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Abstract
Stochastic epidemics with open populations of variable population sizes are considered

where due to immigration and demographic effects the epidemic does not eventually die out

forever. The underlying stochastic processes are ergodic multi-dimensional continuous-

time Markov chains that possess unique equilibrium probability distributions. Modeling

these epidemics as level-dependent quasi-birth-and-death processes enables efficient

computations of the equilibrium distributions by matrix-analytic methods. Numerical exam-

ples for specific parameter sets are provided, which demonstrates that this approach is par-

ticularly well-suited for studying the impact of varying rates for immigration, births, deaths,

infection, recovery from infection, and loss of immunity.

Introduction
Epidemic processes are particularly important population dynamics describing the outbreak
and spread of infectious diseases. Mathematical models are in widespread use for analyzing
and predicting the time evolution of populations. While in the most classical models the total
population is closed and of constant size, generalized and extended versions incorporate demo-
graphic effects, open populations, and variable population sizes. Deterministic models
described by ordinary differential equations (ODEs) have the longest tradition and under cer-
tain circumstances they provide suitable approximations. But epidemic processes are often
substantially governed by random effects. Stochastic models, especially Markov chains, are
then more appropriate. We refer to [1–3] for the general background on Markov chains where
[1] focuses on biological including epidemic processes, to [4–6] for introductory texts on epi-
demic modeling and related stochastic methods, and to [7–9] for extensive surveys of diverse
epidemic models. Deterministic and stochastic models are compared in, e.g., [10–12].

Essentially, three regimes of stochastic epidemic modeling are prevalent and well established.
With discrete-time Markov chains (DTMCs), populations are represented by nonnegative inte-
gers and time is divided into units such as days, weeks, months, or years. In continuous-time
Markov chains (CTMCs), the time scale becomes continuous. Stochastic differential equation
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(SDE) models obey continuous time scales and state spaces, similarly as deterministic ODE
models. CTMCs can be approximated by DTMCs and by SDEs. Likewise, also deterministic
ODE models can be viewed as approximations of CTMCs. We shall focus on CTMCs. In fact,
time evolves continuously and populations appear in discrete quantities.

We consider generalized versions of stochastic SI, SIS, SIR, and SIRS epidemics where the
individuals in the population are classified according to the standard terminology in epidemic
modeling as susceptible, infective and removed (or recovered). At any time, the state of the cor-
responding multi-dimensional CTMC is described by the vector consisting of the number of
individuals of each epidemiological class. In our model versions we incorporate births, deaths
and immigration of individuals of any class where we conceptually distinguish between births
and immigration, because immigration rates are typically constant and independent of the pop-
ulation size, whereas births rates depend on the population size and are usually proportional to
it. This makes an important difference. With birth rates proportional to the population size (or
in some other way requiring the presence of at least one individual) the underlying Markov
chains have absorbing states such that quasi-stationary distributions and the time to extinction
or the duration of the epidemic are of major interest. With constant immigration rates, the Mar-
kov chains are non-absorbing and the disease will not die out forever. Then, if the Markov chain
approaches a stochastic equilibrium, equilibrium probability distributions are essential. Of
course, a birth and an immigrating individual have the same effect as they increase the popula-
tion of the corresponding class by one. Therefore, despite their important conceptual difference
and the implications on the behavior of the resulting CTMC, they can be modeled by a single
state transition type occurring at a combined linear rate with a constant term corresponding to
immigration and a term proportional to the population size corresponding to births.

Some features of our models have previously appeared in the literature. For instance, [13,
14] consider SI models with births (rather than immigration) into the susceptible class where
the birth rate is proportional to the number of susceptibles present in the population. While in
[14] deaths of both susceptibles and infectives occur at rates proportional to the number of
individuals of the corresponding epidemiological class, in the version of [13] only infectives
can die. Note that in these papers a death of an infective is referred to as a removal, a term that
we shall reserve for SIR(S) models with (temporary) immunity. Also [15] deals with an SI
model like in [14] but with the birth rate of susceptibles proportional to the total population
size. Similarly, [16] studies SI, SIS, SIR, and SIRS models where the SI model is the same as in
[15]. In the SIS model additionally the recovery of infectives that then immediately become
again susceptibles is included with a recovery rate proportional to the number of infectives.
The SIR model accounts for immunity in that recovered infectives do not become again suscep-
tibles but removals from the epidemic. They die at a rate proportional to the number of remov-
als. In the SIRS model the immunity is only temporary and can be lost at a rate proportional to
the number of recovered individuals. Of course, in all cases infection of susceptibles is possible.
The SIS model of [16] is also considered in [17] but with a different infection rate.

In all these models, due to births rather than immigration there are absorbing states such
that the epidemic ultimately dies out. Consequently, the cited works provide approximations
of the quasi-stationary distribution and the time to extinction, or the mean duration of the epi-
demic. Obviously, if one considers the whole world there is no immigration from outside, but
in reality epidemics often need to be studied for local moderate-sized sub-communities within
a larger community from which there is usually indeed an importation of infections due to the
immigration of infected individuals, which is a major underlying rationale behind our models
and corroborates their practical relevance.

Models that are in some respects close to ours, though deterministic, are the SIS model and
the SIR model in [18]. They comprise a constant flow of new members into the population of
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which a fraction is infective, and a natural death rate proportional to the population size.
Therefore, as in our stochastic models, the infection cannot be eliminated permanently. Fur-
thermore, it is shown in [18] that the deterministic models admit a single asymptotically stable
equilibrium. Similarly, considering deterministic models of epidemics for networks with demo-
graphics, [19, 20] derive asymptotically stable equilibria. More specifically, for SIS models on
networks the basic reproduction number R0 is obtained and it is shown that for R0 < 1 there
exists a globally asymptotically stable disease-free equilibrium, while for R0 > 1 there is a glob-
ally asymptotically stable endemic equilibrium. In particular, it is shown that demographics
indeed has a strong impact on the basic reproduction number and is important with regard to
epidemic propagation between communities, see [19, 20] for the details. However, we neither
consider epidemics for networks nor deterministic models but stochastic models with immi-
gration and demographic effects. In stochastic models, there is no single equilibrium state but
an equilibrium probability distribution of the underlying CTMC. Consequently, we aim at
obtaining the equilibrium distributions of our models.

If explicit analytical solutions are not available, computational approaches are required and
often stochastic simulation is applied, but even when using advanced methods [21, 22] statisti-
cal analysis of steady-state measures by stochastic simulation is inherently costly, in particular
if the interest is not only in expectations of population sizes but in probability distributions.
Accurately obtaining whole probability distributions by stochastic simulation requires enor-
mous computational efforts since stochastic simulation actually is a computer-based statistical
estimation procedure. It consists of generating many independent sample paths for building
sufficiently small confidence intervals in order to get statistically reliable results. Clever numer-
ical solution of Markov chains is an alternative computational approach that becomes particu-
larly useful and efficient in case of suitably structured models [23–33].

We shall structure our stochastic epidemic models such that they correspond to level-depen-
dent quasi-birth-and-death (LDQBD) processes, that is, CTMCs with multi-dimensional state
space and block tridiagonal generator matrix. For this purpose, first of all a suitable ordering of
states is required. For computing the equilibrium distributions we then invoke the matrix-
analytic algorithm invented in [24].

Hence, the contribution of the present paper is threefold. Firstly, we introduce stochastic
epidemics with births and deaths as well as immigration of individuals of all epidemiological
classes involved such that the underlying CTMCs become non-absorbing. Secondly, we show
how to model them as LDQBD processes. Thirdly, based on the generator matrix structure
provided by the LDQBD process modeling approach, we apply efficient matrix-analytic meth-
ods for their solution, which enables us to compute whole equilibrium probability distributions
rather than only expectations.

The necessary background on LDQBD processes and their matrix-analytic solution is given
in the following section. Subsequently, we present the considered stochastic epidemics and
show how they can be efficiently modeled as LDQBD processes. Then we provide numerical
examples for specific parameter settings.

Methods

LDQBD processes and matrix-analytic solutions
Before introducing our specific stochastic epidemic models, we present the matrix-analytic
framework that we shall apply to structure these epidemic models as LDQBD processes and to
solve efficiently for their equilibrium distributions. Our description is focused on continuous-
time LDQBDs, but the discrete-time case is similar.
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Consider a CTMC with infinite multi-dimensional state space. If the state space can be par-
titioned into disjoint levels, consecutively numbered such that transitions are only possible
between states belonging to the same or adjacent levels, then the CTMC is said to be a quasi
birth-and-death (QBD) process and its generator matrix is block tridiagonal [31, 32]. The par-

titioning of the state space can be expressed by the disjoint union S ¼ Sð0Þ [ Sð1Þ [ Sð2Þ [ � � �
with SðiÞ \ SðjÞ ¼ ; for i 6¼ j, where S denotes the whole state space of the CTMC and

Sð0Þ;Sð1Þ;Sð2Þ; . . . denote the levels successively numbered by 0, 1, 2, . . .. Usually, one compo-
nent of the state space is defined as the level number (see, e.g., [23–25, 27, 28, 31, 32] for more
details on the level definition) and QBDs are commonly classified according to the dependence
of transition rates on the level.

In the case of level independent QBDs, the transition rates do not depend on the process
level and the corresponding generator matrices obey a structure of repeated identical blocks.
The equilibrium distribution then has matrix-geometric form based on which efficient and
numerically stable algorithms are available [26, 30–32]. However, for stochastic epidemics with
demography level independent QBDs are not appropriate, because infection and recovery rates
as well as birth rates and death rates of individuals should depend on the population size of the
corresponding epidemiological class.

If the transition rates are allowed to depend on the level (transition rates are functions of the
level), the process is referred to as a level-dependent QBD (LDQBD) process. Although they
are more complicated to analyze than level independent QBDs, some notable matrix-analytic
approaches for computing equilibrium distributions of LDQBDs exist [24, 27, 29]. In particu-
lar, the algorithm recently proposed by [24] provides an efficient and numerically stable means
for this purpose. The art of LDQBD process construction is the appropriate choice of the level
and obtaining the block matrices for specific models, which we shall investigate in the following
two sections for our stochastic epidemics such that it becomes clear that LDQBDs are appro-
priate for stochastic epidemic modeling. Once an LDQBD process has been constructed, its
equilibrium distribution can be efficiently obtained by matrix-analytic methods.

Hence, assume that we have constructed an LDQBD process such that the generator matrix
of the CTMC is block tridiagonal, that is,

Q ¼

~Q00
~Q01

~Q10
~Q11

~Q12

~Q21
~Q22

~Q23

. .
. . .

. . .
.

0
BBBBBBBB@

1
CCCCCCCCA

ð1Þ

with blocks ~Qmn 2 R
dm�dn , where dm and dn are the numbers of states in levelsm and n, respec-

tively, that is, dm ¼ jSðmÞj and dn ¼ jSðnÞj. Note that the dimension of the state space must be
finite, but it is allowed that the state space is infinite, which is the case as soon as one compo-
nent is not upper bounded. We only require the above block tridiagonal matrix structure.

For an ergodic CTMC the equilibrium distribution π is the unique positive solution to
πQ = 0 subject to the normalization condition p1 ¼ 1. Now, let the equilibrium distribution
π be partitioned compatibly with Q, that is, p ¼ ð~p0; ~p1; ~p2 . . .Þ with row subvectors

~pn 2 R
1�dn . Then πQ = 0 can be expressed as

~p0
~Q00 þ ~p1

~Q10 ¼ 0; ð2Þ
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~pn�1
~Qn�1;n þ ~pn

~Qnn þ ~pnþ1
~Qnþ1;n ¼ 0; n > 0: ð3Þ

Inserting this into the recurrence scheme ~pnþ1 ¼ ~pnRn; n � 0, with nonnegative matrices

Rn 2 R
dn�dnþ1 whose entries are conditional sojourn times [27] we get

~p0ð~Q00 þ R0
~Q10Þ ¼ 0; ð4Þ

~pn�1ð~Qn�1;n þ Rn�1Qnn þ Rn�1Rn
~Qnþ1;nÞ ¼ 0; n > 0; ð5Þ

where

Rn�1 ¼ �~Qn�1;nð~Qnn þ Rn
~Qnþ1;nÞ�1

; n > 0 ð6Þ

can be computed recursively, given a suitable RN for some finite N as a starting point. Accord-
ing to [24] one can set RN: = 0 for N large enough that the probability mass in levels higher
than N is negligibly small. Then the generator matrix is truncated accordingly, without any
augmentation necessary. This yields the following core algorithm for computing equilibrium
distributions of LDQBDs:

• Choose N large and define RN ¼ 0 2 R
dN�dNþ1 ;

• For n = N − 1, N − 2, . . ., 0 compute Rn ¼ �~Qn;nþ1ð~Qnþ1;nþ1 þ Rnþ1
~Qnþ2;nþ1Þ�1;

• Determine a nontrivial solution x0 6¼ 0 of x0ð~Q00 þ R0
~Q10Þ ¼ 0;

• For n = 0, . . ., N − 1 compute xn+1 = xn Rn;

• By normalizing x = (x0, . . ., xN), determine p ¼ ð~p0; ~p1; ~p2 . . .Þ, that is,

~pn ¼
xn

jjx0jj þ � � � þ jjxN jj
;

where ||�|| denotes the row sum norm.

Further details and a memory-efficient implementation are given in [24] where also the effi-
ciency of the matrix-analytic computations is demonstrated.

Generalized stochastic SI(S) models
In SI and SIS models the population consists of susceptibles and infectives. The state of the
underlying CTMC is denoted by (s, i) where s is the number of susceptible individuals and i is
the number of infected individuals. Both susceptibles and infectives can immigrate or can be
born and they can die (or emigrate). Susceptibles can be infected and infectives can recover.
With some constants we have the state transitions starting in (s, i) as given in Table 1.

The infection rate b0
s�i
sþi

is the product of a contact rate β0, the number of susceptible individ-

uals s, and the proportion i/(s + i) of the population that is infected. If the recovery rate is cho-
sen as γ1 = 0 we get a SI model, for γ1 > 0 we have a SIS model. Finally, the basic reproduction

number of our model is given by R0 ¼ b0
g1þm1

. Note that the basic reproduction number is a fun-

damental concept originating from deterministic epidemic models where it is defined as the
number of secondary infections caused by one infected individual in an entirely susceptible
population, but the concept similarly applies to stochastic models with closed as well as open
populations with fluctuating number of susceptibles, for details see, e.g., [9, 16, 17, 34, 35].

Now, we turn to modeling these stochastic epidemics by LDQBD processes. In order to get
the desired block tridiagonal structure of the generator matrix we define the level number as
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the number of susceptibles and arrange the states in lexicographical order. In the present case,
the number of infectives is not bounded by definition. Therefore, in order to get finite blocks
we have to choose a truncation number denoted by imax, which can be safely set such that the
probability of having more than imax infectives is negligible. Doing so we have the state space
S ¼ f0; 1; 2; . . .g � f0; . . . ; imaxg. Since we have defined the level number as the number of
susceptibles, which means for any state its first component defines the level number, it is clear
that each level consists of imax + 1 states, namely for level number s, corresponding to exactly
s susceptibles, the level consists of all states where exactly s susceptibles are present, that is,

SðsÞ ¼ fðs; 0Þ; ðs; 1Þ; . . . ; ðs; imax þ 1Þg. Hence, the generator matrix Q is of block tridiagonal
structure with constant dimensions di = imax + 1 and blocks

~Qn;nþ1 ¼

l0nþ a0

g1 l0nþ a0

2g1 l0nþ a0

. .
. . .

.

imaxg1 l0nþ a0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð7Þ

~Qn;n�1 ¼

m0n b0

n � 0
nþ 0

m0n b0

n � 1
nþ 1

m0n b0

n � 2
nþ 2

. .
. . .

.

m0n b0

n � ðimax � 1Þ
nþ imax � 1

m0n

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

; ð8Þ

Table 1. State transitions in generalized stochastic SI and SISmodels.

Event Next state Transition rate

Birth/Immigration of susceptible (s + 1, i) λ0 s + a0
Birth/Immigration of infective (s, i + 1) λ1 i + a1

Death of susceptible (s − 1, i) μ0 s

Death of infective (s, i − 1) μ1 i

Infection of susceptible (s − 1, i + 1) b0
s�i
sþi

Recovery of infective (s + 1, i − 1) γ1 i

Next state and corresponding transition rate when event occurs, given the current state is (s, i). For the SI

model the recovery rate is zero, that is, γ1 = 0.

doi:10.1371/journal.pone.0152144.t001
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~Qnn ¼

�xn;0 a1

m1 �xn;1 l1 þ a1

. .
. . .

. . .
.

ðimax � 1Þm1 �xn;imax�1 ðimax � 1Þl1 þ a1

imaxm1 �xn;imax

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð9Þ

where the definitions for ~Qn;nþ1 and ~Qnn hold for n� 0, the definition for ~Qn;n�1 holds for

n> 0, and ξs, i is defined as

xs;i ¼ l0sþ a0 þ l1iþ a1 þ m0sþ m1iþ b0

si
sþ i

þ g1i: ð10Þ

For s = i = 0 the term si
sþi

is defined to be 0. Note that due to the truncation of the number of

infectives not all row sums of Q need to be zero. If the entries of ~Qij are denoted by ð~QijÞu;v for
u = 0, 1, . . ., di − 1 and v = 0, 1, . . ., dj − 1, then we can also define the block matrices formally
by all non-zero entries:

~Qn;nþ1

� �
ðu;vÞ ¼

l0nþ a0; u ¼ 0; . . . ; imax; v ¼ u;

g1u; u ¼ 1; . . . ; imax; v ¼ u� 1;
ð11Þ

(

~Qn;n�1

� �
ðu;vÞ ¼

m0n; u ¼ 0; . . . ; imax; v ¼ u;

b0

nu
nþ u

; u ¼ 0; . . . ; imax � 1; v ¼ uþ 1;
ð12Þ

8><
>:

~Qnn

� �
ðu;vÞ ¼

�xn;u; u ¼ 0; . . . ; imax; v ¼ u;

l1uþ a1; u ¼ 0; . . . ; imax � 1; v ¼ uþ 1;

m1u; u ¼ 1; . . . ; imax; v ¼ u� 1:

ð13Þ

8>>><
>>>:

Generalized stochastic SIR(S) models
In the SIR model infected individuals become immune (removals) after recovery. Hence, there
is a third epidemiological class within the population and we denote by r the number of such
immune removals. It is also possible that an immune individual, hence a removal, immigrates
or is born into the population. In the SIRS model immunity can be lost and a removal loosing
immunity becomes again a susceptible. As for the other epidemiological classes, immune indi-
viduals can be born, they can immigrate, die, or emigrate. Starting from state (s, i, r) we have
the state transitions as given in Table 2 where for the SIR model the rate of loss of immunity is
γ2 = 0 and for the SIRS model γ2 > 0. Note in particular, that now the state space of the under-
lying CTMC is three-dimensional. The basic reproduction number remains as for the SI(S)
models.

We proceed by showing how to model these stochastic epidemics appropriately as an
LDQBD process. Again, we choose the level number to be the number s of susceptible individu-
als. In order to get finite blocks we truncate both the number of infectives and the number of
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removals, denoting the maximum numbers by imax and rmax, respectively. The block matrix
dimensions dn = (imax + 1)(rmax + 1) are constant. We get

~Qn;nþ1 ¼

L

L

. .
.

L

0
BBBBBBB@

1
CCCCCCCA

2 R
ðimaxþ1Þ�ðimaxþ1Þ ð14Þ

with imax + 1 blocks

L ¼

l0nþ a0

g2 l0nþ a0

2g2 l0nþ a0

. .
. . .

.

rmaxg2 l0nþ a0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð15Þ

and

~Qn;n�1 ¼

M M0

M M1

. .
. . .

.

M Mimax�1

M

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð16Þ

Table 2. State transitions in generalized stochastic SIR and SIRSmodels.

Event Next state Transition rate

Birth/Immigration of susceptible (s + 1, i, r) λ0 s + a0
Birth/Immigration of infective (s, i + 1, r) λ1 i + a1
Birth/Immigration of removal (s, i, r + 1) λ2 r + a2

Death of susceptible (s − 1, i, r) μ0 s

Death of infective (s, i − 1, r) μ1 i

Death of removal (s, i, r − 1) μ2 r

Infection of susceptible (s − 1, i + 1, r) b0 � si
sþiþr

Recovery from infection to immunity (s, i − 1, r + 1) γ1 i

Loss of immunity (s + 1, i, r − 1) γ2 r

Next state and corresponding transition rate when event occurs, given the current state is (s, i, r). For the

SIR model γ2 = 0.

doi:10.1371/journal.pone.0152144.t002
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with blocks

M ¼ diagðl0nþ a0Þ 2 R
ðrmaxþ1Þ�ðrmaxþ1Þ; Mi ¼ diag b0

ni
nþ iþ r

� �rmax

r¼0

: ð17Þ

Finally,

~Qnn ¼

N 0 N þ
0

N �
1 N 1 N þ

1

. .
. . .

. . .
.

N �
imax�1 N imax�1 N þ

imax�1

N �
imax

N imax

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð18Þ

with blocks

N i ¼

�xn;i;0 a2

m2 �xn;i;2 l2 þ a2

. .
. . .

. . .
.

ðrmax � 1Þm2 � xn;i;rmax�1 ðrmax � 1Þl2 þ a2

rmaxm2 � xn;i;rmax

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð19Þ

N �
i ¼

m1i g1i

. .
. . .

.

m1i g1i

m1i

0
BBBBBBBB@

1
CCCCCCCCA

2 R
ðrmaxþ1Þ�ðrmaxþ1Þ; ð20Þ

N þ
i ¼ diagðl1iþ a1Þ 2 R

ðrmaxþ1Þ�ðrmaxþ1Þ: ð21Þ

For constructing the blocksN i in ~Qnn we use the definition

xs;i;r ¼ l0sþ a0 þ l1iþ a1 þ l2r þ a2 þ m0sþ m0iþ m0r þ b0

si
sþ iþ r

þ g1iþ g2r: ð22Þ

Results
In this section we present numerical examples in order to demonstrate that the LDQBDmodel-
ing formalism in conjunction with matrix-analytic solution methods is well-suited for studying
the equilibrium distributions of the introduced stochastic epidemic models. Furthermore, once
the equilibrium distributions are obtained, also moments and cumulants can be easily com-
puted, in particular expectations and standard deviations are readily available. All results pre-
sented in the following tables and figures are numerical solutions of the LDQBD models
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obtained via the matrix-analytic solution method, avoiding the use of costly stochastic simula-
tions. The suitability of matrix analytic solution methods for LDQBDmodels has been
explained in the Methods section and is well known from numerous previous applications
[23–25, 27, 28]. In particular, for further details on the suitability and accuracy of the state
space truncation we refer to [24, 27, 36]. What indeed allows us to apply matrix-analytic meth-
ods is that we have managed to model the considered stochastic epidemics with immigration
and demographic effects by LDQBD processes, which is therefore a key contribution.

Clearly, we have to restrict the following presentation to selected parameters. We first study
for SI(S) the impact of varying immigration rates on the equilibrium distributions of the epide-
miological classes. Of course, we can also study varying contact rates, recovery rates, birth
rates, and death rates, but as immigration of susceptibles and infectives is one distinguishing
feature of our models we shall focus on the respective rates. Furthermore, we study for SIR(S)
the impact of the immunity loss rate on the respective equilibrium distributions. In all cases,
appropriate truncation points as explained before have been chosen where checking the sum of
all absolute values of πQ with the truncated generator matrix assures that indeed no significant
probability mass is assigned to the truncated portion of the state space. For the remaining states
with significant probability all joint equilibrium probabilities are computed, that is, the whole
equilibrium distribution. These computations are very efficient, only a few seconds per param-
eter setting are required.

Varying immigration rates in generalized stochastic SI(S) models
For numerical examples of the SI and SIS models we consider as a starting point the basic
parameter setting β0 = 30, λ0 = 5, λ1 = 5, γ1 = 5, μ0 = 4, μ1 = 15, which yields the basic reproduc-
tion number R0 ¼ 30

20
¼ 1:5. The parameters are chosen so that for a reasonable basic reproduc-

tion number the system/model dynamics in terms of transition rates (some of which in
addition to the above parameters also depend on the current numbers of individuals of certain
epidemiological classes) related to the demography and the epidemic, respectively, are of the
same order of magnitude and on the same time scale. Starting from this parameter setting,
equilibrium distributions are computed for different values of the immigration rates a0 and a1
of susceptibles and infectives.

From the joint equilibrium probabilities one easily gets marginal equilibrium probabilities
of the numbers of susceptibles and infectives, respectively, as well as equilibrium probabilities
of the total population size, and the proportion of infectives within the total population, that is
the ratio of the number of infectives to the total population size.

In order to keep the presentation of equilibrium distributions well-arranged and not become
too excessive we focus on the equilibrium distributions of the total population size and on the
proportion of infectives. These are depicted for the different parameter settings in Figs 1 and 2
where each figure contains the equilibrium distributions for four different values of the respec-
tive immigration rate that is varied. Expectations and standard deviations of the equilibrium
numbers of susceptibles, infectives and the population size are given in Tables 3 and 4.

Fig 1 shows the equilibrium distributions for the different values a0 = 10, a0 = 100, a0 = 200,
and a0 = 500 of the immigration rate of susceptibles, while the other parameters are fixed. As
can be seen, with increasing immigration rate of susceptibles the proportion of infectives
decreases and the equilibrium distribution becomes smoother and smoother (more regular).
Furthermore, both the number of susceptibles and infectives increase, thus, also the total popu-
lation size. Interpretations are as follows. Clearly, the immigration rate of susceptibles directly
impacts on the number of susceptibles. Since these of course can be infected, the number of
infectives increases, too. But the increase in the number of infectives is less strong than that of
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Fig 1. Equilibrium distributions of the total population size and the ratio of the number of infectives to
the total population size for parameter setting a1 = 50, β0 = 30, λ0 = 5, λ1 = 5, γ1 = 5, μ0 = 4, μ1 = 15 with
immigration rates of susceptibles a0 = 10, 100, 200, 500 (top to bottom).

doi:10.1371/journal.pone.0152144.g001
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Fig 2. Equilibrium distributions of the total population size and the ratio of the number of infectives to
the total population size for parameter setting a0 = 100, β0 = 30, λ0 = 5, λ1 = 5, γ1 = 5, μ0 = 4, μ1 = 15 with
immigration rates of infectives a1 = 10, 50, 100, 200 (top to bottom).

doi:10.1371/journal.pone.0152144.g002
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susceptibles such that the proportion of infectives within the total population decreases. The
equilibrium distribution of the proportion of infectives is rather irregular for small a0, as then
the total population size is rather small and for instance the ratio/proportion has a peak at one
half. For increasing immigration rate of susceptibles and accordingly larger total population
sizes this effect becomes weaker and weaker.

The equilibrium distributions for the values a1 = 10, a1 = 50, a1 = 100, and a1 = 200 of the
immigration rate of infectives with the other parameters kept fixed are depicted in Fig 2.
Here, we observe an increasing proportion of infectives and a slightly increasing total popula-
tion. This can be explained due to the facts that infectives die at a higher rate than suscepti-
bles and that the infection rate is β0si/(s + i). Therefore, with a small immigration rate of
infectives, the probability of very few infectives is quite large, only very few become infected.
In contrast, with higher immigration rate of infectives, also more members of the population
can become infected such that the proportion of infectives increases, while the total popula-
tion size increases only slightly because of the higher death rate of infectives.

Varying immunity loss rates in generalized stochastic SIR(S) models
Now, we turn to the study of SIR(S) models where we focus on varying immunity loss rates,
which is a distinguishing feature as compared to SI(S) models. Actually, we have also studied
varying immigration rates and observed similar effects as for SI(S) models, which are therefore
omitted here. We consider the different values γ2 = 0, γ2 = 5, γ2 = 10 and γ2 = 30 of the immu-
nity loss rates, while the other parameters are fixed as a0 = 100, a1 = 50, a2 = 0, β0 = 30, λ0 =
λ1 = λ2 = 5, μ0 = μ2 = 6, μ1 = 15, γ1 = 5. Hence, the basic reproduction number is R0 ¼ 30

20
¼ 1:5,

as before in the SI(S) models. Note that in general our model framework allows immigration of
removals, too, but here according to a2 = 0 we do not consider immigration of removals.

The expectations and standard deviations of the equilibrium numbers of all epidemiological
classes and the population size are given in Table 5. Fig 3 shows the equilibrium distributions
of the total population size and the proportion of infectives and Fig 4 those of the numbers of
susceptibles and removals. Here, in contrast to the SI(S) examples, we have added the latter

Table 3. Expectations and standard deviations of the equilibrium numbers of susceptibles, infectives and the population size for parameter setting
a1 = 50, β0 = 30, λ0 = 5, λ1 = 5, γ1 = 5, μ0 = 4, μ1 = 15 with immigration rates of susceptibles a0 = 10, 100, 200, 500.

a0 = 10 a0 = 100 a0 = 200 a0 = 500

Expect StdDev Expect StdDev Expect StdDev Expect StdDev

Susceptibles 2.577 2.299 12.547 5.988 23.675 8.387 57.004 13.067

Infectives 6.258 3.300 16.255 5.917 27.367 7.881 60.700 11.952

Population Size 8.834 4.037 28.801 8.147 51.043 11.060 117.704 16.944

doi:10.1371/journal.pone.0152144.t003

Table 4. Expectations and standard deviations of the equilibrium numbers of susceptibles, infectives and the population size for parameter setting
parameter setting a0 = 100, β0 = 30, λ0 = 5, λ1 = 5, γ1 = 5, μ0 = 4, μ1 = 15 with immigration rates of infectives a1 = 10, 50, 100, 200.

a1 = 10 a1 = 50 a1 = 100 a1 = 200

Expect StdDev Expect StdDev Expect StdDev Expect StdDev

Susceptibles 18.933 23.981 12.547 5.988 12.198 5.165 13.356 5.010

Infectives 12.726 7.798 16.255 5.917 21.220 6.294 31.336 7.315

Population Size 31.659 24.968 28.801 8.147 33.417 8.110 44.692 9.033

doi:10.1371/journal.pone.0152144.t004
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because of a striking effect that appears in the case of γ2 = 0 (corresponding to SIR rather than
to SIRS).

Let us start with the cases in which the immunity loss rate is γ2 > 0. Here, we observe that
with increasing immunity loss rate the numbers of susceptibles and removals as well as the
total population size decrease whereas the number of infectives even slightly increases and thus
the proportion of infectives increases. This effect is intuitively appealing and can be readily
explained. If the immunity loss rate grows removals become again susceptibles at a growing
rate. Therefore, the number of removals decreases. On the other hand, due to the form of the
infection rate the number of susceptibles does not increase but decrease because the effective
rate of infection grows such that the increasing immunity loss rate does not result in a larger
number of susceptibles but in a larger number of infectives. Finally, since infectives die at a
higher rate than susceptibles and removals, the overall population size decreases and due to an
increase in the absolute number of infectives the proportion of infectives increases even more.

Now, for the SIR model (corresponding to γ2 = 0) recognize that compared to the cases
where γ2 > 0, in particular the equilibrium distributions of the total population size and the
number of removals show that there is a relatively large probability mass for very few and even
zero population, which seems counterintuitive at a first glance. So, how can this be explained?

Consider the dynamics of the removals. If immunity cannot be lost then, since there is no
immigration of removals, the population of removals can only change by births, deaths, and
recovery from infection. If only births and deaths would be possible, then the population of
removals would be fully described by a linear birth-and-death process with state-dependent
birth rates λ2 r and state-dependent death rates μ2 r where r is the number of removals corre-
sponding to the state of the linear birth-and-death process. It is well known that for such a lin-
ear birth-and-death process with λ2 < μ2 the equilibrium distribution is concentrated on zero.
Thus, if recovery of infection is excluded then with probability one the equilibrium number of
removals is zero. However, as in SIR(S) the population of removals is also fed by recovered
infectives, the removals do not die out. Rather the recovery of infectives can be taken as a kind
of immigration of infectives to the population of removals where the immigration rate is linear
in the number of infectives which itself depends on the number of susceptibles and the infec-
tion rate.

In conjunction this explains the effect observed. The population of removals is described by
a mixture of a linear birth-and-death process with an additional immigration processes that is
independent of the number of removals. In effect, there is a peak for the probability of having
no removals. But recognize that this peak is smaller than the peaks for larger numbers of
removals in the cases where γ2 > 0. The mixture with being fed by recovered infectives results
in a very flat equilibrium distribution of the number of removals having a relatively wide range
of population values with significant equilibrium probability and quite large standard devia-
tion, or variance, respectively.

Table 5. Expectations and standard deviations of the equilibrium numbers of all epidemiological classes and the population size for parameter set-
ting a0 = 100, a1 = 50, a2 = 0, β0 = 30, λ0 = λ1 = λ2 = 5, μ0 = μ2 = 6, μ1 = 15, γ1 = 5 with immunity loss rates γ2 = 0, 5, 10, 30.

γ2 = 0 γ2 = 5 γ2 = 10 γ2 = 30

Expect StdDev Expect StdDev Expect StdDev Expect StdDev

Susceptibles 12.029 7.120 15.138 7.299 13.269 6.453 11.358 5.514

Infectives 7.888 4.560 12.110 5.335 12.837 5.317 13.431 5.265

Removals 13.858 8.715 9.957 4.659 5.808 3.139 2.163 1.662

Population Size 33.775 14.810 37.204 10.563 31.915 8.919 26.952 7.539

doi:10.1371/journal.pone.0152144.t005
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Fig 3. Equilibrium distributions of the total population size and the ratio of the number of infectives to
the total population size for parameter setting a0 = 100, a1 = 50, a2 = 0, β0 = 30, λ0 = λ1 = λ2 = 5, μ0 = μ2 =
6, μ1 = 15, γ1 = 5 with immunity loss rates γ2 = 0, 5, 10, 30 (top to bottom).

doi:10.1371/journal.pone.0152144.g003
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Fig 4. Equilibrium distributions of the number of susceptibles and the number of removals for
parameter setting a0 = 100, a1 = 50, a2 = 0, β0 = 30, λ0 = λ1 = λ2 = 5, μ0 = μ2 = 6, μ1 = 15, γ1 = 5 with
immunity loss rates γ2 = 0, 5, 10, 30 (top to bottom).

doi:10.1371/journal.pone.0152144.g004
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In a similar manner the shape of the equilibrium distribution of the number of susceptibles
can be explained. With γ2 = 0, there is no ‘cycle’ in the sense that individuals, once infected,
can never become again susceptibles. Either they die as infective or become removals and even-
tually die as removal. Therefore, the number of susceptibles and thus the overall population
size tends to be lower than for γ2 = 5.

Discussion
Stochastic epidemics with immigration and demographic effects have been introduced where
the corresponding stochastic processes (multi-dimensional continuous-time Markov chains)
are non-absorbing and possess equilibrium probability distributions. Births, deaths, immigra-
tion, and emigration of individuals from all involved epidemiological classes are possible. In
particular, the epidemic never dies out forever, that is, even when temporarily no infected indi-
viduals are present in the population, due to the possibility of immigration of new infectives
from outside the epidemic can emerge again. This is reflected by constant population-size-
independent immigration rates as part of combined immigration/birth rates.

We have shown how the multi-dimensional state spaces can be arranged such that with an
appropriate numbering of states the models are level-dependent quasi-birth-and-death pro-
cesses, that is, continuous-time Markov chains with block tridiagonal generator matrices. The
model representations as LDQBD processes are particularly useful for efficient computation of
equilibrium distributions using matrix-analytic methods.

Numerical examples for various parameter settings have been provided in order to demon-
strate that this approach is valuable for gaining insights into a wide range of models with spe-
cific parameter settings. Since we have given general model formulations this can be taken as a
general framework for studying diverse epidemics by choosing concrete parameters for the
concrete epidemic under investigation.

Considering the type of non-absorbing models presented in this paper is very important,
because these models realistically reflect that in many practical cases open sub-communities
with immigration of individuals of all relevant epidemiological classes rather than closed
global communities need to be studied. The LDQBDmodeling approach in combination with
matrix-analytic solution methods provides a general framework for such studies.

Further research is concerned with including even more features into the type of non-
absorbing models, thereby broadening the class of models that yield to analysis by matrix-ana-
lytic methods. For instance, incorporating latent periods seems to be straightforward and yields
models of SEIR(S) type. It is also possible to generalize the type of state dependence of the rates
to any reasonable function of the system state. This does not destroy the block tridiagonality of
the generator matrix and thus the LDQBD process structure is preserved. Also aging effects
might be incorporated.

Another topic of further research is to consider alternative level definitions. In the present
paper we defined one component of the state (the number of susceptibles) as the level number.
Essentially due to this choice, in addition to the usual truncation of the state space at some high
level number we need to truncate also within the blocks at sufficiently high numbers of infec-
tives and removals, respectively. This does not seriously derogate the computational results,
because no significant probability mass is truncated, but it might be even completely avoided.
Because there is no formal requirement to choose one single component as the level, one might
define the level via combining information from multiple components. More formally, the
level might be defined by a function of the whole state rather than one component, for instance
as the maximum or the sum of the state components. Very recently, similar ideas have been
successfully applied in the context of stochastic chemical kinetics [28] and it is likely that in
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this manner the studies of stochastic epidemics by LDQBD processes can be further improved.
Clearly, it is interesting to study how such alternative level definitions affect the resulting
LDQBD structure as well as the computational effort.
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