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Abstract

We present an abstraction technique for model checking multi-agent sys-
tems given as modular interpreted systems (MIS) (introduced by Jamroga
and Ågotnes). MIS allow for succinct representations of compositional
systems, they permit agents to be removed, added or replaced and they
are modular by facilitating control over the amount of interaction. Spec-
ifications are given as arbitrary ATL formulae: We can therefore reason
about strategic abilities of groups of agents.
Our technique is based on collapsing each agent’s local state space with
handcrafted equivalence relations, one per strategic modality. We present
a model checking algorithm and prove its soundness: This makes it pos-
sible to perform model checking on abstractions (which are much smaller
in size) rather than on the concrete system which is usually too complex,
thereby saving space and time. We illustrate our technique with an ex-
ample in a scenario of autonomous agents exchanging information.

1 Introduction

Multi-agent systems (MAS) and their logical frameworks have attracted some
attention in the last decade. Agent logics have been used to reason about
knowledge, time, strategic abilities, coordination and cooperation [13, 10, 1].
An important technique for verifying properties of a system is model check-
ing [5], which has been refined and improved over the last years.

While an important feature of a MAS is its modularity, e.g., removing, re-
placing, or adding an agent, only a few of the existing compact representa-
tions are both modular, computationally grounded [22] and allow the sys-
tem designer to represent knowledge and strategic ability. Among these few
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approaches are Modular Interpreted Systems (MIS) [17], which we modify a
bit, and use it to apply our abstraction techniques. MIS are inspired by in-
terpreted systems [12, 13] but achieve a modularity and compactness prop-
erty much like concurrent programs [18], i.e., they are modular, compact
and computationally grounded while allowing at the same time to represent
strategic abilities.

Although explicit models (and symbolic representations [21, 20]) achieve
the second part very well (because the semantics are defined over them) some
problems arise with the first part: Usually temporal models have an expo-
nential number of states and, in addition, they do not support modularity
since there is no easy way to remove or replace an agent. Interpreted sys-
tems [12, 13], however, have a modular state space. But they use a joint tran-
sition function for modelling temporal aspects of the system and are thus
not modular wrt actions. In contrast, concurrent programs [18] are both
modular and compact not only wrt the states but also wrt the actions. How-
ever, in the context of a MAS it is important that actions can have side ef-
fects on the states of other agents as well and this behaviour is difficult to
model with concurrent programs ([17] contains a detailed comparison). Fi-
nally, our choice of using MIS to model MAS is, although motivated by the
above reasons, still arbitrary to some extent and our techniques could cer-
tainly be used with other formalisms as well.

A major obstacle to model checking real systems is the state explosion
problem. As model checking algorithms require a search through the state
space of the system, the efficiency of any algorithm highly depends on the
size of this state space. While for small problems this is still feasible, for larger
state spaces it soon becomes intractable. We therefore need to eliminate ir-
relevant states by using appropriate abstraction techniques [4] which guar-
antee that the property to be verified holds in the original system if it holds
for the abstract system. We present such an abstraction technique for MIS.
More precisely, we reduce the local state space of each agent in a MIS. We do
this by using handcrafted equivalence relations because, clearly, there can-
not be a generic automatizable abstraction technique: Model checking ATL
for MIS is EXPTIME -complete, therefore in the worst case there are instances
where no abstraction technique at all is applicable.

While abstraction of reactive systems for temporal properties is a lively re-
search area [2, 3, 7, 19], there are only a few approaches when it comes to
MAS and even fewer concerning an abstraction technique for dealing with
strategic abilities. One interesting approach by Cohen et al. [6] achieves an
abstraction that preserves temporal-epistemic properties. However, the ab-
straction is based on an interpreted system to model the MAS and therefore
limits the modularity of the MAS. Several other abstraction approaches for
epistemic properties (cf. [8, 11]) are either not computationally grounded or
use an explicit representation of the model.

Another approach by Henzinger et al. [15] shows how to use abstraction
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for symbolic model checking of alternating-time µ-calculus formulae over
MAS given as alternating transition systems. Their technique is quite similar
to ours but still more restricted in an important way. They assume that there
are only two agents present and then use a single abstraction to model check
the whole formula. Our approach allows for multiple agents and for many
abstractions (one per strategic operator). Hence, we allow for a much finer
control over what information is abstracted away but still preserve sound-
ness of our model checking algorithm.

Note that we will assume the existence of handcrafted equivalence rela-
tions, e.g. generated from manual annotations of program code, since any
automatic abstraction generation or refinement (as in [14] for two-player games)
can only work in typical cases but not in the worst case. That is also the rea-
son why we do not work out how our algorithms can be implemented fully
symbolically: In the worst case it will be as bad as a non-symbolical algo-
rithm. We are not trying to neglect the usefulness of either of those tech-
niques but our focus lies on something else: a provable upper bound for the
runtime which is exponential in the sum of the sizes of the abstract systems
but linear in the size of a succinct representation of the concrete system (see
Theorem 6.1). The exponential part of this is not as worse as it sounds be-
cause, as argued above, our technique allows for more than one abstraction
and therefore each abstraction can be quite small and still much of the rele-
vant information of the whole concrete system can be preserved for the over-
all model checking process.

Finally, the abstraction for MIS which we present in this paper is moti-
vated by the idea of an IT ecosystem [9], i.e., a system composed of a large
number of distributed, decentralized, autonomous, interacting, cooperat-
ing, organically grown, heterogeneous, and continually evolving subsystems.
In such an ecosystem, which can be seen as a MAS, it is important to ver-
ify safety, fairness and liveness properties in order to control the stability of
it. A non-trivial demonstrator (mentioned in [9]) describes one instance of
such a system by introducing a fictional scenario, namely a smart airport.
In that airport there exist many agents doing different things, e.g., carry-
ing your bags, buying flight tickets or exchanging pictures about the travel
destination. Among many other things some agents at the airport want to
share some information with other agents. Assuming that no direct agent-
to-agent connection is possible, the agents have to send the information to
some middleman that forwards the message. Obviously this communica-
tion protocol raises some questions about safety, fairness and liveness prop-
erties. While examining these properties, i.e., model checking the whole
system (consisting of many agents and therefore many states), is intractable,
model checking a MIS allows us to concentrate on just the agents that have
to communicate. Using our abstraction method it is sufficient to model-
check a fairly small subset of the original system. We will use this scenario as
a running example throughout the paper.
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The structure of the paper is as follows: First we present the background
of our work. Section 2 recalls the MIS framework and describes our modifi-
cations. We extend this section by formulating the communicating agents
example as a MIS. In Section 3 we introduce the logic ATL. The main contri-
butions of this paper are in Section 4, Section 5 and Section 6: We design an
abstraction technique for MIS, then construct a model checking algorithm
based on this technique and conclude with a soundness proof as well as a
complexity analysis of the algorithm. Section 7 illustrates the abstraction
technique by an example. Finally, Section 8 summarizes the results and dis-
cusses future work.

2 Modular Interpreted Systems

We model multi-agent systems in the framework of Modular Interpreted Sys-
tems (MIS) [17]. Each agent is described by a set of possible local states, i.e.,
states it can be in, and a function that calculates the available actions in a
certain state. A local transition function specifies how an agent evolves from
one local state to another. States are labeled with a set of propositional sym-
bols by an associated labeling function. Finally, an agent is equipped with
a function that defines the possible influences of an agent’s action on its
environment, i.e. the other agents, and a function for the influence of the
environment on this particular agent.

Definition 2.1. A Modular Interpreted System (MIS) is a tuple S = (Agt,Act ,
In) where Act is the set of actions all agents can perform. In is called in-
teraction alphabet. It describes the interaction between the agent and its
environment. Finally, Agt = {a1, . . . , ak} is a set of agents where an agent is a
tuple ai = (Sti, di, outi, ini, oi,Πi, πi) with

• Sti is the local state space. It is a non-empty set of possible local states
for agent ai.

• di : Sti → P(Act) defines for each state in Sti the available actions for
agent ai.

• outi : Sti × Act → P(In) defines the possible influences (one is then
chosen non-deterministically) of agent ai’s action (executed in a cer-
tain local state) on its environment.1 Intuitively, this describes the ex-
ternal effect of an action which agent ai is executing.

• ini : Sti × Ink−1 → P(In) defines the possible influences (one is then
chosen non-deterministically) of its environment on this agent.1 It

1This is different from the original MIS definition in so far as we have a set of possible in-
fluences and the authors had one deterministic influence symbol; it is changed to cope with
possible ambiguities when doing abstraction later.
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maps the external effects of the actions of all other agents to the in-
fluence these actions might have on the agent in a particular state.

• oi : Sti × Act × In → P(Sti) is a local (non-deterministic) transition
function.2.

• Πi are the local propositions, where Πi and Πj are disjoint when i 6= j.

• πi : Sti → P(Πi) is a valuation (local labeling function) of these propo-
sitions.

The global state space is defined as St := St1 × · · · × Stk.

Example 2.2. We consider a system with several autonomous agents which
can gather information about their environment and share that information
between each other if they are in communication range. We consider groups
of them working together as teams.

Our example consists of six agents {a1, a2, a3, a4, b1, b2} partitioned in two
teams A = {a1, a2, a3, a4} and B = {b1, b2} and where the agents’ locations
are such that each agent ai can reach each agent bj but no two agents from
the same team can reach each other (see Figure 1). Agents of team A can
send a message (if they already know it) to b1 or b2 or choose to do nothing.
Agents of team B, however, are not allowed to send a message back to its
sender agent. Once an agent ai sent a message to an agent bj the agent bj
is not allowed to send it to ai in any future round. Additionally, if an agent
bj has received a message from ai then it has to send it to some agent ak in
the following round (unless this contradicts the former rule) and if possible
k has to be greater than i.

Now agent a1 has learned something and wants to communicate its newly
gathered knowledge to its team member a4. The difficulty is that the message
has to pass through an agent of the other team. But we will see that it is still
possible for team A to ensure that a4 will know the message eventually.

Formally we have the following MIS
S := (Agt = {a1, a2, a3, a4, b1, b2},Act = {sendx | x ∈ Agt} ∪ {noop},

In = {nothing,ma1 ,ma2 ,ma3 ,ma4}
∪P({maibj

| i ∈ {1, . . . , 4}, j ∈ {1, 2}}))

with ai := (Stai , dai , outai , inai , oai ,Πai , πai) where

• Stai = {k(nown), u(nknown)}

• Πai = {knownai , unknownai}

• πai : k 7→ {knownai}, u 7→ {unknownai}

2Non-deterministic as opposed to in the original definition; it inherits the non-determinism
from ini and adds additional non-determinism to cope with abstraction of states later.
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a1

a2

a3

a4

b1 b2

Figure 1: Communication graph of the six agents

• dai : k 7→ {sendb1 , sendb2 ,noop}, u 7→ {noop}

• outai : (k, sendbj) 7→ {{maibj
}}

(k, noop) 7→ {nothing}
(u,noop) 7→ {nothing}

for all j ∈ {1, 2},

• inai : (s, γ1, . . . , γ5) 7→
{
{mai

} if mai
∈ {γ1, . . . , γ5}

{nothing} else
for all s ∈ Stai , γ1, . . . , γ5 ∈ In,

• oai : (k, α, γ) 7→ {k}
(u, α,nothing) 7→ {u}
(u, α,mai

) 7→ {k}
for all γ ∈ In and α ∈ Act .

For the agents bj we have bj := (Stbj , dbj , outbj , inbj , obj ,Πbj , πbj ) where

• Stbj = P({r1, . . . , r4})×P({n1, . . . , n4}),

• Πbj = {knownbj , unknownbj},

• πbj : (R,N) 7→
{
{knownbj} if R 6= ∅
{unknownbj} else ,

• dbj : (R,N) 7→


{noop} if R = ∅{

sendai

∣∣∣∣ ri /∈ R and there is no k ≥ i:
nk ∈ N and ∃` > k: r` /∈ R

}
∪
{
{noop} if N = ∅ or R = {r1, . . . , r4}
∅ else

 else
,
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• outbj : ((R,N), sendai) 7→ {mai
}

((R,N),noop) 7→ {nothing}
for all i ∈ {1, . . . , 4},

• inbj : ((R,N), γ1, . . . , γ5) 7→ {{maibj
| {maibj

} ∈ {γ1, . . . , γ5}}}
if there is i ∈ {1, . . . , 4}with {maibj

} ∈ {γ1, . . . , γ5}
{nothing} else

for all γ1, . . . , γ5 ∈ In,

• obj : ((R,N), α,M) 7→ (R ∪ {ri |maibj
∈M}, {ri |maibj

∈M})
((R,N), α,nothing) 7→ (R, ∅)

for all α ∈ Act , ∅ 6= M ⊆ {ma1bj
, . . . ,ma4bj

},

for all (R,N) ∈ Stbj . R stands for “received (now or some time ago)” whileN
means “received now”.

Figure 2 shows the agent a1. Each arrow is denoted by an action and an in-
coming interaction symbol. Outgoing symbols and propositions are omit-
ted for ease of representation. Nevertheless state u should be labeled with
unknowna1 and k with knowna1 . The agents ai are fairly simply structured, they
consist of two states representing whether the agent knows the message (k)
or it does not know it (u). In the former case the agent can send the message
to one of the opponents or just do nothing. In the latter case it has to wait
for some agent of team B sending the message to it.

The structure of the agent bj however is more complex since it consists of
256 states. Every state is labeled with knownbj if the state name contains at
least one ri, i.e., the agent received some time ago the message from agent
ai. Consequently, states that do not have any ri are marked as unknownbj .
Intuitively, while the agent is waiting for a message it does nothing. When it
receives a message, i.e., the state contains a ni it has to send the message to
one of the opponents with a higher number then i and with the condition
that this agent did not send it to bj before. If the state contains all r1 to r4 the
agent does nothing.

We will come back to this concrete example when presenting the logic
and the model checking algorithm.

u k
noop,ma1noop,nothing

sendb1 , γ
sendb2 , γ
noop, γ

Figure 2: Graph of agent a1
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3 Specification Logic ATL

After having outlined the framework with which we model our MAS, we now
have to specify a logic to talk about strategic properties of such a system. We
recall the syntax of ATL, define some abbreviations and sketch the semantics
of ATL for MIS.

Definition 3.1. Alternating-time temporal Logic (ATL) [1] is a logic that en-
ables reasoning about temporal and strategic abilities of multi-agent systems.
The syntax of plain ATL is inductively defined by the following BNF (with
A ⊆ Agt)

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

Informally, 〈〈A〉〉Xϕ means that agents A have a collective strategy to en-
force that in the next stepϕholds. The operator X is read “in the next state”,
the symbol G means “globally” and U “until”. Other Boolean operators are
defined by macros in the usual way.

For the model checking algorithm presented in Section 5 we need to split
a formula into subformulae.

Definition 3.2. For an ATL formula ϕ we write qsf(ϕ) for the multiset of all
subformulae of ϕ which start with a quantifier 〈〈A〉〉.

Note that identical formulae occurring in two different places inside ϕ oc-
cur twice in qsf(ϕ) and if ϕ itself begins with a quantifier it is in the multiset
as well.

Finally, we need the following notions.

Definition 3.3. For a formulaϕ = 〈〈A〉〉ψ we write JϕK for the setA of agents.
For an arbitrary formula ϕ and an arbitrary ψ ∈ qsf(ϕ) let ϕ(ψ,w) denote the
formula resulting from ϕ by replacing ψ with the new proposition w.

Example 3.4. Considering the communicating agents example (cf. Exam-
ple 2.2) we can ask the following question: Is it possible for team A to ensure
that a4 will know the message eventually? Written in ATL this corresponds
to the question whether

S, q |= 〈〈A〉〉(>Uknowna4)

with A = {a1, a2, a3, a4} and q is the global state where a1 is in state k, all
other agents from team A are in state u and the agents from team B are in
state (∅, ∅), i.e. where only a1 knows the message.
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3.1 Semantics of ATL for MIS

Modular Interpreted Systems can be easily transformed into concurrent game
structures (CGS, cf. [1]) as shown for deterministic CGS in [17]. The notion
of a CGS is a very universal formalism to model MAS but it comes at the
cost of not being modular, i.e., CGS have an unstructured global state space.
Also, just as MIS, they have for every agent i a function di : St → Act ex-
pressing which actions are available to agent i in a certain global state. The
global transition function of a CGS takes as input a global state and for every
agent a permissible action and outputs a set of possible successor states (one
is then chosen non-deterministically), i.e., the influences of an agent on its
environment are implicitly given and there is no way to measure or limit that
influence in the framework of CGS.

Definition 3.5. For a MIS S = ({a1, . . . , ak},Act , In) with ai = (Sti, di, outi,
ini, oi,Πi, πi) (1 ≤ i ≤ k) the corresponding (non-deterministic) concurrent
game structure ncgs(S) = (Agt′, St′,Π′, π′,Act ′, d′, o′) is defined as follows:

• Agt′ := {1, . . . , k}

• St′ :=
k∏
i=1

Sti

• Π′ := Π1 ∪ · · · ∪Πk

• π′(p) := {(q1, . . . , qi, . . . , qk) | qi ∈ πi(p)}

• Act ′ := Act

• d′i((q1, . . . , qk)) := di(qi)

• δ′((q1, . . . , qk), α1, . . . , αk) :=
{(q′1, . . . , q′k) | ∀1 ≤ i ≤ k : q′i ∈ oi(qi, αi, γi) for a γi ∈ ini(qi, γ1, . . . , γi−1,
γi+1, . . . , γk) for some γ1, . . . , γi−1, γi+1, . . . , γk with γj ∈ outj(qj , αj)}

Note that our concurrent game structures extend the definition from [1]
in two ways. Firstly we use labeled actions instead of plain numbers. Sec-
ondly we allow the transition relation to be non-deterministic. The seman-
tics of a formula 〈〈A〉〉ϕ over a non-deterministic CGS is defined with the
non-determinism working against the agents inA. The rationale behind this
is that 〈〈A〉〉ϕmeans ”the agentsA have a combined strategy which enforces
ϕ“. Now, to enforce ϕ this strategy needs to ensure that in each of the pos-
sible runs of the system – determined by the other agents’ choices and the
non-deterministic branching – the formula ϕ holds.

Model checking ATL for deterministic MIS is EXPTIME -complete as stated
in [16] and for deterministic CGS it is PTIME -complete as stated in [1]. These
results still hold for the non-deterministic versions of the structures. This is

9 Technical Report IfI-10-13



Abstraction for MIS

because in the model checking algorithm from [1, Chapter 4.1] introducing
non-determinism only changes the function Pre(A, ρ) (which for a given set
ρ of system states and a given set A of agents outputs the set of system states
from which the agents A can enforce that the next state in any run will lie
in ρ). And computing Pre does not get more difficult with non-determinism
because even in the case of deterministic systems it is already necessary to
take into account all transitions in order to compute Pre.

Having defined MIS and ATL we can now present our new abstraction
technique.

4 Abstraction for MIS

In general, multi-agent systems have large associated state spaces and even if
they are symbolically represented it is infeasible to verify properties by con-
sidering all reachable states. Nevertheless, interesting properties often only
refer to parts of a system. Under this assumption it makes sense to reduce the
state space by removing irrelevant states and/or by combining them. Due
to the modularity of MIS, we can in a first step easily remove the obviously
non-relevant parts of the global state space by removing particular agents
while keeping the others. Secondly, we reduce the state space of each agent
by abstraction. As in [4] and [6] we do this by partitioning the state space into
equivalence classes: Each class collects all concrete states that are equivalent
and forms one new abstract state. This new state is labeled by those propo-
sitions which are shared by all concrete states. We define the local transi-
tion functions of the abstract system in such a way that it behaves just as the
concrete one. The set of available actions in an abstract state is decreased so
that it only contains actions available in every one of the equivalent con-
crete states. Finally we show how to handle the interaction with an agents’
environment. We start by introducing the definition of an abstraction rela-
tion.

Definition 4.1. An abstraction relation for a MIS is a product≡ = ≡1 × · · ·× ≡k
where each≡i⊆ Sti×Sti is an equivalence relation for the states Sti of agent
ai.

For q ∈ Sti, we write [q]≡i for the equivalence class of the local state q with
respect to≡i. And for q ∈ St = St1×· · ·×Stk, we write [q]≡ for the equivalence
class of the global state q.

An abstraction relation as in Definition 4.1 defines for each agent of the
MIS, which local states are equivalent and therefore can be condensed to
one abstract state. Note that this definition does not say anything about how
to define the equivalence, because this depends on the concrete system that
is model checked. Therefore these relations have to be handcrafted when
modeling a system.

DEPARTMENT OF INFORMATICS 10
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Using the definition of a MIS and Definition 4.1 we can now specify the
abstraction of a system:

Definition 4.2. For a MIS S = (Agt,Act , In), an abstraction relation≡ for S
and a set of favored agentsA ⊆ Agt we define the abstraction of S with respect
to≡ and A as the MIS

SA≡ := (Agt′,Act , In)

where Agt′ := {a′1, . . . , a′k} and a′i = (St′i, d
′
i, out

′
i, in

′
i, o
′
i,Π
′
i, π
′
i) with

i) St′i := {[q]≡i | q ∈ Sti}

ii) d′i([q]≡i) :=

{ ⋂
q′∈[q]≡i

di(q′) for ai ∈ A⋃
q′∈[q]≡i

di(q′) for ai /∈ A

iii) out′i([q]≡i , α) :=
⋃

q′∈[q]≡i

outi(q′, α)

iv) in′i([q]≡i , γ1, . . . , γk−1) :=
⋃

q′∈[q]≡i

ini(q′, γ1, . . . , γk−1)

v) o′i([q]≡i , α, γ) :=
⋃

q′∈[q]≡i

{[q′′]≡i | q′′ ∈ oi(q′, α, γ)}

vi) Π′i := Πi ∩ {pi | ∀q ∈ πi(pi) : ∀q′ ∈ [q]≡i : q′ ∈ πi(pi)}

vii) π′i(pi) := {[q]≡i | q ∈ πi(pi)}

for all q ∈ Sti, α ∈ Act , γ, γ1, . . . , γk ∈ In and pi ∈ Π′i.
Note that there might be i ∈ {1, . . . , k} and q ∈ Sti such that d′i([q]≡i) =

∅. As this would paralyse the system we will from now on assume that the
abstraction relation is chosen in such a way that this does not happen.

Formula i) defines a partition of the local state space by using the hand-
crafted equivalence relation of this agent. We reduce all equivalent states
to just one. Function ii) then computes for this element the available ac-
tions by giving agents in A fewer choices and the opponents more choices
than before. Due to this construction if a property 〈〈A〉〉ϕ (with ϕ proposi-
tional) holds in the abstract system it also holds in the concrete one, since
we restricted the actions of the protagonists and extended the set of actions
of the antagonists. The possible influences of these actions concerning the
environment are calculated by the resulting function iii). It takes for the ac-
tion α the union of all resulting influence symbols of all states in the equiv-
alence class, i.e., collecting all influence symbols that are an outcome of ex-
ecuting action α in each state q′ of the equivalence class [q]≡i . Taking the
union is motivated by the fact that executing the same action in equivalent
local states results in an equivalent influence on the environment. iv) is de-
fined the same way: We just use the union of ini for each state in the equiv-
alence class. Moreover, the outi- and ini-functions are of the same type for
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the protagonists as well as the antagonists because they do not introduce de-
liberate choices by the agents but instead introduce nondeterminism which
will – as we will see in Section 5 – always work against the formula which is
to be verified. The local transition function v) has to be modified to cope
with equivalence classes: It gets as input an abstract state, an action and one
(nondeterministically chosen) influence symbol. The output is the set of all
equivalence classes that are successors. To determine this we unfold both
equivalence classes and check whether there is a connection between a con-
crete state of the first equivalence class to another concrete state of the sec-
ond equivalence class.

Finally, we have to define how to label the abstract states (cf. vi) and vii)).
We do this by assigning a proposition to an abstract state if all concrete states
in the equivalence class are labeled with that proposition. If a proposition
only holds in some states of the class we remove it from set of propositions.
This ensures that if a proposition is true in an abstract state it is also true in
all concrete ones.

In the next section we describe how to evaluate whether a formula holds
in a system.

5 The Model Checking Algorithm

Our algorithm takes as input a MIS S, a set init of global states ofS (the initial
states), an ATL formula ϕ and for each ψ ∈ qsf(ϕ) an abstraction relation≡ψ.
The algorithm either returns true or it returns unknown but it will never return
false. If it returns true it is guaranteed that S, q |= ϕ for all q ∈ init. But if it
returns unknown we do not know whether S satisfies ϕ or not.

This behaviour is due to the way model checking is done here: Several ab-
stractions of S (generated out of the abstraction relations ≡ψ) are used each
to model check a part of ϕ. And as usual with handcrafted abstractions there
can be false negatives. The important point is that there are no false posi-
tives, i.e. if the abstractions fulfill ϕ then so does the concrete system.

Before we can present the algorithm we need the technical notion of a
pseudo-MIS which will be used in it.

Definition 5.1. A pseudo-MIS is a MIS together with a set Π of global proposi-
tions (which is disjoint to each set of local propositions) and a global labeling
function π : St→ P(Π). Note that every MIS can be viewed as a pseudo-MIS
with Π = ∅.

The algorithm now works as follows. Details about efficiently implement-
ing some of the steps are given in the proof of Theorem 6.1.

Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where
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• λ is a monotone Boolean formula, i.e. λ is composed of conjunctions
and disjunctions only,

• θ1, . . . , θn are arbitrary ATL formulae each beginning with a quantifier
or a negation directly followed by a quantifier, i.e. each θi is of the form
〈〈B〉〉θ′i or ¬〈〈B〉〉θ′i (in the latter case we will still write ≡θi and JθiK in-
stead of≡〈〈B〉〉θ′i and J〈〈B〉〉θ′iK), and

• `1, . . . , `m are literals, i.e. atomic propositions or negations of atomic
propositions.

1) For all i ∈ {1, . . . , n} do:

i) Set Wi := label(θi,≡θi).

ii) Set S := S(wi,Wi), i.e. S is from now on viewed as a pseudo-MIS, a
new global proposition wi is introduced in S and it is labeled exactly
in the states in Wi.

2) If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return true. Other-
wise return unknown.
Note that for this step the algorithm only has to locally check the labeling
of the states s ∈ init asλ(w1, . . . , wn, `1, . . . , `m) is an entirely propositional
formula.

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where

• ¬ψ is ¬ if ψ begins with a negation and it is the empty string elsewise,

• Y ∈ {X,G,U},

• λ is a monotone Boolean formula,

• θ1, . . . , θn are arbitrary ATL formulae each beginning with a quantifier
or a negation directly followed by a quantifier, and

• `1, . . . , `m are literals.

1) Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

We will view S′ as a pseudo-MIS in the following steps.

2) For all i ∈ {1, . . . , n} do:
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i) Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi)}.
ii) Set S′ := S′(wi,Wi).

3) Compute the setW ′ of global states of S′ (note that these are global states
of the system abstracted with≡) satisfying ψ, i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},

by translating S′ to a non-deterministic CGS and then using the ATL
model checking algorithm from [1, Chapter 4.1]. As already pointed out
in Section 3.1 their algorithm is only given for deterministic CGS but can
be easily adapted to also handle non-deterministic systems.

There is, however, a caveat here. Because additional non-determinism
might be introduced by abstracting the system we have to make sure that
the non-determinism works “against the formula” because we want to
avoid false positive outputs of our algorithm. This is the reason why we
have to interpret the non-determinism as working for the agents in A if
¬ψ = ¬ and working against them otherwise. If we always had it working
against them (which seems natural as argued in Section 3.1) then in the
former case it could happen that the algorithm comes to the conclusion
that S′, [q]≡ |= ψ although S, q 6|= ψ – a false positive. The reason for this
would be non-determinism present in S′ and absent in S that would pre-
sumably prevent agents A to have a winning strategy in S′ although they
do have one in S.

4) Return W := {q ∈ St | [q]≡ ∈W ′}.

6 Complexity and Soundness of the Algorithm

The following theorem shows that our model checking algorithm runs in
time linear in the size of a succinct representation of the concrete system as
well as linear in the length of the formula and exponential in the sum of
the sizes of the abstract systems. Now, since there is a special abstraction
for each modality, the abstractions should be very small and therefore this
should be a huge improvement over the EXPTIME -completeness of model
checking MIS without abstractions.

Theorem 6.1. Algorithmmodelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) runs in time

O (|init|+ |S| · |ϕ|) · 2
O

 P
ψ∈qsf(ϕ)

˛̨̨
S

JψK
≡ψ

˛̨̨!

where |S| denotes the size of theMIS S in a compact representation. The cardinal-
ity of the global state space of S may then be upto 2Θ(|S|).
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Proof. The crucial implementation detail is that it is not possible to explic-
itly enumerate the set returned in step 4 of label() because the set may be as
large as the global state space St of S. Instead, both label() and modelcheck()
have to save and pass on computed sets of global states in a symbolic way,
i.e. by refering to the modular structure of S and to the abstraction relation’s
equivalence classes. This technique is needed in step 1 of modelcheck() and
in steps 2i and 4 of label().

Also, in step 2i of label() it is not possible to check the condition for each
[q]≡ ∈ St′ by enumerating through all q′ ∈ [q]≡ because a single equivalence
class may already be as large as the global state space. Hence, the algorithm
has to construct the equivalence relation ≡′ := ≡ ∩ ≡θi (which is a refine-
ment of both ≡ and ≡θi) and compute Wi as the set {[q]≡ | ∀[q′]≡′ ⊆ [q]≡ :
[q′]≡′ ⊆ label(θi,≡θi)}. This can be done in time O(|SJψK

≡ | · |SJθiK
≡θi |).

Step 3 of label() runs in time 2O
“
|SJψK
≡ |

”
·O(|ψ|) because the translation to a

CGS may involve an exponential blow-up in the system size. All other steps
are easy to implement – when keeping in mind the symbolic handling of
state sets.

Finally, label() is executed at most |ϕ| times. Altogether this gives the claimed
upper bound on the runtime.

The following theorem shows that our algorithm is sound. It is, however,
not complete because, as usual for abstraction techniques, the capability of
the algorithm to show the truth of a formula depends on choosing a suitable
abstraction. It should, anyhow, be possible to find good abstractions since
it is possible to define a specific abstraction for each strategic operator. Of
course that problem could be overcome by an automatic abstraction refine-
ment technique but this, on the other hand, would make a provable upper
bound on the runtime in the form of Theorem 6.1 impossible.

Theorem 6.2. Algorithm modelcheck is sound, i.e. if modelcheck(S, init, ϕ,
(≡ψ)ψ∈qsf(ϕ)) outputs true then S, q |= ϕ for all q ∈ init.

Proof. (Sketch) First note that if we skipped step 1 of the label() algorithm
and simply ran the algorithm without constructing any abstractions we would
exactly run the bottom-up, subformula labeling, model checking algorithm
from [1, Chapter 4.1].

Hence we only have to argue why the abstractions do not lead the algo-
rithm to produce more positive answers than without them. The crucial ob-
servation is that for each modality 〈〈A〉〉Y the aspects which are of an exis-
tentially quantifying nature, i.e. the actions available to agents A, can only
be restricted by an abstraction but never extended and for the aspects of uni-
versally quantifying nature, i.e. the actions available to agents Agt\A as well
as the non-deterministic branching of the system, it is the other way around.
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Thus it is ensured that if a formula 〈〈A〉〉Yϕ is true in an abstraction it is also
true in the original system.

Furthermore, for formulae of the form ¬〈〈A〉〉Yϕ the abstraction is con-
structed the other way around, i.e. extended choices for A and restricted
choices for Agt \ A, to ensure that if the agents A do not have a winning
strategy in the abstraction then neither do they have one in the original sys-
tem.

The non-determinism, however, is extended even in this case. As already
discussed in step 3 of the algorithm we therefore have to change the meaning
of the non-determinism to be of existential rather than of universal nature.
The sacrifice we have to make is that if the original system is already non-
deterministic and this non-determinism ensures some property ¬〈〈A〉〉Yϕ
then the algorithm will return unknown.

7 Communicating Agents Example

Consider the example of the six agents again (Example 2.2 and Example 3.4).
We will now apply the model checking algorithm to the example using the
formula

S, q |= 〈〈A〉〉(>Uknowna4)

with A = {a1, a2, a3, a4} and q is the global state in which only a1 knows the
message (cf. Example 3.4). The formula ϕ describes the following question:
“Is it possible for teamA to always ensure that a4 will know the message even-
tually?” The algorithm takes the formula ϕ and constructs for all quantifier
subformulae an abstract system by using the specific abstraction relation for
that quantifier. The multiset qsf(ϕ) of quantified subformulae consists just
of the formula ϕ. Therefore, we have to define only one abstraction for ϕ.

Before we give the abstraction relation we note that b2 is not necessary for
the property we want to verify and therefore we can temporarily delete it
from the system. As abstraction for ϕ we do not abstract the agents ai at all
and for agent b1 we use the equivalence relation given by the following par-
tition of its local state space:

Si := {(R,N) | ∅ 6= R ⊆ {r1, . . . , ri}, ni ∈ N} \
⋃i−1
j=1 Sj for i = 1, . . . , 3

Srest := {(R,N) | (R,N) /∈ S1 ∪ · · · ∪ S3}

Now, the agents ai remain unchanged and the abstracted agent b1 looks like
the following:

b′1 = (St′b1 , d
′
b1 , out

′
b1 , inb1 , o

′
b1 ,Πb1 , π

′
b1)

where

• St′b1 = {S1, S2, S3, Srest}
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• π′b1 : Si 7→ {knownb1} for i = 1, . . . , 3
Srest 7→ {knownb1 , unknownb1}

• d′b1(Si) = {sendx | x ∈ {ai+1, . . . , a4}} for i = 1, . . . , 3
d′b1(Srest) = {sendx | x ∈ {a1, . . . , a4}} ∪ {noop}

• out′b1 : (Srest,noop) 7→ {nothing}
(s, senda1) 7→ {mb1a1}
(s, senda2) 7→ {mb1a2}
(s, senda3) 7→ {mb1a3}
(s, senda4) 7→ {mb1a4}

for all s ∈ St′b1 ,

• o′b1 : (Srest, α,nothing) 7→ {Srest}
(Srest, α, {majb1}) 7→ {Srest, Sj}
(Si, sendaj ,nothing) 7→ {Srest}
(Si, sendaj , {maj′b1}) 7→ {Sj′}
(Si, sendaj , {ma4b1}) 7→ {Srest}

for all α ∈ Act , γ ∈ In, i, j′ ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}.

Now, everything is specified so that the algorithm
modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) can be started. S is the MIS mentioned
in Section 2, init = {q}, ϕ as above and (≡ψ)ψ∈qsf(ϕ) contains all abstraction
relations for the quantified subformulae. Since the formulaϕonly consists of
one quantifier, by invoking the algorithm modelcheck() we get the quanti-
fier subformulae θ1 := ϕ. The algorithm takes thenϕ and computesW1 by ex-
ecuting the labeling algorithm label(ϕ,≡ϕ). Now, we construct the pseudo-
MIS S′ϕ := S

JϕK
≡ϕ for the favored agents a1, a2, a3, a4. Step 2i) of the labeling

algorithm is skipped since there is no further quantified subformula for ϕ.
This is the moment when the recursion stops and we start to label the states
in a bottom-up order. W1 := {[q]≡ϕ | S′ϕ, [q]≡ϕ |= ϕ} is computed by creat-
ing the non-deterministic CGS and apply the model checking algorithm for
ATL.

Now we are almost finished. In the modelcheck() algorithm we set S′ :=
S′(w1,W1). The last step is to evaluate whether S, s |= ϕ holds and we there-
fore answer with true.

8 Conclusion and Future Work

While in the MAS community model checking agent systems already has
attracted some attention there has not been much work on abstraction tech-
niques for reducing the state space. In this paper, we presented a technique
to cope with the state explosion problem which opens the way to reduce
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the state space of a MAS so that model checking might get tractable. Clearly,
there cannot be a generic automatizable abstraction technique: Model check-
ing ATL for MIS is EXPTIME -complete, therefore in the worst case, there are
instances where no abstraction technique at all is applicable.

Consequently we focused on handcrafted abstraction relations and proved
that the presented model checking algorithm is sound, i.e., if the algorithm
claims that a property holds then it really does. Of course, using abstraction
always leads to losing completeness. However, abstraction still has its ben-
efits because without reducing the state space many problems could not be
model checked at all. Defining different abstraction relations for each quan-
tifier allows to shrink the state space as needed for each subformula. Usu-
ally a MAS consists of more than two teams and the agents are more com-
plex than in our example which increases our speedup factor significantly.
In fact, we believe that most real problems carry with them a rich structure
which allows the abstraction technique to be successfully applied, especially
when using the possibility to use more than one abstraction for a single for-
mula.

We decided to take MIS as the modelling framework and argued that for
any framework the modularity is important not only because of the nature of
MAS but also due to the ability of reducing the state space by replacing or re-
moving agents that are not necessary when checking a certain property. We
therefore introduced a modified version of a MIS and defined an abstraction
over it.

The need to have a compact, modular and grounded representation was
motivated by the idea of an IT ecosystem, i.e., a system composed of a large
number of distributed, decentralized, autonomous, interacting, cooperat-
ing, organically grown, heterogeneous, and continually evolving subsystems.
An example for such a system is a smart city that contains agents for cars,
traffic lights, cameras, etc. In such an IT ecosystem, new agents are intro-
duced, other agents are removed and others again are modified. If we nev-
ertheless want to ensure some safety, liveness or fairness properties we need
a framework that on the one hand enables theoretical analysis and on the
other hand supports modularity.

An IT ecosystem in general is the topic of a large research project consist-
ing of 17 professors and 33 scientists in total collecting knowledge in dif-
ferent research areas: multi-agent systems, organic computing, ambient in-
telligence, software engineering and embedded systems. Together we try to
solve the contradiction of having a continually evolving and highly hetero-
geneous system on the one side and still controlling this system by ensuring
some properties on the other side.

We are currently implementing our abstraction technique in a first proto-
type and will use it for a concrete, non-trivial demonstrator scenario [9]. The
application will run on a smartphone and will send properties to be checked
to a server that will then model check it. Users will get feedback if the for-
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mula holds or if it is unknown and can then decide whether they want to
take part in the IT ecosystem. For this implementation it will, of course, be
very useful to develop some heuristics and automatic refinement methods
to generate abstractions.

For the future, we plan to put some effort in developing parallel model
checking methods for this system and using a logic that facilitates the use of
probabilities.
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