steering possibilities.
The last transition in the AUGUSTUS workflow transfers the results back

to the portal serverwhere they are automatically postprocessed after success-
ful workflow completion. The postprocessing consists of a transformation of
the prediction result of every sequence into a graphical representation (gene
map) using gff2ps and ImageMagick. If the required software is installed on
the Grid nodes, this process can also be integrated into the workflow. The
prediction results are displayed on a final result page and can be downloaded
in a compressed format via a link tag (see Fig. 7).
Portals such as inMediGRID provide the possibility to connect related ap-

plications so that the results can be further analyzed. Links to the related on-
tology access portlet of theMediGRID portal are integrated into the AUGUS-
TUS portlet via so-called actionlinks from GridSphere’s user interface tag-
library. This allows the user to access information about specific sequence
regions. Furthermore, predicted genes can automatically be searched for re-
lated database entries via links to the NCBI BLAST server using the BLAST
URL API [NCBI, 2001].

6 Conclusion

In this report, we have shown the development process of enabling an ap-
plication for theMediGRID project. The process is subdivided into steps and
based on the employedmiddlewares such asGlobus Toolkit andGWESwork-
flow system, as well as the GridSphere portal framework. The described grid-
ification process can be applied to cluster applications without changes to
the source code. Still it should ideally be done by the application developers
since it requires insight into the application’s mode of operation. Addition-
ally, support from the resource providers, i.e. computing centers is neces-
sary. As with traditional parallelization and vectorization, computing cen-
ters have to assist in porting the application on their specific hardware ar-
chitectures, and they must install the application and middleware software
components. As a conclusion, computing centers are required to help with
training on the new middleware layers imposed by the Grid since gridifica-
tion is a muchmore complex task than parallelization.
The benefit of the efforts is that in the end the applications can be run by

end users that only have to authenticate and authorize in their VO. Besides,
they need no Grid knowledge and can profit from a wide range of comput-
ing resources that allow tackling larger problem sizes. For computing cen-
ters, Grid technology offers a thirdmainstay, next to traditional parallel and

DEPARTMENTOF INFORMATICS 16

ENABLING AUGUSTUS FORMEDIGRID

vector computing. WithGrids they can offer computing services to new cus-
tomer groups.
The software components used in MediGRID are specific choices from a

range of existing middleware solutions. They are accepted among the Grid
community and have proven appropriate. Globus Toolkit consists of several
components, out of which some are still in development or need to be ex-
tended for custom application scenarios. The Globus services employed in
MediGRID belong to the core components and are reliable for production
use. GWES and the GridSphere portal are operational, but still under devel-
opment to addmore features and improve the functionality. The futurework
in MediGRID will be focused on these systems and the further development
of the application portlets.

7 Acknowledgment

We thank Mario Stanke for helpful comments on AUGUSTUS. This work is
funded by the German Federal Ministry of Education and Research (BMBF)
within the MediGRID project, grant numbers 01AK803A-H. The workflow
system presented in section 4 is being developed by the Fraunhofer-Institute
forComputer Architecture and Software Technology (FIRST) based on results
of the EU IST project K-Wf Grid as well as the BMBF-funded projects Instant-
Grid and D-Grid Integration project (DGI).

17 Technical Report IfI-07-12

Supplementary listings

A Supplementary listings

A.1 Complete AUGUSTUSworkflowdescription

<?xml version="1.0" encoding="UTF-8"?>
<workflow xmlns="http://www.gridworkflow.org/gworkflowdl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.gridworkflow.org/gworkflowdl
http://www.gridworkflow.org/kwfgrid/src/xsd/gworkflowdl_1_0.xsd"
ID="tlingner_edc80c10-2318-11dc-9824-97d58f9419d1">
<description>AUGUSTUS MediGRID Workflow</description>
<property name="resource.repository.collection">/db/dgrdl</property>
<place ID="fastainput0">
<token><data>
<file xsi:type="xsd:string">gsiftp://139.18.18.60//tmp/augustus/\
HS04636</file>

</data></token>
</place>
<place ID="parameter0">
<token><data>
<param xsi:type="xsd:string">--species=human</param>

</data></token>
</place>
<place ID="outputdestination0">
<token><data>
<param xsi:type="xsd:string">gsiftp://139.18.18.60//tmp/\
HS04636.gff</param>

</data></token>
</place>
<place ID="augustusoutput0"/>
<place ID="result0"/>
<place ID="fastainput1">
<token><data>
<file xsi:type="xsd:string">gsiftp://139.18.18.60//tmp/augustus/\
HS08198</file>

</data></token>
</place>
<place ID="parameter1">
<token><data>
<param xsi:type="xsd:string">--species=human</param>

</data></token>
</place>
<place ID="outputdestination1">
<token><data>
<param xsi:type="xsd:string">gsiftp://139.18.18.60//tmp/\
HS08198.gff</param>

</data></token>
</place>
<place ID="augustusoutput1"/>
<place ID="result1"/>
<transition ID="augustus0">
<description>Augustus worker 0</description>
<inputPlace placeID="parameter0" edgeExpression="param"/>

DEPARTMENTOF INFORMATICS 18

ENABLING AUGUSTUS FORMEDIGRID

<inputPlace placeID="fastainput0" edgeExpression="input"/>
<outputPlace placeID="augustusoutput0" edgeExpression="stdout"/>
<operation>
<pe:programClassExecution
xmlns:pe="http://www.gridworkflow.org/gworkflowdl/\
programclassexecution"
softwareClass="urn:dgrdl:software:medigrid-augustus">

</pe:programClassExecution>
</operation>

</transition>
<transition ID="transfer0">
<description>file transfer 0</description>
<inputPlace placeID="augustusoutput0" edgeExpression="source"/>
<inputPlace placeID="outputdestination0" edgeExpression="destination"/>
<outputPlace placeID="result0" edgeExpression="transferFileReturn"/>
<operation>
<ws:WSClassOperation xmlns:ws="http://www.gridworkflow.org/\
gworkflowdl/wsclassoperation">
<ws:WSOperation
wsdl="http://portal.medigrid.izbi.uni-leipzig.de:9081//gwes/\
services/FileTransfer?wsdl"
operationName="transferFile" selected="true"/>

</ws:WSClassOperation>
</operation>

</transition>
<transition ID="augustus1">
<description>Augustus worker 1</description>
<inputPlace placeID="parameter1" edgeExpression="param"/>
<inputPlace placeID="fastainput1" edgeExpression="input"/>
<outputPlace placeID="augustusoutput1" edgeExpression="stdout"/>
<operation>
<pe:programClassExecution
xmlns:pe="http://www.gridworkflow.org/gworkflowdl/\
programclassexecution"
softwareClass="urn:dgrdl:software:medigrid-augustus">

</pe:programClassExecution>
</operation>

</transition>
<transition ID="transfer1">
<description>file transfer 1</description>
<inputPlace placeID="augustusoutput1" edgeExpression="source"/>
<inputPlace placeID="outputdestination1" edgeExpression="destination"/>
<outputPlace placeID="result1" edgeExpression="transferFileReturn"/>
<operation>
<ws:WSClassOperation xmlns:ws="http://www.gridworkflow.org/\
gworkflowdl/wsclassoperation">
<ws:WSOperation
wsdl="http://portal.medigrid.izbi.uni-leipzig.de:9081//gwes/\
services/FileTransfer?wsdl"
operationName="transferFile" selected="true"/>

</ws:WSClassOperation>
</operation>

</transition>
</workflow>

19 Technical Report IfI-07-12

Supplementary listings

A.2 Hardwareresourcedescriptionfor the servermedigrid-
srv

<?xml version="1.0" encoding="UTF-8"?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.gridworkflow.org/kwfgrid/\
src/xsd/resource-d-grdl.xsd" uri="hardware:medigrid-srv.gwdg.de/PBS">
<ofClass uri="urn:dgrdl:hardware"/>
<name>medigrid-srv.gwdg.de/PBS</name>
<description>Hardware resource medigrid-srv.gwdg.de with local\
resource manager PBS and Globus Toolkit

</description>
<provides>
<!-- tests and benchmarks -->
<resourceRef uri="software:cat-medigrid"/>
<!-- utils -->
<resourceRef uri="software:medigrid-utils-chmod-all-read-0-1"/>
<resourceRef uri="software:medigrid-utils-show-environment-0-1"/>
<!-- augustus -->
<resourceRef uri="software:medigrid-augustus-2-0"/>

</provides>
<simpleProperty ident="Info.LRMSType" type="string" unit=""
validUntil="2007-10-25T15:01:43Z">PBS

</simpleProperty>
<simpleProperty ident="Info.GRAMVersion" type="string" unit=""
validUntil="2007-10-25T15:01:43Z">4.0.3

</simpleProperty>
<simpleProperty ident="Info.ContactString" type="uri" unit=""
validUntil="2007-10-25T15:01:43Z">https://medigrid-srv.gwdg.de:\
8443/wsrf/services/ManagedJobFactoryService

</simpleProperty>
<simpleProperty ident="State.RunningJobs" type="int" unit=""
validUntil="2007-10-24T15:59:40Z">5

</simpleProperty>
<simpleProperty ident="State.WaitingJobs" type="int" unit=""
validUntil="2007-10-24T15:59:40Z">6</simpleProperty>

<simpleProperty ident="State.TotalJobs" type="int" unit=""
validUntil="2007-10-24T15:59:40Z">11</simpleProperty>

<simpleProperty ident="gwes.gram.home.directory" type="string"
unit="">/opt/medigrid/tmp

</simpleProperty>
<simpleProperty ident="score">1911</simpleProperty>

</resource>

DEPARTMENTOF INFORMATICS 20

ENABLING AUGUSTUS FORMEDIGRID

A.3 StringTemplateworkflowdocument for a single
AUGUSTUS transition

<place ID="fastainput$processnumber$">
<token><data>
<file xsi:type="xsd:string">$inputfile$</file>

</data></token>
</place>
<place ID="parameter$processnumber$">

<token><data>
<param xsi:type="xsd:string">$parameter$</param>

</data></token>
</place>
<place ID="outputdestination$processnumber$">

<token><data>
<param xsi:type="xsd:string">$outputfile$</param>

</data></token>
</place>
<place ID="augustusoutput$processnumber$"/>
<place ID="result$processnumber$"/>

<transition ID="augustus$processnumber$">
<description>Augustus worker $processnumber$</description>
<inputPlace
placeID="parameter$processnumber$" edgeExpression="param"/>

<inputPlace
placeID="fastainput$processnumber$" edgeExpression="input"/>

<outputPlace
placeID="augustusoutput$processnumber$" edgeExpression="stdout"/>

<operation>
<pe:programClassExecution

xmlns:pe="http://www.gridworkflow.org/gworkflowdl/\
programclassexecution"
softwareClass="urn:dgrdl:software:medigrid-augustus">

</pe:programClassExecution>
</operation>

</transition>

<transition ID="transfer$processnumber$">
<description>file transfer $processnumber$</description>
<inputPlace
placeID="augustusoutput$processnumber$" edgeExpression="source"/>

<inputPlace
placeID="outputdestination$processnumber$" edgeExpression="destination"/>

<outputPlace
placeID="result$processnumber$" edgeExpression="transferFileReturn"/>

<operation>
<ws:WSClassOperation
xmlns:ws="http://www.gridworkflow.org/gworkflowdl/wsclassoperation">
<ws:WSOperation wsdl="$GWES_URL$/services/FileTransfer?wsdl"
operationName="transferFile" selected="true"/>

</ws:WSClassOperation>
</operation>

</transition>

21 Technical Report IfI-07-12

Supplementary listings

A.4 JSP jobconfigurationpageof theAUGUSTUSport-
let

<%@ taglib uri="/portletUI" prefix="ui" %>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<%@page import="java.util.Set"%>
<portlet:defineObjects/>

<jsp:useBean id="species" type="Set" scope="request"/>
<% species = (Set) renderRequest.getAttribute("species"); %>

<form action="../gridsphere/gridsphere?cid=augustus&gs_action=startJob"
enctype="multipart/form-data" method="POST">

<ui:group label="Input">

<ui:group label="Upload (mutiple) FASTA file">
<i>Note: you can upload a compressed file (ZIP format)</i>
<ui:table>
<ui:tablerow>
<ui:tablecell>

<input type="file" name="fileupload">
</ui:tablecell>
<ui:tablecell> </ui:tablecell>

</ui:tablerow>
</ui:table>
</ui:group>

<ui:group label="Organism">
<i>Note: species-specific models can be used for related species</i>
<ui:table>
<ui:tablerow>
<ui:tablecell>

</ui:tablecell>
<ui:tablecell>
<ui:listbox beanId="param_species">
<% for (java.util.Iterator iter = species.iterator(); \
iter.hasNext();) { %>
<ui:listboxitem value="<%= (String) iter.next() %>">
</ui:listboxitem>

<% } %>
</ui:listbox>
</ui:tablecell>

</ui:tablerow>
</ui:table>

</ui:group>

</ui:group>

<p><h2><input type="submit" value="check options and start job"></h2><p>

</form>

DEPARTMENTOF INFORMATICS 22

ENABLING AUGUSTUS FORMEDIGRID

A.5 JAVA code forworkflow template extension
private String createWorkflow(String[] inputFiles, String[] outputFiles,

String parameter) {

StringTemplate WorkflowTemplate=augustusWorkflowTemplate;
StringBuffer workflow = new StringBuffer();

final String NL = System.getProperty("line.separator");
final String HEADER =
"<workflow xmlns=\"http://www.gridworkflow.org/gworkflowdl\" \
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" \
xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" \
xsi:schemaLocation=\"http://www.gridworkflow.org/gworkflowdl \
http:// server:8080/gwes/xsd/gworkflowdl_1_0.xsd\">";

final String DESC =
"<description>AUGUSTUS MediGRID Workflow</description>";

final String PROP =
"<property name=\"resource.repository.collection\">" +
"/db/dgrdl</property>";

workflow.append(HEADER + NL + DESC + NL + PROP);

for (int i = 0; i < outputFiles.length; i++) {
WorkflowTemplate.reset();
WorkflowTemplate.setAttribute("processnumber", i);
WorkflowTemplate.setAttribute("inputfile", "gsiftp://" + IPADDRESS

+ FS + inputFiles[i]);
WorkflowTemplate.setAttribute("outputfile", "gsiftp://" + IPADDRESS

+ FS + outputFiles[i]);
WorkflowTemplate.setAttribute("parameter", parameter);
WorkflowTemplate.setAttribute("GWES_URL", GWES_URL);
workflow.append(WorkflowTemplate.toString());

}

workflow.append(NL + "</workflow>");

return workflow.toString();
}

A.6 JAVA code for workflow initiation and execution
within the portlet

private void executeWorkflow(String gworkflowdl) throws IOException {

AxisProperties.setProperty("axis.ClientConfigFile",
PORTLET_PATH + FS +"gwes-client-config.wsdd");

GWESClient client = new GWESClient(new URL(GWES_URL
+ "/services/GWES"), null);

gwes = client.gwes;
workflowID = gwes.initiate(gworkflowdl, user);
gwes.start(workflowID);

}

23 Technical Report IfI-07-12

References

References

[Abril and Guigo, 2000] Abril, J. F. and Guigo, R. (2000). gff2ps: visualizing
genomic annotations. Bioinformatics, 16(8):743–744.

[Alt et al., 2006] Alt,M., Hoheisel, A., Pohl, H.-W., andGorlatch, S. (2006). A
grid workflow language using high-level petri nets. In et al., R. W., editor,
PPAM2005, volume 3911 of LNCS, pages 715–722. Springer-Verlag Berlin
Heidelberg.

[Altschul et al., 1990] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and
Lipman,D. J. (1990). Basic local alignment search tool. Journal ofMolecular
Biology, 215(3):403–410.

[Brudno et al., 2003] Brudno,M., Chapman,M., Gottgens, B., Batzoglou, S.,
andMorgenstern, B. (2003). Fast and sensitivemultiple alignment of large
genomic sequences. BMC Bioinformatics, 4:66. Comparative Study.

[Czajkowski et al., 1998] Czajkowski, K., Foster, I., Karonis, N., Kesselman,
C., Martin, S., Smith, W., and Tuecke, S. (1998). A resource management
architecture for metacomputing systems. In IPPS/SPDP ’98: Proceedings of
theWorkshop on Job Scheduling Strategies for Parallel Processing, pages 62–82,
London, UK. Springer-Verlag.

[Demchenko et al., 2006] Demchenko, Y., de Laat, C., and Ciaschini, V.
(2006). VO-baseddynamic security associations in collaborative grid envi-
ronment. In CTS ’06: Proceedings of the International Symposium on Collab-
orative Technologies and Systems, pages 38–47, Washington, DC, USA. IEEE
Computer Society.

[Diaz and Rodriguez, 2004] Diaz, O. and Rodriguez, J. J. (2004). Portlets as
web components: an introduction. Journal of Universal Computer Science,
10(4):454–472.

[Dierks and Allen, 1999] Dierks, T. and Allen, C. (1999). The TLS protocol.
Technical report, CerticomNetworkWorking Group.

[Foster, 2005] Foster, I. (2005). Globus toolkit version4: Software for service-
oriented systems. In Jin, H., Reed, D. A., and Jiang, W., editors, NPC, vol-
ume 3779 of Lecture Notes in Computer Science, pages 2–13. Springer.

[Foster et al., 2005] Foster, I., Czajkowski, K., Ferguson, D. E., Frey, J., Gra-
ham, S., Maguire, T., Snelling, D., and Tuecke, S. (2005). Modeling and
managing state in distributed systems: the role of OGSI and WSRF. Pro-
ceedings of the IEEE, 93(3):604–612.

DEPARTMENTOF INFORMATICS 24

ENABLING AUGUSTUS FORMEDIGRID

[Foster et al., 2002] Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002).
The physiology of the grid: An open grid services architecture for dis-
tributed systems integration.

[Ghedin et al., 2007] Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q.,
Crabtree, J., Allen, J. E., Delcher, A. L., Guiliano, D. B., Miranda-Saavedra,
D., Angiuoli, S. V., Creasy, T., Amedeo, P., Haas, B., El-Sayed, N. M., Wort-
man, J. R., Feldblyum, T., Tallon, L., Schatz, M., Shumway, M., Koo, H.,
Salzberg, S. L., Schobel, S., Pertea, M., Pop, M., White, O., Barton, G. J.,
Carlow, C. K. S., Crawford, M. J., Daub, J., Dimmic, M. W., Estes, C. F.,
Foster, J. M., Ganatra, M., Gregory, W. F., Johnson, N. M., Jin, J., Ko-
muniecki, R., Korf, I., Kumar, S., Laney, S., Li, B.-W., Li, W., Lindblom,
T. H., Lustigman, S., Ma, D., Maina, C. V., Martin, D. M. A., McCarter,
J. P., McReynolds, L., Mitreva, M., Nutman, T. B., Parkinson, J., Peregrin-
Alvarez, J. M., Poole, C., Ren, Q., Saunders, L., Sluder, A. E., Smith, K.,
Stanke, M., Unnasch, T. R., Ware, J., Wei, A. D., Weil, G., Williams, D. J.,
Zhang, Y., Williams, S. A., Fraser-Liggett, C., Slatko, B., Blaxter, M. L., and
Scott, A. L. (2007). Draft genome of the filarial nematode parasite Brugia
malayi. Science, 317(5845):1756–1760. Comparative Study.

[Hoheisel, 2005] Hoheisel, A. (2005). Grid workflow execution ser-
vice - user manual. Technical report, Fraunhofer FIRST/K-Wf Grid
Project. http://www.gridworkflow.org/kwfgrid/gwes/docs/KWF-WP2-D2-
FIRST-GWESUserManual.pdf.

[Hoheisel and Alt, 2006] Hoheisel, A. and Alt, M. (2006). Petri nets. In Tay-
lor, I. J., Gannon, D., Deelman, E., and Shields, M. S., editors,Workflows
for eScience. Springer-Verlag.

[NCBI, 2001] NCBI (2001). Qblast’s URL API. User’s guide. http://www.-
ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html.

[Nene et al., 2007] Nene, V., Wortman, J. R., Lawson, D., Haas, B., Kodira,
C., Tu, Z. J., Loftus, B., Xi, Z., Megy, K., Grabherr, M., Ren, Q., Zdobnov,
E. M., Lobo, N. F., Campbell, K. S., Brown, S. E., Bonaldo, M. F., Zhu, J.,
Sinkins, S. P., Hogenkamp, D. G., Amedeo, P., Arensburger, P., Atkinson,
P. W., Bidwell, S., Biedler, J., Birney, E., Bruggner, R. V., Costas, J., Coy,
M. R., Crabtree, J., Crawford, M., Debruyn, B., Decaprio, D., Eiglmeier,
K., Eisenstadt, E., El-Dorry, H., Gelbart, W. M., Gomes, S. L., Hammond,
M., Hannick, L. I., Hogan, J. R., Holmes, M. H., Jaffe, D., Johnston, J. S.,
Kennedy, R. C., Koo, H., Kravitz, S., Kriventseva, E. V., Kulp, D., Labutti, K.,
Lee, E., Li, S., Lovin, D. D., Mao, C., Mauceli, E., Menck, C. F. M., Miller,
J. R., Montgomery, P., Mori, A., Nascimento, A. L., Naveira, H. F., Nus-
baum, C., O’leary, S., Orvis, J., Pertea, M., Quesneville, H., Reidenbach,
K. R., Rogers, Y.-H., Roth, C.W., Schneider, J. R., Schatz,M., Shumway,M.,
Stanke, M., Stinson, E. O., Tubio, J. M. C., Vanzee, J. P., Verjovski-Almeida,

25 Technical Report IfI-07-12

References

S., Werner, D., White, O., Wyder, S., Zeng, Q., Zhao, Q., Zhao, Y., Hill,
C. A., Raikhel, A. S., Soares, M. B., Knudson, D. L., Lee, N. H., Galagan,
J., Salzberg, S. L., Paulsen, I. T., Dimopoulos, G., Collins, F. H., Birren, B.,
Fraser-Liggett, C. M., and Severson, D. W. (2007). Genome sequence of
Aedes aegypti, a major arbovirus vector. Science, 316(5832):1718–1723.

[Novotny et al., 2004] Novotny, J., Russell, M., and Wehrens, O. (2004).
Gridsphere: a portal framework for building collaborations. Concurrency
And Computation-Practice & Experience, 16(5):503 – 513.

[Pearson, 1990] Pearson, W. R. (1990). Rapid and sensitive sequence com-
parison with FASTP and FASTA. Methods Enzymol, 183:63–98.

[Stanke et al., 2006a] Stanke, M., Schoffmann, O., Morgenstern, B., and
Waack, S. (2006a). Gene prediction in eukaryotes with a generalized hid-
den Markov model that uses hints from external sources. BMC Bioinfor-
matics, 7:62.

[Stanke et al., 2006b] Stanke, M., Tzvetkova, A., and Morgenstern, B.
(2006b). AUGUSTUS at EGASP: using EST, protein and genomic align-
ments for improved gene prediction in the human genome. Genome Biol,
7 Suppl 1:1–8. Evaluation Studies.

[Stein et al., 2002] Stein, L. D., Mungall, C., Shu, S., Caudy, M., Mangone,
M., Day, A., Nickerson, E., Stajich, J. E., Harris, T. W., Arva, A., and Lewis,
S. (2002). The generic genome browser: a building block for a model or-
ganism system database. Genome Res, 12(10):1599–1610.

[Tremblett, 1999] Tremblett, P. (1999). X.509 certificates. Dr. Dobb’s Journal,
24(7):42–51.

[Wolf, 2007] Wolf, A. (DGI FG 2-4 Technical Report, Fraunhofer FIRST,
2007). Spezifikation der D-Grid-Ressourcenbeschreibungssprache D-
GRDL.

DEPARTMENTOF INFORMATICS 26

	Introduction
	AUGUSTUS
	Executing AUGUSTUS on the Grid
	Running AUGUSTUS with the workflow system
	Creating a graphical user interface
	Conclusion
	Acknowledgment

	Supplementary listings
	Complete AUGUSTUS workflow description
	Hardware resource description for the server medigrid-srv
	StringTemplate workflow document for a single AUGUSTUS transition
	JSP job configuration page of the AUGUSTUS portlet
	JAVA code for workflow template extension
	JAVA code for workflow initiation and execution within the portlet

