
Modeling and Optimizing the Evacuation of
Hospitals based on the RCPSP with

Resource Transfers

Doctoral Thesis
(Dissertation)

to be awarded the degree
Doctor rerum naturalium (Dr. rer. nat.)

submitted by

Jens Poppenborg
from Nordhorn, Germany

approved by the Faculty of
Mathematics/Computer Science and Mechanical Engineering,

Clausthal University of Technology,

Date of oral examination

11th March 2014

Bibliografische Information der Deutschen Nationalbibliothek

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über

http://dnb.dnb.de abrufbar.

The Deutsche Nationalbibliothek lists this publication in the Deutsche

Nationalbibliografie; detailed bibliographic data are available in the Internet at

http://dnb.dnb.de.

D 104

PAPIERFLIEGER VERLAG

ISBN 978-3-86948-336-8

© GmbH, Clausthal-Zellerfeld, 2014

Telemannstraße 1 . 38678 Clausthal-Zellerfeld

www.papierflieger.eu

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages

ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem

Wege (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2014

Chairperson of the Board of Examiners:
Prof. Dr. Jürgen Dix,
Clausthal University of Technology

Chief Reviewer:
Prof. Dr. Sigrid Knust,
University of Osnabrück

Reviewer:
Prof. Dr. Jürgen Zimmermann,
Clausthal University of Technology

Contents

1 Introduction 1

2 Hospital Evacuations 5
2.1 Evacuation Planning . 5

2.1.1 Network Flow Models 6
2.1.2 Other Approaches . 8

2.2 The Problem of Hospital Evacuations 10
2.2.1 Literature Review . 10
2.2.2 Problem Description 13

3 Resource-Constrained Project Scheduling 17
3.1 The Resource-Constrained Project Scheduling Problem 17

3.1.1 Activity-On-Node Network 19
3.1.2 Critical Path . 21
3.1.3 Mixed-Integer Linear Programming Formulations . . . 23
3.1.4 Multi-Mode RCPSP . 28
3.1.5 Setup Times . 29
3.1.6 Further Extensions . 36

3.2 Solution Approaches . 37
3.2.1 Time Complexity . 38
3.2.2 Classification of Schedules 38
3.2.3 Heuristic Approaches 40
3.2.4 Other Approaches . 47

4 A Solution Approach for the HEP based on Priority Rules 49
4.1 Model . 49

4.1.1 Problem Description 50
4.1.2 Mixed-Integer Linear Programming Formulation 62
4.1.3 Further Considerations 66

iii

Contents

4.2 A Tabu Search Algorithm . 68
4.2.1 Parallel Schedule Generation Scheme 72
4.2.2 Serial Schedule Generation Scheme 91
4.2.3 Shortcomings of this Solution Approach 97

5 Resource-Constrained Project Scheduling with Resource Transfers 107
5.1 Project Scheduling with Resource Transfers in Literature . . 107

5.1.1 Classification of Resource Transfers 108
5.1.2 RCPSP with Generalized Resource Transfers 111
5.1.3 Mixed-Integer Linear Programming Formulation 118

5.2 RCPSP with First- and Second-Tier Resource Transfers . . . 122
5.2.1 Problem Description 123
5.2.2 Mixed-Integer Linear Programming Formulation 132

5.3 Comparison of the Models . 139

6 A Solution Approach for the RCPSP with Resource Transfers 145
6.1 Solution Representation . 146

6.1.1 Classical RCPSP . 146
6.1.2 RCPSP with First-Tier Resource Transfers 155
6.1.3 RCPSP with First- and Second-Tier Resource Transfers 161

6.2 Neighborhoods . 172
6.2.1 Previous Work . 173
6.2.2 Classical RCPSP . 175
6.2.3 RCPSP with First-Tier Resource Transfers 197
6.2.4 RCPSP with First- and Second-Tier Resource Transfers 201

6.3 A Tabu Search Algorithm . 226

7 A Solution Approach for the HEP based on Resource Flows 231
7.1 Evacuation Subproblem . 233
7.2 Routing Subproblem . 240

7.2.1 Solution Representation 241
7.2.2 Neighborhoods . 243
7.2.3 A Tabu Search Algorithm 249

8 Computational Results 255
8.1 Results for the RCPSP with and without Transfer Times . . 255

8.1.1 Classical RCPSP . 256
8.1.2 RCPSP with First-Tier Resource Transfers 265
8.1.3 RCPSP with First- and Second-Tier Resource Transfers 268

8.2 Results for the Problem of Hospital Evacuations 275

iv

Contents

8.2.1 Generation of Test Data 275
8.2.2 Computational Results 281

9 Conclusions 291

A Notation 295
A.1 General Notation . 295
A.2 Classical RCPSP . 295
A.3 RCPSP with First- and Second-Tier Resource Transfers . . . 296
A.4 Problem of Hospital Evacuations 296

Acknowledgements 299

Bibliography 301

v

1 Introduction

The partial or complete evacuation of a hospital or another healthcare fa-
cility might become necessary in various situations. These include, for ex-
ample, internal dangers such as a fire or a hazardous materials spill, as well
as external dangers such as a flood or a bomb disposal. In particular the
latter is frequently the case in Germany if an aircraft bomb from World
War II has to be disposed, e.g. in April 2013 when a hospital as well as a
nursing home had to be evacuated due to a bomb disposal in Duisburg or
in November 2013 when a hospital as well as two nursing homes had to be
evacuated due to a bomb disposal in Dortmund. These scenarios generally
involve a lot of pre-evacuation planning both inside as well as outside the
healthcare facilities because assistants, transport vehicles, aids, as well as
sheltering facilities for the patients have to be organized.

In recent years, a multitude of papers have been published that deal with var-
ious aspects of evacuation planning in different situations (cf., for example,
Hamacher and Tjandra (2002) and Bretschneider (2013)). These evacuation
problems range from the evacuation of a single building to the evacuation of
an entire region. At the same time, the evacuation of a hospital or another
healthcare facility has received only a limited amount of attention despite
the additional challenges encountered when evacuating these facilities. In
particular, the patients inside a healthcare facility may often not be able to
help themselves, i.e. they require assistance in order to reach a safety zone.

Some papers have been published, however, that deal with different aspects
of evacuation planning for healthcare facilities. Here, the majority of these
papers deal with the problem of optimizing the transportation of patients
from staging areas outside the healthcare facilities to sheltering facilities.
In contrast to this, the problem of optimizing the evacuation of the pa-
tients from their sick rooms inside the hospital to these staging areas (or,
alternatively, to safety zones) has been considered in only a few papers.
For example, Wolf (2001) and Golmohammadi and Shimshak (2011) have
introduced different approaches to estimate the time required to evacuate
patients from their sick rooms inside the hospital to safety zones.

1

1 Introduction

In this thesis, we deal with the problem of modeling and optimizing the
evacuation of patients from their sick rooms to staging areas (or safety zones)
inside or outside the hospital. Here, as Sternberg et al. (2004) and Lipp et al.
(1998) remark, many hospitals seldom or never stage evacuation exercises
such that no figures may be available regarding the time required to perform
a partial or even a complete evacuation of a hospital. For this reason, the
solution approaches for the problem of hospital evacuations considered in
this thesis may offer results that can then be used, for example, to estimate
the time required to evacuate patients from the hospital as well as to better
plan the further evacuation of the patients to sheltering facilities.

In the following, we assume that only a limited amount of assistants as well
as a limited amount of aids are available for the evacuation of the patients.
Furthermore, the infrastructure of the hospital is taken into account in or-
der to estimate the time required to evacuate the patients by the available
assistants and aids. For example, only a limited number of patients can
be evacuated through the same corridors or in the same elevator at any
time. While additional requirements or conditions may apply for different
healthcare facilities (e.g. based on public building emergency regulations in
different regions), these base requirements remain the same.

We model the problem of hospital evacuations considered in this thesis as
a multi-mode resource-constrained project scheduling problem (multi-mode
RCPSP or MRCPSP). For this, the evacuation of a single patient is regarded
as a job that requires certain amounts of scarce resources (i.e. assistants,
aids, as well as a sufficient amount of space along the evacuation route).
These jobs can be processed in one out of several modes. For example, the
same patient may either be evacuated by one assistant and one wheelchair or
by two assistants and one stretcher. Also, different evacuation routes might
be available for the evacuation of a patient. Finally, resource transfers as
well as blockings are integrated into the model. Here, transfer times have to
be taken into account whenever an assistant or an aid has to be transferred
to the initial location of a patient (e.g. the sick room of the patient) before
the patient can actually be evacuated. Furthermore, the transfer of an aid
between two locations within the hospital has to be supported by a certain
number of assistants. On the other hand, blockings can be regarded as delays
during the evacuation of the patients. These delays occur, for example, if
multiple patients have to wait in front of an elevator.

To the best of our knowledge, both of these extensions have received only
limited attention in the context of the RCPSP. In particular, while Krüger

2

(2009) as well as Krüger and Scholl (2010) have presented a model for the
RCPSP with resource transfers where some resources are required to support
the transfer of other resources, no practical approaches to solve this problem
have been introduced. Similarly, blocking constraints in the context of the
RCPSP have only been considered in some works dealing with practical
applications, e.g. in the master’s thesis by Kröger (2013) in which blockings
occur in a rail-rail transshipment problem. For this reason, we will especially
consider the integration of these two extensions into the RCPSP.

In order to solve the problem of hospital evacuations considered in this
thesis, we present two distinct solution approaches: one solution approach
based on priority rules as well as one solution approach based on resource
flows. For the latter approach, we first focus on the resource-constrained
project scheduling problem with resource transfers and develop a solution
approach based on resource flows for this problem. To do this, we describe
a solution representation based on resource flows that incorporates resource
transfers of resources that require the support of other resources and define
modifications based on these resource flows. Furthermore, we report the-
oretical results related to both, the solution representation as well as the
neighborhoods based on these modifications. Finally, in order to develop a
solution approach for the problem of hospital evacuations based on resource
flows, we extend this solution representation as well as the neighborhoods
for the RCPSP with resource transfers to incorporate blockings.

The remainder of this thesis is divided as follows. First of all, in Chapter 2,
we describe the problem of hospital evacuations in more detail. In partic-
ular, we give a short overview of literature concerned with typical solution
approaches used in general evacuation problems (e.g. for the evacuation of
a building). Furthermore, we survey literature related to the problem of
evacuation planning for healthcare facilities. In this context, we then de-
scribe the problem tackled in this thesis and discuss why we have opted to
model this problem as a multi-mode RCPSP instead of using a more typical
approach used in evacuation problems.

Afterward, we give a formal definition of the classical resource-constrained
project scheduling problem in Chapter 3 and describe different extensions of
the problem. In particular, we introduce the multi-mode variant as well as
the RCPSP with setup times. Also, in this chapter, different exact as well as
heuristic solution approaches for the classical RCPSP are discussed. Next,
in Chapter 4, we model the problem of hospital evacuations as a multi-mode
resource-constrained project scheduling problem with resource transfers and

3

1 Introduction

blockings and present a mixed-integer linear programming formulation of
the problem. Furthermore, a first solution approach for the problem is in-
troduced. In this solution approach, a tabu search algorithm modifies the
modes of the jobs while actual schedules are generated by schedule genera-
tion schemes based on priority rules.

Due to some shortcomings of this first solution approach related to resource
transfers, we consider the resource-constrained project scheduling problem
with resource transfers in more detail in Chapter 5. In particular, we deal
with the problem of resource transfers that require other resources in or-
der to support the transfer. Apart from introducing a model as well as a
mixed-integer linear programming formulation for this problem, we discuss
differences between our model as well as the model presented by Krüger
(2009) and Krüger and Scholl (2010). Then, in Chapter 6, we present a
solution approach based on resource flows for this problem. For this, we
describe a resource flow representation that incorporates resource transfers
of resources that require the support of other resources. Additionally, we
define modifications based on these resource flows and report theoretical
results related to both, the solution representation as well as the neighbor-
hoods. At the end of this chapter, we introduce a tabu search algorithm for
this problem in which solutions are represented as resource flows.

Based on the results from the previous chapter, we describe a second solution
approach for the problem of hospital evacuations based on resource flows in
Chapter 7. For this, we extend the resource flow representation as well as
the neighborhoods to incorporate blockings. The problem is then solved by a
two-stage solution approach such that solutions for the first stage represent
the order in which the patients are evacuated by the available assistants
and aids while solutions for the second stage represent complete solutions
including the actual evacuation of the patients through the hospital.

In Chapter 8, we report computational results for the different solution ap-
proaches presented in this thesis. This includes results for the tabu search
algorithm that has been introduced for the RCPSP with resource transfers
as well as the two solution approaches for the problem of hospital evacu-
ations. As far as such results are available, we have compared the results
obtained by our algorithms to those reported in literature. For the problem
of hospital evacuations, we compare the results obtained by both solution
approaches with each other. Finally, in Chapter 9, we close this thesis with
some concluding remarks.

4

2 Hospital Evacuations

Evacuation planning as a scientific research topic has received an increasing
amount of attention since one of the first papers by Chalmet et al. (1982) has
been published in the early 1980s dealing with the evacuation of a building.
While a lot of research focuses on the evacuation of buildings, cities, or entire
regions, however, the evacuation of healthcare facilities such as hospitals
has received significantly less attention despite the additional difficulties
encountered when evacuating these facilities. Most importantly, the patients
within healthcare facilities often can not help themselves in order to reach
a safety zone but rely on the help of other people.

In the following, a general overview of literature dealing with evacuation
planning is given in Section 2.1. The most common evacuation planning
approaches are based on either network flow problems or simulation and
differ in how they model the problem. While network flow problems are
often macroscopic models that are used to optimize a given objective but
neglect the individual behavior of the affected people, simulation approaches
are often microscopic models that focus on human behavior (e.g. panic).

Afterward, in Section 2.2, the problem of hospital evacuations is described,
which is abbreviated as HEP (hospital evacuation problem) in the remainder
of this thesis. Here, apart from defining the problem tackled in this thesis,
this section also gives an overview of existing literature dealing with the
problem of evacuation planning for healthcare facilities.

2.1 Evacuation Planning

The field of evacuation planning deals with a broad range of situations where
evacuations might be necessary, ranging from building evacuations (e.g. due
to fire) to evacuations of complete cities and regions (e.g. due to natural
disasters). Generally, evacuations can be classified as either precautionary
or life-saving evacuations (cf. Hamacher and Tjandra (2002)). On the one
hand, for precautionary evacuations, the hazard is known in advance and

5

2 Hospital Evacuations

the evacuation can be planned in detail. In particular, it is also possible to
estimate the evacuation time as well as the risk to the people in the affected
area. On the other hand, life-saving evacuations are usually necessary if
hazards occur with insufficient warning and the affected people have to be
evacuated without pre-emergency planning. In this case, the problems that
arise are more direct (e.g. the rescue of injured people, clearing routes for
the evacuation, fire-fighting, etc.) and often have to be dealt with in real
time.

An important part of evacuation planning is to estimate the time required
to evacuate all people from an area (e.g. a building, city, or region) while
ensuring the safety of the people at the same time. Here, the time affected
people require in order to move to safe regions is referred to as egress time
and can be regarded as a lower bound on the actual evacuation time, which
also consists of behavioral and organizational factors such as recognizing a
danger and then deciding on a course of action (cf. Hamacher and Tjandra
(2002)). Depending on the type of the hazard as well as the area that has
to be evacuated, different aspects have to be taken into consideration. In
the case of a chemical accident, for example, it might be more safe for the
affected people to be sheltered in-place (e.g. inside homes, schools, etc.)
instead of being evacuated (cf. Müller (1998)).

In the following, an overview of different approaches to evacuation planning
is given. Here, Section 2.1.1 deals with (dynamic) network flow models that
have been used for evacuation planning while Section 2.1.2 deals with other
approaches, in particular those based on simulation.

2.1.1 Network Flow Models

Some of the earliest approaches for evacuation planning are based on network
flow models where the evacuation of people is modeled by flows from source
nodes (i.e. nodes where the people are initially located) to sink nodes (i.e.
nodes representing safe regions) in a network. In these models, people are
generally treated as homogeneous groups without individual behavior.

As described by Hoppe and Tardos (1994), dynamic network flow models are
often used for evacuation planning. For these models, a network G = (N,A)
is given which consists of a set N of nodes as well as a set A of directed
arcs between these nodes. Here, the set of nodes contains source nodes (i.e.
nodes with a supply > 0), sink nodes (i.e. nodes with a demand < 0), as

6

2.1 Evacuation Planning

well as transshipment nodes (i.e. nodes with neither supply nor demand).
Furthermore, with each directed arc (i, j) ∈ A between two nodes i ∈ N
and j ∈ N , a transit time tij denoting the time required to move from node
i to node j as well as a capacity cij denoting the amount of flow that can
traverse the arc at any time t are associated. It should be noted that these
parameters are not necessarily constant for all times t. Instead, transit times
or capacity constraints might change over time, or some nodes might not
be available at all times (e.g. due to smoke or fire). A feasible flow for this
problem satisfies the capacity constraints (i.e. the flow from node i ∈ N
i ∈ N to node j ∈ N may not exceed the capacity cij of the arc (i, j) ∈ A
at any time t) as well as the transit times (i.e. a flow from node i ∈ N to
node j ∈ N that leaves node i at time t arrives at node j at time t+ tij).

One of the earliest dynamic network flow problems has been introduced
by Ford and Fulkerson (1958). Here, the network consists of exactly one
source and one sink node, as well as an arbitrary number of transshipment
nodes. Based on such a network, Ford and Fulkerson (1958) compute the
maximum flow from the source to the sink node in a specified time horizon T .
This problem, referred to as the maximum dynamic flow problem, has been
extended by Gale (1959) by additionally requiring the cumulative amount of
flow to reach the sink node in each time period to be maximal. Gale (1959)
refers to this extended problem as the universal maximum flow problem
or the earliest arrival flow problem. In the context of evacuation planning,
these problems can be used to estimate the maximum number of people that
can be evacuated from a danger zone (source node) to a safety zone (sink
node) within a given time horizon T if the actual number of affected people
is not known.

A related problem to the maximum dynamic flow problem is the quickest
flow problem that has been introduced by Burkard et al. (1993). In this
problem, a specific supply v is assigned to the source node. The problem
then consists of calculating the shortest time in which the amount v can
flow from the source node to the sink node. An extension of the quickest
flow problem with multiple sources and multiple sinks is, for example, dis-
cussed by Hoppe and Tardos (1994, 1995) who also present a polynomial
time algorithm for this problem. Hoppe and Tardos (1994) also refer to the
quickest flow problem with multiple sources and a single sink as the evacua-
tion problem that can be used to model the evacuation of a building. Here,
people are located in different rooms (i.e. multiple sources) and have to be
evacuated from the building (i.e. the outside is modeled as a single sink).

7

2 Hospital Evacuations

As already noted above, some attributes of the network might change over
time. For example, transit times between two adjacent nodes, arc capacities,
or node capacities might change as time progresses, e.g. due to spreading
smoke or fire. Here, such time-dependent attributes in the context of evac-
uation planning are discussed by Tjandra (2003) for the maximum dynamic
flow problem, the universal maximum flow problem, as well as the quickest
flow problem. Another variant of the problem are flow-dependent transit
times. For example, Köhler et al. (2002) consider the problem of flow-
dependent transit times where the transit time on an arc (i, j) ∈ A depends
on the flow on the arc at a specific time point t.

Dynamic network flow models have, for example, been applied to evacuation
planning for buildings by Chalmet et al. (1982) as well as Choi et al. (1988).
Here, Chalmet et al. (1982) use a dynamic network flow model as described
above in order to minimize the average time required for a person to leave
the building while Choi et al. (1988) extend this problem by flow-dependent
arc capacities, i.e. the capacity of an arc depends on the number of people on
that arc at a given time point t. In a more recent approach, Chen and Miller-
Hooks (2008) incorporate shared information into the building evacuation
problem, i.e. information and instructions that are provided to the people
at specific locations and at specific times during the evacuation.

Surveys dealing with various dynamic network flow problems have, for ex-
ample, been published by Hamacher and Tjandra (2002) as well as Kotnyek
(2003). Additionally, the PhD thesis by Bretschneider (2013) offers a more
recent overview of flow-based optimization models for evacuation planning.

2.1.2 Other Approaches

While the dynamic network flow models described above are macroscopic
models treating people as homogenous groups and thus neglecting individual
behavior, other approaches to evacuation planning based on simulation are
often microscopic models that model each affected person as a separate flow
object. In these simulations, people make individual choices regarding the
route they will take in each node (decision point) until they reach their
destination (safety zone) as displayed in Figure 2.1.

For example, Løvås (1998) uses different probabilistic rules in order to model
the wayfinding behavior of people, i.e. at decision points (nodes) they have
to choose between different routes to reach their destination. These rules

8

2.1 Evacuation Planning

Initial response

Route choice

Move to next node

Final

destination?

End

Yes

No

Figure 2.1: The evacuation process for one person (cf. Løvås (1998)). Start-
ing with an initial response (e.g. an initially selected route),
people make individual choices regarding the route they follow
in each decision point (e.g. in each room) until they reach their
destination (e.g. the safety zone). These choices can, for exam-
ple, depend on a perceived danger.

have then been tested in a simulation framework and include, amongst oth-
ers, a simple random walk rule as well as rules where an underlying optimal
evacuation route is given (e.g. based on shortest paths) and people might
stray from this route, for example if they are more familiar with other routes.
More recently, Pan et al. (2007) introduced a multi-agent simulation frame-
work for emergency evacuations where, on a microscopic level, people are
modeled as agents that make individual decisions while, at a macroscopic
level, the framework also takes into account interactions of individual agents
as groups.

Another simulation approach is based on cellular automatons. For example,
Kirchner and Schadschneider (2002) use a cellular automaton model for
pedestrian dynamics in order to simulate the evacuation of a large room.
Here, they estimate the evacuation times for different parameters relating

9

2 Hospital Evacuations

to the behavior of the affected people, e.g. in case of panic. Similarly, Zheng
et al. (2010) describe a simulation based on a cellular automaton that is used
to evaluate the effect a partitioning wall has on jamming (i.e. the blocking
of an exit) during the evacuation of a square.

Apart from these approaches, many other models have been introduced for
the simulation of evacuation processes, including lattice gas models, social
force models, and fluid-dynamic models. A recent overview of these as well
as other models is, for example, given by Zheng et al. (2009).

2.2 The Problem of Hospital Evacuations

While the previous section gave a general overview of evacuation planning
with a focus on various macroscopic and microscopic modeling approaches
that are often used for evacuation planning of buildings or areas, this sec-
tion deals with the problem of hospital evacuations. Here, an overview of
existing literature on the topic of hospital evacuations, which has received
an increasing amount of attention in the last few years, is given in Section
2.2.1. Afterward, the problem of hospital evacuations tackled in this thesis is
described in Section 2.2.2. This includes a definition of the scenario and the
resulting evacuation problem, as well as a description of the various details
that are included in the model proposed for this problem.

2.2.1 Literature Review

As stated above, this section deals with evacuation planning for healthcare
facilities such as hospitals or nursing homes. A recent survey regarding this
issue has been published by Childers and Taaffe (2010). In this survey,
they state that the problem of evacuation planning for healthcare facili-
ties has received significantly less attention than other evacuation scenarios
and highlight various research opportunities to help improve this situation.
These include, for example, estimating the time required for the evacuation,
as well as planning the transport of patients both inside as well as outside
the healthcare facility.

First of all, as Childers and Taaffe (2010) point out, it is important to note
that the planning of an evacuation is strongly influenced by the nature of the
emergency. On the one hand, some threats such as floods are known in ad-
vance and allow the affected facilities to prepare (i.e. plan) their emergency

10

2.2 The Problem of Hospital Evacuations

response (e.g. an evacuation of the patients). Depending on the available
time window, detailed plans regarding the transport of the patients as well
as the required resources can be made. On the other hand, threats such as
fires occur without prior notice and do not allow for additional evacuation
planning. In this case, the response of the affected facility primarily depends
on the preparedness of its staff, e.g. based on an evacuation plan that details
how such emergencies should be handled.

An evaluation of 257 reported hospital evacuations (these include full as
well as partial evacuations) in the United States between 1971 and 1999 by
Sternberg et al. (2004) revealed that the majority of these evacuations were
caused by fire, while natural disasters caused the most severe problems due
to the large area affected by these disasters. In particular, Sternberg et al.
(2004) note that the preparedness of hospitals is often insufficient due to
a lack of exercises as well as a disregard of evacuation plans in the case of
an actual emergency. A similar study of 522 hospitals in Germany by Lipp
et al. (1998) showed that only 83.5% of these hospitals had any emergency
plan and 51.2% of these hospitals have never staged an emergency exercise.
Compared to this, 14.5% of these hospitals already had to activate their
emergency plans.

The majority of papers dealing with evacuation planning for healthcare facil-
ities focus on decision making procedures as well as emergency preparedness
training. For example, an emergency management system that can be used
for decision making in the case of a hospital evacuation is the Hospital In-
cident Command System (HICS) introduced by the California Emergency
Medical Services Authority. Similarly, papers dealing with the decision mak-
ing process with a focus on the situation in Germany have been published by
Gretenkort and Harke (2001) as well as Urban et al. (2006). Furthermore,
a number of papers deal with experiences from past evacuations. For exam-
ple, Gray and Hebert (2007) describe the evacuation of multiple hospitals
in New Orleans due to the Hurricane Katrina in August 2005, while Katter
et al. (2008) describe the evacuation of a hospital in Germany after a bomb
from World War II was discovered in the vicinity of the hospital.

Finally, the amount of papers dealing with evacuation planning for health-
care facilities using optimization or simulation techniques as described in
Section 2.1 is very limited. Here, first of all, Taaffe et al. (2005) give an
overview of issues and modeling approaches regarding the problem of evacu-
ation planning for healthcare facilities. They point out that the nature of the
threat influences the risks to patients and staff, as well as the availability of

11

2 Hospital Evacuations

resources. For example, an external disaster such as a flood might also bind
some of the available transportation resources that are no longer available for
the evacuation of the healthcare facility. Finally, Taaffe et al. (2005) describe
project scheduling models, mathematical programming, and simulation as
possible modeling approaches for subproblems in hospital evacuations.

A simulation approach used to estimate the time required to evacuate all
patients from one hospital to sheltering facilities (e.g. other hospitals) is
described by Taaffe et al. (2006). This model focuses on the transport of the
patients from the affected hospital to sheltering facilities and incorporates
a limited number of transporting vehicles as well as support staff for the
transport. Additionally, only a limited amount of space in the staging area
(i.e. the area where the patients enter the transporting vehicles) as well as a
limited number of beds in the sheltering facilities might be available. In this
approach, the transport of the patients within the hospital is modeled as a
stochastic delay. An extension of this approach is described by Tayfur and
Taaffe (2007) in which the influence of traffic on the transporting vehicles
is added to the model. An integer linear programming formulation for this
problem is described by Tayfur and Taaffe (2009). Similarly, Bish et al.
(2011) introduce an integer linear program for the problem of transporting
patients from a hospital to other receiving hospitals while minimizing the
risk to the patients.

Next, a prediction model used to estimate the time required to evacuate
all patients from one or multiple floors of a hospital is introduced by Gol-
mohammadi and Shimshak (2011). Here, the time required to evacuate all
patients from their initial locations within the hospital to a safe location
inside or outside the hospital is calculated while staff members that are
available to aid in the evacuation as well as elevators are regarded as bot-
tleneck resources. A simulation approach for estimating the time required
to evacuate patients during an internal danger (e.g. a fire) is presented
by Wolf (2001). In this approach, the section of the hospital that has to
be evacuated is modeled as a network and assistants as well as aids (e.g.
stretchers, wheelchairs, etc.) are preassigned to evacuate specific patients.
In this model, a particular emphasis is put on representing real-world pa-
rameters such as the floor plan of the building as well as evacuation times
of the patients using various aids.

Finally, while not directly connected to hospital evacuations, Hanne et al.
(2009) as well as Beaudry et al. (2010) tackle the problem of patient trans-
portation within large hospitals. In this problem, requests to transport

12

2.2 The Problem of Hospital Evacuations

patients between different locations within a hospital arrive in real-time and
have to be inserted into current vehicle routes, where a vehicle can, for ex-
ample, be a wheelchair or a stretcher. This problem has been modeled as a
dial-a-ride problem and solved using a heuristic algorithm by both, Hanne
et al. (2009) as well as Beaudry et al. (2010).

2.2.2 Problem Description

In this section, the problem of hospital evacuations as it is tackled in this
thesis is defined. Here, as already noted by Childers and Taaffe (2010), a
threat that might lead to an evacuation can either be predictable or un-
predictable. On the one hand, if a threat is predictable (i.e. if the threat
is known in advance), it is possible to plan the evacuation in more or less
detail. Floods, hurricanes (primarily in the US), or - as is frequently the
case in Germany - the disposal of a bomb from World War II, are examples
for predictable threats that might make it necessary to evacuate a hospital.
Often in these cases, the entire hospital has to be evacuated and patients
have to be transported to sheltering facilities, e.g. other hospitals. On the
other hand, if a threat is unpredictable (i.e. if the threat occurs without
prior notice), the evacuation can not be planned in advance. In this case,
real-time decision making based on more general evacuation plans is used
to evacuate the patients. Unpredictable threats include, for example, a fire
or a hazardous materials spill within the hospital, or a bomb threat.

Furthermore, the situation inside the hospital can either be described as
static or dynamic. Here, external (and often predictable) threats such as
a flood or a bomb disposal generally do not change the conditions inside
the hospital during the evacuation, i.e. they can be classified as static sce-
narios. For example, the capacity of the corridors does not change during
the evacuation and it is less likely that a panic will occur during a planned
evacuation. On the other hand, internal (and often unpredictable) threats
such as a fire or a hazardous materials spill may change the conditions under
which patients are evacuated from the hospital, i.e. they can be classified as
dynamic scenarios. For example, whole corridors might become impassable
due to a spreading fire or smoke and it is more likely that people will start
to panic due to an approaching threat.

This thesis focuses on evacuation planning for hospitals under predictable
and static conditions. In contrast to unpredictable and dynamic situations,
these conditions make it possible to deterministically plan the evacuation

13

2 Hospital Evacuations

because all required data can be collected prior to the evacuation (e.g. the
number of patients that have to be evacuated, available staff and aids, etc.)
and the general conditions under which patients have to be evacuated from
the hospital remain the same during the evacuation. Also, in such a situa-
tion, it might be possible to close the hospital to visitors on the day of the
evacuation (i.e. only the patients have to be evacuated) and some patients
that are due to be discharged soon might be discharged early. In Germany,
such a situation might occur if an unexploded bomb from World War II
has to be disposed and the area surrounding the bomb has to be evacuated.
In this case, if a hospital or another healthcare facility such as a nursing
home is affected, the patients have to be evacuated from the facility and
transported to sheltering facilities outside the affected area.

The evacuation of a patient in this scenario can be broken down into two
subproblems: the transport of the patient from a location within the hos-
pital to a staging area inside or outside the hospital, as well as the further
transport of the patient from the staging area to the sheltering facility us-
ing transportation vehicles. Here, as described above, the assignment of
patients to transportation vehicles for the evacuation of the patients from
a staging area to sheltering facilities is, for example, tackled by Tayfur and
Taaffe (2007, 2009). This thesis, on the other hand, focuses on the transport
of the patients within the hospitals from their initial locations (e.g. their
sickrooms) to one or multiple staging areas or safety zones.

Unlike the majority of other evacuation scenarios described above where
people can move towards the safety zone on their own, the patients in this
scenario rely on the help of assistants (e.g. hospital staff, firemen, etc.)
as well as aids (e.g. stretchers, wheelchairs, hospital beds, etc.) for the
transport. Additionally, depending on the severeness of the disease, the
patients have to be evacuated using different resources. For example, some
patients can walk on their own or with the help of one assistant, while other
patients can only be transported in a wheelchair or on a stretcher. Finally,
intensive care patients can maybe only be transported in hospital beds and
require constant supervision by a doctor. In the model proposed for this
problem, both, assistants as well as aids, are regarded as scarce resources
that are required for the evacuation of the patients.

Apart from these two types of resources, the infrastructure of the hospital
is regarded as a third type of resource. Here, the infrastructure is divided
into building sections (e.g. sickrooms, corridors, stairs, elevators, etc.) with
specific capacities corresponding to the space available for the transport

14

2.2 The Problem of Hospital Evacuations

of patients through these sections as well as possibly other characteristics.
Then, starting from the initial location of a patient, the patient has to be
evacuated through a series of building sections until he reaches a safety
zone. Similar to the resources introduced above, multiple alternatives might
be available in order to evacuate a patient from his initial location to a safety
zone, for example if a patient can be transported to one of several safety
zones, or if various routes are available to one safety zone. Additionally, the
type of aids used for the evacuation of a patient might also influence the
evacuation routes available for the evacuation of the patient.

Now, depending on the resources selected for the evacuation of a patient
(e.g. a wheelchair and one assistant or a stretcher and two assistants) as
well as on the type of building section the patient is evacuated through
(e.g. a corridor or a stair), the patient can be transported with a specific
speed (cf. Wolf (2001)). For example, if the patient is evacuated through a
building section representing a corridor, the time required to evacuate the
patient through this section depends on the speed of the aids and assistants
used for the evacuation as well as on the length of the building section.
Other types of building sections (e.g. stairs and elevators) might impose
additional constraints on how quickly patients can be evacuated through
them. Depending on the number of patients evacuated through the same
building sections simultaneously, a congestion of these sections can occur.
In this case, all patients evacuated through these building sections at the
time of the congestion can only be evacuated with a reduced speed.

Finally, assistants and aids that have been used to evacuate one patient
to a safety zone first have to be transferred to the location of the next
patient they have to evacuate. Here, depending on the distance between
the safety zone as well as the location of the next patient, a transfer time
has to be taken into account. Additionally, aids have to be transported by
assistants between different locations within the hospitals. For this, it may
be necessary to first transfer an assistant to the location of the required aid
and then, from there, to transport the aid to the location of the patient.
Only after all required assistants and aids have arrived at the location of
the patient can the evacuation of the patient begin.

Now, in order to plan the evacuation of one patient, first of all, the types
of resources required for the evacuation of the patient as well as the evac-
uation route along which the patient will be evacuated have to be chosen.
Then, specific assistants and aids have to be transferred to the location of
the patient. The evacuation of the patient itself can only begin when all of

15

2 Hospital Evacuations

these resources have arrived at the initial location of the patient. Here, the
evacuation might consist of multiple steps: a preparation of the patient for
the evacuation, the evacuation itself along the selected evacuation route, as
well as a possible postprocessing of the patient in the staging area, e.g. to
prepare the patient for the further transport to a sheltering facility. Each of
these steps has to be scheduled at specific times such that all required as-
sistants and aids are available for the length of the evacuation and sufficient
space is available on the required sections along the evacuation route. After
the last step has been finished, the required assistants and aids are available
again to be used for the evacuation of other patients.

These steps described above have to be performed for each patient such that
the time required to evacuate all patients from their initial locations to a
safety zone is minimized. In order to solve this problem, it is first modeled
as a resource-constrained project scheduling problem and then solved using
heuristic algorithms. Unlike the more common approaches for evacuation
planning discussed in Section 2.1, this approach is better suited for the
problem of hospital evacuations tackled here for the following reasons.

First of all, network flow problems generally focus on the movement of groups
of people inside a building towards safety zones in order to estimate the
time required until the building is evacuated. Here, network flow problems
can not be used to model the problem of hospital evacuations because the
patients inside the hospital can often not move towards safety zones inde-
pendently but rather depend on resources like assistants and aids to help
them (i.e. each patient has to be evacuated independently). On the other
hand, simulation approaches generally focus on the individual behavior of
the affected people in the situation of an evacuation. Here, simulation ap-
proaches are generally feasible as a means to evaluate a given evacuation
plan. They can not be used, however, in order to calculate and optimize a
detailed plan for the evacuation of the patients.

For these reasons, the resource-constrained project scheduling problem of-
fers a good alternative because it incorporates activities (i.e. the evacuation
of patients) that require multiple types of resources (i.e. assistants, aids,
and building sections) which have to be scheduled so as to optimize a given
objective function (e.g. to minimize the time required to evacuate all pa-
tients). In the following, a general introduction of the resource-constrained
project scheduling problem is given in Chapter 3 while a first solution ap-
proach based on the resource-constrained project scheduling problem for the
problem of hospital evacuations is introduced in Chapter 4.

16

3 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) has been
extensively studied in scientific literature since the early 1960s with some of
the earliest works contributed, for example, by Wiest (1963, 1964) as well
as Kelley (1963). Since this time, a large number of publications concerning
the resource-constrained project scheduling problem and its extensions have
been published, including various surveys (e.g. by Herroelen et al. (1998),
Brucker et al. (1999), Kolisch and Padman (2001), Hartmann and Briskorn
(2010), etc.) and books (e.g. by Demeulemeester and Herroelen (2002),
Brucker and Knust (2006), Artigues et al. (2010), etc.).

In the following, the resource-constrained project scheduling problem is in-
troduced in Section 3.1. Apart from a definition of the classical problem, this
section includes a short overview of the activity-on-node network represen-
tation, critical paths, as well as mixed-integer linear programming (MILP)
formulations of the problem. Furthermore, the section deals with exten-
sions of the classical problem, of which the multi-mode RCPSP as well as
the RCPSP with setup times are of particular interest for this thesis.

Afterward, Section 3.2 deals with solution approaches for the resource-
constrained project scheduling problem. Here, after discussing the time
complexity of the RCPSP and introducing a classification scheme for sched-
ules, a short overview of various solution approaches with a focus on heuristic
algorithms for solving the RCPSP is given.

3.1 The Resource-Constrained Project Scheduling Problem

In the classical problem formulation, as described, for example, by Brucker
and Knust (2006) and Artigues et al. (2010), n activities i = 1, . . . , n have
to be scheduled under precedence and resource constraints such that a given
objective function is optimized. For this, r renewable resources k = 1, . . . , r
with limited resource capacities Rk are given. Then, at any time t (or in any
time interval [t, t+ 1[, respectively), an amount of exactly Rk units of each

17

3 Resource-Constrained Project Scheduling

resource k is available. In the following, the set V = {1, . . . , n} contains all
activities while the set R = {1, . . . , r} contains all resources.

Now, each activity i ∈ V requires a certain amount of time (denoted by the
processing time pi of the activity) as well as resources (denoted by resource
requirements rik for resources k ∈ R) in order to be processed. Here, all
resources required by an activity have to be available simultaneously for
the complete duration of processing the activity. Additionally, precedence
constraints i→ j with i 6= j may be given between pairs of activities i ∈ V
and j ∈ V such that activity j can only start after activity i has been
completed.

A schedule for an instance of the resource-constrained project scheduling
problem is then defined by the starting times Si of the activities i ∈ V
(for this problem without preemption, the corresponding completion times
are given by Ci = Si + pi) such that the precedence constraints i → j
are observed and, at any time t, the amount of each resource k ∈ R used
to process all activities i ∈ V with Si ≤ t < Si + pi is not larger than
the available amount Rk of this resource. If both of these conditions are
fulfilled, the schedule S is referred to as precedence- and resource-feasible or
simply as a feasible schedule. An optimal schedule S∗ for a given problem
instance is a feasible schedule that optimizes the given objective function.
For example, for the makespan objective function Cmax with

Cmax =
n

max
i=1
{Si + pi}

that denotes the time required to complete all activities i = 1, . . . , n in a
given schedule, the following condition holds for all feasible schedules S:

Cmax(S∗) ≤ Cmax(S)

In the following, a dummy start activity 0 as well as a dummy end activity
n + 1 with processing times p0 = pn+1 = 0 and resource requirements
r0k = rn+1,k = 0 for all resources k = 1, . . . , r are added to each project.
These activities represent the first and the last activity processed in any
feasible schedule, i.e. the starting time S0 of activity 0 is the time t0 (often,
t0 = 0 is used) at which the schedule starts while the completion time
Cn+1 (or, alternatively, Sn+1) of activity n + 1 is the time at which all
activities have been completed, i.e. it represents the makespan Cmax. For
this, additional precedence constraints 0→ j are introduced for all activities
j ∈ V that do not have a predecessor activity and additional precedence

18

3.1 The Resource-Constrained Project Scheduling Problem

constraints i → n + 1 are introduced for all activities i ∈ V that do not
have a successor activity. Now, the resulting set Vall = {0, 1, . . . , n, n + 1}
contains all real activities i = 1, . . . , n as well as the two dummy activities
0 and n + 1 while the set A contains all precedence constraints i → j with
A = {(i, j) | i, j ∈ Vall, i→ j}.

3.1.1 Activity-On-Node Network

The structure of a given instance of the resource-constrained project schedul-
ing problem is often represented using an activity-on-node (AON) network
or precedence diagram as it has been introduced by Fondahl (1961). In an
activity-on-node network, the activities i ∈ Vall are represented as nodes
while the precedence constraints (i, j) ∈ A are represented as directed arcs
between these nodes.

Example 3.1 We consider a small project consisting of n = 6 real activities
i = 1, . . . , 6 as well as the two dummy activities 0 and 7. Between these
activities, the following precedence constraints are given: 0 → 1, 0 → 2,
1→ 3, 1→ 4, 2→ 5, 4→ 6, 5→ 6, 3→ 7, and 6→ 7. Furthermore, r = 2
renewable resources with capacities R1 = 3 and R2 = 2 are available. The
processing times pi and resource requirements rik of the activities are given
in Table 3.1.

i 0 1 2 3 4 5 6 7
pi 0 2 1 1 2 2 3 0
ri1 0 1 2 0 3 1 2 0
ri2 0 0 1 2 0 0 1 0

Table 3.1: Processing times pi and resource requirements rik of the n = 6
real activities i = 1, . . . , 6 as well as the two dummy activities 0
and 7 for the project from Example 3.1.

An activity-on-node network for this project is displayed in Figure 3.1. In
this network, the processing times pi of the activities are given above the
respective nodes. While an activity-on-node network for a project represents
the logical order in which the activities have to be processed with respect to
the given precedence constraints in any feasible schedule, an actual schedule
for a project is often displayed using a Gantt-chart (Gantt, 1903, 1910).
Here, a precedence- and resource-feasible schedule for this project is shown

19

3 Resource-Constrained Project Scheduling

3

0 1 4 6 7

2 5

1

p0 = 0 2 2 3 0

1 2

Figure 3.1: Representation of the n = 6 real activities i = 1, . . . , 6 as well as
the two dummy activities 0 and 7 in an activity-on-node network.
The directed arcs between the nodes represent the precedence
constraints (i, j) ∈ A between the activities.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8

1

2
5 4

6

R2

0

1

2

0 1 2 3 4 5 6 7 8

2
3

6

Figure 3.2: Representation of a feasible schedule for the project using a
Gantt-chart. Here, the first chart displays the usage of resource
k = 1 over the time t = 1, . . . , 8 while the second chart displays
the usage of resource k = 2.

in Figure 3.2. The makespan of this schedule is given by the completion time
of activity 6 (the last real activity to be completed), which coincides with
the earliest possible starting time of dummy end activity 7 for this schedule,
i.e. the makespan is Cmax = 8. 2

20

3.1 The Resource-Constrained Project Scheduling Problem

3.1.2 Critical Path

Based on the network structure of a project, some important values includ-
ing the earliest start time ESi of an activity i ∈ Vall, the earliest finish
time EFi, the latest start time LSi, as well as the latest finish time LFi
can be calculated. These values are described by Kelley and Walker (1959)
and Malcolm et al. (1959) and are used in two early methods for project
scheduling, the critical path method (CPM) as well as the program evalua-
tion and review technique (PERT). It should be noted that these four values
are calculated without considering the given resource constraints.

The values ESi, EFi, LSi and LFi can be calculated using a forward and a
backward pass over all activities i ∈ Vall as described, for example, by De-
meulemeester and Herroelen (2002). Here, for the forward pass, the earliest
start time ES0 as well as the earliest finish time EF0 of the dummy start
activity 0 are initialized with ES0 = EF0 = 0. Then, the remaining activ-
ities j = 1, . . . , n + 1 are sorted in a topological order (i.e. all predecessor
activities i of an activity j have to be in front of activity j in the topological
order) and the values ESj and EFj can be calculated for these activities
according to this order as follows:

ESj = max{EFi | (i, j) ∈ A}
EFj = ESj + pj

Similarly, the latest start and finish times can be calculated in a backward
pass. For this, the latest start time LSn+1 as well as the latest finish time
LFn+1 of the dummy end activity n+1 are set to an upper bound UB on the
latest allowed completion time of the project, i.e. LSn+1 = LFn+1 = UB.
Then, the remaining activities i = 0, . . . , n are sorted in a reverse topological
order (i.e. all successor activities j of an activity i have to be in front of
activity i in the reverse topological order) and the values LSi and LFi can
be calculated for these activities according to this order as follows:

LFi = min{LSj | (i, j) ∈ A}
LSi = LFi − pi

Now, in any feasible schedule, an activity i ∈ V always has to be processed
between its earliest start time ESi and its latest finish time LFi. The total
slack TSi of an activity i is then defined as the time TSi = LSi − ESi =
LFi − EFi and defines the time by which an activity can be moved in any
feasible schedule with the given upper bound UB (Demeulemeester and

21

3 Resource-Constrained Project Scheduling

Herroelen, 2002). By setting the upper bound UB to the earliest finish time
of the dummy end activity n + 1, i.e. by setting LFn+1 = EFn+1, some
activities i ∈ V of the project might have a total slack of TSi = 0, i.e. they
can not be moved in a feasible schedule. These activities are referred to
as critical activities. A path of critical activities between the dummy start
activity 0 and the dummy end activity n+ 1 is referred to as a critical path
of the project and corresponds to a longest path from dummy start activity
0 to dummy end activity n + 1 with respect to the sum of the processing
times of all activities on the path.

Example 3.2 For the small project considered in Example 3.1, the values
ESi, EFi, LSi, LFi, and TSi described above have been calculated for all
activities i = 0, . . . , 7 as displayed in Table 3.2. The upper bound used for
the calculation of the latest start and finish times has been set to UB = 7.

i 0 1 2 3 4 5 6 7
ESi 0 0 0 2 2 1 4 7
EFi 0 2 1 3 4 3 7 7
LFi 0 2 2 7 4 4 7 7
LSi 0 0 1 6 2 2 4 7
TSi 0 0 1 4 0 1 0 0

Table 3.2: The earliest start time ESi, the earliest finish time EFi, the latest
start time LSi, the latest finish time LFi, as well as the total slack
TSi of the real activities i = 1, . . . , 6 as well as the two dummy
activities 0 and 7 for the project from Example 3.1. The values
have been calculated based on an upper bound UB = 7.

In Figure 3.3, the activity-on-node network for this project has been ex-
tended by time windows [ESi, LFi] for all activities i ∈ Vall. For each activ-
ity i ∈ Vall, the value ESi denotes the earliest time at which the activity can
start and LFi denotes the latest time at which the activity can finish, i.e.
the activity has to be processed between these two times in order to ensure
that no more than UB = 7 time units are required to process all activities.
Also, the critical path 0 → 1 → 4 → 6 → 7 of the project is highlighted in
this figure. 2

The length of a critical path of a project (i.e. the sum of the processing
times of the activities on the critical path) can also be regarded as a simple
lower bound LB0 on the optimal makespan if all resource constraints are

22

3.1 The Resource-Constrained Project Scheduling Problem

3

0 1 4 6 7

2 3

1

[2,7]

p0 = 0

[0,0]

2

[0,2]

2

[2,4]

3

[4,7]

0

[7,7]

1

[0,2]

2

[1,4]

Figure 3.3: Representation of the activity-on-node network for the project
from Example 3.1 including the time windows [ESi, LFi] for all
activities i ∈ Vall based on an upper bound UB = 7. The unique
critical path of the project is highlighted in the network.

neglected and only the precedence constraints between the activities are
considered (cf. Brucker and Knust (2006)). Thus, for a given project, no
feasible schedule S with a makespan Cmax(S) < LB0 can exist.

3.1.3 Mixed-Integer Linear Programming Formulations

As stated by Davis (1973), one of the earliest integer linear programming for-
mulations for the resource-constrained project scheduling problem has been
introduced by Wiest (1963) as an adaption of an integer linear programming
formulation for the job-shop problem by Bowman (1959). Another formula-
tion more widely used in scientific literature, however, has been introduced
by Pritsker et al. (1969) and uses time-indexed binary variables. Below, this
time-indexed formulation as well as a flow-based formulation that has been
introduced by Artigues et al. (2003) are described.

Time-Indexed Formulation

First of all, for the time-indexed mixed-integer linear programming formula-
tion described by Pritsker et al. (1969), a time horizon T is required that de-

23

3 Resource-Constrained Project Scheduling

notes an upper bound on the available time to complete all activities. Then,
time-indexed binary variables xit are introduced for all activities i ∈ Vall as
well as all time points t = 0, . . . , T such that

xit =

{
1, if activity i is completed at time t

0, otherwise.

The classical resource-constrained project scheduling problem can then be
modeled by the mixed-integer linear programming formulation (3.1) to (3.5)
(cf. Brucker and Knust (2006)).

min
T∑
t=0

txn+1,t (3.1)

s.t.
T∑
t=0

xit = 1 (i ∈ Vall) (3.2)

T∑
t=0

txit −
T∑
t=0

(t− pj)xjt ≤ 0 ((i,j) ∈ A) (3.3)

n∑
i=1

rik

min{t+pi,T}∑
τ=t+1

xiτ ≤ Rk (k ∈ R; t = 0, . . . , T) (3.4)

xit ∈ {0,1} (i ∈ Vall; t = 0, . . . , T) (3.5)

Here, the makespan as denoted by the completion time Cn+1 of dummy end
activity n + 1 is minimized in (3.1). In order to ensure that all activities
are scheduled once (without preemption), constraints (3.2) are introduced.
Next, constraints (3.3) ensure that all precedence constraints (i, j) ∈ A
between activities i ∈ Vall and j ∈ Vall are observed while constraints (3.4)
ensure that, at any time t, no more than the available amount of Rk units
of any resource k ∈ R are required to process the activities that are active
at this time (i.e. all activities i ∈ Vall with Si ≤ t < Si + pi that have
been scheduled to be processed in the time interval [t, t + 1[). Together,
constraints (3.3) and (3.4) ensure that any solution for this mixed-integer
linear programming formulation is precedence- as well as resource-feasible.

Flow-Based Formulation

Now, an alternative mixed-integer linear programming formulation for the
classical RCPSP based on resource flows is introduced as it has been de-

24

3.1 The Resource-Constrained Project Scheduling Problem

scribed, for example, by Artigues et al. (2003). This representation is based
on the transfer of resources between activities such that, for each real ac-
tivity i ∈ V , the amount of incoming resource units as well as the amount
of outgoing resources units of each resource k ∈ R has to be equal to the
resource requirements rik of the activity. A resource flow that satisfies this
condition is called resource-feasible. Additionally, any feasible resource flow
has to be acyclic and observe the given precedence constraints (i, j) ∈ A
between the activities (i.e. it has to be precedence-feasible). It should be
noted that the resource requirements r0k and rn+1,k of the dummy activi-
ties 0 and n + 1 for all resources k ∈ R are set to r0k = rn+1,k = Rk for
this alternative representation, i.e. all resource units are initially located at
dummy start activity 0 and have to be transferred to dummy end activity
n+ 1 at the end of the project.

Example 3.3 We consider a small project consisting of n = 4 activities
with precedence constraints 1→ 2 and 3→ 4 between real activities as well
as r = 1 renewable resource with a capacity of R1 = 6. The processing times
and resource requirements of the activities are given in Table 3.3.

i 0 1 2 3 4 5
pi 0 2 4 1 3 0
ri1 6 2 3 3 2 6

Table 3.3: Processing times pi and resource requirements ri1 of the activities
i = 0, . . . , 5 for the project considered in Example 3.3.

For this project, a so-called AON-flow network consisting of a feasible re-
source flow as well as the activity-on-node network of the project is displayed
in Figure 3.4. As described above, a feasible flow is defined as a flow that
is acyclic and precedence-feasible, and for which the amount of incoming as
well as outgoing resource units to and from an activity i ∈ V is equal to
the resource requirements rik of this activity for each resource k ∈ R. It
can be seen that all resource units are initially located at dummy activity 0
and are collected at dummy activity 5 at the end of the project. This also
includes one unused resource unit that is transferred directly from activity
0 to activity 5.

Finally, a schedule corresponding to this AON-flow network is shown in
Figure 3.5. It should be noted that this schedule is left-justified, i.e. all
activities start as early as possible with respect to the resource flow as well

25

3 Resource-Constrained Project Scheduling

1 2

0 3 4 5

2

2

3

1

2

3

2

1

Figure 3.4: AON-flow network consisting of a feasible resource flow as well as
the activity-on-node network for the project considered in Exam-
ple 3.3. In this network, thick arcs represent resource transfers
while thin arcs represent precedence constraints.

R1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

3

1

4

2

Figure 3.5: A left-justified schedule with the makespan Cmax = 6 corre-
sponding to the AON-flow network displayed in Figure 3.4.

as to the given precedence constraints. A left-justified schedule can be cal-
culated based on the longest paths in the AON-flow network where each arc
(i, j) is weighted with the processing time pi of activity i ∈ Vall. The earliest
starting time Si of an activity i ∈ Vall then corresponds to the length of a
longest path from dummy start activity 0 to activity i. 2

For this alternative mixed-integer linear programming formulation, two ad-
ditional sets V0 = {0, 1, . . . , n} and V∗ = {1, . . . , n, n + 1} are introduced.
Additionally, the following variables are defined: Integer variables fijk for
activities i ∈ V0 and j ∈ V∗ as well as resources k ∈ R denoting the amount
of resource k that is transferred from activity i to activity j, integer vari-
ables Si for all activities i ∈ Vall denoting the starting time of activity i, and

26

3.1 The Resource-Constrained Project Scheduling Problem

binary variables xij for activities i ∈ V0 and j ∈ V∗ with

xij =

{
1, if activity j is constrained to start after the end of activity i

0, otherwise.

It should be noted that xij = 1 only has to hold if a precedence constraint
(i,j) ∈ A or a resource transfer fijk > 0 for some resource k ∈ R from
activity i ∈ V0 to activity j ∈ V∗ is given. Otherwise, i.e. if neither a
precedence constraint nor a resource transfer is given, xij = 0 can also hold
even if activity j only starts after the completion of activity i. On the other
hand, if activity j starts before activity i has finished, xij = 0 always has
to hold. Finally, M and N are two large integer values. Now, based on
the paper by Artigues et al. (2003), the mixed-integer linear programming
formulation (3.6) to (3.14) can be defined.

min Sn+1 (3.6)

s.t. xij = 1 ((i,j) ∈ A) (3.7)

Sj − (Si + pi) +M(1− xij) ≥ 0 (i ∈ V0; j ∈ V∗) (3.8)

fijk −Nxij ≤ 0 (i ∈ V0; j ∈ V∗; k ∈ R) (3.9)∑
i∈V0

fijk = rjk (j ∈ V∗; k ∈ R) (3.10)

∑
j∈V∗

fijk = rik (i ∈ V0; k ∈ R) (3.11)

Si ∈ N (i ∈ Vall) (3.12)

xij ∈ {0,1} (i ∈ V0; j ∈ V∗) (3.13)

fijk ∈ N (i ∈ V0; j ∈ V∗; k ∈ R) (3.14)

Here, the makespan as denoted by the starting (and completion) time Sn+1

of dummy end activity n + 1 is minimized in (3.6). Next, constraints (3.7)
ensure that, if a precedence constraint (i, j) ∈ A between two activities
i ∈ Vall and j ∈ Vall is given, activity j can only start after activity i has
been completed. The starting times of activities j ∈ V∗ are then calculated
by constraints (3.8). These constraints ensure that activity j ∈ V∗ can only
start at time Sj ≥ Si + pi after the completion of activity i ∈ V0 if xij = 1
holds for activities i and j, i.e. if a precedence constraint (i, j) ∈ A is given
or if a resource transfer fijk > 0 for some resource k ∈ R exists.

Next, constraints (3.9) link the resource transfers fijk with the binary vari-
ables xij such that xij = 1 has to hold if fijk > 0 holds for activities i ∈ V0

27

3 Resource-Constrained Project Scheduling

and j ∈ V∗ and some resource k ∈ R. Finally, constraints (3.10) and (3.11)
ensure that the amount of incoming resource units to an activity j ∈ V∗
as well as the amount of outgoing resource units from an activity i ∈ V0

have to be equal to the corresponding resource requirements rjk and rik for
each resource k ∈ R, respectively. It should be noted that here, activity 0
only has outgoing resource transfers while activity n+ 1 only has incoming
resource transfers.

3.1.4 Multi-Mode RCPSP

An important generalization of the classical resource-constrained project
scheduling problem is the multi-mode RCPSP or MRCPSP. The problem
of multiple activity execution modes under resource constraints has first
been considered in the 1970s, for example by Elmaghraby (1977). For this
generalization, the RCPSP is extended by execution modes such that each
real activity i ∈ V can be executed in Mi different modes m = 1, . . . ,Mi.
Then, for each mode m, the activity has mode-dependent processing times
pim as well as mode-dependent resource requirements rikm for each resource
k ∈ R. It should be noted that the dummy start activity 0 as well as the
dummy end activity n + 1 can only be executed in M0 = Mn+1 = 1 mode
each. In the following, the set M(i) = {1, . . . ,Mi} contains all available
modes for an activity i ∈ Vall.

Similar to the MILP formulation for the RCPSP by Pritsker et al. (1969),
a time-indexed mixed-integer linear programming formulation for the MR-
CPSP has been presented by Talbot (1982). In this formulation, binary vari-
ables ximt are introduced for all activities i ∈ Vall, their respective modes
m ∈M(i), as well as all time points t = 0, . . . , T such that

ximt =

{
1, if activity i is executed in mode m and completed at time t

0, otherwise.

Now, the multi-mode RCPSP can be modeled as the mixed-integer linear
program (3.15) to (3.19) (cf. Brucker and Knust (2006)).

min
T∑
t=0

txn+1,1,t (3.15)

s.t.
mi∑
m=1

T∑
t=0

ximt = 1 (i ∈ Vall) (3.16)

28

3.1 The Resource-Constrained Project Scheduling Problem

mi∑
m=1

T∑
t=0

tximt −
mj∑
m=1

T∑
t=0

(t− pj)xjmt ≤ 0 ((i,j) ∈ A) (3.17)

n∑
i=1

mi∑
m=1

rimk

min{t+pi,T}∑
τ=t+1

ximτ ≤ Rk
(

k ∈ R;
t = 0, . . . , T

)
(3.18)

ximt ∈ {0,1}

 i ∈ Vall;
m ∈M(i);
t = 0, . . . , T

 (3.19)

As before, the makespan (3.15) as denoted by the completion time Cn+1 of
dummy end activity n+ 1 is minimized. Next, equations (3.16) ensure that
each activity i ∈ V is scheduled once (without preemption) and executed in
a mode m ∈ {1, . . . ,Mi} while inequalities (3.17) and (3.18) ensure that all
precedence and resource constraints are adhered to.

A further generalization of the MRCPSP is the mode identity resource-
constrained project scheduling problem introduced by Salewski et al. (1997).
In this extension, the modes of the activities can not be selected separately.
Instead some activities might have to be executed in the same mode, for
example if these activities have to use the same resources.

3.1.5 Setup Times

Another extension of the classical resource-constrained project scheduling
problem are setup times. Setup times generally occur before an activity can
be processed by the required resources and model the time needed to prepare
these resources for the execution of the activity. Here, as pointed out by
Mika et al. (2006), setup times in the context of the resource-constrained
project scheduling problem have received significantly less attention than
setup times in machine scheduling problems (cf. Allahverdi et al. (2008) for
a recent survey on machine scheduling problems with setup times).

According to Mika et al. (2006), setup times in project scheduling have
first been considered in an unpublished paper by Kaplan (1991) in which
she tackles the resource-constrained project scheduling problem with pre-
emption where setup times are required whenever a preempted activity is
restarted. Apart from this, for example, Vanhoucke (2008) considers the
RCPSP with preemption and sequence-independent setup times while Neu-
mann et al. (2003) deal with the RCPSP with sequence-dependent (and

29

3 Resource-Constrained Project Scheduling

resource-dependent) setup (or changeover) times and time windows. Sim-
ilarly, the resource-constrained project scheduling problem with sequence-
and resource-dependent setup (or transfer) times is the main focus of the
PhD thesis of Krüger (2009). Additionally, Krüger (2009) introduces the
RCPSP with generalized setup times as described in Section 5.1.

In the following, a classification of different types of setup times in the con-
text of the resource-constrained project scheduling problem is given. In this
classification as it has been introduced by Mika et al. (2006), setup times are
classified according to various categories including activity vs. class setups,
separable vs. inseparable setups, as well as sequence-independent, sequence-
dependent, and schedule-dependent setups. Afterward, due to its impor-
tance to this thesis, the RCPSP with sequence- and resource-dependent
setup times is described as it has been considered by Krüger (2009) in her
PhD thesis.

Classification of Setup Times

According to the classification of setup times by Mika et al. (2006), if a setup
is required by an individual activity, it is referred to as an activity setup.
Otherwise, if a setup is required by a group of activities, it is referred to
as a class setup. In this case, it is sufficient to execute the setup only once
before all activities of the respective group can be processed. Next, a setup
is called inseparable if the activity has to be started directly after the setup
has been executed. Similarly, a setup is called separable if the activity does
not have to start immediately after the setup has been performed. It should
be noted, however, that also in this case no other activities can be executed
on a resource between the setup of the resource and the activity for which
the setup has been performed.

Next, if sequence-independent setup times sj for activities j ∈ V∗ are given,
these setup times only depend on activity j itself (i.e. they are independent
of the sequence in which the activities are processed on the required re-
source). On the other hand, sequence-dependent setup times sij depend on
the activity i ∈ V0 that has been processed directly before activity j ∈ V∗ on
the required resource (i.e. they depend on the sequence in which the activ-
ities are processed on the required resource). Finally, if more than one type
of resources is available, the setup times might also be resource-dependent.

Example 3.4 We consider a small project consisting of n = 3 real activities
with unit processing times (i.e. pi = 1 holds for i = 1,2,3) as well as

30

3.1 The Resource-Constrained Project Scheduling Problem

r = 1 renewable resource with a capacity of R1 = 1 such that each real
activity i = 1,2,3 requires ri1 = 1 units of this resource. Additionally, the
precedence constraints 1 → 2 and 1 → 3 between real activities as well
as the sequence-independent setup times s1 = 1, s2 = 2, and s3 = 1 are
given. Two feasible schedules for this project with sequence-independent
setup times are displayed in Figure 3.6.

0

1

0 1 2 3 4 5 6 7

s1 1 s2 2 s3 3

(a) Sequence (1, 2, 3).

0

1

0 1 2 3 4 5 6 7

s1 1 s3 3 s2 2

(b) Sequence (1, 3, 2).

Figure 3.6: Two schedules for the project from Example 3.4 with sequence-
independent setup times for the sequences (1, 2, 3) and (1, 3, 2).

Here, it can be seen that the sequence in which the activities are processed
on the resource has no influence on the setup times of the activities and both
schedules have a makespan of Cmax = 7. Now, the sequence-independent
setup times are replaced by sequence-dependent setup times sij as given in
Table 3.4.

0 1 2 3 4
0 0 1 1 1 0
1 0 0 1 1 0
2 0 0 0 2 0
3 0 0 1 0 0
4 0 0 0 0 0

Table 3.4: Sequence-dependent setup times sij between all pairs of activities
i,j = 0, . . . , 5 for the project from Example 3.4.

Two schedules for the resulting problem with sequence-dependent setup
times are displayed in Figure 3.7. Unlike in the case of sequence-independent

31

3 Resource-Constrained Project Scheduling

0

1

0 1 2 3 4 5 6 7

s01 1 s12 2 s23 3

(a) Sequence (1, 2, 3).

0

1

0 1 2 3 4 5 6 7

s01 1 s13 3 s32 2

(b) Sequence (1, 3, 2).

Figure 3.7: Two schedules for the project from Example 3.4 with sequence-
dependent setup times for the sequences (1, 2, 3) and (1, 3, 2).

setup times, the setup times of the activities are influenced by the direct pre-
decessor of each activity on the resource, i.e. they depend on the sequence
in which the activities are processed on the resource. As a result of this, the
makespan of the schedule for the sequence (1, 2, 3) is Cmax = 7 while it is
only Cmax = 6 for the sequence (1, 3, 2). 2

Finally, schedule-dependent setup times for activities not only depend on
the sequence in which activities are processed on a specific resource but also
on the assignment of resources to certain predecessors of the activity. Here,
Mika et al. (2006) refer to the resources by which the activities are actu-
ally processed as multi-purpose resources (i.e. resources that can be used
to process several different activities) and introduce an additional type of
resources, referred to as setup-required resources. These setup-required are
required to process particular activities on multi-purpose resources (i.e. each
setup-required resource is dedicated to one particular activity) and can either
be available in specific locations from the start of the project or, alterna-
tively, they can be the product of some activities. Now, schedule-dependent
setup times depend on when and where these setup-required resources are
available to be transferred to the multi-purpose resource required by the
corresponding activity.

Next, Mika et al. (2006) distinguish between precedence-independent and
precedence-dependent setup times. In the case of a precedence-independent
setup, the setup of the resource required by an activity can already be started
before all predecessors of this activity have been completed. Alternatively,

32

3.1 The Resource-Constrained Project Scheduling Problem

in the case of a precedence-dependent setup, all predecessors of an activity
have to be completed before the resources required by this activity can be
set up.

Another classification can be made if activities require multiple units of a
resource. In this case the setup can be performed as an undivided setup
(i.e. all resource units have to be set up at the same time) or as a divided
setup (i.e. the resource units can be set up separately). Also, an activity
might require multiple types of resources. In this case, the setup times
can be classified as either synchronous setups (i.e. all setups have to be
performed in parallel and require the time of the longest setup time), semi-
synchronous setups (i.e. the setups are still performed in parallel but retain
their individual setup times), or asynchronous setups (i.e. the setups can be
performed independently).

Finally, Mika et al. (2006) introduce auxiliary resources as an additional
type of resources used only to set up other resources. In contrast to the
setup-required resources introduced above for the schedule-dependent setup
times, auxiliary resources are not only used to set up resources for exactly
one activity but can be used for setting up resources for various activities.
If more than one type of auxiliary resources is available and the resources
can be set up in alternative ways by these auxiliary resources, setup modes
can be introduced in order to model these alternatives.

RCPSP with Sequence- and Resource-Dependent Setup Times

Now, the resource-constrained project scheduling problem with sequence-
and resource-dependent setup (or transfer) times is introduced in more detail
due to its importance to this thesis. This problem has, for example, been
considered by Krüger (2009) in her PhD thesis as well as in a paper by
Krüger and Scholl (2009). It should be noted that Krüger (2009) refers to
setup times as transfer times ∆ijk that occur if resource k ∈ R is transferred
from activity i ∈ V0 to activity j ∈ V∗. For this, she models the transfer of
resources between activities as resource flows.

Example 3.5 We consider the project described in Example 3.3 and extend
it by transfer times ∆ijk between all pairs of activities i ∈ Vall and j ∈ Vall

for resource k = 1. These transfer times ∆ijk are given in Table 3.5.

Now, based on the feasible AON-flow network displayed in Figure 3.4, a
left-justified schedule for this project can be calculated based on the longest

33

3 Resource-Constrained Project Scheduling

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 2 1 3 0
2 0 2 0 2 3 0
3 0 1 2 0 4 0
4 0 3 3 4 0 0
5 0 0 0 0 0 0

Table 3.5: Transfer times ∆ijk between all pairs of activities i ∈ Vall and
j ∈ Vall for resource k = 1 for the project from Example 3.5.

R1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

3

∆321

∆341

1 ∆121

4

2

Figure 3.8: A left-justified schedule based on the feasible AON-flow network
from Figure 3.4 for the project considered in Example 3.5.

paths as described in Example 3.3. For this, each arc (i, j) representing a
resource transfer of resource 1 from activity i ∈ V0 to activity j ∈ V∗ is
weighted with the time pi +∆ij1 while all remaining arcs (i, j) representing
precedence constraints between activities i ∈ Vall and j ∈ Vall are weighted
with the processing time pi of activity i. Then, the left-justified schedule
with the makespan Cmax = 8 displayed in Figure 3.8 can be calculated for
this project. 2

In the following, a mixed-integer linear programming formulation for this
problem is introduced as it has been modeled by Krüger (2009). For this
formulation, additional subsets Vri and Vsi are introduced for each activity
i ∈ Vall such that the set Vri contains all activities to which resource units
can be transferred from activity i (i.e. all activities j ∈ V∗ that are no direct
or indirect predecessors of activity i) while the set Vsi contains all activities

34

3.1 The Resource-Constrained Project Scheduling Problem

from which resource units can be transferred to activity i (i.e. all activities
h ∈ V0 that are no direct or indirect successors of activity i).

Additionally, the following variables are required for this mixed-integer lin-
ear programming formulation: Integer variables Ci for all activities i ∈ Vall

denoting the completion time of activity i, integer variables fijk for all ac-
tivities i ∈ V0 and j ∈ Vri as well as for all resources k ∈ R denoting the
amount of resource k transferred from activity i to activity j, and binary
variables xijk for all activities i ∈ V0 and j ∈ Vri as well as for all resources
k ∈ R such that

xijk =

{
1, if resource k is transferred from activity i to activity j

0, otherwise.

Using these variables, the mixed-integer linear programming formulation
(3.20) through (3.29) is defined by Krüger (2009).

min Cn+1 (3.20)

s.t. Cj − Ci ≥ pj ((i,j) ∈ A) (3.21)

Ci +∆ijk + pj ≤ Cj + T (1− xijk)

(
i ∈ V0; j ∈ Vri ;

k ∈ R

)
(3.22)

fijk ≤ min{rik,rjk} · xijk
(
i ∈ V0; j ∈ Vri ;

k ∈ R

)
(3.23)

xijk ≤ fijk
(
i ∈ V0; j ∈ Vri ;

k ∈ R

)
(3.24)∑

h∈Vsi

fhik = rik (i ∈ V∗; k ∈ R) (3.25)

∑
j∈Vri

fijk = rik (i ∈ V0; k ∈ R) (3.26)

Ci ∈ N (i ∈ Vall) (3.27)

fijk ∈ N
(
i ∈ V0; j ∈ Vri ;

k ∈ R

)
(3.28)

xijk ∈ {0, 1}
(
i ∈ V0; j ∈ Vri ;

k ∈ R

)
(3.29)

As before, the objective used in this mixed-integer linear programming for-
mulation is to minimize the makespan (3.20) as denoted by the completion

35

3 Resource-Constrained Project Scheduling

time Cn+1 of dummy end activity n+1. Next, Inequalities (3.21) ensure that
all precedence constraints (i,j) ∈ A between activities i ∈ Vall and j ∈ Vall

are observed while inequalities (3.22) ensure that activity j ∈ V∗ can only
start at time Sj = Cj −pj ≥ Ci +∆ijk if at least one unit of resource k ∈ R
is transferred from activity i ∈ V0 to activity j (i.e. if xijk = 1 holds).

Inequalities (3.23) and (3.24) are introduced in order to ensure that xijk = 1
holds for i ∈ V0, j ∈ Vri , and k ∈ R if and only if at least one unit of
resource k is transferred from activity i to activity j. Finally, equations
(3.25) ensure that the amount of incoming resource units of resource k ∈ R
to activity i ∈ V∗ is equal to the resource requirements rik of this activity
while equations (3.26) ensure that the amount of outgoing resource units of
resource k ∈ R from activity i ∈ V0 is equal to the resource requirements
rik of this activity.

3.1.6 Further Extensions

Apart from the multi-mode RCPSP and the RCPSP with setup times in-
troduced above, various other extensions for the classical RCPSP have been
researched. In the following, a short selection of these extensions is de-
scribed. A more detailed overview of these as well as other extensions is
given in the surveys and books mentioned at the beginning of this chapter.

First of all, it might be possible that activities that have been started do not
have to be processed without interruption in their entirety but can instead
be interrupted during their execution and continued at a later time. This
is referred to as preemption of activities and, in the context of the RCPSP,
has been described, for example, by Kaplan (1988).

Next, apart from the renewable resources used throughout this chapter
which have a constant availability for each time period of the planning hori-
zon, various other types of resources might be used. These include, for ex-
ample, non-renewable resources of which only a certain quantity is available
for the duration of the whole project, as well as doubly-constrained resources
which are limited both, for each time period as well as for the whole project
(cf. Słowiński (1981)). It should be noted that doubly-constrained resources
can also be incorporated by one renewable as well as one non-renewable re-
source. If the availability of resources is not constant over the planning hori-
zon, time-dependent resource profiles can be used as described, for example,
by Bartusch et al. (1988). Finally, for partially-renewable resources, the

36

3.2 Solution Approaches

planning horizon is partitioned into subsets of time periods such that each
of these subsets is assigned a total amount of available resource units (cf.
Böttcher et al. (1999)). As stated by Brucker and Knust (2006), partially-
renewable resources are a generalization of the concepts of renewable and
non-renewable resources, which can both be modeled as partially-renewable
resources.

In the classical resource-constrained project scheduling problem, if a prece-
dence constraint (i, j) ∈ A between two activities i ∈ Vall and j ∈ Vall is
given, inequality Si+pi ≤ Sj has to hold, i.e. activity i has to be completed
before activity j can be started. More generalized precedence constraints
are described by Bartusch et al. (1988) such that, between two activities
i ∈ Vall and j ∈ Vall, a minimum time lag lminij as well as a maximum time
lag lmaxij might be given. In this case, the start-start relations Si+ lminij ≤ Sj
and Si + lmaxij ≥ Sj have to hold, i.e. activity j has to be started in the
time window [Si+ lminij ;Si+ lmaxij] after the start of activity i. Similarly, this
concept can be extended to start-finish, finish-start, and finish-finish rela-
tions between the activities. Additionally, release dates and deadlines can
be modeled using generalized precedence constraints between the dummy
start activity 0 and other activities j ∈ V such that activity j can only start
after its release date rj = lmin0j and has to be finished before its deadline
dj = lmax0j + pj (cf. Bartusch et al. (1988)).

Finally, various other objective functions beside the makespan have been
used in the context of the RCPSP. For example, some important time-based
objective functions are based on the lateness Li = Ci − di, the tardiness
Ti = max{0, Ci − di}, or the earliness Ei = max{0, di − Ci} of activities
i ∈ Vall (cf. Brucker and Knust (2006)). For all of these values, di is the
due date of activity i ∈ Vall. Similar to the deadlines introduced above,
due dates also refer to the latest time an activity should be finished. Unlike
deadlines, however, due dates are not hard constraints but can be violated
which results in a penalty. A classification of alternative objective functions
is, for example, given by Neumann et al. (2006).

3.2 Solution Approaches

In this section, an overview of various solution approaches for the classi-
cal resource-constrained project scheduling problem and its extensions is
given. Here, first of all, some results concerning the time complexity of

37

3 Resource-Constrained Project Scheduling

the RCPSP are discussed in Section 3.2.1. Then, Section 3.2.2 introduces
a schedule classification scheme for the RCPSP. Finally, Section 3.2.3 deals
with heuristic solution approaches for the RCPSP while Section 3.2.4 de-
scribes other solution approaches, including exact methods as well as lower
bounds.

3.2.1 Time Complexity

The classical RCPSP with the makespan objective function is a strongly NP-
hard problem. This follows from the fact that the RCPSP is a generalization
of the well-known job-shop scheduling problem, which has been shown to be
strongly NP-hard by Garey et al. (1976) for the makespan objective function.
As a result of this, it is unlikely that an exact polynomial time algorithm
exists to solve the problem. Moreover, Blazewicz et al. (1983) show that
already the problem with only r = 2 renewable resources with capacities
of R1 = 1 and R2 = 2 as well as fixed resource requirements ri2 = 1
for all real activities i ∈ V (i.e. at most two activities can be processed
simultaneously), unit processing times, and precedence chains is NP-hard in
the strong sense by a transformation of the problem 3-PARTITION. Only
some even more simple problems without precedence constraints have been
shown to be polynomially solvable (cf. Blazewicz et al. (1983)).

While feasible (not necessarily optimal) solutions for the classical RCPSP
can be calculated in polynomial time, for example by scheduling all activities
with respect to a topological order, Bartusch et al. (1988) show that even
deciding whether a feasible solution exists is NP-complete for the RCPSP
with maximum time lags. Similarly, Kolisch and Drexl (1997) show that the
problem of deciding whether a feasible schedule exists for the multi-mode
RCPSP with at least two non-renewable resources is also NP-complete.

3.2.2 Classification of Schedules

Schedules for instances of the resource-constrained project scheduling prob-
lem generated by different algorithms can often be classified as belonging to
different subsets of schedules. Based on a classification scheme introduced
by Conway et al. (1967) for the job-shop scheduling problem, Sprecher et al.
(1995) classify schedules for the RCPSP as feasible, semi-active, active, and
non-delay schedules.

38

3.2 Solution Approaches

Here, while the subset of feasible schedules contains all schedules that are
feasible with respect to the given precedence and resource constraints as
introduced above, the remaining classifications are based on the definition
of left shifts of activities. For a feasible schedule S, a left shift of an activity
i ∈ V transforms the schedule into a feasible schedule S′ with S′i < Si and
S′j = Sj for all other activities j ∈ V with j 6= i (cf. Wiest (1964)). Based
on this definition Wiest (1964) defines an one-period left shift of an activity
i ∈ V as a left shift such that Si−S′i = 1 holds for activity i and a local left
shift as a series of one-period left shifts such that each intermediate schedule
is feasible. If one of the intermediate schedules obtained by one-period left
shifts of an activity i is not feasible but the resulting schedule S′ is feasible,
this is referred to as a global left shift.

feasible

semi-active

active

non-delay

Figure 3.9: The relation between the four subsets of feasible schedules, active
schedules, semi-active schedules, as well as non-delay schedules
for the RCPSP as described by Sprecher et al. (1995).

Based on these definitions, Sprecher et al. (1995) refer to a schedule in which
no local left shift is possible for any activity i ∈ V as a semi-active schedule.
Similarly, an active schedule is a schedule in which no local or global left
shift is possible for any activity i ∈ V . Finally, a schedule is referred to as
a non-delay schedule if no activities can be shifted to the left using either
local or global left shifts even if preemption is allowed. The relation between
these four subsets of schedules is displayed in Figure 3.9.

Example 3.6 In order to visualize the different classes of schedules intro-
duced above, Sprecher et al. (1995) introduce an example instance for the
resource-constrained project scheduling problem consisting of n = 5 real ac-
tivities as well as r = 1 renewable resource with a capacity of R1 = 2. The
processing times and resource requirements of the activities are given in Ta-
ble 3.6 while the precedence constraints are displayed in the activity-on-node
network in Figure 3.10.

39

3 Resource-Constrained Project Scheduling

i 1 2 3 4 5
pi 2 1 1 1 2
ri1 1 2 1 2 1

Table 3.6: Processing times pi and resource requirements rik of the n = 5
real activities i = 1, . . . , 5 for the project from Example 3.6.

1 2

0 3 4 5 6

Figure 3.10: Activity-on-node network for the project considered in Example
3.6 consisting of n = 5 real activities i = 1, . . . , 5 as well as the
two dummy activities 0 and 6.

Based on this example instance, the four schedules displayed in Figure 3.11
visualize the four different subsets of feasible, active, semi-active, and non-
delay schedules. According to Sprecher et al. (1995), the active schedule
displayed in Figure 3.11(c) is the only optimal schedule for this project. For
this reason, because this schedule is not a non-delay schedule (the first part
of activity 1 could feasibly start at time t = 0 if preemption were allowed)
it can be concluded that the subset of non-delay schedules does not always
contain an optimal solution. 2

Finally, it is important to note that the set of active schedules always
contains an optimal solution for regular objective functions such as the
makespan objective function (cf., for example, Brucker and Knust (2006)).

3.2.3 Heuristic Approaches

Some of the earliest heuristic methods for the resource-constrained project
scheduling problem have been introduced by Kelley (1963) and are priority
rule based scheduling schemes. These heuristics consist of a schedule genera-
tion scheme used to actually schedule the activities, as well as a priority rule
that is used to select the next activity to be scheduled. Here, two schedule

40

3.2 Solution Approaches

0

1

2

0 1 2 3 4 5 6 7 8 9

3
4

1
2

5

(a) Feasible schedule.

0

1

2

0 1 2 3 4 5 6 7 8 9

3
4

1
2

5

(b) Semi-active schedule.

0

1

2

0 1 2 3 4 5 6 7 8 9

3
4

1
2

5

(c) Active schedule.

0

1

2

0 1 2 3 4 5 6 7 8 9

3

1
4

5
2

(d) Non-delay schedule.

Figure 3.11: Schedules for the project considered in Example 3.6 visualizing
the four different subsets of feasible schedules (cf. Figure (a)),
semi-active schedules (cf. Figure (b)), active schedules (cf. Fig-
ure (c)), and non-delay schedules (cf. Figure (d)) as described
by Sprecher et al. (1995).

generation schemes have been introduced by Kelley (1963), referred to as the
serial schedule generation scheme as well as the parallel schedule generation
scheme. As pointed out by Kolisch (1996a), however, the parallel schedule
generation scheme for the RCPSP most often used in scientific literature has
been published by Brooks (Bedworth and Bailey, 1982).

41

3 Resource-Constrained Project Scheduling

In the following, the two schedule generation schemes are described in more
detail. Here, first of all, the serial schedule generation scheme is outlined in
Algorithm 3.1 (cf. Brucker and Knust (2006)).

Algorithm 3.1: Serial Schedule Generation Scheme

1 Let E1 be the set of all activities without predecessor;
2 for λ := 1 to n do
3 Choose an activity j ∈ Eλ;
4 t := max

(i,j)∈A
{Si + pi};

5 while a resource k with rjk > Rk(τ) for a τ ∈ [t, t+ pj [exists do
6 Calculate the smallest time tk > t such that j can be scheduled in

the interval [tk,tk + pj [if only resource k is considered and set
t := tk;

7 end
8 Schedule j in the interval [Sj ,Cj [:= [t, t+ pj [;
9 Update the current resource profile by setting Rk(τ) := Rk(τ)− rjk for

all k = 1, . . . , r and τ ∈ [t, t+ pj [;
10 Let Eλ+1 := Eλ \ {j} and add to Eλ+1 all successors i 6∈ Eλ of j for

which all predecessors are scheduled;
11 end

The main idea of the serial schedule generation scheme is to schedule exactly
one activity in each iteration, i.e. a total of n iterations (or stages) are
required in order to schedule all real activities i ∈ V . In this algorithm,
the set Eλ denotes the set of all eligible activities that can be scheduled in
iteration λ. For the serial schedule generation scheme, an eligible activity
j ∈ Eλ is an activity for which all predecessors i ∈ Vall with (i, j) ∈ A
have already been scheduled, i.e. in each iteration λ, the set Eλ contains
all precedence-feasible activities. Furthermore, Rk(t) denotes the amount
of units of resource k ∈ R available in the time interval [t, t + 1[. Here,
the amount of available resource units Rk(t) in the time interval [t, t + 1[
depends on activities i ∈ V with Si ≤ t < Si + pi that have already been
scheduled to be processed in this time interval.

Now, in each iteration λ, an activity j ∈ V is selected from the set of eligible
activities Eλ based on a priority rule in line 3 of the algorithm. The earliest
precedence-feasible start time of this activity is then calculated as the latest
time at which one of its predecessor activities is completed in line 4. Then,
in lines 5 to 7, the earliest precedence- and resource-feasible time at which

42

3.2 Solution Approaches

activity j can be started is calculated. Finally, the activity is scheduled to
start at this time in line 8, the resource profiles are updated in line 9 and
the new set of eligible activities Eλ+1 for the next iteration is calculated
in line 10. Kolisch (1996a) has shown that the serial schedule generation
scheme using any priority rule generates schedules belonging to the set of
active schedules.

The time complexity of the serial schedule generation scheme primarily de-
pends on how the time points t are calculated in line 6. Here, if all possible
time points tk are tested (i.e. by iteratively incrementing the values by one
until a feasible time point has been found), the computational complexity
of the algorithm is given by O(nTr), i.e. the algorithm runs in pseudo-
polynomial time. A more efficient approach is to store the jump points at
which the resource profiles change and only test these time points tk. Then,
because each activity that is scheduled adds at most two new jump points,
the time complexity of the algorithm is reduced to O(n2r), i.e. the algorithm
runs in polynomial time.

Next, the parallel schedule generation scheme is described. The main idea of
the parallel schedule generation scheme is to consider decision points tλ such
that tλ−1 < tλ holds. Then, in each iteration λ (or, respectively, at each
decision point tλ), a subset of eligible activities is scheduled. For this algo-
rithm, a set Aλ of active activities (i.e. activities i ∈ V with Si ≤ tλ < Si+pi
that have already been scheduled and are still active at decision point tλ)
as well as a set Eλ of precedence- and resource-feasible activities that have
not yet been scheduled are associated with each iteration λ. Additionally,
Rk(t) again denotes the amount of units of resource k ∈ R available in the
time interval [t,t + 1[. The parallel schedule generation scheme is outlined
in Algorithm 3.2 (cf. Brucker and Knust (2006)).

Here, in each iteration λ (i.e. at each decision point tλ), the parallel schedule
generation scheme schedules eligible activities from the set Eλ until either
all activities from the set have been scheduled or until no more activities
can be scheduled resource-feasibly at decision point tλ. For this, a priority
rule is used to select the next eligible activity j ∈ Eλ in line 5, which can
then be scheduled immediately to start at time Sj = tλ in line 6. Then,
in line 7, the resource profiles are updated and activity j is added to the
set of active activities Aλ. Afterward, all activities i ∈ Eλ that can not
be scheduled resource-feasibly at time tλ any more are removed from the
current set Eλ in line 8. After no more eligible activities can be scheduled,
the next decision point tλ+1 is calculated in line 10 as the earliest time at

43

3 Resource-Constrained Project Scheduling

which an active activity from the set Aλ will be completed. Finally, the sets
Aλ+1 and Eλ+1 for the next iteration are calculated in line 12. Unlike the
serial schedule generation scheme, the parallel schedule generation scheme
generates schedules from the set of non-delay schedules for any priority rule
(cf. Kolisch (1996a)). For this reason, the parallel schedule generation
scheme may not always be able to generate an optimal solution.

Algorithm 3.2: Parallel Schedule Generation Scheme

1 λ := 1; t1 := 0; A1 := ∅;
2 Let E1 be the set of all activities i without predecessor and rik ≤ Rk(τ) for
k = 1, . . . ,r and all τ ∈ [0, pi[;

3 while not all activities are scheduled do
4 while Eλ 6= ∅ do
5 Choose an activity j ∈ Eλ;
6 Schedule j in the interval [Sj ,Cj [:= [tλ, tλ + pj [;
7 Update the current resource profiles and add j to Aλ;
8 Update the set Eλ by eliminating j and all activities i with

rik > Rk(τ) for some resource k and a τ ∈ [tλ,tλ + pi[;
9 end

10 Let tλ+1 = min
i∈Aλ
{Si + pi} be the minimal completion time of all active

activities;
11 λ := λ+ 1;
12 Calculate the new sets Aλ and Eλ;
13 end

Similar to the serial schedule generation scheme, the parallel schedule gen-
eration scheme also has a time complexity of O(n2r) because at most n
decision points tλ have to be considered (i.e. one for each activity). Further
results related to the serial as well as the parallel schedule generation scheme
are reported by Kolisch (1996a).

It should be noted that both, the serial as well as the parallel schedule gen-
eration scheme, can generate the schedules either in a forward direction, in a
backward direction, or bidirectional (cf. Brucker and Knust (2006)). Here,
the forward scheme schedules the activities from left to right as described
above while the backward scheme schedules the activities from right to left.
The bidirectional scheme schedules the activities either from left to right or
from right to left and then transforms the schedule into an active schedule
at the end.

44

3.2 Solution Approaches

Some important priority rules that can be used together with the schedule
generation schemes introduced above are summarized by Kolisch (1996b)
and Klein (2000). These include, for example, the priority rules SPT (short-
est processing time) and LPT (longest processing time) which select activi-
ties based on their processing times pi, as well as the priority rules MIS (most
immediate successors), LIS (least immediate successors), MTS (most total
successors), and LTS (least total successors) which select activities based on
the number of immediate or total successors. Finally, the priority rules LFT
(latest finish time), EST (earliest start time), or MSLK (minimum slack)
use values based on the network structure as well as the critical path of the
project in order to prioritize the activities.

When using schedule generation schemes in order to generate schedules,
single-pass and multi-pass methods can be distinguished. On the one hand,
single-pass methods employ one schedule generation scheme (i.e. either the
serial or the parallel schedule generation scheme using either the forward,
backward, or bidirectional scheme) as well as one specific priority rule in
order to generate exactly one schedule for a given problem instance. Com-
putational results for these schemes and various priority rules are for example
reported by Kolisch (1996a) and Klein (2000).

On the other hand, multi-pass methods generally use a combination of sched-
ule generation schemes and priority rules in order to generate multiple sched-
ules and select the best solution from these schedules. For example, Boctor
(1990) presents a multi-pass heuristic using multiple priority rules in order
to generate schedules. An alternative multi-pass heuristic using a forward-
backward scheme has been introduced by Li and Willis (1992). Finally,
sampling methods again use only one schedule generation scheme and one
priority rule but are extended by a random factor such that activities j ∈ V
are selected from the set of eligible activities based on the computed priority
value v(j) as well as on a selection probability p(j). An overview of different
types of sampling methods is, for example, given by Kolisch (1996a) as well
as Kolisch and Drexl (1996).

Apart from these solution approaches based on priority rules, another im-
portant class of solution approaches are metaheuristic approaches. These
include, for example, local search algorithms such as tabu search or simu-
lated annealing, as well as genetic algorithms and various other approaches.
Often, the serial or parallel schedule generation scheme is used to generate
starting solutions for these metaheuristics.

45

3 Resource-Constrained Project Scheduling

First of all, local search algorithms based on tabu search for the classical
resource-constrained project scheduling problem have been introduced, for
example, by Baar et al. (1998) as well as Artigues et al. (2003). While Baar
et al. (1998) describe a tabu search algorithm that tries to eliminate critical
arcs as well as another tabu search algorithm based on schedule schemes, Ar-
tigues et al. (2003) present a tabu search algorithm based on a resource flow
representation. In this algorithm, they implement neighborhoods based on
an insertion algorithm that deletes activities from a resource flows and then
reinserts them into the resource flow. Another local search approach based
on a resource flow representation as well as as an insertion algorithm for
the RCPSP with sequence-dependent and resource-independent setup times
has been introduced by Quilliot and Toussaint (2012). Next, a tabu search
algorithm for the multi-mode RCPSP with schedule-dependent setup times
is, for example, presented by Mika et al. (2008). Local search algorithms
based on simulated annealing for the RCPSP as well as for the MRCPSP
are described, for example, by Bouleimen and Lecocq (2003).

A genetic algorithm for the resource-constrained project scheduling problem
based on an activity-list representation has been introduced by Hartmann
(1998). This algorithm is then extended by Hartmann (2002) to include a
gene that denotes if the serial or the parallel schedule generation scheme is
used to transform the activity list into a schedule. Another genetic algorithm
based on activity-lists is introduced by Valls et al. (2008). This genetic al-
gorithm is extended by a double-justification procedure introduced by Valls
et al. (2005) that first shifts all activities in a schedule to the right and then
to the left in order to generate a better solution.

Finally, more recent approaches often incorporate several techniques into one
solution approach for the resource-constrained project scheduling problem.
For example, Debels et al. (2006) introduce a meta-heuristic that combines
elements of a scatter search algorithm with elements of a heuristic method
based on electromagnetism theory. An algorithm combining a genetic algo-
rithm, path linking, and tabu search is described by Kochetov and Stolyar
(2003) while a genetic algorithm combined with forward-backward improve-
ment for the multi-mode RCPSP is introduced by Lova et al. (2009).

Recent evaluations of various heuristic approaches for the classical resource-
constrained have, for example, been performed by Hartmann and Kolisch
(2000) as well as by Kolisch and Hartmann (2006). Here, Kolisch and Hart-
mann (2006) conclude that hybrid approaches perform currently best when
solving the RCPSP.

46

3.2 Solution Approaches

3.2.4 Other Approaches

Apart from heuristic approaches for solving the RCPSP, several exact solu-
tion methods have been introduced. While the earliest exact solution ap-
proaches often focused on mixed-integer linear programming formulations
(cf., for example, Wiest (1963) and Pritsker et al. (1969)), the majority of
recent developments use branch-and-bound algorithms.

The general idea of a branch-and-bound algorithm is to recursively divide
a given problem into smaller subproblems such that, for each of these sub-
problems, a lower bound on the objective function value of the set of feasible
solutions represented by this subproblem can be calculated. This enumera-
tion of solutions if referred to as branching and results in a branching tree.
Furthermore, an upper bound for the original problem is used to prune
branches of the branching tree in order to reduce the search space. Here,
if the lower bound of the subproblem represented by a tree node is larger
than or equal to the current upper bound, the corresponding branch of the
branching tree does not have to be continued. This pruning of branches is
referred to as bounding.

As a result of this, a branch-and-bound algorithm relies on several features:
a branching rule, an algorithm for calculating the lower bounds of subprob-
lems, as well as an algorithm for calculating an (initial) upper bound. Here,
first of all, any feasible solution for a given problem instance can be regarded
as an upper bound for this instance. For this reason, an initial upper bound
can, for example, be calculated by a heuristic algorithm and then be updated
as better solutions are generated by the branch-and-bound algorithm such
that at any time the currently best feasible solution is used as an upper
bound. Next, a short overview of different branch-and-bound algorithms
based on the branching rules employed in these algorithms as well as vari-
ous lower bounds for the resource-constrained project scheduling problem is
given.

One of the earliest branch-and-bound algorithms for the RCPSP has been
presented by Stinson et al. (1978) (branching based on extension alterna-
tives) and is discussed in detail and compared to other exact approaches by
Patterson (1984). More recent branch-and-bound algorithms for the classi-
cal RCPSP have, for example, been introduced by Christofides et al. (1987)
as well as by Demeulemeester and Herroelen (1992, 1997) (branching based
on delaying alternatives), by Patterson et al. (1989) (branching based on

47

3 Resource-Constrained Project Scheduling

precedence trees), and by Brucker et al. (1998) (branching based on sched-
ule schemes). Similarly, branch-and-bound algorithms for the multi-mode
resource-constrained project scheduling problem have, for example, been de-
scribed by Hartmann and Drexl (1998) as well as Sprecher et al. (1997) and
Sprecher and Drexl (1998).

Various constructive as well as destructive lower bounds for the resource-
constrained project scheduling problem have, for example, been described
by Klein and Scholl (1999). Here, one of the most basic constructive lower
bounds is given by the length of a critical path of the project as described in
Section 3.1.2. An LP-based lower bound has been introduced by Mingozzi
et al. (1998) while an extension of this approach by constraint propagation
into an destructive lower bound is described by Brucker and Knust (2000),
Baptiste and Demassey (2004), and Demassey et al. (2005).

Finally, more recent developments for solving the RCPSP are based on hy-
brid approaches incorporating techniques based on constraint propagation
and satisfiability testing (cf. Schutt et al. (2009)). This approach is ex-
tended by linear relaxations based on integer programming formulations as
described by Berthold et al. (2010).

48

4 A Solution Approach for the HEP based
on Priority Rules

After literature relating to the resource-constrained project scheduling prob-
lem as well as its extensions has been introduced in the previous chapter, a
first solution solution approach for the problem of hospital evacuations as it
has been described in Chapter 2 is presented in this chapter.

Before this solution approach is introduced, however, the problem of hospital
evacuations is first modeled as a multi-mode resource-constrained project
scheduling problem with resource transfers and blockings. In the following,
a formal description of this model is introduced in Section 4.1. Here, in
particular, the incorporation of resource transfers as well as blockings into
the model is described in detail. Additionally, this section contains a mixed-
integer linear programming formulation as well as further considerations
regarding extensions of the model.

Afterward, in Section 4.2, the solution approach itself is introduced. This
solution approach is based on a tabu search algorithm that generates sched-
ules for mode selections using either a parallel or a serial schedule generation
scheme. Here, in particular, the focus of this section is on the adaption of
the schedule generation schemes as they have been described in the previous
chapter. Also, we discuss some shortcomings of this solution approach in
this section.

4.1 Model

In this section, a model for the problem of hospital evacuations is introduced.
As described in Section 2.2.2, the HEP consists of scheduling the evacua-
tion of all patients from their initial locations inside the hospital to safety
zones (or staging areas) inside or outside the hospital using the available
resources (i.e. assistants, aids, and building sections) such as to minimize
the time required to evacuate all patients. The model proposed here is

49

4 A Solution Approach for the HEP based on Priority Rules

based on the multi-mode resource-constrained project scheduling problem
and incorporates resource transfers as well as blockings. In the following,
the model for the problem of hospital evacuations is described in Section
4.1.1. Afterward, a mixed-integer linear programming formulation for this
model is introduced in Section 4.1.2 while further considerations related to
the problem are discussed in Section 4.1.3.

4.1.1 Problem Description

In order to evacuate a patient from his initial location to a safety zone,
various resources (i.e. assistants, aids, and building sections) are required.
Here, each type of assistant (e.g. nurses, firemen, etc.) with different skills
as well as each type of aid (e.g. stretchers, wheelchairs, etc.) is modeled as
a renewable resource k with a capacity Rk equal to the amount of available
resource units of this type. Furthermore, each building section (e.g. each
corridor, stair, elevator, etc.) is modeled as a separate renewable resource k
(i.e. there might be multiple resources of the same type) with a capacity Rk
equal to the capacity of the respective building section. In the following, the
set R contains all resources k = 1, . . . , r while the subsets Rasst, Raid, and
Rsect contain all resources that model assistants, aids, and building sections,
respectively. Additionally, the set Rtrf = Rasst ∪Raid contains all resources
that incur a transfer time if they are transferred between two jobs.

Now, the evacuation of a patient from his initial location (e.g. his sickroom)
to a safety zone or staging area is regarded as a job j such that an overall
of N jobs j = 1, . . . , N have to be scheduled. These jobs as well as a
dummy source job 0 and a dummy sink job N +1 are represented by the set
J = {0, 1, . . . , N,N + 1}. Associated with each job j ∈ J are mj1 different
modes m1 = 1, . . . ,mj1 as well as mj2 different modes m2 = 1, . . . ,mj2

such that mode m1 is used to select the required assistants and aids for the
evacuation of the patient (e.g. two assistants and a stretcher, or one assistant
and a wheelchair, etc.) while mode m2 is used to select the evacuation route
along which the patient will be evacuated. In the following, modes m1 are
referred to as equipment modes and are included in a setMj1 = {1, . . . ,mj1}
for each job j ∈ J while modes m2 are referred to as route modes and are
included in a setMj2 = {1, . . . ,mj2} for each job j. Based on these modes,
each job j ∈ J is assigned an additional setMj with

Mj = {(m1,m2) | m1 ∈Mj1 and m2 ∈Mj2}

50

4.1 Model

containing all combinations of modes m1 ∈ Mj1 and m2 ∈ Mj2. For the
sake of simplicity, these mode combinations are abbreviated by modes m =
(m1,m2) in the following such that each job j ∈ J is assigned an overall of
mj different modesm = 1, . . . ,mj (withmj = mj1 ·mj2). It should be noted
that the two dummy jobs 0 and N + 1 are assigned only m0 = mN+1 = 1
mode combination (m01,m02) = (mN+1,1,mN+1,2) = (1, 1).

Next, as described in Section 2.2.2, the infrastructure of the hospital is par-
titioned into building sections such that the evacuation of a patient from
his initial location to a safety zone along an evacuation route generally re-
quires multiple of these sections. In this model, each evacuation route for a
patient is represented by a chain of operations such that each operation cor-
responds to the transport of the patient through a specific building section
(cf. Example 4.1). Thus, a total of nj operations Ouj (u = 1, . . . , nj) are
associated with each job j ∈ J such that precedence constraints Ouj → Ovj
represent the sequence of operations modeling the selected evacuation route
(i.e. the order in which the patient is transported through the building sec-
tions). It should be noted that these chains of operations indirectly model
the underlying network structure of the infrastructure of the hospital. In
the following, the operations Ouj with j = 1, . . . , N and u = 1, . . . , nj are
identified by the numbers 1, . . . , n, i.e. there are a total of n operations.
Additionally, a dummy source operation 0 is associated with dummy job 0
and a dummy sink operation n+ 1 is associated with dummy job N + 1.

It should be noted that the differentiation between jobs (representing the
evacuation of a patient) as well as operations (representing one step in the
evacuation of a patient) differs from the concept of activities generally used
in resource-constrained project scheduling. Instead, this differentiation is
based on the concept of jobs and operations used in shop scheduling prob-
lems where each job consists of a chain of operations that have to be pro-
cessed on dedicated machines. Here, while each operation in a shop schedul-
ing problem only requires one machine (i.e. one resource unit), multiple re-
sources in various quantities (i.e. assistants, aids, as well as sufficient amount
of space in a specific building section) are required in order to process one
operation in this problem.

Example 4.1 We consider an example of a hospital building consisting of
six rooms (e.g. sickrooms) as well as two exits corresponding to the safety
zones to which the patients have to be evacuated. In this example, the
corridor is partitioned into the eight sections C1 through C8. The floor plan
of this hospital building is displayed in Figure 4.1.

51

4 A Solution Approach for the HEP based on Priority Rules

Room 1

Room 2

Room 3

Room 4

Room 5

Room 6

C1

C2

C3

C4

C5

C6

C7

C8

Exit 1 Exit 2

Figure 4.1: Floor plan of the hospital building considered in Example 4.1.
The hospital consists of six room, two exits, as well as a corridor
that is partitioned into the eight sections C1 through C8.

Room 5 C6 C4 C1 C2 Exit 1

Room 5 C6 C7 Exit 2

Figure 4.2: Operations representing the two possible shortest evacuation
routes from room 5 (i.e. the initial location of the patient) to
the two exits (i.e. the safety zones).

Now, if a patient has to be evacuated from his initial location in room 5 to ei-
ther of the two exits, two possible evacuation routes based on shortest paths
between the corresponding locations can be calculated. The operations rep-
resenting these evacuation routes are displayed in Figure 4.2 and consist of
one operation at the initial location (e.g. representing the preparation of the
patient for the transport), the transport itself through the corridor sections,
as well as a postprocessing of the patient at the exit (e.g. to prepare the
patient for the further transport to a sheltering facility). 2

In the following, the set V = {1, . . . , n} contains all real operations of jobs
j = 1, . . . , N while the set Vall = {0, 1, . . . , n, n+ 1} contains all operations
including the two dummy operations 0 and n + 1. Additionally, for each

52

4.1 Model

job j ∈ J as well as for each route mode m2 ∈ Mj2 of this job, an ad-
ditional set Vj(m2) is introduced that contains all operations Ouj of job j
that represent the evacuation route corresponding to route mode m2. Also,
because resource consumptions are represented by resource flows, additional
sets V0, V∗, Vin, and Vout are introduced. Here, the sets V0 = {0, 1, . . . , n}
and V∗ = {1, . . . , n+ 1} are defined as before and are used to calculate the
transfer of building sections between operations of different jobs. Next, the
set Vin contains all operations which require incoming resource transfers of
assistants and aids (i.e. before the patient can be evacuated from his initial
location) and includes the first operation of each evacuation route of each
job j = 1, . . . , N . Similarly, the set Vout contains all operations from which
outgoing resource transfers of assistants and aids are allowed (i.e. after the
patient has arrived in a safety zone) and includes the last operation of each
evacuation route of each job j = 1, . . . , N . Finally, the sets V ′out = Vout∪{0}
and V ′in = Vin ∪ {n + 1} additionally contain dummy source operation 0 or
dummy sink operation n+ 1, respectively.

Below, σ(u) ∈ J corresponds to the job j to which an operation u ∈ Vall

belongs. Now, each operation u ∈ Vall is assigned processing times pum
as well as resource requirements rumk for resources k ∈ R depending on
the selected mode combination m ∈ Mσ(u) with m = (m1,m2) in which
the corresponding job σ(u) is processed. Here, because only operations
u ∈ Vj(m2) belonging to the evacuation route denoted by mode m2 ∈ Mj2

of job j ∈ J have to be scheduled, all other operations v ∈ Vj(m̃2) of this
job with m̃2 ∈Mj2 and m̃2 6= m2 are assigned processing times pvm = 0 as
well as resource requirements rvmk = 0 for all resources k ∈ R, i.e. these
operations do not have to be scheduled if mode combination m is selected.
For operations u ∈ Vj(m2) of the job corresponding to the evacuation route
denoted by mode m2, however, the processing time pum depends on the
speed with which the patient can be evacuated (i.e. it depends on the
assistants and aids used for the evacuation of the patient as denoted by
mode m1 ∈ Mj1) as well as the length of the building section through
which the patient has to be evacuated. The processing time pum is then
calculated as

pum =
(length of the building section)
(speed of the required resources)

+ (action time). (4.1)

Here, the term action time describes the time required to perform an ad-
ditional action in specific building sections along the evacuation route. For
example, it might describe the time required to prepare the patient at his

53

4 A Solution Approach for the HEP based on Priority Rules

initial location, the time required to use an elevator, or the time required to
open and pass through a door. It should be noted that the processing time
of an operation can only be regarded as a minimum time that an operation
has to be processed for in any feasible schedule. In particular, if a block-
ing occurs, an operation remains active until its successor operation can be
started, i.e. all resources required by this operation remain occupied.

Similarly, the resource requirements rumk of operations u ∈ Vj(m2) corre-
sponding to the selected evacuation route as denoted by mode m2 ∈Mj2 of
job j ∈ J also depend on the required assistants and aids as denoted by mode
m1 ∈ Mj1. It is important to note that all of these operations u ∈ Vj(m2)
require the same assistants and aids, i.e. these resources can not be ex-
changed for the duration of the complete job. As already described above,
all required assistants and aids have to be transferred to the first operation
representing the selected evacuation route (this operation is contained in
the set Vin) and only become available again after the last operation repre-
senting the selected evacuation route has been completed (this operation is
contained in the set Vout). Apart from assistants and aids, each operation
also requires a specific amount of space in the building section correspond-
ing to the operation. This amount of space again depends on the required
assistants and aids used for the evacuation of the patient. For example,
evacuating a patient on a stretcher requires more space than evacuating a
patient that can walk with the help of an assistant.

Finally, dummy source operation 0 as well as dummy sink operation n + 1
have processing times p01 = pn+1,1 = 0 as well as resource requirements
r01k = rn+1,1k = Rk for all resources k ∈ R in the only available mode
combination m = 1 of the corresponding dummy job. Thus, similar to the
model described by Artigues et al. (2003), all resource units are initially
located at dummy source operation 0 and are collected at dummy sink op-
eration n + 1 at the end of the evacuation. In the following, it is assumed
that all assistants and aids are available at a starting location associated
with dummy source operation 0. From this starting location, they first have
to be transferred to the initial locations of the patients before these can be
evacuated. On the other hand, at the end of the evacuation, it is assumed
that the assistants and aids do not have to be transferred to a location as-
sociated with dummy source operation n+ 1. Instead, the evacuation ends
as soon as the last patient has been evacuated.

Next, as stated above, precedence constraints u → v are inserted between
two operations u ∈ Vj(m2) and v ∈ Vj(m2) representing two successive

54

4.1 Model

building sections of an evacuation route of job j ∈ J as it is denoted by
route mode m2 ∈ Mj2. Additionally, precedence constraints 0 → v are
inserted between dummy source operation 0 and the first operation v ∈ Vin

of each evacuation route while precedence constraints u→ n+1 are inserted
between the last operation u ∈ Vout of each evacuation route and dummy
sink operation n+ 1.

Example 4.2 We consider an evacuation problem in which N = 2 patients
have to be evacuated. While the first patient can be evacuated along two
different evacuation routes represented by operations 1→ 2→ 3 and 4→ 5,
respectively, the second patient can only be evacuated along one evacuation
route represented by operations 6 → 7 → 8. The two corresponding jobs
j = 1, 2 are displayed in Figure 4.3.

1 2 3

4 5

0 9

6 7 8

Patient 1

Patient 2

Figure 4.3: Activity-on-node network representing the operations of the two
jobs considered in the problem instance from Example 4.2 as
well as the two dummy operations 0 and 9.

In this example, dummy source operation 0 has to be processed before the
first operation of each evacuation route (i.e. before operations 1, 4, and 6)
while dummy sink operation 9 has to be processed after the last operation
of each evacuation route (i.e. after operations 3, 5, and 8). 2

In the following, the set NB contains all precedence constraints u → v be-
tween non-blocking operations (i.e. operation u ends immediately after it

55

4 A Solution Approach for the HEP based on Priority Rules

has been active for its processing time) while the set B contains all prece-
dence constraints u → v between blocking operations (i.e. operation u can
only end after operation v has started processing). Blocking constraints
have been extensively studied in shop scheduling problems where blockings
occur if no intermediate storage is available and a job remains on a machine
until the next machine is available. For example, Hall and Sriskandarajah
(1996) give an overview of blocking shop scheduling problems with a fo-
cus on flow-shop scheduling problems while Mascis and Pacciarelli (2002)
consider the blocking job-shop scheduling problem. In the context of the
resource-constrained project scheduling problem, blocking constraints have
only been considered in a limited amount of works, e.g. by Pappert et al.
(2010) in an assembly line scheduling problem as well as by Kröger (2013)
in a rail-rail transshipment problem.

For the model presented here, all precedence constraints 0 → v between
dummy source operation 0 and the first operation of an evacuation route as
well as all precedence constraints u→ n+1 between the last operation of an
evacuation route and dummy sink operation n+1 are included in the set NB
while all other precedence constraints between successive operations along
an evacuation route are included in the set B. Here, the latter precedence
constraints have to be considered as blocking because a patient that is being
evacuated physically stays in a building section until he arrives in the next
building section.

Finally, an important part of the model is the transfer of assistants and aids
between jobs. Whenever an assistant or an aid is transferred, the physical
transfer requires a certain amount of time depending on the current location
of the resource as well as the location of the patient within the hospital. This
transfer time is denoted by ∆uvk for all operations u ∈ V ′out and v ∈ V ′in as
well as for all resources k ∈ Rtrf where u is the operation of the job from
which the resource is being transferred and v is the operation of the job
to which the resource is being transferred. Similar to the processing times
described above, the transfer times ∆uvk depend on the physical distance
between the building sections used by operations u and v as well as on the
speed with which the resource can be transferred.

Here, because operations u ∈ Vout represent the safety zones to which the
patients have to be evacuated and operations v ∈ Vin represent the initial
locations of the patients, it can be assumed that ∆uvk > 0 holds for all
resources k ∈ Rtrf between these operations. Furthermore, ∆0vk > 0 can be
assumed to hold for the transfer time of resource k ∈ Rtrf from the starting

56

4.1 Model

location associated with dummy source operation 0 to the initial location of
a patient associated with operation v ∈ Vin. Finally, ∆u,n+1,k = 0 can be
assumed to hold for the transfer time of resource k ∈ Rtrf from operation
u ∈ V ′out to dummy sink operation n+ 1. These latter transfer times denote
that resources k ∈ Rtrf do not have to be transferred to any specific location
associated with dummy sink operation n+ 1 at the end of the evacuation.

It is important to note that aids have to be transported by assistants. In
particular, an amount of µkl assistants k ∈ Rasst are required to transfer
one unit of aid l ∈ Raid to the patient. Here, if the assistants required to
transport the aid are in a different location than the aid before the transfer,
they first have to be transferred to the location of the aid before they can
transport it to the location of the patient. For this reason, the actual transfer
times can differ from the times ∆uvk such that three scenarios have to be
considered as described below.

First of all, if an assistant k ∈ Rasst becomes available at time Cu at oper-
ation u ∈ V ′out and is directly transferred to operation w ∈ V ′in (i.e. if the
assistant does not have to transport an aid), inequality (4.2) has to hold for
the starting time Sw of operation w.

Sw ≥ Cu +∆uwk (4.2)

Otherwise, if an assistant k ∈ Rasst from operation u ∈ V ′out is used to
transport an aid l ∈ Raid from operation v ∈ V ′out to operation w ∈ Vin, two
different scenarios have to be considered. In both scenarios, the assistant
first has to be transferred to the location of the aid (unless they are in the
same location already, i.e. if ∆uvk = 0 holds), which he can then transport
to the location of the patient. Now, if Cu+∆uvk ≥ Cv holds for operations u
and v, i.e. if the assistant arrives at the location corresponding to operation
v after this operation has been completed, inequality (4.3) has to hold for
the starting time of operation w. In this case, the assistant can directly
transport the aid to the location of the patient after he has arrived at the
location of the aid.

Sw ≥ Cu +∆uvk +∆vwk (4.3)

On the other hand, if Cu + ∆uvk < Cv holds for operations u and v, i.e.
if the assistant arrives at the location of the aid before the corresponding
operation v has been completed, inequality (4.4) has to hold for the starting
time Sw of operation w. In this case, the assistant has to wait at the location
of the aid until the aid becomes available before he can transport the aid to

57

4 A Solution Approach for the HEP based on Priority Rules

the location of the patient.

Sw ≥ Cv +∆vwk (4.4)

In order to visualize blockings as well as resource transfers for the model
introduced in this section, a small example based on the evacuation of two
patients from a hospital is given in Example 4.3.

Example 4.3 We again consider the hospital from Example 4.1 displayed
in Figure 4.1. Now, two patients have to be evacuated such that patient 1
has to be evacuated from room 5 to exit 2 with the help of one assistant as
well as one wheelchair while patient 2 has to be evacuated from room 3 to
exit 2 with the help of one assistant. The operations corresponding to the
evacuation of these two patients as well as the processing times and required
building sections of these operations are displayed in the activity-on-node
network in Figure 4.4.

1 2 3 4

0 10

5 6 7 8 9

1

Room 5

2

C6

2

C7

1

Exit 2

1

Room 3

1

C4

1

C6

1

C7

1

Exit 2

Patient 1

Patient 2

Figure 4.4: Activity-on-node network displaying the operations correspond-
ing to the evacuation of the two patients as well as the two
dummy operations 0 and 10 for the scenario from Example 4.3.
The processing times of the operations are given above the nodes
while the required building sections are given below.

In order to evacuate these patients, two assistants as well as one wheelchair
are available at exit 1. Additionally, all building sections k ∈ Rsect (i.e.
all rooms, exits, and corridor sections) have a capacity of Rk = 1 such that

58

4.1 Model

only one patient can be transported through a building section at any time t
independent of the required assistants and aids. Next, the transfer times for
all resources k ∈ Rtrf are based on the shortest paths between the different
locations used in this example such that one time unit is required in order to
move through any building section (i.e. the transfer times are independent of
the resources). The resulting transfer times ∆uvk = ∆uv are given in Table
4.1. Finally, one assistant is required to transport the wheelchair between
different locations.

Room 3 Room 5 Exit 1 Exit 2
Room 3 0 3 4 4
Room 5 3 0 5 3
Exit 1 4 5 0 6
Exit 2 4 3 6 0

Table 4.1: Transfer times between the different locations of the hospital con-
sidered in Example 4.3.

Below, a feasible schedule for this example is displayed in Figure 4.5. In
this schedule, two blockings occur between operations 6 and 7 (blocked by
operation 2 on corridor section C6) as well as between operations 7 and
8 (blocked by operation 3 on corridor section C7). The makespan of this
schedule is Cmax = 12. Here, an assistant as well as the wheelchair can
both be transferred from dummy source operation 0 to operation 1 for the
evacuation of patient 1 while the second assistant can be transferred from
dummy operation 0 to operation 5 for the evacuation of patient 2.

In order to visualize an example where assistant and wheelchair are not
in the same location, we reduce the amount of available assistants to one
assistant. An alternative schedule for this example is displayed in Figure 4.6.
In this schedule, the assistant first evacuates patient 2 to exit 2 (represented
by operation 9). Afterward, the assistant has to return to the location of
the wheelchair at exit 1 (represented by operation 0) from where he can
then transport the wheelchair to the location of patient 1 (represented by
operation 1). Overall, this schedule has a makespan of Cmax = 26. 2

It should be noted that, in the model presented here, all assistants used for
the transport of aids that are required for the evacuation of a patient are
also themselves used for the evacuation of this patient. As generally only
one unit of aid is required (e.g. one stretcher, one wheelchair, etc.), this is

59

4 A Solution Approach for the HEP based on Priority Rules

Assistants

0 5 10 15 20 25

∆01W 1 2 3 4

∆05A 5 6 7 8 9

Wheelchair

0 5 10 15 20 25

∆01W 1 2 3 4

Room 3

0 5 10 15 20 25

5

Room 5

0 5 10 15 20 25

1

C4

0 5 10 15 20 25

6

C6

0 5 10 15 20 25

2 7

C7

0 5 10 15 20 25

3 8

Exit 2

0 5 10 15 20 25

4 9

Figure 4.5: A feasible schedule for the problem of evacuating two patients
from the small hospital displayed in Figure 4.1 with the help of
two assistants as well as one wheelchair. Here, blockings occur
between operations 6 and 7 as well as between operations 7 and
8 and are marked by crosshatched boxes. Resource transfers are
identified by oval boxes such that direct transfers are marked in
light gray while resource transports are marked in dark gray.

60

4.1 Model

Assistants

0 5 10 15 20 25

∆05A 5 6 7 8 9 ∆90A ∆01W 1 2 3 4

Wheelchair

0 5 10 15 20 25

∆01W 1 2 3 4

Room 3

0 5 10 15 20 25

5

Room 5

0 5 10 15 20 25

1

C4

0 5 10 15 20 25

6

C6

0 5 10 15 20 25

7 2

C7

0 5 10 15 20 25

8 3

Exit 2

0 5 10 15 20 25

9 4

Figure 4.6: A schedule for the problem of evacuating two patients from the
small hospital displayed in Figure 4.1 using one assistant as well
as one wheelchair. Here, after patient 2 has been evacuated to
exit 2, the assistant first has to be transferred to exit 1 where
the wheelchair is located (represented by operation 0) and from
there, the assistant transports the wheelchair to the initial loca-
tion of patient 1 (represented by operation 1).

61

4 A Solution Approach for the HEP based on Priority Rules

a feasible assumption for this problem. This assumption as well as other
extensions of this model are further discussed in Section 4.1.3.

4.1.2 Mixed-Integer Linear Programming Formulation

In this section, a mixed-integer linear programming formulation for the MR-
CPSP with blockings and resource transfers modeling the problem of hospi-
tal evacuations is described. For this formulation, the following integer and
binary variables are required.

First of all, integer variables Su and Cu denote the starting and finishing time
of operation u ∈ Vall, respectively. In order to select the mode combination
in which a job has to be processed, binary variables xjm are introduced for
all jobs j ∈ J and mode combinations m ∈Mj with

xjm =

{
1, if job j is executed in mode combination m

0, otherwise.

Next, resource transfers of resources k ∈ Rtrf have to be calculated for the
first and the last operation of each job while resource transfers of resources
k ∈ Rsect have to be calculated between arbitrary operations of different jobs
that require the same building section. Here, integer variables f trf

uvk equal
the amount of resource units of resource k ∈ Rtrf transferred from operation
u ∈ V ′out to operation v ∈ V ′in while integer variables f sect

uvk equal the amount
of resource units of resource k ∈ Rsect transferred from operation u ∈ V0 to
operation v ∈ V∗. Similarly, binary variables αtrf

uvk for all u ∈ V ′out, v ∈ V ′in,
and k ∈ Rtrf with

αtrf
uvk =

{
1, if resource k is transferred from operation u to operation v

0, otherwise

as well as binary variables αsect
uvk for all u ∈ V0, v ∈ V∗, and k ∈ Rsect with

αsect
uvk =

{
1, if resource k is transferred from operation u to operation v

0, otherwise

are introduced. Additionally, integer variables zuvwkl denote the amount
of resource units of resource k ∈ Rasst from operation u ∈ V ′out that are
used to support the transfer of resource l ∈ Raid from operation v ∈ V ′out to

62

4.1 Model

operation w ∈ Vin. As before, binary variables βuvwkl are introduced for all
u,v ∈ V ′out, w ∈ Vin, k ∈ Rasst, and l ∈ Raid with

βuvwkl =


1, if resource k from operation u supports the transfer

of resource l from operation v to operation w

0, otherwise.

For these latter variables, dummy sink operation n+ 1 does not have to be
considered because ∆u,n+1,k = 0 is assumed to hold for the transfer times
of all resources k ∈ Rsect from operations u ∈ V ′out to dummy sink operation
n + 1. As a result of this, no actual transfers occur and no assistants are
required to transport the aids to this dummy operation.

Now, the mixed-integer linear programming formulation itself is introduced.
It should be noted that all parameters used in this formulation (i.e. process-
ing times pum, resource requirements rumk, resource capacities Rk, transport
requirements µkl, as well as transfer times ∆uvk) are assumed to be integer.
As before, the objective is to minimize the makespan (4.5) as denoted by the
completion time Cn+1 of dummy operation n + 1, i.e. the hospital should
be evacuated as quickly as possible.

min Cn+1 (4.5)

Next, the various constraints for the MRCPSP model are introduced. Here,
first of all, equations (4.6) ensure that exactly one mode combination m ∈
Mj is chosen for each job j ∈ J in which the job will be executed.∑

m∈Mj

xjm = 1 (j ∈ J) (4.6)

Below, constraints (4.7) ensure that each operation u ∈ Vall is processed for
at least its processing time pum in the selected mode combinationm ∈Mσ(u)

of the corresponding job σ(u). The actual completion time of the operation
might be later if a blocking occurs.

Su +
∑

m∈Mσ(u)

pum · xσ(u),m ≤ Cu (u ∈ Vall) (4.7)

In order to model the precedence constraints u→ v between two successive
operations u, v ∈ Vall, inequalities (4.8) as well as equalities (4.9) are intro-
duced. Here, inequalities (4.8) model the precedence constraints (u,v) ∈ NB
for which no blocking constraints have to be observed, i.e. operation u ends

63

4 A Solution Approach for the HEP based on Priority Rules

immediately after it has been processed for its processing time pum. Simi-
larly, equations (4.9) model the precedence constraints (u,v) ∈ B for which
blocking constraints have to be observed, i.e. operation u can only end at
the starting time Sv of operation v.

Cu − Sv ≤ 0 ((u,v) ∈ NB) (4.8)

Cu − Sv = 0 ((u,v) ∈ B) (4.9)

Next, the constraints related to resource transfers are introduced. First of
all, equations (4.10) model incoming resource transfers of resources k ∈ Rtrf

between jobs while equations (4.11) model outgoing resource transfers of
resources k ∈ Rtrf between jobs. Here, the amount of incoming resource
units of resources k ∈ Rtrf to the first operation v ∈ V ′in of the selected
evacuation route has to be equal to the resource requirements rvmk of the
operation if the corresponding job σ(v) is executed in mode combination
m ∈ Mσ(v). Similarly, the amount of outgoing resource units of resource
k ∈ Rtrf from the last operation u ∈ V ′out of the selected evacuation route
also has to be equal to the resource requirements rumk of the operation if
the corresponding job σ(u) is executed in mode combination m ∈Mσ(u).∑

u∈V ′out

f trf
uvk =

∑
m∈Mσ(v)

rvmk · xσ(v),m (v ∈ V ′in; k ∈ Rtrf) (4.10)

∑
v∈V ′in

f trf
uvk =

∑
m∈Mσ(u)

rumk · xσ(u),m (u ∈ V ′out; k ∈ Rtrf) (4.11)

Below, the transfer of building sections is modeled by equations (4.12) and
(4.13). Unlike assistants and aids, building sections are transferred between
individual operations of different jobs instead of between the jobs themselves.
As before, the amount of incoming and outgoing resource units to and from
an operation has to be equal to the amount of resource units required by
the operation.∑

u∈V0

f sect
uvk =

∑
m∈Mσ(v)

rvmk · xσ(v),m (v ∈ V∗; k ∈ Rsect) (4.12)

∑
v∈V∗

f sect
uvk =

∑
m∈Mσ(u)

rumk · xσ(u),m (u ∈ V0; k ∈ Rsect) (4.13)

Now, constraints (4.14) and (4.15) are introduced in order to calculate which
assistants are used to transport the required aids to the initial location from
which the patient will be evacuated. Here, equations (4.14) ensure that
an amount of µkl units of resource k ∈ Rasst from operations u ∈ V ′out are

64

4.1 Model

assigned to transport one unit of resource l ∈ Raid from operation v ∈ V ′out to
operation w ∈ Vin. Additionally, inequalities (4.15) ensure that the amount
of resource units of resource k ∈ Rasst from operation u ∈ V ′out used to
transport resource units of resources l ∈ Raid from operations v ∈ V ′out to
operation w ∈ Vin may not exceed the amount of resource units of resource
k that are actually transferred from operation u to operation w.∑

u∈V ′out

zuvwkl = µkl · f trf
vwl

(
v ∈ V ′out; w ∈ Vin;

k ∈ Rasst; l ∈ Raid

)
(4.14)

∑
v∈V ′out

∑
l∈Raid

zuvwkl ≤ f trf
uwk

(
u ∈ V ′out; w ∈ Vin;

k ∈ Rasst

)
(4.15)

In the following, the binary variables αtrf
uvk, α

sect
uvk, and βuvwkl are calculated

based on the selected resource transfers. Here, inequalities (4.16) and (4.17)
ensure that αtrf

uvk = 1 holds if and only if resource k ∈ Rtrf is transferred
from operation u ∈ V ′out to operation v ∈ V ′in.

f trf
uvk ≤ Rk · αtrf

uvk (u ∈ V ′out; v ∈ V ′in; k ∈ Rtrf) (4.16)

αtrf
uvk ≤ f trf

uvk (u ∈ V ′out; v ∈ V ′in; k ∈ Rtrf) (4.17)

Next, inequalities (4.18) and (4.19) ensure that αsect
uvk = 1 holds if and only if

resource l ∈ Rsect is transferred from operation u ∈ V0 to operation v ∈ V∗.

f sect
uvk ≤ Rk · αsect

uvk (u ∈ V0; v ∈ V∗; k ∈ Rsect) (4.18)

αsect
uvk ≤ f sect

uvk (u ∈ V0; v ∈ V∗; k ∈ Rsect) (4.19)

Finally, inequalities (4.20) and (4.21) ensure that βuvwkl = 1 holds if and
only if resource k ∈ Rasst from operation u ∈ V ′out is used to transport
resource l ∈ Raid from operation v ∈ V ′out to operation w ∈ Vin.

zuvwkl ≤ max{Rk, Rl} · βuvwkl
(
u,v ∈ V ′out; w ∈ Vin;

k ∈ Rasst; l ∈ Raid

)
(4.20)

βuvwkl ≤ zuvwkl
(
u,v ∈ V ′out; w ∈ Vin;

k ∈ Rasst; l ∈ Raid

)
(4.21)

After all constraints related to resource transfers have been introduced
above, the starting times Sw of operations w ∈ V ′in are now calculated by in-
equalities (4.22) and (4.23). Here, on the one hand, inequalities (4.22) calcu-
late the earliest time at which resource k ∈ Rtrf from operation u ∈ V ′out can
arrive at operation w ∈ V ′in if it is transferred directly. On the other hand,

65

4 A Solution Approach for the HEP based on Priority Rules

inequalities (4.23), calculate the earliest time at which resource k ∈ Rasst

from operation u ∈ V ′out can arrive at operation w ∈ Vin if resource k is used
to transport resource l ∈ Raid from operation v ∈ V ′out to operation w.

Sw ≥ Cu +∆uwk −M · (1− αtrf
uvk)

u ∈ V ′out;
w ∈ V ′in;

k ∈ Rtrf

 (4.22)

Sw ≥ Cu +∆uvk +∆vwl −M · (1− βuvwkl)


u,v ∈ V ′out;
w ∈ Vin;
k ∈ Rasst;

l ∈ Raid

 (4.23)

Here, M is a big integer value that should be chosen such that M is an
upper bound on the time required to process all operations. Also, it should
be noted that inequalities (4.22) represent the two scenarios (4.2) and (4.4)
while inequalities (4.23) represent scenario (4.3). Finally, inequalities (4.24)
link the starting times Sw of operations w ∈ V∗ with the resource transfers
of resources k ∈ Rsect.

Sw ≥ Cu −M · (1− αsect
uwk) (u ∈ V0; w ∈ V∗; k ∈ Rsect) (4.24)

Lastly, constraints (4.25) through (4.33) given below define the domains of
the variables used in this mixed-integer linear programming formulation.

Su ∈ N (u ∈ Vall) (4.25)

Cu ∈ N (u ∈ Vall) (4.26)

xjm ∈ {0, 1} (j ∈ J ; m ∈Mj) (4.27)

f sect
uvk ∈ N (u ∈ V0; v ∈ V∗; k ∈ Rsect) (4.28)

αsect
uvk ∈ {0, 1} (u ∈ V0; v ∈ V∗; k ∈ Rsect) (4.29)

f trf
uvk ∈ N (u ∈ V ′out; v ∈ V ′in; k ∈ Rtrf) (4.30)

αtrf
uvk ∈ {0, 1} (u ∈ V ′out; v ∈ V ′in; k ∈ Rtrf) (4.31)

zuvwkl ∈ N (u ∈ V ′out; v ∈ V ′out; w ∈ Vin; k ∈ Rasst; l ∈ Raid) (4.32)

βuvwkl ∈ {0, 1} (u ∈ V ′out; v ∈ V ′out; w ∈ Vin; k ∈ Rasst; l ∈ Raid) (4.33)

4.1.3 Further Considerations

Apart from the constraints introduced above, various extensions of the prob-
lem might also be of interest. Here, first of all, the number of assistants re-

66

4.1 Model

quired to transport aids to the location of the patient might be larger than
the number of assistants required to actually evacuate the patient. In this
case, additional assistants have to be assigned to transport these aids. This
more general situation is considered in Chapter 5 in which the resource-
constrained project scheduling problem with first- and second-tier resource
transfers is tackled. On the other hand, it is also possible to include aids
as well as assistants as composite resources such that specific assistants are
assigned to specific aids for the duration of the complete evacuation. This
situation can be represented with the model introduced above and renders it
unnecessary to assign assistants to the transport of aids during the schedul-
ing at the cost of flexibility.

Next, resources with time-dependent resource profiles instead of renewable
resources can be considered. These can be used, for example, if assistants
arrive over time to help with the evacuation or if some assistants are not
available for the complete planning horizon. Such time-dependent resource
profiles can, for example, be realized by adding additional dummy opera-
tions that are scheduled at specific times corresponding to the jump points
of the resource profiles. These additional operations then either release ad-
ditional resources (source nodes) or collect resources (sink nodes) similar to
the dummy operations 0 and n+ 1.

Another possible extension is the introduction of release dates rj for jobs
j ∈ J denoting the time at which a patient becomes available for evacuation.
On the other hand, deadlines or due dates dj for jobs j ∈ J can be used if a
patient has to arrive in a specific safety zone at a specific time, for example
if the further transport to sheltering facilities has already been planned.
Here, due dates can also be used in conjunction with alternative time-based
objective functions, e.g. based on the earliness or tardiness of jobs.

Finally, another design decision concerns the evacuation routes for the pa-
tients. In the model presented above, evacuation routes have to be calcu-
lated in advance and are then selected by the scheduler by choosing the
corresponding route mode for each patient. In this case, one possible ap-
proach is to calculate the shortest path from the location of each patient
to each safety zone. The number of possible evacuation routes can then be
reduced even further if each patient has to be evacuated to a specific safety
zone. It should be noted that some patients can only be moved between
different floors of the hospital by elevator (e.g. if they can only be evacu-
ated in a hospital bed). This has to be taken into account when calculating
evacuation routes in advance.

67

4 A Solution Approach for the HEP based on Priority Rules

Alternatively, it might also be possible to enumerate all possible evacuation
routes for each patient instead of only those based on shortest paths. De-
pending on the infrastructure of the hospital, however, this approach is likely
to result in a large number of possible modes mj for each job j ∈ J . An
alternative might be to not select evacuation routes based on route modes
but instead have the scheduler assemble the evacuation routes. For example,
instead of chains of operations representing the evacuation routes, a tree of
operations can be used representing all possible evacuation routes such that
the root of the tree represents the initial location of the patient and each
leaf corresponds to a safety zone at the end of one possible evacuation route.
Then, starting with the root node, the scheduler has to decide which of the
child nodes (corresponding to the alternative evacuation routes) is scheduled
in each step.

4.2 A Tabu Search Algorithm

In this section, solution approaches for the problem of hospital evacuations
are introduced. Here, because practical instances for the problem are likely
to include a large number of jobs, these solution approaches are local-search
algorithms that can compute feasible solutions for the problem in a short
amount of time.

In the following, the MRCPSP model for the problem of hospital evacuations
is decomposed into an assignment as well as a scheduling subproblem such
that both subproblems can be solved separately. While the assignment
subproblem consists of assigning an equipment mode m1 ∈ Mj1 as well
as a route mode m2 ∈ Mj2 to each job j ∈ J , the scheduling subproblem
consists of actually scheduling the operations u ∈ Vj(m2) corresponding to
the selected route mode m2 ∈Mj2 of each job j ∈ J . Now, the assignment
subproblem is solved by a tabu search algorithm that selects and modifies
the mode assignments for all jobs j ∈ J . By selecting a specific equipment
mode m1 ∈ Mj1 as well as route mode m2 ∈ Mj2 for each job j ∈ J , the
MRCPSP is reduced to a RCPSP (i.e. the scheduling subproblem), which
is then solved by either a parallel or a serial schedule generation scheme.

Below, we first describe the tabu search algorithm that has been imple-
mented in order to solve the assignment subproblem. An outline of this
algorithm is presented in Algorithm 4.1. It should be noted that the general
principle of tabu search has first been introduced by Glover (1989, 1990)

68

4.2 A Tabu Search Algorithm

and has since then been improved and applied to a variety of different opti-
mization problems (cf. Glover and Laguna (1998)).

In line 1 of this algorithm, an initial solution s ∈ S from the set of feasible
solutions is generated. Here, a solution corresponds to a mode assignment
of modes m1 ∈Mj1 and m2 ∈Mj2 to each job j ∈ J . In order to generate
an initial solution, the tabu search algorithm selects an equipment mode m1

as well as a route mode m2 for each job j such that

min
m∈Mj

 ∑
u∈Vj(m2)

pum


holds for the mode combination m = (m1,m2) ∈ Mj of job j and the sum
of the processing times of the operations corresponding to route mode m2

is minimized. This is done by first selecting an equipment mode m1 ∈Mj1

for each job j ∈ J such that the speed with which the patient can be moved
through the building sections based on the required assistants and aids is
maximized. Then, in a second step, a route mode m2 ∈Mj2 is selected for
each job j such that the sum of the processing times as denoted by equation
(4.1) is minimized for the operations corresponding to this route mode.

Based on this initial solution, a schedule is then generated by the selected
schedule generation scheme and stored as the currently best solution s∗

with the makespan best in line 2 of the algorithm. The actual search is then
performed in lines 3 to 26 of the algorithm. Here, in each iteration, a schedule
s′ is chosen from the neighborhood Nmode in line 4 of the algorithm. This
neighborhood Nmode contains all solutions for which either the equipment
mode m1 ∈Mj1 or the route mode m2 ∈Mj2 of exactly one job j ∈ J has
been modified with respect to the current solution s, i.e. a modification in
this neighborhood can either change the equipment mode m1 or the route
mode m2 of a job j.

In order to select a solution in line 4 of the algorithm, possible neighbors
s′ ∈ Nmode(s) are evaluated by generating corresponding schedules using
either the parallel or the serial schedule generation scheme until either a
non-tabu solution s′ with a better objective function value c(s′) < c(s) than
the objective function value of the current solution s has been found (first-fit)
or until no more neighbors are available. In the latter case, the best non-
tabu solution s′ that has been found is selected. If a solution s′ ∈ Nmode(s)
with c(s′) < best that is better than the currently best solution is generated,
this solution is accepted immediately even if it is tabu (aspiration criterion).

69

4 A Solution Approach for the HEP based on Priority Rules

Now, if a new solution s′ has been selected, the tabu list TL is updated
accordingly in line 12 of the algorithm and the current solution s is replaced
by this solution s′ in line 13. Additionally, if the solution is better than the
currently best solution s∗ (i.e. if c(s′) < best holds), the best solution s∗ is
replaced by solution s′ in line 15.

Algorithm 4.1: Tabu Search

1 Generate an initial solution s ∈ S;
2 best := c(s); s∗ := s; TL := ∅; S∗ := ∅;
3 repeat
4 Choose a solution s′ from the selected neighborhood that is not tabu or

satisfies an aspiration criterion;
5 if no solution s′ could be generated then
6 if S∗ 6= ∅ then
7 Restart with an elite solution (s, TL) ∈ S∗;
8 else
9 break;

10 end
11 else
12 Update the tabu list TL;
13 s := s′;
14 if c(s′) < best then
15 best := c(s′); s∗ := s′; TL := ∅; S∗ := S∗ ∪ {(s′, TL)};
16 if |S∗| > lmax then
17 Remove the oldest elite solution from S∗;
18 end
19 end
20 end
21 if a restart condition is satisfied then
22 if S∗ 6= ∅ then
23 Restart with an elite solution (s, TL) ∈ S∗;
24 end
25 end
26 until a stopping condition is satisfied ;

As stated above, tabu moves (i.e. modifications of the current solution s
that might restore a previous solution and could result in cyclic behavior
of the tabu search) are stored in a tabu list TL. For this algorithm, the
tabu list stores both, the equipment mode m1 ∈ Mj1 as well as the route

70

4.2 A Tabu Search Algorithm

mode m2 ∈ Mj2 of the modified job j ∈ J (i.e. the job for which either of
the two modes has been changed) before the modification. Then, any move
that would restore exactly this mode combination m = (m1,m2) for this
job j is tabu. The tabu list TL has a limited capacity η which is adapted
dynamically as described by Brucker and Knust (2006) such that during an
improving phase of the tabu search,the length of the tabu list is reduced
according to

η := max{η − 1, TLmin} (4.34)

while, during a non-improving phase of the tabu search, the length of the
tabu list is increased according to

η := min{η + 1, TLmax}. (4.35)

In these equations, TLmin and TLmax define the minimum and maximum
capacity of the tabu list, respectively. Now, whenever the amount of ele-
ments within the tabu list TL exceeds the current capacity η, the oldest
elements are removed from the tabu list. Additionally, if the currently best
solution s∗ could be improved during an iteration, all elements are removed
from the tabu list in line 15 of the algorithm.

In order to intensify the search process, a total of lmax elite solutions can
be stored during the search as described by Nowicki and Smutnicki (1996).
An elite solution is a solution s′ that improves the currently best solution
s∗ during an iteration. If such a solution is generated, both, the solution s′

as well as the current tabu list TL are stored in the set S∗ of elite solutions
in line 15. It should be noted that the tabu list stored here is also updated
to contain the move made in the next iteration in order to avoid making the
same move if the tabu search is restarted from this elite solution. Now, if
no solution s′ ∈ Nmode(s) could be generated in line 4 or if the tabu search
could not improve the currently best solution for a total of tmax, the tabu
search restarts from the oldest elite solution (s, TL) ∈ S∗ in either line 7 or
in line 23, respectively.

Finally, the tabu search terminates after a given stopping condition is sat-
isfied. For example, this stopping condition can be a maximum number
of iterations the tabu search has to perform or, alternatively, a maximum
amount of time after which the tabu search is terminated. The best solu-
tion s∗ found during the tabu search is then returned. It should be noted
that the tabu search also terminates if no solution s′ ∈ Nmode(s) could be
generatedin line 4 and the set S∗ of elite solutions is empty.

71

4 A Solution Approach for the HEP based on Priority Rules

In the remainder of this section the two schedule generation schemes used
to solve the scheduling subproblem are described in more detail. Here,
the parallel schedule generation is described in Section 4.2.1 while the se-
rial schedule generation is described in Section 4.2.2. Finally, Section 4.2.3
highlights some shortcomings of these solution approaches. In particular,
it is shown that the solution space considered by these algorithms does not
necessarily contain an optimal solution.

In order to simplify the description of the schedule generation schemes,
the notation for the MRCPSP model introduced in the previous section
is adapted. In particular, as both modes m1 ∈ Mj1 and m2 ∈ Mj2 are
fixed for all jobs j ∈ J , any data related to other modes can be omitted.
Thus, for each job j, only the set Vj = Vj(m2) corresponding to the selected
evacuation route has to be considered. Similarly, the sets Vall, V0, V∗, Vin,
Vout, V ′in, and V ′out only contain operations that actually have to be scheduled
while the sets NB and B only contain precedence constraints u→ v between
these operations. Finally, only the processing time pu = pum as well as the
resource requirements ruk = rumk for all resources k ∈ R corresponding to
the selected mode combination m = (m1,m2) ∈ Mσ(u) of job σ(u) have to
be considered for each operation u ∈ Vall.

4.2.1 Parallel Schedule Generation Scheme

In this section, the parallel schedule generation scheme (parallel SGS) is
described that has been implemented to solve the scheduling subproblem
of the HEP. This algorithm is an adaption of the parallel schedule genera-
tion scheme for the resource-constrained multi-project scheduling problem
with transfer times as described by Krüger and Scholl (2009) where resource
transfers are selected based on a priority rule. The parallel schedule gener-
ation scheme is outlined in Algorithm 4.2.

As described in Section 3.2.3, the general idea of the parallel schedule gen-
eration scheme is to schedule operations from a list of eligible operations Eλ
in each iteration λ at gradually increasing time points tλ until either the list
Eλ is empty or no more operations from the list can be feasibly scheduled.
For this algorithm, the list Eλ contains all operations that can be scheduled
to start at time tλ with respect to precedence constraints as well as transfer
times while the set Aλ contains all operations u ∈ Vall that are active at
time tλ. It should be noted that resource-feasibility is not guaranteed for the
operations contained in the list Eλ. In particular, at the time when the list

72

4.2 A Tabu Search Algorithm

Eλ is calculated, it is possible that not a sufficient amount of space is avail-
able in the required building section in order to start an operation u ∈ Eλ
at time tλ. The reason for this is related to blockings and is discussed in
more detail later in this section.

Algorithm 4.2: Parallel Schedule Generation Scheme

1 λ := 1;
2 Calculate an initial time point t1;
3 Initialize the set A1 := ∅ of active operations at time t1;
4 Calculate the list E1 of operations that can start at time t1;
5 while not all operations have been scheduled do
6 Sort the list Eλ according to a priority rule;
7 repeat
8 foreach w ∈ Eλ do
9 if w ∈ V ′in then

10 CalculateResourceTransfers(w, tλ)
11 end
12 if w can be scheduled resource-feasibly then
13 Schedule operation w and update resources;
14 Set starting time Sw := tλ;
15 Aλ := Aλ ∪ {w}; Eλ := Eλ \ {w};
16 if w has a predecessor operation u ∈ Vσ(w) then
17 Set completion time Cu := tλ;
18 Aλ := Aλ \ {u};
19 end
20 end
21 end
22 until no more operations could be scheduled ;
23 λ := λ+ 1;
24 Calculate the next time point tλ;
25 Calculate the new list Eλ and the new set Aλ;
26 end

Now, in line 2 of the algorithm, an initial time point t1 ≥ 0 with

t1 = min
u∈V ′in

{
max

k∈Rtrf with ruk>0
∆0uk

}
is calculated as the earliest time at which an operation u ∈ V ′in can start.

73

4 A Solution Approach for the HEP based on Priority Rules

For this, the first operation u ∈ V ′in of each job j ∈ J is regarded and
the transfer times ∆0uk between dummy source operation 0 and the initial
location of the patient for all resources k ∈ Rtrf required for the evacuation
of the patient are compared. It should be noted that resource transports
of aids do not have to be considered separately because assistants and aids
are assumed to start from the same initial location (as denoted by dummy
source operation 0), i.e. inequality (4.4) applies to all resources k ∈ Rtrf

required by an operation u ∈ V ′in.

Afterward, the initial set of active operations A1 is initialized in line 3 and
the initial list of eligible operations E1 is calculated in line 4 of the algorithm.
For this, all operations u ∈ Vin (i.e. all precedence-feasible operations) that
can be scheduled to start at time t1 (i.e. all transfer-feasible operations for
which ∆0uk ≤ t1 holds for all required resources k ∈ Rtrf) are included in
the list E1.

Next, as well as in each subsequent iteration λ of the parallel schedule gen-
eration scheme, all operations in the list Eλ are sorted according to a chosen
priority rule. For this algorithm, the priority rules listed in Table 4.2 have
been implemented. Here, the priority rules SPT and LPT are based on
the processing times of the operations and sort the operations according to
increasing or decreasing processing times, respectively. Next, the priority
rules LST and LFT require the latest start and finish times LSu and LFu
of operations u ∈ Vall that can be calculated based on an upper bound UB
on the time available to process all operations as described in Section 3.1.2.
These priority rules then sort the operations u ∈ Eλ according to increasing
latest start times LSu or latest finish times LFu, respectively. Finally, the
priority rule RAND randomly selects operations from the list Eλ.

Priority Rule Description
SPT Shortest Processing Time
LPT Longest Processing Time
LST Latest Start Time
LFT Latest Finish Time
RAND Random

Table 4.2: Priority rules used to sort the list of eligible operations Eλ.

After the list of eligible operations Eλ has been sorted according to the se-
lected priority rule, the parallel schedule generation scheme tries to schedule

74

4.2 A Tabu Search Algorithm

operations w ∈ Eλ from the list of eligible operations until either all opera-
tions have been scheduled or no more operations can be feasibly scheduled.
In order to schedule an operation w ∈ Eλ, a sufficient amount rwk of space
has to be available in the required building section k ∈ Rsect at time point
tλ. Now, if operation w is not the first operation of the corresponding job
σ(w) (i.e. if w /∈ V ′in holds), the operation is immediately scheduled in the
required building section at time tλ in line 12 of the algorithm. Otherwise, if
w is the first operation of the corresponding job σ(w) (i.e. if w ∈ V ′in holds),
resource transfers of assistants and aids to this operation are calculated in
line 10 of the algorithm. In this case, a sufficient amount of assistants and
aids has to be selected such that the operation can transfer-feasibly be sched-
uled to start at time point tλ. These resource transfers are calculated by
the procedure CalculateResourceTransfers outlined below.

First of all, in line 2 of this procedure, a set Fasst
k is calculated for each

resource k ∈ Rasst required by operation w ∈ V ′in, i.e. for all resources
k for which rwk > 0 holds. These sets Fasst

k contain all possible feasible
resource transfers of resource k from already completed operations u ∈ V ′out

(i.e. from operations with completion times Cu ≤ tλ) to operation w. Here,
a resource transfer of resource k from operation u to operation w is feasible
if inequality (4.2) holds between the completion time Cu of operation u and
the current decision point tλ, i.e. if Cu +∆uwk ≤ tλ holds.

Afterward, if and only if a sufficient amount of each required resource k ∈
Rasst can be transferred to operation w until time tλ, all resources l ∈ Raid

required by operation w are considered in lines 5 to 18. For this, all possible
feasible resource transfers of resource l ∈ Raid from completed operations
v ∈ V ′out to operation w are calculated in line 6 and stored in sets Faid

l . As
described above, in order to transfer one unit of resource l from operation v
to operation w, an amount of µkl units of resources k ∈ Rasst are required
to transport the resource. For this reason, a resource transfer of one unit
of resource l from operation v to operation w is called feasible if a sufficient
amount of supporting resource units of resources k ∈ Rasst from completed
operations u ∈ V ′out with

max{Cu +∆uvk +∆vwl, Cv +∆vwk} ≤ tλ (4.36)

are available to satisfy all transport requirements µkl. Here, inequality (4.36)
corresponds to inequalities (4.3) and (4.4) introduced above. When calculat-
ing all possible resource transfers of resources l ∈ Raid, it is sufficient to only
regard resource transfers of resources k ∈ Raid contained in the set Fasst

k

75

4 A Solution Approach for the HEP based on Priority Rules

Procedure CalculateResourceTransfers(w, tλ)

1 for k ∈ Rasst with rwk > 0 do
2 Calculate the set Fasst

k of all possible feasible resource transfers of
resource k from completed operations u ∈ V ′out that can arrive at
operation w until time tλ;

3 end
4 if sufficient resources k ∈ Rasst can be transferred to operation w then
5 for l ∈ Raid with rwl > 0 do
6 Calculate the set Faid

l of all possible feasible resource transfers of
resource l from completed operations v ∈ V ′out that can be
transported by resources k ∈ Rasst from the set Fasst

k and arrive at
operation w until time tλ;

7 if sufficient resources l can be transported to operation w then
8 while not sufficient resource transfers have been chosen do
9 if no feasible resource transfer for resource l exists then

10 Operation w can not be scheduled transfer-feasibly;
11 end
12 Choose a feasible resource transfer of resource l from the set

Faid
l as well as sufficient feasible transporting resources

k ∈ Rasst from the sets Fasst
k ;

13 Update the sets Fasst
k and Faid

l ;
14 end
15 else
16 Operation w can not be scheduled transfer-feasibly;
17 end
18 end
19 for k ∈ Rasst with rwk > 0 do
20 if not sufficient resources k are transferred to operation w then
21 Choose sufficient feasible resource transfers of resource k from

the set Fasst
k ;

22 end
23 end
24 else
25 Operation w can not be scheduled transfer-feasibly;
26 end

because only the resource unit corresponding to these resource transfers can
be transferred to operation w until time point tλ.

76

4.2 A Tabu Search Algorithm

Now, if and only if a sufficient amount of resource units of resource l can
be transported to operation w, the actual resource transfers are selected
in lines 8 to 14 of the procedure. For this, resource transfers from the
set Faid

l consisting of one unit of resource l as well as a sufficient amount
of transporting resources k ∈ Rasst from the corresponding sets Fasst

k are
chosen until a sufficient amount of resource units of resource l have been
selected or until no more feasible resource transfers can be selected. In order
to choose these resource transfers for both, resource l as well as the required
transporting resources k ∈ Rasst, a priority rule ES (earliest start) has
been implemented that selects resource transfers according to non-decreasing
arrival times of the resources at operation w. In the following, this priority
rule is referred to as a transfer rule in order to distinguish it from the priority
rules used to select operations. It should be noted that Krüger and Scholl
(2009) introduce additional transfer rules that can be used to select resource
transfers. These other transfer rules are not used in this algorithm due to
the problem discussed in Section 4.2.3.

After both, a resource transfer of resource l as well as a sufficient amount of
transporting resource units of resources k ∈ Rasst have been selected in line
12, the sets Fasst

k and Faid
l are updated, i.e. the selected resource transfers

are removed from these sets. It should be noted that removing resource
transfers k ∈ Rasst from the sets Fasst

k might also influence the sets Faid
l , e.g.

if a resource l can no longer be transported from a completed operation v ∈
V ′out to operation w until time point tλ by the remaining resource transfers
from the sets Fasst

k . If this is the case and not a sufficient amount of resource
units of resource l can be transported to operation w, this operation can
not be scheduled transfer-feasibly and the procedure terminates without a
solution in line 10. Similarly, the operation can not be scheduled and the
procedure terminates without a solution if not a sufficient amount of feasible
resource transfers of resources k ∈ Rasst or l ∈ Raid is available in lines 2 or
6, respectively.

Finally, after a sufficient amount of resource transfers of resources l ∈ Raid

as well as the corresponding transporting resources k ∈ Rasst have been
selected, the remaining resources transfers of resources k ∈ Rasst are selected
in lines 19 to 23. These resources transfers are again chosen from the sets
Fasst
k based on the transfer rule ES until a sufficient amount of resource

units of resources k from completed operations u ∈ V ′in have been selected
to be transferred to operation w. It should be noted that resource units
of resources l ∈ Raid from operation u ∈ V ′out only have to be transported
to operation w if ∆uwl > 0 holds (i.e. if an actual transfer takes place).

77

4 A Solution Approach for the HEP based on Priority Rules

Otherwise, no supporting resources k ∈ Rasst have to be selected for the
corresponding resource transfers. For the problem of hospital evacuations,
this is the case for all resource transfers to dummy sink operation n+ 1.

Now, if a sufficient amount of resource transfers to operation w could be
calculated by procedure CalculateResourceTransfers in line 10 of the parallel
schedule generation scheme outlined in Algorithm 4.2 and if a sufficient
amount of space is available in the required building section k ∈ Rsect, the
operation can actually be scheduled in line 13 of the algorithm. In this
case, all selected assistants and aids are transferred to operation w and the
resource profile of the building section is updated at time tλ.

Regardless of whether operation w is the first operation of the corresponding
evacuation route or not, the starting time of operation w is set to Sw = tλ
after it has been scheduled and the sets Aλ as well as Eλ are updated in
lines 14 and 15. Additionally, if operation w has a predecessor operation
u ∈ Vσ(w) on the selected evacuation route, the completion time of this
operation u is set to Cu = tλ and operation u is removed from the set Aλ in
lines 17 and 18. As a result of this, the building section used by operation
u becomes available again at time tλ and can be used by other operations.

These steps outlined in lines 8 to 21 of the algorithm are repeated for all
operations w ∈ Eλ. As pointed out above, it is not guaranteed for the
operations contained in the list Eλ that a sufficient amount of space is
available in the required building sections at time point tλ when the list is
calculated by the parallel schedule generation scheme. This is due to the
blocking constraint that prevents an operation u ∈ Vall from completing
until its successor operation w ∈ Vσ(u) has been started (cf. lines 16 to
19). For this reason, building sections might only become available again
during an iteration λ as operations from the set Eλ are being scheduled.
Thus, multiple passes over the list Eλ are performed in each iteration of
the parallel schedule generation scheme such that in each pass, as many
operations as possible are scheduled from the list Eλ. This is repeated until
either the list Eλ is empty, i.e. all eligible operations have been scheduled,
or until no more operations could be scheduled in the previous pass.

Then, after no more operations could be scheduled in the last pass of an
iteration λ, the next time point tλ+1, the new list of eligible operations
Eλ+1, as well as the new set of active operations Aλ+1 are calculated in
lines 23 to 25 for the next iteration λ+ 1. For this, in a first step, the next
time point tλ+1 is calculated based on the completion times of currently

78

4.2 A Tabu Search Algorithm

active operations as well as on the transfer times to unscheduled operations
from the set V ′in as follows.

First of all, in order to calculate the next time point tλ+1, all active opera-
tions w ∈ Aλ with Sw + pw > tλ are considered (i.e. all operations w that
have not yet been active for their processing time pw). It should be noted
that the set Aλ might also contain operations w with Sw + pw ≤ tλ that
have already been active for at least their processing time pw, i.e. if the
respective successor operations could not yet be started and the operations
are blocked. Based on these operations, a temporary time point

ttemp = min

{
UB, min

w∈Aλ with Sw+pw>tλ
{Sw + pw}

}
is calculated. Here, if no active operations w ∈ Aλ with Sw + pw > tλ exist,
the temporary time point ttemp is set to an upper bound UB.

Next, all unscheduled operations w ∈ V ′in are considered. For each of these
operations w, the earliest time tES,w until which all required assistants and
aids can be transferred from already completed operations u ∈ V ′out to op-
eration w is calculated based on the procedure CalculateResourceTransfers
with respect to the transfer rule ES. It should be noted that the procedure
is called with the input parameter tλ = UB, i.e. all possible resource trans-
fers from already completed operations u ∈ V ′out are considered. Then, if a
sufficient amount of resource units of resources k ∈ Rasst and l ∈ Raid can
be transferred to operation w, the earliest time tES,w until which all of these
resource units can arrive at operation w with respect to the transfer rule
ES is returned. Otherwise, if not a sufficient amount of resource units can
be transferred to operation w, the value tES,w = UB is returned. Now, the
next time point tλ+1 is calculated as

tλ+1 = max

{
tλ + 1,min

{
ttemp, min

w∈V ′in, w is unscheduled
tES,w

}}
.

It should be noted that tλ+1 ≥ tλ + 1 has to hold for the next time point
tλ+1. Also, it is possible that the next time point is calculated as tλ+1 = UB
although not all operations have been scheduled. In this case, either the
upper bound has been chosen too small or a deadlock occurred (cf. page 89)
and the parallel schedule generation scheme terminates without a solution.

After the next time point tλ+1 has been determined, the new list Eλ+1

of eligible operations as well as the new set Aλ+1 of active operations can

79

4 A Solution Approach for the HEP based on Priority Rules

be computed. In order to calculate the new set Aλ+1, all currently active
operations w ∈ Aλ are considered. Here, if Sw + pw = tλ+1 holds for
operation w (i.e. if the operation has been active for its processing time
pw) and if operation w is the last operation of the corresponding evacuation
route (i.e. if w ∈ V ′out holds), the operation ends at the new time point
tλ+1 with the completion time Cw = tλ+1. In this case, all resources (i.e.
assistants, aids, as well as the building section required by operation w)
become available again at this time point. All other operations w ∈ Aλ
with w /∈ V ′out are always added to the new set Aλ+1. These operations
are only completed after they have been active for at least their processing
times pw and their respective successor operation has started.

Finally, in a last step, the new list Eλ+1 of eligible operations is calculated.
For this, the successor operations of all active operations w ∈ Aλ+1 with
Sw+pw ≤ tλ+1 that have been active for at least their processing time pw are
added to the list Eλ+1. Additionally, all unscheduled operations w ∈ V ′in to
which all required resources k ∈ Rtrf can be transferred until time point tλ+1

are added based on the results from procedure CalculateResourceTransfers.

Afterward, the parallel schedule generation scheme continues with the next
iteration λ+ 1. This is repeated until either all operations have been sched-
uled successfully or until the next time point tλ+1 is equal to the upper
bound UB. In the latter case, no feasible schedule could be generated and
the algorithm terminates without a solution.

Example 4.4 We again consider the hospital from Example 4.1 displayed
in Figure 4.1. Now, N = 3 patients have to be evacuated such that patient 1
has to be evacuated from room 5 to exit 1 by one assistant, patient 2 has to
be evacuated from room 3 to exit 2 by two assistants as well as one stretcher,
and patient 3 has to be evacuated from room 3 to exit 1 by one assistant. The
operations corresponding to the three jobs as well as the building sections
required by the operations are displayed in the activity-on-node network in
Figure 4.7.

For this example, all real operations u ∈ V are assumed to have unit pro-
cessing times pu = 1 as well as resource requirements ruk = 1 in the required
building section k ∈ Rsect. These building sections k ∈ Rsect are assumed
to have a capacity of Rk = 1 such that only one patient can be evacuated
through a building section at any time. Finally, two assistants as well as
one stretcher (which has to be transported by one assistant) are available
for the evacuation of the patients and are initially located at exit 2. The

80

4.2 A Tabu Search Algorithm

transfer times between the different locations are given in Table 4.1 and are
the same for both, the assistants as well as the stretcher.

1 2 3 4 5 6

0 7 8 9 10 11 17

12 13 14 15 16

Room 5 C6 C4 C1 C2 Exit 1

Room 3 C4 C1 C2 Exit 1

Room 3 C4 C6 C7 Exit 2

Patient 1

Patient 2

Patient 3

Figure 4.7: Activity-on-node network displaying the operations for the N =
3 jobs corresponding to patients 1, 2, and 3 as well as the two
dummy operations 0 and 17. The building sections required by
the operations are given next to the corresponding nodes.

In the following, this example is used to visualize some iterations of the
parallel schedule generation scheme. For this, a schedule for this example
generated by the parallel schedule generation scheme is displayed in Figure
4.8. Here, first of all, the initial time point t1 is calculated based on the
earliest time at which all required resources can be transferred to one of the
three patients. In this case, one assistant can be transferred from exit 2 to
room 5 (i.e. the initial location of patient 1) until time point t1 = 3. The
corresponding operation 1 is then scheduled to start at time S1 = t1 = 3.

Afterward, the next time point t2 is calculated as the earliest time t2 > t1
at which an operation u ∈ A1 has been active for its processing time pu or
the earliest time at which an operation u ∈ V ′in can be scheduled transfer-
feasibly. In this case, operation 1 has been active for its processing time p1 at
time t = S1 + p1 = 4. Also, operation 12 can be scheduled transfer-feasibly

81

4 A Solution Approach for the HEP based on Priority Rules

t1

3

t3

5

t5

7

t7

9

t9

19

t11

21

t13

23

Assistants

∆01A

∆0,12,A

1 2 3 4 5 6

12 13 14 15 16

∆60A ∆07S

∆16,7,A
7 8 9 10 11

Stretcher ∆07S 7 8 9 10 11

Room 3 12 7

Room 5 1

C1 4 14

C2 5 15

C4 3 13 8

C6 2 9

C7 10

Exit 1 6 16

Exit 2 11

Figure 4.8: A schedule for Example 4.4 as it is generated by the parallel
schedule generation scheme. The figure also displays the time
points tλ computed in iterations λ = 1, . . . , 13 by the algorithm.

82

4.2 A Tabu Search Algorithm

at this time, i.e. one assistant can be transferred from exit 2 to room 3 until
time t = 4. Thus, the next time point t2 = 4 is chosen and the set E2 =
{2, 12} of eligible operations as well as the set A2 = {1} of active operations
can be calculated for this time point. Now, in iteration λ = 2, operations
2 and 12 can both be scheduled to start at time t2 = 4. Additionally, after
operation 2 has been scheduled in this iteration, its predecessor operation
1 is assigned the completion time C1 = 4 and is removed from the set of
active operations.

Similarly, the next time point t3 = 5 as well as the corresponding set
E3 = {3, 13} of eligible operations can be calculated. Here, because both
operations from this set require floor segment C4, only one of these opera-
tions can be scheduled to start at this time point. For example, we assume
that operation 3 is scheduled to start at time point t3 = 5 based on the
selected priority rule (e.g. based on the priority rule RAND). In this case,
operation 13 can not be scheduled. and its predecessor operation 12 remains
in the set of active operations and blocks room 3. In the following iterations
λ = 4 to λ = 7, the remaining operations corresponding to the evacuation
of patients 1 and 2 are scheduled. It should be noted that in iterations 4, 5,
and 6, up to two passes may be required per iteration in order to schedule
both operations from the corresponding set of eligible operations. For ex-
ample, we assume that the parallel schedule generation scheme first tries to
schedule operation 13 in iteration 4. As building section C4 is still occupied
by operation 3 at this time, the algorithm next tries to schedule operation 4
in building section C1. This succeeds and operation 4 is scheduled to start
at time t4 = 6 in building section C1. Additionally, the completion time of
operation 3 is set to C6 = 6 and building section C4 becomes available again
at this time point. Now, in a second pass, the parallel schedule generation
scheme again tries to schedule operation 13 in building section C4 at time
point t4 and succeeds as the building section is now available again.

Next, time point t8 = 10 is calculated as the completion time of operation 16.
Here, because operation 16 is the last operation of the evacuation route for
patient 3, this operation can be completed immediately at time C16 = 10.
At this time point t8, however, the set of eligible operations is empty as
operation 7 can not be scheduled transfer-feasibly. For this reason, the next
time point t9 is calculated as the earliest time at which all required resources
can be transferred from already completed operations {0, 6, 16} ∈ V ′out to
operation 7. In this case, time point t9 = 19 is calculated such that one
assistant from operation 6 (corresponding to exit 2) is first transferred to
operation 0 (corresponding to exit 1) and transports the stretcher from

83

4 A Solution Approach for the HEP based on Priority Rules

there to operation 7 (corresponding to room 3) while the second assistant
is immediately transferred from operation 16 (corresponding to exit 2) to
operation 7. The starting time of operation 7 is then set to C7 = t9 = 19.
Finally, the remaining operations 8 to 11 can be scheduled in iterations 10
to 13 such that the makespan of this schedule is Cmax = 24. 2

After the parallel schedule generation scheme has been described above, the
remainder of this section is used to consider some properties of this algo-
rithm. In particular, the time complexity of this algorithm is analyzed below,
some properties of the schedules generated by the algorithm are considered
on page 85, and the problem of deadlocks is discussed on page 89.

Time Complexity

The time complexity of the parallel schedule generation scheme is dominated
by line 10 of Algorithm 4.2 in which the resource transfers to an operation
w ∈ V ′in until time point tλ are calculated by Procedure CalculateResource-
Transfers. In the following, we first analyze the time complexity of this
procedure which is dominated by calculating the resource transfers of re-
sources l ∈ Raid from completed operations v ∈ V ′out to operation w. Here,
the time complexity of calculating all possible feasible resource transfers of
a resource l ∈ Raid in line 6 is bounded by O(N2 · |Rasst|). This follows from
the fact that each resource l can be transferred from at most N operations
v ∈ V ′out (including the dummy operation 0) to operation w and at most
|Rasst| different resources k ∈ Rasst may be required to support the transfer
from N different operations u ∈ V ′out.

Next, the actual resource transfers of resources l to operation w are chosen in
lines 8 to 14. For this, a resource transfer of one unit of resource l from the set
Faid
l as well as a sufficient amount of transporting resources k ∈ Rasst from

the sets Fasst
k are selected in line 12 of the procedure based on the transfer

rule ES. Here, the earliest time at which one resource transfer from the set
Faid
l can arrive at operation w can be calculated in O(N2 · |Rasst|2) time.

Thus, the time required to select one resource transfer in line 12 is bounded
by O(N3 · |Rasst|2) because at most N resource transfers from the set Faid

l

have to be evaluated. As operation w requires at most Rl units of resource
l, the time complexity of lines 8 to 14 is bounded by O(N3 · |Rasst|2 ·Raid

max)
where Raid

max is the maximal capacity of any resource l ∈ Raid.

84

4.2 A Tabu Search Algorithm

As these steps have to be repeated for all required resources l ∈ Raid,
the time complexity of procedure CalculateResourceTransfers is bounded
by O(N3 · |Rasst|2 · |Raid| · Raid

max). Now, this procedure has to be applied
for at most |Eλ| ≤ N operations in each pass of iteration λ. Furthermore,
each iteration can consist of at most |Eλ| ≤ N passes if only one operation
is scheduled in each pass. Finally, the parallel schedule generation scheme
requires at most n iterations to schedule all operations (unless the algo-
rithm terminates without a solution as described above). Thus, the time
complexity of the parallel schedule generation scheme is

O(n ·N5 · |Rasst|2 · |Raid| ·Raid
max) (4.37)

It can be seen that the time complexity of this parallel schedule genera-
tion scheme is significantly worse than the time complexity of the parallel
SGS for the classical RCPSP described in Section 3.2.3 due to the addi-
tional problem of calculating resource transfers to operations w ∈ V ′in. In
particular, the algorithm runs in pseudo-polynomial time depending on the
maximal capacity Raid

max of any resource l ∈ Raid because resource transfers
of resources l are chosen independently for each required unit of resource l
while the parallel schedule generation scheme for the classical RCPSP runs
in polynomial time (cf. Section 3.2.3). The reason for this is discussed in
more detail in Section 4.2.3. It can be assumed, however, that this does not
pose a problem for most practical applications with scarce resources.

Finally, it should be noted that the time complexity for testing if sufficient
space is available in a building section k ∈ Rsect in order to schedule an
operation w ∈ Vall at a time point tλ can be neglected here because, for
each building section k ∈ Rsect, only the amount of available space Rk(tλ)
at time point tλ is stored. Thus, it can be tested in O(1) if a sufficient
amount of space is available in order to schedule operation w.

Schedule Properties

Now, some properties of the schedules generated by the parallel schedule
generation scheme described in this section are considered. As shown by
Kolisch (1996a), the parallel schedule generation scheme for the classical
resource-constrained project scheduling problem generates non-delay sched-
ules (cf. Section 3.2). Here, although the general idea of the algorithm is
maintained, this property does not hold for our algorithm as shown in Ex-
ample 4.5. In particular, this is caused by the problem of selecting resource

85

4 A Solution Approach for the HEP based on Priority Rules

transfers of resources l ∈ Raid as well as transporting resources k ∈ Rasst

and is discussed in more detail in Section 4.2.3.

Example 4.5 We consider a problem consisting of N = 4 jobs in which
space requirements in the building sections of the selected evacuation routes
are neglected, i.e. each job can be modeled by only one operation u =
1, . . . , 4. Next, one type of assistants (i.e. Rasst = {1}) as well as one type
of aids (i.e. Raid = {2}) with capacities R1 = R2 = 2 are available for the
evacuation of the patients such that µ12 = 1 unit of resource 1 is required
in order to transport one unit of resource 2. Now, the processing times
pu and resource requirements ruk as well as the transfer times ∆uvk with
∆uvk = ∆uv for both resources k = 1,2 are displayed in Table 4.3.

0 1 2 3 4 5
pu 0 2 4 1 2 0
ru1 2 1 1 1 2 2
ru2 2 1 0 0 2 2

(a) Operation parameters.

0 1 2 3 4 5
0 0 2 2 4 3 0
1 2 0 1 2 2 0
2 2 1 0 2 2 0
3 4 2 2 0 2 0
4 3 2 2 2 0 0
5 0 0 0 0 0 0

(b) Transfer times.

Table 4.3: The processing times pu as well as the resource requirements ruk
of the operations u = 0, . . . , 5 are displayed in (a) while the trans-
fer times ∆uvk = ∆uv for both resources k = 1,2 between all pairs
of operations u,v = 0, . . . , 5 are given in (b).

Below, a schedule as it is generated by the parallel schedule generation
scheme based on an arbitrary priority rule is displayed in Figure 4.9. Similar
to Example 4.4, time point t1 = 2 is again calculated as the earliest time at
which an operation can start based on the required resource transfers. In
this case, both, operations 1 and 2 can be scheduled to start at time t1 = 2.
Then, after operation 1 has been completed, one assistant can be transferred
from operation 1 to operation 3 until time point t3 = 6, i.e. operation 3 can
start at this time point.

Then, after operation 3 has been completed at time point t4 = 7, the next
time point t5 has to be calculated at which operation 4 can be scheduled
to start transfer-feasibly. For this, the earliest arrival times of both units
of resource 2 at operation 4 are calculated. At time point t4, one unit of

86

4.2 A Tabu Search Algorithm

resource 2 is located at operation 0 while the other unit of resource 2 is
located at operation 1. Now, in order to transport one unit of resource 2
to operation 4, one unit of resource 1 is required, which can be transferred
from either operation 2 or from operation 3. Thus, the following earliest
arrival times can be calculated for the resulting combinations:

• 2→ 0→ 4 : C2 +∆20 +∆04 = 11

• 2→ 1→ 4 : C2 +∆21 +∆14 = 10

• 3→ 0→ 4 : C3 +∆30 +∆04 = 14

• 3→ 1→ 4 : C3 +∆31 +∆14 = 11

Now, procedure CalculateResourceTransfers first selects the transfer of re-
source 1 from operation 2 to operation 1 from where the resource then
transports resource 2 to operation 4 based on transfer rule ES because this
resource transfer has the smallest arrival time at operation 4. Afterward,
only the transfer of resource 1 from operation 3 to operation 0 can be chosen,
from where the resource then transports resource 2 to operation 4. These
two resource transfers result in the time point t5 = 14, at which operation
4 is then scheduled to start. The makespan of the resulting schedule is
Cmax = 16.

t1

2

t2

4

t3

6

t4

7

t5

14

t6

16

R1

0

1

2

∆012

∆021

1

2

∆131 3

∆211 ∆142

∆301 ∆042

4

R2

0

1

2

∆012 1 ∆142

∆042

4

Figure 4.9: A schedule as it is generated by the parallel schedule genera-
tion scheme for the problem instance consisting of n = 4 real
operations from Example 4.5.

87

4 A Solution Approach for the HEP based on Priority Rules

This schedule, however, is not a non-delay schedule. Indeed, it is not even
a semi-active schedule. Instead, it is possible to shift operation 4 to the left
by exchanging the two resource transfers chosen by the transfer rule with
the two remaining resource transfers calculated above. In this case, the
resulting schedule displayed in Figure 4.10 is a non-delay schedule (i.e. no
operation could be locally or globally shifted to the left even if preemption
was allowed) with a makespan of Cmax = 13.

R1

0

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

∆021

∆012

1

2

∆131 3

∆201 ∆042

∆311 ∆142

4

R2

0

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

∆012 1

∆042

∆142

4

Figure 4.10: Non-delay schedule for the problem instance from Example 4.5.

R1

0

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

∆042

∆042

4
∆412

∆421

1

2

∆131 3

R2

0

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

∆042

∆042

4
∆412 1

Figure 4.11: Optimal schedule for the problem instance from Example 4.5.

Finally, the unique optimal schedule for this example with a makespan of
Cmax = 12 is displayed in Figure 4.11. It should be noted that the parallel
schedule generation scheme is not able to generate this schedule because it

88

4.2 A Tabu Search Algorithm

will always schedule operations 1 and 2 at the earliest time point t1 = 2
regardless of the selected priority rule used to select operations from the set
Eλ of eligible operations. 2

As can be seen in this example, the schedules generated by the parallel sched-
ule generation scheme implemented for the problem of hospital evacuations
can not be classified as belonging to either of the sets of semi-active, active,
or non-delay schedules (cf. Section 3.2.2). This is caused by the transfer
rule ES, which is not necessarily able to select resource transfers such that
all required resources arrive at an operation w ∈ V ′in as early as possible.
Instead, it may be possible to locally shift some operations to the left by
selecting different resource transfers as shown in Example 4.5. Also, this
example shows that the solution space considered by the parallel schedule
generation scheme may not contain an optimal solution.

Deadlocks

Finally, the problem of deadlocks that can occur as a result of the blocking
constraint between two or more operations is discussed. If a deadlock oc-
curs, not all operations can be scheduled by the parallel schedule generation
scheme and the algorithm terminates without a solution for the given mode
assignment. Below, the occurrence of a deadlock is visualized in Example
4.6 based on the evacuation of two patients from a hospital.

Example 4.6 We again consider the hospital from Example 4.1 displayed
in Figure 4.1. Now, N = 2 patients have to be evacuated such that patient
1 has to be evacuated by one assistant from room 5 to exit 1 while patient 2
has to be evacuated by one assistant from room 3 to exit 2. The operations
corresponding to these two jobs as well as the building sections required by
the operations are displayed in the activity-on-node network displayed in
Figure 4.12. For this example, all real operations u ∈ V are assigned unit
processing times pu = 1 and require ruk = 1 unit of space in the corre-
sponding building section k ∈ Rsect. Also, as before, all building sections
k ∈ Rsect have a capacity of Rk = 1. Finally, in order to evacuate these
patients, two assistants are available and are initially located at exit 1. As
before, the transfer times for the assistants between the different locations
are given in Table 4.1.

Now, a (partial) schedule as it is generated by the parallel schedule gen-
eration scheme is displayed in Figure 4.13. In this schedule, operations 1,

89

4 A Solution Approach for the HEP based on Priority Rules

1 2 3 4 5 6

0 12

7 8 9 10 11

Room 5 C6 C4 C1 C3 Exit 1

Room 3 C4 C6 C7 Exit 2

Patient 1

Patient 2

Figure 4.12: Activity-on-node network displaying the operations as well as
the building sections required by the operations corresponding
to the evacuation routes of the two jobs from Example 4.6.

t1

4

t4

7

Assistants
∆07A

∆01A

7 8

1 2

Room 3 7

Room 5 1

C4 8

C6 2

Figure 4.13: Partial schedule as it is generated by the parallel schedule gen-
eration scheme for the problem instance from Example 4.6. In
iteration λ = 4, the algorithm terminates due to a deadlock
between operations 2 and 8.

90

4.2 A Tabu Search Algorithm

7, and 8 could be scheduled to start in the required building sections at
time points t1 = 4 and t2 = 5, respectively. Afterward, for iteration λ = 3,
the list E3 = {2, 9} of eligible operations is calculated. Here, both of these
operations require building section C3. We assume that the algorithm now
schedules operation 2 to start at time t3 = 6 in building section 6 (e.g. based
on the priority rule RAND). In this case, operation 8 remains active and
blocks building section C4.

Then, in iteration λ = 4, the algorithm calculates the set E4 = {3, 9} of
eligible operations that can be scheduled at time point t4 = 7. From this
set, operation 3 requires building section C4 (which is currently occupied by
operation 8) while operation 9 requires building section C6 (which is cur-
rently occupied by operation 2). Now, because the required building section
is occupied for both operations, neither operation can be scheduled in this
iteration, i.e the two operations 2 and 8 remain active and building sections
C4 and C6 continue to be blocked. This situation is referred to as a dead-
lock because the parallel schedule generation scheme is unable to schedule
operations 3 and 9, i.e. operations 2 and 8 remain active indefinitely. It
should be noted that the parallel schedule generation scheme is unable to
calculate a new time point t5 at the end of iteration λ = 4 because both
operations 2 and 8 have already been active for their respective processing
times and no further operations w ∈ V ′in exist. Thus, the next time point is
set to t5 = UB and the algorithm terminates without a solution. 2

4.2.2 Serial Schedule Generation Scheme

In this section, the serial schedule generation scheme that has been im-
plemented to solve the scheduling subproblem of the problem of hospital
evacuations is introduced. Below, this scheme is outlined in Algorithm 4.3.

Similar to the schedule generation scheme for the classical RCPSP intro-
duced in Section 3.2.3, the general idea of this algorithm is to schedule one
operation in each iteration λ such that the operation starts as early as possi-
ble with respect to the given precedence constraints, resource requirements,
as well as transfer times. For this, a set Eλ of eligible operations is calcu-
lated in each iteration λ that contains all operations that can be scheduled
precedence- as well as resource-feasibly (i.e. unlike for the parallel schedule
generation scheme, all operations contained in the set Eλ can actually be
scheduled feasibly at the time that the set Eλ is calculated). Here, the ini-
tial set E1 of eligible operations is calculated in line 2 of the algorithm and

91

4 A Solution Approach for the HEP based on Priority Rules

contains all operations w ∈ Vin (i.e. it contains the first operation of the
selected evacuation route of the corresponding job σ(w)).

Algorithm 4.3: Serial Schedule Generation Scheme

1 λ := 1;
2 Calculate an initial set E1 of eligible operations;
3 while not all operations have been scheduled and Eλ 6= ∅ do
4 Choose an eligible operation w from the set Eλ;
5 Calculate the earliest time t at which operation w can be scheduled;
6 if w ∈ V ′in then
7 CalculateResourceTransfers(w, t);
8 end
9 Schedule operation w with starting time Sw = t and update resources;

10 if w ∈ V ′out then
11 Set completion time Cw := Sw + pw;
12 end
13 if w has a predecessor operation u ∈ Vσ(w) then
14 Set completion time Cu := t;
15 Update building section k ∈ Rsect required by operation u;
16 end
17 λ := λ+ 1;
18 Calculate the new set Eλ;
19 end

Now, in each iteration λ, one operation w ∈ Eλ from the current set of eligi-
ble operations is selected based on a priority rule in line 4 of the algorithm.
Similar to the parallel schedule generation scheme, the priority rules listed
in Table 4.2 can be used in order to select operations. After an operation
w ∈ Eλ has been selected, the earliest time t at which this operation can
be scheduled to start is calculated in line 5. This earliest start time t is
calculated based on precedence constraints, resource requirements, as well
as transfer times as described below.

First of all, a time tpred = Su+pu is calculated as the earliest time at which
operation w can be scheduled precedence-feasibly based on the earliest com-
pletion times Su + pu of its predecessor operation u ∈ Vσ(w). If operation
w does not have a predecessor operation (i.e. if w ∈ V ′in holds), the earliest
time tpred at which operation w can be scheduled precedence-feasibly is set
to tpred = 0. Next, the earliest time tsect is calculated at which a sufficient

92

4.2 A Tabu Search Algorithm

amount of space is available in the required building section k ∈ Rsect in
order to schedule operation w. Here, because the completion time of oper-
ation w is generally not known at the time when operation w is scheduled
due to possible blockings, the operation is not scheduled between already
scheduled operations. Instead, it is ensured that a sufficient amount of space
is available in the building section from time tsect until the upper bound UB.

Finally, if w ∈ V ′in holds (i.e. if operation w is the first operation of the se-
lected evacuation route of job σ(w)), the earliest time at which all required
assistants and aids can arrive at operation w has to be calculated. Simi-
lar to the parallel schedule generation scheme, this earliest arrival time is
calculated by procedure CalculateResourceTransfers based on the transfer
rule ES. The earliest time at which operation w can be scheduled transfer-
feasibly is then denoted by ttrf. Now, the earliest time at which operation
w can be scheduled to start is calculated as

t = max{tpred, tsect, ttrf}.

It should be noted that ttrf = 0 holds for all operations w /∈ V ′in for which
no resource transfers of assistants and aids have to be calculated.

After the earliest starting time t for an operation w has been calculated,
the operation can be scheduled. Here, if w ∈ V ′in holds, the actual resource
transfers from completed operations u ∈ V ′out to operation w are chosen in
line 7 of the algorithm. These resource transfers are again selected by proce-
dure CalculateResourceTransfers based on the transfer rule ES as described
in Section 4.2.1.

Then, in line 9 of the algorithm, the starting time of operation w is set to
Sw = t and all required resources are updated. For this, a sufficient amount
of space is assigned to operation w in the required building section k ∈ Rsect

from time t until the upper bound UB. Additionally, if w ∈ V ′in holds,
the selected assistants and aids are transferred from completed operations
u ∈ V ′out to operation w. Instead, if operation w is the last operation of the
selected evacuation route of job σ(w) (i.e. if w ∈ V ′out holds), the completion
time Cw of this operation is immediately set to Cw = t + pw in line 11. In
this case, the corresponding patient has been evacuated and all resources
k ∈ R used by this operation become available again at this time. Finally,
if operation w has a predecessor operation u ∈ Vσ(w), the completion time
Cu of this operation is set to Cu = t in line 14 of the algorithm and the
building section k ∈ Rsect required by operation u becomes available again
at this time.

93

4 A Solution Approach for the HEP based on Priority Rules

After operation w has been scheduled in iteration λ, the new set Eλ+1 of
eligible operations for the next iteration λ + 1 is calculated in line 18. For
this, all unscheduled operations w ∈ Vall are added to the new set Eλ+1 that
can be feasibly scheduled. Here, an operation w ∈ Vall can be scheduled
feasibly if its predecessor operation u ∈ Vσ(w) has been scheduled already
and a sufficient amount of space is available in the required building section
k ∈ Rsect. Additionally, if w ∈ V ′in holds, it has to be ensured that a
sufficient amount of resources k ∈ Rtrf can be transferred from completed
operations u ∈ V ′out to operation w.

Finally, after the new set Eλ+1 has been calculated, the next iteration λ+ 1
can be started. This continues until either all operations have been scheduled
or until the set Eλ is empty in an iteration λ although not all operations
have been scheduled. The latter can again occur due to a deadlock if two or
more operations block each other.

Example 4.7 We again consider the problem instance from Example 4.4
in which N = 3 jobs with a total of n = 16 operations have to be scheduled.
A schedule for this problem instance as it is generated by the serial schedule
generation scheme based on a priority rule that selects operations according
to increasing numbers is displayed in Figure 4.14.

At the beginning, the initial set E1 of eligible operations contains the first
operation of each job, i.e. E1 = {1, 7, 12}. Now, operation 1 is selected from
this set based on the selected priority rule. The earliest starting time t of
operation 1 is then calculated as the earliest time at which an assistant from
exit 2 (the initial location of both assistants as well as the stretcher) can
arrive at room 5 (the initial location of patient 1). In this case, the earliest
starting time t = 3 is computed and operation 1 is scheduled to start at
time S1 = 3.

After operation 1 has been scheduled, the new set E2 of eligible operations
is calculated for the next iteration λ = 2. Here, this set E2 = {2, 12}
contains operation 2, which can now be scheduled precedence- and resource-
feasibly in building section C4, as well as operation 12. Operation 7 is not
contained in this new set because only one assistant is currently available.
Then, as before, the operation with the smallest number (i.e. operation 2) is
chosen from the set E2 and scheduled to start at its earliest precedence- and
resource-feasible starting time S2 = 4. After operation 2 has been scheduled,
the completion time of operation 1 is set to C1 = 4 and the building section
required by operation 1 becomes available again.

94

4.2 A Tabu Search Algorithm

λ1

3

λ6

8

λ7

13

λ11

17

λ12

22

λ16

26

Assistants
∆01A 1 2 3 4 5 6

∆07S

∆67A
7 8 9 1011

∆11,12,A 1213141516

Stretcher ∆07S 7 8 9 1011

Room 3 7 12

Room 5 1

C1 4 14

C2 5 15

C4 3 8 13

C6 2 9

C7 10

Exit 1 6 16

Exit 2 11

Figure 4.14: A schedule for the problem instance from Example 4.7 as it is
generated by the serial schedule generation scheme.

These steps are repeated in iterations λ = 3 to λ = 6 until all operations of
job 1 have been scheduled. Then, the new set E7 of eligible operations
is calculated as E7 = {7, 12}, i.e. it again contains the first operation
of the remaining two jobs. From this set, operation 7 is chosen and the
earliest starting time t = 13 is calculated as the earliest time at which both

95

4 A Solution Approach for the HEP based on Priority Rules

assistants as well as the stretcher can be transferred to this operation. Here,
the assistant located at exit 2 (corresponding to dummy operation 0) is used
to transport the stretcher from exit 2 (also corresponding to operation 0)
to room 3 (the initial location of patient 2) while the second assistant is
directly transferred from exit 1 (corresponding to operation 6) to room 3.
After operation 7 has been scheduled to start at time S7 = 13, the remaining
operations of job 2 are scheduled in iterations λ = 8 to λ = 11. Finally,
in iteration λ = 12, the set E12 = {12} only contains operation 12. This
operation can be scheduled to start at time S12 = 22 (i.e. at the earliest
time at which an assistant from operation 11 can arrive at operation 12)
while the remaining operations of job 3 are then scheduled until iteration
λ = 16. The makespan of the resulting schedule is Cmax = 27. 2

Time Complexity

Similar to the parallel schedule generation scheme, the time complexity of
the serial scheme is again dominated by procedure CalculateResourceTrans-
fers which is used to calculate resource transfers to operations w ∈ V ′in.
As computed above, the time complexity of this procedure is bounded by
O(N3 · |Rasst|2 · |Raid| ·Raid

max).

Now, because n iterations have to be performed (i.e. one for each operation
w ∈ Vall) and in each of these iterations, resource transfers to at most N
operations have to be selected (i.e. once for each operation w ∈ V ′in when
calculating the new set Eλ+1), the time complexity of the serial schedule
generation scheme is bounded by

O(n ·N4 · |Rasst|2 · |Raid| ·Raid
max) (4.38)

It can be seen that the time complexity of the serial schedule generation
scheme is by a factor of N smaller than the time complexity of the parallel
schedule generation scheme. This is due to the fact that resource trans-
fers have to be calculated at most once for each operation w ∈ V ′in during
an iteration of the serial schedule generation scheme. In contrast to this,
resource transfers may have to be evaluated multiple times for the same
operations during one iteration of the parallel schedule generation scheme
(i.e. if multiple passes are required).

Finally, it should be noted that testing whether a sufficient amount of space
is available in the building section k ∈ Rsect required by an operation w ∈
Vall can be done in O(N) time (i.e. each building section is used at most

96

4.2 A Tabu Search Algorithm

once by each job j ∈ J) by storing only the jump points at which the
corresponding resource profile changes.

Further Results

Next, we again consider some properties of the schedules generated by the
serial schedule generation scheme. Here, unlike the serial schedule generation
scheme for the classical RCPSP described in Section 3.2.3, the serial schedule
generation scheme implemented to solve the scheduling subproblem of the
hospital evacuation problem does not even necessarily generate semi-active
schedules. This is again caused by the transfer rule ES used to select resource
transfers as visualized in Example 4.5. Due to this restriction, no optimal
solution may exist in the set of schedules generated by the serial schedule
generation scheme presented in this section.

Finally, similar to the parallel schedule generation scheme, deadlocks can
occur if two or more operations block each other. This can again be visu-
alized by Example 4.6 if, in each iteration λ, the same operation is selected
from the set of eligible operations Eλ as in this example using the specified
priority rule (e.g. the priority rule RAND).

4.2.3 Shortcomings of this Solution Approach

In this section, we discuss some shortcomings of the schedule generation
schemes introduced in the previous sections. As already described above,
neither the parallel nor the serial schedule generation scheme is necessarily
able to generate an optimal solution for a given problem instance due to
the transfer rule ES used to select resource transfers. In particular, this
problem occurs if an operation w ∈ V ′in has to be scheduled that requires
both assistants as well as aids. Here, in order to schedule operation w, an
amount of rwk units of resource k ∈ Rasst as well as an amount of rwl units of
resource l ∈ Raid have to be transferred from completed operations u ∈ V ′out

to operation w. Furthermore, the transfer of each unit of resource l ∈ Raid

has to be supported by an amount of µkl units of resource k ∈ Rasst.

In the following, this problem is modeled as an extension of the transporta-
tion problem with second-tier resources as it has been introduced by Wald-
herr et al. (2013). Here, for the transportation problem with second-tier

97

4 A Solution Approach for the HEP based on Priority Rules

resources, a set R consisting of first-tier resources as well as a set Q con-
sisting of second-tier resources are given such that an amount of µkl units
of second-tier resource k ∈ Q is required in order to support the transfer of
one unit of first-tier resource l ∈ R. Next, a set S of supply nodes is given
such that an amount of auk units of resource k ∈ Q as well as an amount
of aul units of resource l ∈ R are available at node u ∈ S. Furthermore,
a designated demand node D with a demand of bl units of resource l ∈ R
is given. Finally, transfer times ∆ul denote the time required to transfer
resource l ∈ R from node u ∈ S to node D while transfer times ∆uvk denote
the time required to transfer resource k ∈ Q from node u ∈ S to node v ∈ S.

The transportation problem with second-tier resources then consists of the
following. A sufficient amount of bl units of resource l ∈ R from nodes v ∈ S
has to be selected to be transferred to node D. Additionally, if an amount of
0 ≤ q ≤ avl units of resource l ∈ R has been selected to be transferred from
node v ∈ S to node D and if ∆vl > 0 holds, an amount of q · µkl units of
resource k ∈ Q from nodes u ∈ S has to be assigned to support this transfer.
Finally, no more than the available amount of auk units of resource k ∈ Q
as well as aul units of resource l ∈ R from node u ∈ S can be used. The
objective is to minimize the latest arrival time of all required resource units
of resources l ∈ R at node D. Here, the arrival time of a resource l ∈ R
from supply node v ∈ S at the demand node D can not be earlier than time
∆uvk +∆vl if the transfer of resource l is supported by resource k ∈ Q from
supply node u ∈ S. The corresponding decision version for this problem is
to determine if a solution exists such that all required resource units arrive
at node D until a given time T .

Now, the problem of selecting resource transfers of assistants and aids to
an operation w as well as assigning assistants to support the transfer of the
selected aids can be modeled as an extended transportation problem with
second-tier resources as follows. First of all, the set Raid corresponds to the
set R of first-tier resources while the set Rasst corresponds to the set Q of
second-tier resources. Then, a set S ⊆ V ′out of supply nodes is introduced
that contains all completed operations u ∈ V ′out with completion times Cu.
At each of these nodes u ∈ S, an amount of auk ≤ ruk units of resource
k ∈ Rtrf is available. Next, the operation w that has to be scheduled
corresponds to the demand node D. Associated with this demand node are
a demand of bk = rwk units of resource k ∈ Rtrf. Finally, transfer times
∆uvk for all resources k ∈ Rtrf are given between all pairs of nodes u, v ∈ S
and transfer times ∆uk = ∆uwk for all resources k ∈ Rtrf are given from all
nodes u ∈ S to the demand node D.

98

4.2 A Tabu Search Algorithm

Thus, the extended transportation problem with second-tier resources differs
from the transportation problem with second-tier resources introduced by
Waldherr et al. (2013) in the following details. First of all, each supply
node u ∈ S is assigned a completion time Cu at which the resource units
located at this node become available. This completion time has to be taken
into account when calculating the arrival times of resources k ∈ Rtrf at the
demand node (i.e. the arrival times have to be calculated according to
inequalities (4.2) to (4.4)). Next, instead of only resource units of resources
l ∈ Raid, the demand node also requires resource units of resources k ∈ Rasst.
Just as for the problem of hospital evacuations considered above, the same
resource units of resource k can be used by the demand node that have
already been used to support the transfer of resources l ∈ Raid to the demand
node. Associated with this difference are additional transfer times ∆uk

between supply nodes u ∈ S and the demand node for all resources k ∈ Rasst

such that ∆uk ≤ ∆ul is assumed to hold for all resources k ∈ Rasst and
l ∈ Raid with µkl > 0 (i.e. the transfer time for the supported resource l is
always at least as large as the transfer time for the supporting resource k).
As a result of this, a problem instance for the transportation problem with
second-tier resources as it has been introduced by Waldherr et al. (2013)
can be transformed into a problem instance for the extended transportation
problem with second-tier resources by setting Cu = 0 for all nodes u ∈ S
and bk = 0 for all resources k ∈ Rasst.

Now, we show that this problem is NP-hard even if only one type of assistants
as well as one type of aids are available (cf. Waldherr et al. (2013)).

Theorem 4.1 The decision version of the extended transportation problem
with second-tier resources described above with |Rasst| = 1 and |Raid| = 1 is
NP-complete. 2

Proof In order to prove that the decision version of the extended trans-
portation problem with second-tier resources and |Rasst| = |Raid| = 1 is
NP-complete, we show that the problem belongs to the set NP of nonde-
terministically polynomial solvable problems and then show that it is NP-
complete by a polynomial-time reduction of the parallel machine scheduling
problem P2|pmtn; ri|

∑
Ui.

First of all, the extended transportation problem with second-tier resources
belongs to the set NP because it is possible to verify a solution for the
problem in O(|S|2 · |Rasst| · |Raid|) time. Here, the time complexity for
verifying a solution is dominated by the time required to ensure that all
selected resource units of resource l ∈ R from supply nodes v ∈ S can be

99

4 A Solution Approach for the HEP based on Priority Rules

transferred to the demand node until time T by resource units of resource
k ∈ Q from supply nodes u ∈ S that have been assigned to support the
respective transfers.

Next, we show that the decision version of the extended transportation
problem with second-tier resources is NP-complete by a reduction of the
machine scheduling problem P2|pmtn; ri|

∑
Ui.

Input: The machine scheduling problem P2|pmtn; ri|
∑
Ui consists of a set

J that contains n jobs i = 1, . . . , n with processing times pi, release
dates ri, as well as due dates di. These jobs have to be scheduled
on two parallel identical machines such as to minimize the number of
late jobs (i.e. jobs i with completion times Ci > di). Furthermore,
the jobs can be preempted, i.e. jobs that are being processed can be
suspended and resumed on the same or another machine at a later
time. Finally, for the decision version of this problem, an integer value
Umax is given such that

∑
Ui ≤ Umax has to hold, i.e. it has to be

decided if a solution for a given problem instance exists such that no
more than Umax jobs are late. This problem has been shown to be
ordinary NP-complete by Du et al. (1992).

Transformation: First, we calculate a list t1 < t2 < . . . < tm of strictly
increasing time points based on the release dates ri as well as the due
dates di of the jobs i ∈ J . Based on these time points, a total of m−1
time intervals Ih = [th, th+1[for h = 1, . . . ,m − 1 can be defined.
Below, the set I = {I1, . . . , Im−1} contains all time intervals while the
set Ii ⊆ I contains all time intervals Ih = [th, th+1[with th ≥ ri and
th+1 ≤ di during which job i ∈ J can be processed without being late.

Now, each job i ∈ J is represented by a job node Ji while the two par-
allel machines are represented by machines nodes U1(Ih) and U2(Ih)
for each time interval Ih ∈ I. Additionally, one interval node DIhi is
introduced for each time interval Ih ∈ Ii during which job i ∈ J can
be processed. Finally, one job dummy node X(Ji) for each job node
Ji as well as one interval dummy node Y (DIhi) for each interval node
DIhi are introduced. In the following, all of these nodes are contained
in the set S of supply nodes. Furthermore, all of these nodes u ∈ S
are assigned completion times Cu = 0.

Next, an integer value M with

M = max
{

n
max
i=1
{pi},

m−1
max
h=1
{th+1 − th}

}
+ 1

100

4.2 A Tabu Search Algorithm

is calculated based on the processing times pi of the jobs i ∈ J as
well as the lengths of the time intervals Ih. Then, a resource k (with
k ∈ Rasst) is introduced such that an amount of aX(Ji),k = M − pi
units of this resource is available at each job dummy node X(Ji), an
amount of aU1(Ih),k

= aU2(Ih),k
= th+1 − th units of this resource

is available at each machine node U1(Ih) and U2(Ih), an amount of
aDIhi,k = th+1 − th units of this resource is available at each interval
node DIhi, and an amount of aY (DIhi

),k = M − (th+1 − th) units of
this resource is available at each interval dummy node Y (DIhi).

Then, a resource l (with l ∈ Raid) is introduced such that an amount
of aJi,l = 1 unit of this resource is available at each job node Ji and an
amount of aDIhi,l = 1 unit of this resource is available at each interval
node DIhi. In the following, an amount of µkl = M units of resource
k is required in order to support the transfer of one unit of resource l.

Now, the demand node requires an amount of

bl = (n− Umax) +
∑
i∈J

|Ii|

units of resource l (i.e. all resource units of resource l from interval
nodes DIhi as well as n − Umax resource units of resource l from the
job nodes) and an amount of bk = 0 units of resource k. The upper
bound T is set to T = 2 (i.e. all required resource units have to arrive
at the demand node until this time).

Finally, we introduce transfer times ∆uvk for all resources k ∈ Rtrf

between all pairs of nodes u,v ∈ S as well as transfer times ∆uk for
all resources k ∈ Rtrf from nodes u ∈ S to the demand node. Here,
the transfer time from each job node Ji as well as from each interval
node DIhi to the demand node is set to ∆Ji,k = ∆Ji,l = ∆DIhi

,k =
∆DIhi

,l = 1 for both resources k and l. Next, the transfer time from
each job dummy node X(Ji) to the corresponding job node Ji is set
to ∆X(Ji),Ji,k = 1 for resource k. Similarly, the transfer time from
each interval dummy node Y (DIhi) to the corresponding dummy node
DIhi is set to ∆Y (DIhi

),DIhi
,k = 1 for resource k. The transfer time

from each interval node DIhi to the corresponding job node Ji is set to
∆DIhi

,Ji,k = 1 for resource k while the transfer times from the machine
nodes U1(Ih) and U2(Ih) to the corresponding interval nodes DIhi are
set to ∆U1(Ih),DIhi

,k = ∆U2(Ih),DIhi
,k = 1 for resource k. Finally, the

transfer time from each node u ∈ S to itself is set to ∆uuk = ∆uul = 0

101

4 A Solution Approach for the HEP based on Priority Rules

for both resources k and l while all remaining transfer times between
the nodes are set to values strictly larger than one.

This transformation is a polynomial transformation because at most
n job nodes Ji as well as n corresponding job dummy nodes X(Ji)
have to be considered for n jobs. Similarly, for m ≤ 2n time intervals
Ih, at most 4n machine nodes U1(Ih) and U2(Ih), 4n2 interval nodes
DIhi, and 4n2 corresponding interval dummy nodes Y (DIhi) have to
be considered. The remaining parameters associated with these nodes
can also be computed in polynomial time.

Now, we show that a feasible solution for the machine scheduling problem
exists if and only if a feasible solution for the extended transportation prob-
lem with second-tier resources exists.

“⇒” First, we show that any feasible solution for the machine scheduling
problem P2|pmtn; ri|

∑
Ui corresponds to a feasible solution for the

extended transportation problem with second-tier resources. For this,
we assume that job i ∈ J is a punctual job (i.e. a job i with Ci ≤ di
that is completed not later than at time di). Then, all M − pi units of
resource k from the corresponding job dummy node X(Ji) are assigned
to support the transfer of resource l from job node Ji to the demand
node. Now, pi units of resource k are missing in order to support
the transfer of resource l. Here, because job i is a punctual job, it is
scheduled to be processed for a total of pi time units in ν time intervals
Ii1 , . . . , Iiν ∈ Ii (with ν ≤ m). These time intervals are considered
separately as follows.

We assume that job i is scheduled to be processed for qIhi ≤ th+1− th
time units in time interval Ih ∈ {Ii1 , . . . , Iiν}. Then, qIhi units of
resource k from the corresponding interval node DIhi are assigned to
support the transfer of resource l from job node Ji to the demand node.
This is repeated for all time intervals Ih ∈ {Ii1 , . . . ,Iiν} such that a
total of pi units of resource k are assigned to support the transfer of
resource l from job node Ji to the demand node. Thus, all support
requirements for the transfer of resource l are satisfied and one unit
of resource l can be transferred to the demand node until time T = 2.
By repeating this for all punctual jobs i ∈ J , a total of n−Umax units
of resource l are transferred from the corresponding job nodes Ji to
the demand node until time T = 2.

102

4.2 A Tabu Search Algorithm

Next, we consider all interval nodes DIhi. Here, if qIhi > 0 holds
and the corresponding job i is being processed for q1Ihi time units on
machine 1 as well as for q2Ihi time units on machine 2 (with q1Ihi+q

2
Ihi

=
qIhi) during this time interval Ih, an amount of q1Ihi units of resource
k from machine node U1(Ih) as well as an amount of q2Ihi units of
resource k from machine node U2(Ih) are assigned to support the
transfer of resource l from interval node DIhi to the demand node
(i.e. all qIhi units of resource k that are used to support the transfer
of resource l from job node Ji to the demand node can be replaced).
Additionally, for all interval nodes DIhi, all th+1 − th − qIhi units of
resource k available at interval node DIhi itself as well as M − (th+1−
th) units of resource k from the corresponding dummy interval node
Y (DIhi) are assigned to support the transfer of resource l from interval
node DIhi to the demand node such that one unit of resource l can
arrive at the demand node until time T = 2. Thus, all units of resource
l from the interval nodes DIhi can be transferred to the demand node
until time T = 2 such that all resource demands of the demand node
are satisfied.

“⇐” Conversely, we show how a feasible solution for the machine scheduling
problem with at most Umax late jobs can be constructed from a feasi-
ble solution of the extended transportation problem with second-tier
resources. For this, we consider a feasible solution for the extended
transportation problem with second-tier resources in which

bl = n− Umax +
∑
i∈J

|Ii|

units of resource l arrive at the demand node on time. As there are
only

∑
i∈J |Ii| units of resource l that can be transferred from interval

nodes DIhi to the demand node, at least n′ ≥ (n − Umax) units of
resource l have to be transferred from job nodes Ji to this node.

Now, we assume without loss of generality that resource units of re-
source l are transferred from job nodes J1, . . . , Jn′ to the demand node
in the feasible solution for the extended transportation problem with
second-tier resources. In the following, we consider these job nodes Ji
with 1 ≤ i ≤ n′. Here, in order to transfer one unit of resource l from
job node Ji to the demand node, at least pi units of resource k from
interval nodes DIhi with Ih ∈ Ii have to be assigned to support the
transfer. Now, we assume that qIhi ≤ th+1 − th units of resource k

103

4 A Solution Approach for the HEP based on Priority Rules

from interval node DIhi are assigned to support the transfer. Then,
two cases can be differentiated: either one unit of resource l is trans-
ferred from this interval node DIhi to the demand node in the feasible
solution for the extended transportation problem with second-tier re-
sources, or it is not. In the latter case, we say that this interval node
invalidates the transfer of resource l from job node Ji to the demand
node and no longer consider this job. In the former case an amount
of qIhi units of resource k is missing at interval node DIhi in order
to support the transfer of resource l from interval node DIhi to the
demand node. For this reason, an amount of q1Ihi units of resource
k from machine node U1(Ih) as well as an amount of q2Ihi units of
resource k from machine node U2(Ih) (with q1Ihi + q2Ihi = qIhi) have
to be assigned to support the transfer of resource l from interval node
DIhi to the demand node.

Then, the corresponding job i can be scheduled on time in the machine
scheduling problem such that it is being processed for a total of q1Ihi
time units on machine 1 as well as for a total of q2Ihi time units on
machine 2 in the corresponding time interval Ih = [th, th+1[. Here,
because qIhi ≤ th+1 − th holds, job i can be scheduled such that it
is not being processed by both machines simultaneously. This can
be performed for pi units of resource k from interval nodes DIhi that
are assigned to support the transfer of resource l from job node Ji to
the demand node until job i is scheduled for pi time units on the two
available machines between its release date ri and its due date di.

We repeat this for each job node Ji with i ∈ {1, . . . , n′} for which
the transfer of resource l is not invalidated by some interval node.
Then, because each interval node DIhi from which no resource unit of
resource l is transferred to the demand node can invalidate at most
one job node Ji and at most n′ − (n − Umax) interval nodes DIhi
can invalidate the transfer of their corresponding job node Ji, at least
n−Umax job nodes are not invalidated and the corresponding jobs can
be scheduled as described above.

Thus, because the extended transportation problem with second-tier re-
sources belongs to the set NP and the ordinary NP-complete machine
scheduling P2|pmtn; ri|

∑
Ui could be reduced to the extended transporta-

tion problem with second-tier resources by a polynomial-time reduction, the
extended transportation problem with second-tier resources and |Rasst| = 1
as well as |Raid| = 1 is also at least ordinary NP-complete. �

104

4.2 A Tabu Search Algorithm

This theorem shows that calculating resource transfers from completed op-
erations u ∈ V ′out to an operation w ∈ V ′in such that all required resource
units arrive at operation w as early as possible is an NP-hard problem. For
this reason, while the approach used in procedure CalculateResourceTrans-
fers to select resource transfers based on the transfer rule ES may not yield
optimal solutions, it is also unlikely that a polynomial time algorithm exists
that could solve this problem optimally (i.e. such that the selected resource
transfers arrive at operation w ∈ V ′in as early as possible). It should be
noted, however, that the same does not hold for some special cases of the
problem. In particular, if only assistants are required to evacuate the pa-
tients or if teams of assistants and aids are formed in advance as described
in Section 4.1.3, the transfer rule ES is able to select resource transfers such
that operation w can be scheduled to start as early as possible (i.e. in this
case, no second-tier resources are required).

Finally, it should be noted that the same problem also has to be solved
in order to shift operations u ∈ V ′in to the left (i.e. it has to be ensured
that a sufficient amount of resource units can be transferred to operation
u until time S′u < Su). For this reason, it is also not a trivial problem
to transform a schedule S into an active (or semi-active) schedule S′ by
left-shifts as described in Section 3.2.2. Due to these problems encountered
in this solution approach based on priority rules, an alternative solution
approach based on resource flows for the problem of hospital evacuations
is presented in Chapter 7. Before this approach is introduced, however, we
first consider the RCPSP with general resource transfers in Chapter 5 and
describe a solution approach based on resource flows for this problem in
Chapter 6.

105

5 Resource-Constrained Project Scheduling
with Resource Transfers

Resource transfers and, in particular, the transport of resources by other
resources are an integral part of the problem of hospital evacuations con-
sidered in the previous chapter. For this reason, this chapter deals with the
subproblem of resource-constrained project scheduling with resource trans-
fers. The additional problem of blockings as they occur in the problem of
hospital evacuations is neglected here. Instead, the focus of this as well as
the following chapter is on gaining a better understanding of the RCPSP
with resource transfers and developing an heuristic algorithm that is better
suited to work on resource flows used to represent the transfer of resources
between activities.

This chapter is divided as follows: first of all, in Section 5.1, previous re-
search by Krüger (2009) and Krüger and Scholl (2010) on project scheduling
with generalized resource transfers is discussed where resources can be used
for both, processing activities as well as supporting the transfer of other
resources between activities. Apart from introducing an extension of the
classification of setup times by Mika et al. (2006), this section also presents
a model by Krüger (2009) that incorporates these generalized resource trans-
fers. Then, in Section 5.2, an alternative model for the resource-constrained
project scheduling problem with generalized resource transfers (this problem
is referred to as the RCPSP with first- and second-tier resource transfers in
the remainder of this thesis) is introduced. Finally, the model by Krüger
(2009) as well as the model used in this thesis are compared in Section 5.3.

5.1 Project Scheduling with Resource Transfers in Literature

In Section 3.1.5, a classification of setup times in the context of the resource-
constrained project scheduling problem as it has been introduced by Mika
et al. (2006) has been described. Now, this section gives a further overview
of resource transfers in project scheduling. Here, while the classification by

107

5 Resource-Constrained Project Scheduling with Resource Transfers

Mika et al. (2006) is primarily focused on direct resource transfers between
activities, this section deals with the problem of resource-constrained project
(or multi-project) scheduling with generalized resource transfers as it has
been introduced by Krüger (2009) in her PhD thesis as well as in a paper
by Krüger and Scholl (2010).

While Krüger (2009) primarily deals with the problem of project schedul-
ing with stand-alone resource transfers (i.e. transfers of resources that do
not require the support of other resources for the transfer) in her PhD the-
sis, she also introduces a broader classification of resource transfers includ-
ing resource-using as well as resource-consuming transfers (i.e. transfers
of resources that require the support of other resources for the transfer).
This classification of resource transfers is described in more detail in Section
5.1.1. Based on this classification, Krüger (2009) then describes the resource-
constrained (multi-)project scheduling problem with generalized resource
transfers and presents a mixed-integer linear programming formulation for
this problem. In the following, this problem is described in Section 5.1.2
while a mixed-integer linear programming formulation for this problem as
it has been presented by Krüger (2009) is given in Section 5.1.3.

It should be noted that setup (or transfer) times in the context of the
resource-constrained project scheduling problem have received only limited
attention (cf. Section 3.1.5). In particular, to the best of our knowledge, the
resource-constrained project scheduling problem with generalized resource
transfers has only been considered by Krüger (2009) as well as Krüger and
Scholl (2010) until now.

5.1.1 Classification of Resource Transfers

In the following, the classification of resource transfers in the three dimen-
sions of time, abstraction, and support is described as it has been introduced
by Krüger (2009). First of all, in the dimension of time, a transfer can origi-
nate either at the beginning or at the end of an activity and be directed either
to the beginning or to the end of another activity. Thus, a total of four dif-
ferent transfer types can be distinguished, i.e. finish-to-start, start-to-start,
finish-to-finish, and start-to-finish transfers. Of these, finish-to-start trans-
fers are the most common type and occur if a resource is transferred from
one activity that required this resource in order to be processed to another
activity that requires it.

108

5.1 Project Scheduling with Resource Transfers in Literature

Next, in terms of abstraction, Krüger (2009) distinguishes between physical
and non-physical transfers. While physical transfers represent the transfer
of a resource from one location to another location, non-physical transfers
take place without a change of location. For example, the setup of a machine
can be regarded as a non-physical transfer where the machine remains in the
same location but a transfer (or setup) time is still required to prepare the
machine for the next activity.

Finally, in the third dimension, resource transfers can be differentiated be-
tween stand-alone transfers, resource-using transfers, as well as resource-
consuming transfers. Here, a stand-alone transfer refers to the transfer of
a resource that does not require supporting resources. For example, in the
problem of hospital evacuations, the transfer of an assistant between two
activities can be regarded as a stand-alone transfer. Next, resource-using
transfers refer to the transfer of a resource that requires a supporting renew-
able resource for the transfer. Again, in the problem of hospital evacuations,
the transfer of a wheelchair by an assistant corresponds to a resource-using
transfer where the assistant is the supporting (renewable) resource. Finally,
resource-consuming transfers occur if non-renewable resources instead of re-
newable resources are required in order to support the transfer of another
resource. For example, the physical transfer of a resource might require
money. In this case, the non-renewable resource money is consumed by the
transfer.

In the classical resource-constrained project scheduling problem described in
Chapter 3, non-renewable resources can be neglected because there either is a
sufficient amount of resource units of non-renewable resources or there is not.
In contrast to this, non-renewable resources are interesting to consider for
the multi-mode RCPSP where the amount of resource units required by an
activity depends on the mode in which the activity is executed. Indeed, for
the MRCPSP with non-renewable resources, Kolisch and Drexl (1997) have
shown that even deciding whether a feasible solution exists is NP-complete
(i.e. the problem of assigning a mode to each activity such that the amount
of available resource units of non-renewable resources is not smaller than
the sum of non-renewable resource units required by the activities).

Here, a similar problem occurs if resource-consuming transfers are consid-
ered. In this case, even though the resource requirements are fixed for all
activities (i.e. if each activity can only be executed in one mode), the actual
amount of non-renewable resource units required during the project depends
on the selected resource-consuming resource transfers. Thus, even though

109

5 Resource-Constrained Project Scheduling with Resource Transfers

a sufficient amount of non-renewable resource units might be available to
process all activities, no feasible schedule might exist for a given problem
due to resource-consuming resource transfers.

first-tier

transferable

resources

first-tier

transferable

resources

first- and

second-tier

transferable

resources

first- and

second-tier

transferable

resources

first- and

second-tier

transferable

resources

first- and

second-tier

transferable

resources

fi
n
is

h
-t

o
-s

ta
rt

tr
a
n
sf

er

fi
n
is

h
-t

o
-fi

n
is

h
tr

a
n
sf

er

st
a
rt

-t
o
-s

ta
rt

tr
a
n
sf

er

st
a
rt

-t
o
-fi

n
is

h
tr

a
n
sf

er

abstraction

support

time

non-

physical

physical

stand-alone
resource-

using

resource-

consuming

Figure 5.1: Classification of resource transfers along the three dimensions
time, abstraction, and support as introduced by Krüger (2009).
It should be noted that finish-to-finish, start-to-start, and start-
to-finish stand-alone transfers can only occur in combination
with resource-using or resource-consuming resource transfers.

Now, the resource units that are being transferred between two activities
can be distinguished as either first- or second-tier resource units. Here, a
resource unit that is transferred from one activity to another is referred to
as a first-tier resource if it is required in order to process the activity that it
is being transferred to. On the other hand, a resource unit is referred to as
a second-tier resource if it is used to support the transfer of another (first-
tier) resource to an activity. Thus, second-tier resource transfers only occur
during resource-using or resource-consuming transfers. It should be noted
that a renewable resource unit can be used to both, support the transfer
of another resource to an activity as well as to process this activity itself.
In this case, the resource unit can be regarded as a first- and second-tier

110

5.1 Project Scheduling with Resource Transfers in Literature

resource simultaneously. On the other hand, we refer to a resource unit that
is only used to support the transfer of another resource to an activity but
not to process the activity itself as a pure second-tier resource.

Finally, Krüger (2009) remarks that higher-tier resource transfers are possi-
ble. For example, the transfer of a heavy crane from one construction site to
another requires the support of workers to disassemble and then reassemble
the crane, as well as lorries to transport it. Additionally, the lorries them-
selves need supporting resources in the form of drivers, i.e. these drivers
support the transfer of the crane indirectly as third-tier resources. In this
case, however, higher-tier resources can directly be assigned as second-tier
resources to the supported first-tier resource, e.g. the heavy crane in this
example (cf. Krüger (2009)).

5.1.2 RCPSP with Generalized Resource Transfers

In this section, the resource-constrained project scheduling problem with
generalized resource transfers as it has been introduced by Krüger (2009)
is described. In contrast to the resource-constrained project scheduling
problem with sequence- and resource-dependent setup (or transfer) times
discussed in Section 3.1.5 that only models stand-alone resource transfers
between activities, this generalized problem contains all types of resource
transfers described above (i.e. stand-alone transfers, resource-using trans-
fers, as well as resource-consuming transfers between the activities).

It should be noted that the original problem formulation by Krüger (2009)
deals with the resource-constrained multi-project scheduling problem, i.e.
instead of one project, multiple projects sharing at least one resource have
to be scheduled. The same problem description as well as the same mixed-
integer linear programming formulation for this problem can also be used in
order to model the resource-constrained (single) project scheduling problem
as it has been introduced in Chapter 3 with only minor adaptions. In partic-
ular, instead of multiple projects consisting of multiple activities, only one
project consisting of multiple activities has to be scheduled. For this reason,
we describe the single-project problem with generalized resource transfers
in this section.

As for the classical RCPSP, a total of n real activities i = 1, . . . , n as well
as a dummy source activity 0 and a dummy sink activity n + 1 have to be
scheduled under precedence- and resource-constraints. In the following, the

111

5 Resource-Constrained Project Scheduling with Resource Transfers

set V = {1, . . . , n} contains all real activities, the set Vall = {0, 1, . . . , n, n+
1} contains all real activities as well as the two dummy activities 0 and n+1,
and the set A = {(i,j) | i,j ∈ Vall, i→ j} contains all precedence constraints
i → j between pairs of activities i,j ∈ Vall with i 6= j. Furthermore, the
set V0 = V ∪ {0} again contains all real activities as well as the dummy
source activity 0 while the set V∗ = V ∪{n+1} contains all real activities as
well as the dummy sink activity n+ 1. Finally, for the mixed-integer linear
programming formulation described in Section 5.1.3, additional sets Vri and
Vsi are introduced for each activity i ∈ Vall such that the set Vri contains
all activities to which resource units can be transferred from activity i (i.e.
all activities j ∈ V∗ that are no direct or indirect predecessors of activity
i) while the set Vsi contains all activities from which resource units can
be transferred to activity i (i.e. all activities h ∈ V0 that are no direct or
indirect successors of activity i).

Next, the set R contains r renewable resources k = 1, . . . , r with resource
capacities Rk while the set NR contains ρ non-renewable resources k = r+
1, . . . , r+ρ with capacities Rk. Additionally, the set R∗ = R∪NR contains
all renewable and non-renewable resources. Now, a processing time pi as well
as resource requirements rik for all resources k ∈ R∗ are associated with all
activities i ∈ Vall. It should be noted that dummy source activity 0 as well
as dummy sink activity n + 1 again have processing times p0 = pn+1 = 0
and resource requirements r0k = rn+1,k = Rk for all renewable resources
k ∈ R. Similarly, all non-renewable resources k ∈ NR are initially located
at dummy source activity 0 (i.e. r0k = Rk holds for all k ∈ NR). As non-
renewable resources are consumed during the project, however, the amount
of non-renewable resource units that is not consumed during the project is
not known in advance. Thus, only those non-renewable resource units that
are not consumed during the project have to be collected at dummy sink
activity n+ 1.

As stated above, all three support types of stand-alone transfers, resource-
using transfers, as well as resource-consuming transfers are integrated into
the RCPSP with generalized resource transfers. Additionally, either finish-
to-start, finish-to-finish, start-to-start, or start-to-finish transfers are possi-
ble. Here, finish-to-start transfers are the most common type of transfers
that always occur if a resource that has been used to process one activity is
transferred from the end of this activity to the start of the next activity by
which it is required. On the other hand, finish-to-finish, start-to-start, and
start-to-finish transfers only occur in connection with second-tier resource
transfers. For example, start-to-start or start-to-finish transfers only occur

112

5.1 Project Scheduling with Resource Transfers in Literature

if a second-tier resource that has been used to support the transfer of a first-
tier resource to an activity j ∈ V∗ is not required to process activity j and
can directly be transferred to the next activity from the start of activity j.
Similarly, finish-to-finish or start-to-finish transfers to the end of an activity
i ∈ V0 only occur if a second-tier resource is required to support the transfer
of a first-tier resource from the end of activity i to another activity j ∈ V∗.

Now, a support matrix µ is introduced such that each element µkl for k,l =
1, . . . , r + ρ (with µkl = 0 for k = l) of this matrix denotes the amount of
second-tier resource units of resource k ∈ R∗ required to transfer one unit
of first-tier resource l ∈ R∗. Depending on whether the required second-tier
resources k ∈ R∗ are renewable or non-renewable resources, the transfer
of first-tier resource l ∈ R∗ is either resource-using (i.e. the second-tier
resource units of resource k ∈ R used for the transfer will be available again
after the transfer) or resource-consuming (i.e. the second-tier resource units
of resource k ∈ NR will be consumed during the transfer). Also, it is
possible that both types of resources are required for the transfer of a first-
tier resource l ∈ R∗. It is important to note that the actual amount of
second-tier resource units of a non-renewable resource k ∈ NR consumed
during a transfer depends on the transfer time between the activities such
that an amount of µkl units of non-renewable resource k ∈ NR are consumed
per time period of the transfer of a first-tier resource l ∈ R∗.

Next, transfer times∆ijk are introduced between all pairs of activities i ∈ V0

and j ∈ V∗ as well as for all resources k ∈ R∗ such that these transfer times
fulfill the triangle inequality∆hik+∆ijk ≥ ∆hjk. This property can often be
assumed to hold in practical applications, e.g. if the transfer times depend
on the distance between two locations. Furthermore, Krüger (2009) assumes
that ∆ijl ≥ ∆ijk holds for each pair of first-tier resource l ∈ R∗ and second-
tier resource k ∈ R∗ with µkl > 0, i.e. the time of the resource transfer is
always determined by the supported first-tier resource l ∈ R∗.

An important property of the model discussed here is the integration of the
four transfer types finish-to-start (denoted by FS), finish-to-finish (denoted
by FF), start-to-start (denoted by SS), and start-to-finish (denoted by SF)
as they have been introduced above. In the following, these transfer types
are contained in the set S = {FS, FF, SS, SF}. It should be noted that an
activity j ∈ V∗ to which resource units of resources k ∈ R∗ are transferred
from activities i ∈ V0 by transfer type FS or SS (i.e. the resource units are
transferred to the start of activity j) can only start after the resource units
have arrived. Similarly, activity j can only end after all resource units of

113

5 Resource-Constrained Project Scheduling with Resource Transfers

resources k ∈ R∗ that are transferred from activities i ∈ V0 to activity j by
transfer type FF or SF (i.e. the resource units are transferred to the end
of activity j) have arrived. This, in turn, delays outgoing resource transfers
from either the start or the end of activity j.

Example 5.1 We consider a small project consisting of n = 5 activities,
r = 2 renewable resources with capacities R1 = 3 and R2 = 1, as well as
ρ = 1 non-renewable resource with a capacity of R3 = 6. Additionally, ac-
tivities 0 and 6 are the dummy source and dummy sink activity, respectively.
The processing times as well as the resource requirements of the activities
are given in Table 5.1 while the activity-on-node network displaying the
precedence constraints between the activities is shown in Figure 5.2.

i 0 1 2 3 4 5 6
pi 0 1 1 2 1 2 0
ri1 3 1 2 1 1 2 3
ri2 1 1 0 0 1 0 1
ri3 6 0 2 0 1 0 -

Table 5.1: Processing times pi and resource requirements rik for the n = 5
real activities i = 1, . . . , 5 as well as the two dummy activities 0
and 6 from the project considered in Example 5.1. The amount of
resource units of the non-renewable resource 3 required by dummy
sink activity 6 is not known in advance. Instead, all resource units
of resource 3 that are not consumed during the execution of the
project have to be transferred to activity 6.

3

0 1 4 6

2 5

Figure 5.2: Activity-on-node network displaying the precedence constraints
between the activities for the project from Example 5.1.

114

5.1 Project Scheduling with Resource Transfers in Literature

Next, the transfer times ∆ijk for the renewable resources k = 1,2 between
all pairs of activities i,j ∈ Vall are given in Table 5.2. The transfer times
for the non-renewable resource k = 3 are assumed to be ∆ij3 = 0 for all
i,j ∈ Vall. Finally, in order to transfer one unit of resource 2, an amount of
µ12 = 2 units of resource 1 as well as an amount of µ32 = 1 units of resource
3 per time period are required. Thus, the transfer of resource 2 is both,
resource-using as well as resource-consuming. The remaining resources 1
and 3 can be transferred by stand-alone transfer, i.e. they do not require
supporting resources. A feasible resource flow for this project is displayed
in Figure 5.3.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 1 2 1 1 0
2 0 1 0 2 1 1 0
3 0 2 2 0 1 1 0
4 0 1 1 1 0 1 0
5 0 1 1 1 1 0 0
6 0 0 0 0 0 0 0

(a) Resource k = 1.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 2 1 2 2 0
2 0 2 0 2 2 1 0
3 0 1 2 0 1 2 0
4 0 2 2 1 0 2 0
5 0 2 1 2 2 0 0
6 0 0 0 0 0 0 0

(b) Resource k = 2.

Table 5.2: Transfer times ∆ijk for resources k = 1 (cf. (a)) and k = 2 (cf.
(b)) between all pairs of activities i,j = 0, . . . , 6 for the project
considered in Example 5.1.

In this resource flow, several transfers are of particular interest. First of all,
the transfer of resource 2 from activity 0 to activity 1 does not require any
supporting resources because the transfer time for this resource between
the two activities is ∆012 = 0. Then, in order to support the transfer of
resource 2 from activity 1 to activity 4, two units of the renewable resource
1 as well as two units of the non-renewable resource 3 (i.e. µ32 = 1 unit per
time period of the transfer time ∆142 = 2) are required. Here, one unit of
resource 1 is already available at activity 1 while another unit of resource
1 is transferred to activity 1 from the end of activity 2 by finish-to-finish
transfer. Similarly, two units of resource 3 are transferred from activity 0 to
activity 1 by finish-to-finish transfer.

Next, because the two units of resource 3 transferred from activity 1 to
activity 4 are consumed during the transfer, one additional unit of resource

115

5 Resource-Constrained Project Scheduling with Resource Transfers

3 has to be transferred to activity 4 before the activity can be executed.
For this reason, one additional unit of resource 3 is transferred from activity
0 to activity 4 by finish-to-start transfer. Finally, a start-to-start transfer
occurs between activity 4 and activity 5 when one unit of resource 1 that
is not required to process activity 4 is transferred from the start of activity
4 to the start of activity 5. It should also be noted that only one unit of
resource 3 is not consumed during the project. This resource unit is directly
transferred from dummy source activity 0 to dummy sink activity 6.

0 1

2

3

4

5

6
q1 = 1
q2 = 1

q1 = 2
q3 = 2

q3 = 2

q1 = 1

q1 = 2
q2 = 1
q3 = 2

q3 = 1

q1 = 1

q1 = 1

q1 = 1 q1 = 1

q1 = 2

q2 = 1

q3 = 1

Figure 5.3: Feasible resource flow for the project considered in Example 5.1.
Here, each activity i = 0, . . . , 6 is represented by two black cir-
cles corresponding to the start and the end of the activity. Now,
resource transfers originate at either the start or the end of an
activity and terminate at either the start or end of another activ-
ity. Each resource transfer is assigned a quantity qk denoting the
amount of resource k ∈ R∗ transferred between the activities.

Now, a schedule with the makespan Cmax = 8 corresponding to this resource
flow is displayed in Figure 5.4. Here, in particular, it can be seen that the
start of activity 1 is delayed until one unit of resource 1 from activity 2 can
arrive at activity 1 such that C2 + ∆211 ≤ C1 holds. Also, it should be
noted that the transfer time of second-tier resource 1 used to support the

116

5.1 Project Scheduling with Resource Transfers in Literature

transfer of first-tier resource 2 from activity 1 to activity 4 requires two time
units even though, as a stand-alone transfer, resource 1 could be transferred
in only one time unit. This is due to the longer transfer time ∆142 = 2
of first-tier resource 2 between the two activities because resource 1 has to
support the transfer of resource 2 for the complete duration of the transfer.
Similarly, one unit of non-renewable resource 3 is required per time unit of
the transfer time to support the transfer of first-tier resource 2, i.e. a total
of two units of resource 3 are consumed during the transfer.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8

2

1

∆251

∆211

∆142

4

∆451

∆431

5

3

R2

0

1

0 1 2 3 4 5 6 7 8

1 ∆142 4

R3

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

2

∆142

∆142

4

Figure 5.4: A schedule for the project considered in Example 5.1 based on
the feasible resource flow displayed in Figure 5.3. Here, stand-
alone transfers are marked in light-gray while resource-using or
resource-consuming transfers are marked in dark gray. Further-
more, if a non-renewable resource has been consumed either dur-
ing a transfer or by processing an activity, the resource is not
available any more. This is indicated by crosshatched boxes in
the corresponding resource profile.

Finally, if only R3 = 3 units of non-renewable resource 3 were available, it
should be noted that no feasible schedule exists for the project even though

117

5 Resource-Constrained Project Scheduling with Resource Transfers

sufficient resource units of resource 3 are available to execute all real activi-
ties. This is due to the additional units of non-renewable resources required
by resource-consuming transfers. 2

As can be seen in Example 5.1, second-tier resources are not directly as-
signed to transfer specific first-tier resources in the model by Krüger (2009).
Instead, it has to be ensured that a sufficient amount of resource units of
each required second-tier resource k ∈ R∗ is available at either the start or
the end of activity i ∈ V0 from which a first-tier resource l ∈ R∗ is trans-
ferred to activity j ∈ V∗. For this, it might be necessary to use additional
resource transfers in order to transfer all required second-tier resource units
to the activity from which the first-tier resource will be transferred. Only
after a sufficient amount of resource units of each required second-tier re-
source k ∈ R∗ is available at the activity can the first-tier resource as well
as the supporting resource units be transferred to the receiving activity.

5.1.3 Mixed-Integer Linear Programming Formulation

In this section, the mixed-integer linear programming formulation by Krüger
(2009) for the problem of resource-constrained project scheduling with gen-
eralized resource transfers is described. For this formulation, the following
integer and binary variables are required.

First of all, integer variables Ci are introduced for all activities i ∈ Vall

denoting the completion times of the activities. In order to model resource
flows, integer variables fsijk are introduced for all i ∈ V0, j ∈ Vri , k ∈ R∗,
and s ∈ S denoting the amount of resource units of resource k transferred
from activity i to activity j by transfer type s. Similarly, integer variables
f̄sijk denote the amount of resource units of second-tier resource k ∈ NR
consumed during the transfer of any first-tier resource from activity i ∈ V0

to activity j ∈ Vri by transfer type s ∈ S. Next, binary variables xsijk are
introduced for all i ∈ V0, j ∈ Vri , k ∈ R∗, and s ∈ S with

xsijk =


1, if resource k is transferred from activity i to activity j

by transfer type s

0, otherwise.

Finally, integer variables αik and βik denote the surplus amount of resource
units of resource k ∈ R∗ available at the start of activity i ∈ V0 (i.e. resource
units that are not required to process the activity) that are transferred to

118

5.1 Project Scheduling with Resource Transfers in Literature

the next activity from either the start (αik) or the end (βik) of activity i.
As before, it should be noted that all parameters used here (i.e. processing
times pi, resource requirements rik, resource capacities Rk, transfer times
∆ijk, as well as support requirements µkl) are assumed to be integer.

Now, the mixed-integer linear programming formulation itself is introduced.
Again, the objective function (5.1) is to minimize the makespan Cmax of the
project where the makespan is equal to the completion time Cn+1 of dummy
sink activity n+ 1.

min Cn+1 (5.1)

In the following, the various constraints used to model the RCPSP with
generalized resource transfers are introduced. Here, first of all, inequalities
(5.2) ensure that the precedence constraints (i, j) ∈ A between activities
i,j ∈ Vall are satisfied.

Cj − Ci ≥ pj ((i,j) ∈ A) (5.2)

Next, inequalities (5.3) to (5.6) ensure that the finishing times of two activ-
ities i ∈ V0 and j ∈ Vri between which resource units of resources k ∈ R∗
are transferred as either first- or second-tier resources observe the required
transfer times ∆ijk. Here, inequalities (5.3) represent finish-to-start trans-
fers, inequalities (5.4) represent finish-to-finish transfers, inequalities (5.5)
represent start-to-start transfers, and inequalities (5.6) represent start-to-
finish transfers.

Ci +∆ijk ≤ Cj − pj + T · (1− xFSijk) (i ∈ V0; j ∈ Vri ; k ∈ R
∗) (5.3)

Ci +∆ijk ≤ Cj + T · (1− xFFijk) (i ∈ V0; j ∈ Vri ; k ∈ R
∗) (5.4)

Ci − pi +∆ijk ≤ Cj − pj + T · (1− xSSijk) (i ∈ V0; j ∈ Vri ; k ∈ R
∗) (5.5)

Ci − pi +∆ijk ≤ Cj + T · (1− xSFijk) (i ∈ V0; j ∈ Vri ; k ∈ R
∗) (5.6)

Now, inequalities (5.7) and (5.8) ensure that xsijk = 1 holds for binary
variables xsijk if and only if resource k ∈ R∗ is transferred from activity
i ∈ V0 to activity j ∈ Vri by transfer type s ∈ S.

fsijk ≤ Rk · xsijk (i ∈ V0; j ∈ Vri ; k ∈ R
∗; s ∈ S) (5.7)

xsijk ≤ fsijk (i ∈ V0; j ∈ Vri ; k ∈ R
∗; s ∈ S) (5.8)

Below, equations (5.9) and (5.10) model the outgoing resource transfers from
dummy source activity 0 where all units of resources k ∈ R∗ are initially
located. These resource units can either be transferred to real activities j ∈

119

5 Resource-Constrained Project Scheduling with Resource Transfers

V or directly to dummy sink activity n+1. It should be noted that outgoing
resource transfers from the dummy source activity can only originate from
the end of the activity (cf. equations (5.10)), i.e. all resource transfers from
the start of dummy source activity 0 are set to zero in equations (5.9).∑

j∈V∗

(
fSS0jk + fSF0jk

)
= 0 (k ∈ R∗) (5.9)

∑
j∈V∗

(
fFS0jk + fFF0jk

)
= Rk (k ∈ R∗) (5.10)

Similarly, equations (5.11) to (5.13) model the incoming resource transfers
to dummy sink activity n+1. Here, all resource units of renewable resources
k ∈ R are collected at the start of dummy sink activity n+ 1 (cf. equations
(5.12)) while only those resource units of non-renewable resources k ∈ NR
are collected at the start of dummy sink activity n + 1 that have not been
consumed during either processing a real activity i ∈ V or by supporting a
resource transfer as second-tier resources (cf. equations (5.13)). Equations
5.11 ensure that no resource transfers of resources k ∈ R∗ to the end of
dummy source activity n+ 1 can occur.∑

i∈V0

(
fSFi,n+1,k + fFFi,n+1,k

)
= 0 (k ∈ R∗) (5.11)

∑
i∈V0

(
fFSi,n+1,k + fSSi,n+1,k

)
= Rk (k ∈ R) (5.12)

∑
i∈V0

(
fFSi,n+1,k + fSSi,n+1,k +

∑
j∈V∗

∑
s∈S

f̄sijk

)
= Rk −

∑
i∈V

rik (k ∈ NR) (5.13)

The amount of resource units of non-renewable resources k ∈ NR consumed
during the support of the transfer of a first-tier resource l ∈ R∗ from activity
i ∈ V0 to activity j ∈ Vri∗ is calculated in equations (5.14) such that µkl
units of resource k ∈ NR are required to support the transfer of one unit of
first-tier resource l ∈ R∗ per period of the transfer time ∆ijl.∑

l∈R∗
µkl ·∆ijl · fsijl = f̄sijk (i ∈ V0; j ∈ Vri ; k ∈ NR; s ∈ S) (5.14)

In order to link these variables f̄sijk with the variables fsijk, inequalities
(5.15) are introduced. These inequalities ensure that the overall amount
of fsijk units of non-renewable resources k ∈ NR transferred from activity
i ∈ V0 to activity j ∈ Vri has to be at least as large as the amount f̄sijk of

120

5.1 Project Scheduling with Resource Transfers in Literature

second-tier resource units that is transferred between these activities.

f̄sijk ≤ fsijk (i ∈ V0; j ∈ Vri ; k ∈ NR; s ∈ S) (5.15)

Next, inequalities (5.16) ensure that a sufficient amount of resource units of
renewable second-tier resources k ∈ R are available to support the transfer
of a first-tier resource l ∈ R∗ from activity i ∈ V0 to activity j ∈ Vri . It
should be noted that these supporting resources are only required if the
transfer time between the two activities is larger than 0 (i.e. if ∆ijl > 0
holds). This is indicated by the binary constant d∆ijl/(∆ijl+ε)e where ε is a
sufficiently small number.∑
l∈R∗

µkl ·
⌈

∆ijl

∆ijl + ε

⌉
· fsijl ≤ fsijk (i ∈ V0; j ∈ Vri ; k ∈ R; s ∈ S) (5.16)

Finally, the following constraints keep track of the incoming and outgoing
resource transfers for each activity. Here, first of all, equations (5.17) ensure
that a sufficient amount of resource units of renewable resources k ∈ R is
available at the start of activity i ∈ V to satisfy the resource requirements
rik of this activity. Additional resources units that have, for example, been
used to support the transfer of other resources to this activity might not
be required to process the activity. In this case, these surplus resources
can either be transferred to the next activity from the start of activity i
(variables αik) or from the end of activity i (variables βik).∑

h∈Vsi

(
fFShik + fSShik

)
= rik + αik + βik (i ∈ V ; k ∈ R) (5.17)

Next, for resource units of non-renewable resources k ∈ NR transferred
to the start of activity i ∈ V , it has to be taken into account that some
of these resource units are consumed either during the transfer if they have
been required to support the transfer of first-tier resource units (represented
by variables f̄FShik and f̄SShik) or by the activity itself (represented by the
resource requirements rik of the activity). In this case, the incoming resource
transfers are represented by equations (5.18).∑

h∈Vsi

(
fFShik − f̄FShik + fSShik − f̄SShik

)
= rik + αik + βik

(
i ∈ V ;
k ∈ NR

)
(5.18)

Below, equations (5.19) ensure that an amount of αik resource units of
resource k ∈ R∗ from the start of activity i ∈ V that is not required to
process activity i (and, in the case of non-renewable resources k ∈ NR, that

121

5 Resource-Constrained Project Scheduling with Resource Transfers

has not been consumed during the transfer to activity i) are transferred to
activities j ∈ Vri .∑

j∈Vri

(
fSSijk + fSFijk

)
= αik (i ∈ V ; k ∈ R∗) (5.19)

Next, equations (5.20) ensure that all resource units of renewable resource
k ∈ R available at the end of activity i (i.e. rik resource units required to
process activity i, βik resource units transferred from the start of activity i
to the end of activity i, as well as all resource units transferred to the end of
activity i from other activities h ∈ Vsi) are transferred to activities j ∈ Vri .∑
j∈Vri

(
fFSijk + fFFijk

)
= rik + βik +

∑
h∈Vsi

(
fFFhik + fSFhik

) (
i ∈ V ;
k ∈ R

)
(5.20)

Similarly, equations (5.21) ensure that all resource units of non-renewable
resources k ∈ NR available at the end of activity i ∈ V are transferred to
activities j ∈ Vri . Here, however, only those resource units can be trans-
ferred to other activities that have not been consumed by either activity i
or by a resource-consuming transfer to the end of activity i.∑
j∈Vri

(
fFSijk + fFFijk

)
= βik +

∑
h∈Vsi

(
fFFhik − f̄FFhik + fSFhik − f̄SFhik

) (i ∈ V ;
k ∈ NR

)
(5.21)

Finally, the domains of the various variables used in this mixed-integer linear
programming formulation are defined by (5.22) through (5.27).

Ci ∈ N (i ∈ Vall) (5.22)

xsijk ∈ {0, 1} (i ∈ V0; j ∈ Vri ; k ∈ R
∗; s ∈ S) (5.23)

fsijk ∈ N (i ∈ V0; j ∈ Vri ; k ∈ R
∗; s ∈ S) (5.24)

f̄sijk ∈ N (i ∈ V0; j ∈ Vri ; k ∈ NR; s ∈ S) (5.25)

αik ∈ N (i ∈ V ; k ∈ R∗) (5.26)

βik ∈ N (i ∈ V ; k ∈ R∗) (5.27)

5.2 RCPSP with First- and Second-Tier Resource Transfers

As motivated above, resource transfers are an integral part of the MRCPSP
model for the problem of hospital evacuations as it has been introduced

122

5.2 RCPSP with First- and Second-Tier Resource Transfers

in Chapter 4. For this reason, we consider the subproblem of resource-
constrained project scheduling with first- and second-tier resource transfers
in this section. While the model introduced in this section is similar to
the resource-constrained (multi-)project scheduling problem with general-
ized resource transfers as it has been introduced by Krüger (2009), there are
several differences between the two models, in particular regarding the man-
agement of second-tier (or higher-tier) resource transfers. These differences
are discussed in more detail in Section 5.3 at the end of this chapter.

First, however, a formal description of the resource-constrained project
scheduling problem with first- and second-tier resource transfers is given
in Section 5.2.1 while a mixed-integer linear programming formulation for
the problem is introduced in Section 5.2.2.

5.2.1 Problem Description

As stated above, the RCPSP with first- and second-tier resource transfers is
similar to the RCPSP with generalized resource transfers outlined in Section
5.1.2. For this reason, only the differences between the two models are
highlighted in this section.

First of all, no non-renewable resources are incorporated into the model
presented here, i.e. only the set R of renewable resources k = 1, . . . , r is
considered. Additionally, no higher-tier resource transfers are possible in
this problem such that a resource k ∈ R that requires supporting resources
in order to be transferred between two activities may not itself be required
to support the transfer of other resources. For this reason, the set R of
renewable resources can be split into two disjunctive subsets Rsa and Rru

such that R = Rsa ∪ Rru holds. Then, the set Rsa contains all resources
that can be transferred by stand-alone transfers while the set Rru contains
all resources that can only be transferred by resource-using transfers such
that an amount of µkl units of second-tier resource k ∈ Rsa are required in
order to support the transfer of one unit of resource l ∈ Rru. It should be
noted that these supporting resources k ∈ Rsa are only required to support
the transfer of a resource l ∈ Rru from activity i ∈ V0 to activity j ∈ V∗
if the corresponding transfer time between the two activities is larger than
zero, i.e. if resource l actually has to be transferred.

Next, transfer times ∆ijk again denote the amount of time required to trans-
fer resource k ∈ R from activity i ∈ V0 to activity j ∈ V∗. As before, the

123

5 Resource-Constrained Project Scheduling with Resource Transfers

triangle inequality ∆hik+∆ijk ≥ ∆hjk is assumed to hold between activities
h,i ∈ V0 and j ∈ V∗ for resource k ∈ R. This property is later required in
order to prove Theorem 5.1 and can be assumed to hold in many practical
applications. Finally, it is again assumed that ∆ijl ≥ ∆ijk holds for the
transfer time between activities i ∈ V0 and j ∈ V∗ for all resources k ∈ Rsa

and l ∈ Rru with µkl > 0.

In the following, the different types of resource transfers that can occur in
this model are discussed. Unlike in the model by Krüger (2009), only start-
to-start as well as finish-to start transfers are possible in this model (cf.
Section 5.3). Moreover, because resources l ∈ Rru are not required to sup-
port the transfer of other resources, these resources are always transferred
by finish-to-start transfers. Now, five different scenarios can be differenti-
ated regarding the transfer of resources k ∈ Rsa from an activity h ∈ V0 to
another activity j ∈ V∗ depending on whether the resource transfers origi-
nate from the start or the end of activity h as well as whether or not they
are assigned to support the transfer of resources l ∈ Rru.

First of all, resource k ∈ Rsa can be transferred as pure first-tier resource
from activity h ∈ V0 to activity j ∈ V∗, i.e. the resource units are not
required to support the transfer of a resource l ∈ Rru to activity j. In this
case, two different scenarios can be differentiated such that the transfer of
resource k ∈ Rsa can either originate from the start or the end of activity
h (i.e. depending on whether the resource units are required to process
activity h or not). These two scenarios are visualized in Figure 5.5.

h j

k

k

Figure 5.5: Transfer of pure first-tier resource k ∈ Rsa from activity h ∈ V0

to activity j ∈ V∗. Here, the solid line represents a finish-to-start
transfer while the dashed line represents a start-to-start transfer.

In these scenarios, inequality (5.28) has to hold for the starting time Sj of
activity j ∈ V∗ if resource k ∈ Rsa is transferred from activity h ∈ V0 to
activity j by start-to-start transfer. Otherwise, if resource k is transferred
by finish-to-start transfer, inequality (5.29) has to hold.

Sj ≥ Sh +∆hjk (5.28)

124

5.2 RCPSP with First- and Second-Tier Resource Transfers

Sj ≥ Sh + ph +∆hjk (5.29)

In the remaining three scenarios, resource k ∈ Rsa is transferred as a second-
tier resources from activity h ∈ V0 to support the transfer of first-tier re-
source l ∈ Rru from activity i ∈ V0 to activity j ∈ V∗. It should be noted
that activity h and activity i do not necessarily have to be different activities
(i.e. h = i may hold). As before, the transfer of resource k can originate at
either the start or the end of activity h. From there, the resource units of
resource k support the transfer of first-tier resource l from activity i to the
start of activity j, i.e. resource k is transferred from activity h via activity
i to activity j as displayed in Figure 5.6.

h i j

k

k

l k,l

Figure 5.6: Transfer of second-tier resource k ∈ Rsa from activity h ∈ V0 via
activity i ∈ V0 to activity j ∈ V∗ such that resource k supports
the transfer of first-tier resource l ∈ Rru from activity i to activ-
ity j. As before, the transfer of resource k can either originate
at the end (solid line) or the start (dashed line) of activity h.

Unlike before, it is not sufficient to regard the time at which resource k ∈ Rsa

from activity h ∈ V0 can be transferred to activity j ∈ V∗ (i.e. either from
the start or from the end of activity h) in order to calculate the time at which
resource k arrives at activity j. Instead, the arrival of resource k at activity
i ∈ V0 in relation to the completion time Ci of activity i is important to
consider. On the one hand, if resource k arrives at activity i before activity
i has been completed, the further transfer is delayed until the completion
time Ci of activity i. Only then can resource k support the further transfer
of first-tier resource l ∈ Rru from activity i to activity j. In this case,
inequality (5.30) has to hold for the starting time Sj of activity j.

Sj ≥ Si + pi +∆ijl (5.30)

On the other hand, if resource k arrives at activity i not earlier than the
completion time Ci of activity i, the transfer can immediately continue such
that resource k supports the transfer of resource l from activity i to activity

125

5 Resource-Constrained Project Scheduling with Resource Transfers

j. In this case, two different scenarios can be distinguished again based on
whether resource k is transferred by start-to-start or finish-to-start transfer.
Here, inequality (5.31) has to hold for the starting time Sj of activity j if
resource k is transferred by start-to-start transfer while inequality (5.32) has
to hold if resource k is transferred by finish-to-start transfer.

Sj ≥ Sh +∆hik +∆ijl (5.31)

Sj ≥ Sh + ph +∆hik +∆ijl (5.32)

It should be noted that inequality (5.30) also has to hold if ∆ijl = 0 holds for
the transfer time of resource l from activity i to activity j and no supporting
resources k ∈ Rsa are required. Also in this case, activity j can only start
after activity i has been completed (i.e. at time Sj ≥ Si + pi).

A limitation of the model presented here is that second-tier resources k ∈ Rsa

that support the transfer of first-tier resource l ∈ Rru to activity j ∈ V∗ but
are not themselves required to process activity j have to remain at activity
j until at least its starting time Sj . Due to this limitation, however, it is
possible to reduce the solution space such that first all units of resource
k ∈ Rsa required to process an activity j ∈ V∗ are used to support the
transfer of first-tier resources l ∈ Rsa to activity j. Only if this amount
of resource units of resource k is not sufficient (i.e. if more than rjk units
of second-tier resource k are required), additional units of this resource are
transferred to activity j. Thus, the amount of pure second-tier resource
units of resource k transferred to activity j is bounded by

max

{
0,
∑
l∈Rru

µkl · rjl − rjk

}

and depends on the actual amount of resource units of resource k required
to support the transfer of first-tier resources l ∈ Rru to activity j. As
described above, the actual amount might vary depending on the selected
resource transfers of resources l ∈ Rru, i.e. if ∆ijl = 0 holds for the transfer
time of some resource l from activity i ∈ V0 to activity j.

Theorem 5.1 For the resource-constrained project scheduling problem with
first- and second-tier resource transfers and a regular objective function, an
optimal solution always exists in which pure second-tier resource transfers
of resources k ∈ Rsa to an activity j ∈ V∗ are only used if a larger amount
of resource units of resource k is required to support the transfer of first-tier
resources l ∈ Rru to activity j than is required to process the activity. 2

126

5.2 RCPSP with First- and Second-Tier Resource Transfers

Proof Let S be an optimal schedule for which the following assumptions
can be made without loss of generality. First of all, two activities j1 ∈ V
(i.e. a real activity) as well as j2 ∈ V∗ (i.e. either a real activity or the
dummy sink activity n + 1) are given such that both activities require at
least rj1k = rj2k = 1 unit of a resource k ∈ Rsa. Additionally, activity j1
requires at least rj1l = 1 unit of a resource l ∈ Rru such that the transfer
of this resource requires at least µkl = 1 unit of second-tier resource k. In
the following, these two resources are referred to as k and l. Furthermore,
let activities h1, h2 ∈ V0 (i.e. either real activities or the dummy source
activity 0) be two activities where one unit of resource k is available at
completion times Ch1 and Ch2 , respectively. Below, the unit of resource
k located at activity h1 is referred to as k1 while the unit of resource k
located at activity h2 is referred to as k2. Finally, let activity i ∈ V0 be
an activity where one unit of resource l is available at completion time Ci.
Without loss of generality, it is assumed that Ci ≤ Ch1 + ∆h1ik as well as
Ci ≤ Ch2 +∆h2ik hold for the completion times of activities h1, h2, and i.

Now, in this schedule S, let resource k1 from activity h1 be used to support
the transfer of first-tier resource l from activity i to activity j1 such that
this resource is not used to process activity j1. Instead, resource k2 from
activity h2 is transferred to activity j1 in order to process this activity.
Finally, resource k1 is transferred from activity j1 to activity j2 by start-to-
start transfer. These resource transfers are displayed in Figure 5.7.

h1 i j1

h2 j2

k1

l k1,l

k1

k2

Figure 5.7: Resource transfers in the optimal schedule S.

For this schedule S, we now calculate the starting times Sj1 and Sj2 of
activities j1 as well as j2. In order to do this, we consider the arrival of
resource units l, k1, and k2 at activity j1 as well as the arrival of resource unit

127

5 Resource-Constrained Project Scheduling with Resource Transfers

k1 at activity j2. If additional resources are required by the activities, the
arrival times of these resources also have to be considered. Here, we assume
that aj1 is the latest time at which a resource unit other than resource
units k1, k2, or l arrives at activity j1 while aj2 is the latest time at which
a resource unit other than resource unit k1 arrives at activity j2. Now,
assuming that the activities start as early as possible (i.e. as soon as all
required resources are available) the starting time Sj1 of activity j1 is given
by equation (5.33) while the starting time Sj2 of activity j2 is given by
equation (5.34).

Sj1 = max{aj1 , Ch1 +∆h1ik +∆ij1l, Ch2 +∆h2j1k} (5.33)

Sj2 = max{aj2 ,max{aj1 , Ch1 +∆h1ik +∆ij1l, Ch2 +∆h2j1k}︸ ︷︷ ︸
Sj1

+∆j1j2k}

(5.34)

As can be seen here, resource unit k1 can only be transferred from activity
j1 to activity j2 after activity j1 has been started. Thus, the starting time
Sj2 of activity j2 depends on the starting time Sj1 of activity j1.

Now, schedule S is transformed into a schedule S′ by changing the resource
transfers such that resource unit k1 from activity h1 is used to support the
transfer of resource l from activity i to activity j1 as well as to process ac-
tivity j1. Additionally, resource unit k2 is directly transferred from activity
h2 to activity j2. These resource transfers are displayed in Figure 5.8

h1 i j1

h2 j2

k1

l k1,l

k2

Figure 5.8: Resource transfers in the transformed schedule S′.

In this transformed schedule S′, the starting time S′j1 of activity j1 is given
by equation (5.35) while the starting time S′j2 of activity j2 is given by

128

5.2 RCPSP with First- and Second-Tier Resource Transfers

equation (5.36). It should be noted that the latest arrival times aj1 and
aj2 of other resource units to activities j1 and j2 are not affected by the
modified resource transfers in schedule S′.

S′j1 = max{aj1 , Ch1 +∆h1ik +∆ij1l} (5.35)

S′j2 = max{aj2 , Ch2 +∆h2j2k} (5.36)

In the following, we compare the starting times of activities j1 and j2 in the
two schedules S and S′. Here. for the starting time Sj1 of activity j1 in the
optimal schedule S as well as for the the starting time S′j1 of activity j1 in
the transformed schedule S′, we can see that

max{aj1 , Ch1 +∆h1ik +∆ij1l, Ch2 +∆h2j1k}︸ ︷︷ ︸
Sj1

≥ max{aj1 , Ch1 +∆h1ik +∆ij1l}︸ ︷︷ ︸
S′j1

.

Thus, the starting time S′j1 of activity j1 in schedule S′ can not be later
than the starting time Sj1 of activity j1 in schedule S due to the same
arrival time of resource unit k1 from activity h1 at activity j1 as well as
the same latest arrival time aj1 of the remaining resource units required
by activity j1. Similarly, by comparing the starting time Sj2 of activity j2
in the optimal schedule S with the starting time S′j2 of activity j2 in the
transformed schedule S′, we can see that

max{aj2 , max{aj1 , Ch1 +∆h1ik +∆ij1l, Ch2 +∆h2j1k}+∆j1j2k}︸ ︷︷ ︸
Sj2

≥ max{aj2 , Ch2 +∆h2j2k}︸ ︷︷ ︸
S′j2

.

Here, again, the starting time S′j2 of activity j2 in schedule S′ can not
be later than the starting time Sj2 of activity j2 in schedule S due to the
triangle inequality Ch2 +∆h2j1k+∆j1j2k ≥ Ch2 +∆h2j2k as well as the same
latest arrival time aj2 of the remaining resource units required by activity j2.
Thus, as neither activity j1 nor activity j2 starts later in the transformed
schedule S′ than in the optimal schedule S and the starting times of no
other activities have been affected, the transformed schedule S′ also has to
be optimal.

129

5 Resource-Constrained Project Scheduling with Resource Transfers

Now, by iteratively changing resource transfers as shown above, it is possible
to generate a schedule after a finite number of iterations in which pure
second-tier resource transfers of resources k ∈ Rsa to an activity j ∈ V are
only used if the amount of rjk units of resource k required to process activity
j is not sufficient to support the transfer of all resources l ∈ Rru required
by activity j. As this schedule can not be worse than schedule S, it is also
an optimal schedule. �

It should be noted that this property only holds if resource units of resource
k ∈ Rsa that have been transferred to an activity j ∈ V as pure second-tier
resources units (i.e the resource units are not required to process activity j)
can only be transferred from this activity to the next activity after activity
j has started at its starting time Sj (as denoted by equation (5.34)). If the
resource units can immediately be transferred to the next activity, however,
this property does not necessarily hold as visualized in Example 5.2.

Example 5.2 We consider a small project consisting of n = 3 real activities
as well as r = 2 renewable resources with capacities R1 = 2 and R2 = 1.
Now, an amount of µ12 = 1 unit of resource 1 is required to support the
transfer of one unit of resource 2 (i.e. resource 1 belongs to the set Rsa while
resource 2 belongs to the set Rru). Below, the processing times pi, resource
requirements rik, as well as transfer times ∆ijk with ∆ijk = ∆ij for both
resources k = 1,2 are given in Table 5.3. It should be noted that the triangle
inequality ∆hi +∆ij ≥ ∆hj holds for these transfer times ∆ij . Finally, only
the precedence constraint 1→ 2 is given between the real activities.

i 0 1 2 3 4
pi 0 1 1 1 0
ri1 2 1 1 1 2
ri2 1 0 1 0 1

(a) Activity parameters.

0 1 2 3 4
0 0 1 2 1 0
1 1 0 1 2 0
2 2 1 0 1 0
3 1 2 1 0 0
4 0 0 0 0 0

(b) Transfer times.

Table 5.3: The processing times pi as well as the resource requirements rik
of all activities i = 0, . . . , 4 are displayed in (a) while the transfer
times ∆ijk = ∆ij for both resources k = 1,2 between all pairs of
activities i,j = 0, . . . , 4 are given in (b).

Now, if pure second-tier resources k ∈ Rsa are not required to wait until

130

5.2 RCPSP with First- and Second-Tier Resource Transfers

the starting time Sj of an activity j ∈ V to which they have supported the
transfer of a first-tier resource l ∈ Rru, an optimal resource flow for this
project is displayed in Figure 5.9. The earliest start schedule corresponding
to this resource flow is shown in Figure 5.10.

1 2

0 3 4

q1 = 1

q1 = 1

q1 = 1
q2 = 1

q1 = 1
q2 = 1

q2 = 1

q1 = 1

q1 = 1

Figure 5.9: Optimal resource flow for the project from Example 5.2. Here,
one unit of resource 1 from activity 0 supports the transfer of one
unit of resource 2 to activity 2 and is immediately transferred
from there to activity 3 (i.e. the further transfer is not delayed
until the starting time S2 of activity 2).

R1

0

1

2

0 1 2 3 4 5

∆011

∆022

1 ∆121 2

∆231 3

R2

0

1

0 1 2 3 4 5

∆022 2

Figure 5.10: Optimal schedule for the project considered in Example 5.2
based on the feasible resource flow displayed in Figure 5.9.
Here, the resource unit of resource 1 does not have to remain
at activity 2 until the starting time S2 of this activity but can
instead be transferred to activity 3 immediately.

It can be seen that the makespan of the resulting schedule is Cmax = 4. In
comparison, if the resource unit of resource 1 has to remain at activity 2

131

5 Resource-Constrained Project Scheduling with Resource Transfers

until its starting time S2 before it can be transferred to activity 3, the best
makespan that can be achieved is Cmax = 5. In this case, based on Theorem
5.1, an optimal schedule exists in which one unit of resource 1 that is used
to support the transfer of resource 2 to activity 2 can also be used to process
activity 2. A schedule visualizing this situation is shown in Figure 5.11.

R1

0

1

2

0 1 2 3 4 5

∆011

∆022

1 ∆131

2

3

R2

0

1

0 1 2 3 4 5

∆022 2

Figure 5.11: Optimal schedule for the project considered in Example 5.2 if
pure second-tier resources are delayed until the starting time of
the activity to which they have been transferred.

Thus, this example shows that Theorem 5.1 does not hold if resource units of
pure second-tier resources k ∈ Rsa that have been transferred to an activity
j ∈ V do not have to remain at this activity until its starting time Sj but
can instead be transferred to the next activity immediately. In this case,
it might improve the solution to send additional second-tier resource units
even if first-tier resource units required to process the activity could be used
as simultaneous first- and second-tier resource units instead. 2

5.2.2 Mixed-Integer Linear Programming Formulation

In this section, a mixed-integer linear programming formulation for the
RCPSP with first- and second-tier resource transfers is introduced. In this
formulation, the following binary and integer variables are used.

First of all, the starting times of all activities i ∈ Vall are denoted by integer
variables Si. Next, integer variables x1stijk are introduced for all activities
i ∈ V0 and j ∈ V∗ as well as for all resources k ∈ R denoting the amount of
first-tier (or simultaneous first- and second-tier) resource k ∈ R transferred
from activity i to activity j. Similarly, integer variables x2ndijk are introduced

132

5.2 RCPSP with First- and Second-Tier Resource Transfers

for all i ∈ V0, j ∈ V∗, and k ∈ Rsa denoting the amount of pure second-
tier resource k transferred from activity i to activity j. As resources k ∈
Rsa can be transferred by either finish-to-start or start-to-start transfer,
additional integer variables yijk are introduced for all i ∈ V0, j ∈ V∗, and
k ∈ Rsa denoting the amount of resource k that is transferred by start-to-
start transfer from the start of activity i to the start of activity j. Now,
binary variables αsa

ijk are introduced for all i ∈ V0, j ∈ V∗, and k ∈ Rsa with

αsa
ijk =

{
1, if resource k is transferred from activity i to activity j

0, otherwise.

Similarly, binary variables αru
ijl are introduced for all i ∈ V0, j ∈ V∗, and

l ∈ Rru such that

αru
ijl =

{
1, if resource l is transferred from activity i to activity j

0, otherwise.

Additionally, binary variables βijk are introduced for all i ∈ V0, j ∈ V∗, as
well as for all resources k ∈ Rsa with

βijk =


1, if resource k is transferred from the end

of activity i to activity j

0, otherwise

Here, while resources l ∈ Rru are always transferred by finish-to-start trans-
fer, resources k ∈ Rsa can be transferred by either start-to-start or finish-
to-start transfer. For this reason, αijk = 1 holds if resource k ∈ Rsa is
transferred from either the start or the end of activity i ∈ V0 to activity
j ∈ V∗ while βijk = 1 only holds if resource k is transferred from the end of
activity i to activity j. If resource units of resource k are transferred from
both, the start as well as the end of activity i to activity j, it is sufficient to
only consider the time at which the resource units from the end of activity
i arrive at activity j as this time can not be earlier than for resource units
sent from the start of activity i to activity j.

Next, integer variables zijl are introduced for all activities i ∈ V0 and j ∈ V∗
as well as for all resources l ∈ Rru denoting the amount of resource units of
resource l that require supporting resources k ∈ Rsa for the transfer from
activity i to activity j. Here, it should be noted that zijl > 0 only holds
if x1stijl > 0 and ∆ijl > 0 hold for the transfer of resource l from activity i
to activity j. Now, integer variables uhijkl are introduced for all h,i ∈ V0,
j ∈ V∗, k ∈ Rsa, and l ∈ Rru denoting the amount of resource k transferred

133

5 Resource-Constrained Project Scheduling with Resource Transfers

from the end of activity h that is used to support the transfer of resource
l from activity i to activity j. Similarly, integer variables vhijkl for all
h,i ∈ V0, j ∈ V∗, k ∈ Rsa, and l ∈ Rru denote the amount of resource k
transferred from the start of activity h that is used to support the transfer of
resource l from activity i to activity j. Additionally, binary variables γhijkl
are introduced for all h,i ∈ V0, j ∈ V∗, k ∈ Rsa, and l ∈ Rru such that

γhijkl =


1, if resource k is transferred from activity h to support

the transfer of resource l from activity i to activity j

0, otherwise.

Similarly, binary variables δhijkl for all h,i ∈ V0, j ∈ V∗, k ∈ Rsa, and
l ∈ Rru are used with

δhijkl =


1, if resource k is transferred from the end of activity h to

support the transfer of resource l from activity i to activity j

0, otherwise.

Finally, all parameters used in this formulation (i.e. processing times pi,
resource capacities Rk, resource requirements rik, support requirements µkl,
as well as transfer times ∆ijk) are assumed to be integer.

Now, the mixed-integer linear programming formulation itself is introduced.
Again, the objective is to minimize the makespan (5.37) as given by the
starting time Sn+1 of dummy sink activity n+ 1.

min Sn+1 (5.37)

Next, inequalities (5.38) ensure that all precedence constraints (i,j) ∈ A
between activities i,j ∈ Vall are adhered to.

Si + pi − Sj ≤ 0 ((i,j) ∈ A) (5.38)

In order to ensure that a sufficient amount of units of resource k ∈ R is
transferred to each activity j ∈ V∗ to satisfy its resource requirements rjk,
equations (5.39) are introduced.∑

i∈V0

x1stijk = rjk (j ∈ V∗; k ∈ R) (5.39)

Similarly, equations (5.40) ensure that a sufficient amount of resource units
of pure second-tier resource k ∈ Rsa is transferred to each activity j ∈ V∗
such that all support requirements µkl of resource units of resources l ∈ Rru

that are transferred to activity j can be satisfied. Using Theorem 5.1, it

134

5.2 RCPSP with First- and Second-Tier Resource Transfers

is possible to calculate the exact amount of required resource units of pure
second-tier resource k based on the selected first-tier resource transfers of
resources l ∈ Rsa from activities i ∈ V0 to activity j that require supporting
resources (as denoted by integer variables zijl).

∑
h∈V0

x2ndhjk = max

{
0,
∑
i∈V0

∑
l∈Rru

µkl · zijl − rjk

} (
j ∈ V∗;
k ∈ Rsa

)
(5.40)

Below, equations (5.41) are used to calculate the amount of resource units
of resource l ∈ Rru that require supporting resources for the transfer from
activity i ∈ V0 to activity j ∈ V∗. Here, the binary constant d∆ijl/(∆ijl+ε)e
is used in order to ensure that only resource transfers of resource l from
activity i to activity j with ∆ijl > 0 are considered (cf. Krüger (2009)). For
this, ε is selected as a sufficiently small number.

zijl =

⌈
∆ijl

(∆ijl + ε)

⌉
· x1stijl (i ∈ V0; j ∈ V∗; l ∈ Rru) (5.41)

After the incoming resource transfers have been modeled above, constraints
related to outgoing resource transfers are introduced below. Here, equations
(5.42) represent the outgoing resource transfers of resources l ∈ Rru from
activities i ∈ V0 to activities j ∈ V∗.∑

j∈V∗

x1stijl = ril (i ∈ V0; l ∈ Rru) (5.42)

Next, equations (5.43) model the outgoing resource transfers of resources
k ∈ Rsa from dummy source activity 0 to activities j ∈ V∗ while equations
(5.44) model the outgoing resource transfers of resources k ∈ Rsa from real
activities i ∈ V to activities j ∈ V∗. Here, the amount of available resource
units of resource k ∈ Rsa at dummy source activity 0 is always equal to the
resource requirements r0k = Rk of activity 0. On the other hand, for real
activities i ∈ V , all rik units of resource k required by activity i as well as
all resource units of resource k that have been transferred to activity i by
pure second-tier resource transfer have to be taken into account. For this
reason, the actual amount of resource units of resource k available at a real
activity i might be larger than rik.∑

j∈V∗

(
x1st0jk + x2nd0jk

)
= Rk (k ∈ Rsa) (5.43)

∑
j∈V∗

(
x1stijk + x2ndijk

)
= rik +

∑
h∈V0

x2ndhik (i ∈ V ; k ∈ Rsa) (5.44)

135

5 Resource-Constrained Project Scheduling with Resource Transfers

Now, the amount yijk of resource units of resource k ∈ Rsa that is transferred
from the start of activity i ∈ V0 to activity j ∈ V∗ is calculated. For dummy
source activity 0, equations (5.45) ensure that all units of resource k only
become available at the end of the activity.∑

j∈V∗

y0jk = 0 (k ∈ Rsa) (5.45)

For the real activities i ∈ V , equations (5.46) ensure that the amount of
resource units of resource k ∈ Rsa transferred from the start of activity i to
other activities j ∈ V∗ is equal to the amount of resource units of resource k
that has been transferred to activity i by pure second-tier resource transfer.∑

j∈V∗

yijk =
∑
h∈V0

x2ndhik (i ∈ V ; k ∈ Rsa) (5.46)

Finally, inequalities (5.47) ensure that the amount of resource units of re-
source k ∈ Rsa transferred from the start of activity i ∈ V to activity j ∈ V∗
can not be larger than the overall amount of resource units of resource
k transferred from activity i to activity j by first- or second-tier resource
transfer.

yijk ≤ x1stijk + x2ndijk (i ∈ V ; j ∈ V∗; k ∈ Rsa) (5.47)

In the following, the constraints regarding the assignment of resource units of
second-tier resources k ∈ Rsa to support the transfer of first-tier resources
l ∈ Rru are introduced. Here, equations (5.48) ensure that a sufficient
amount of resource units of resource k ∈ Rsa from either the start (denoted
by variables vhijkl) or the end (denoted by variables uhijkl) of activities
h ∈ V0 is assigned to support the transfer of resource l ∈ Rsa from activity
i ∈ V0 to activity j ∈ V∗.∑

h∈V0

(uhijkl + vhijkl) = µkl · zijl
(
i ∈ V0; j ∈ V∗;
k ∈ Rsa; l ∈ Rru

)
(5.48)

Next, inequalities (5.49) ensure that only resource units of resource k ∈ Rsa

that are transferred from activity h ∈ V0 to activity j ∈ V∗ by finish-to-start
transfer can also be used to support the transfer of resource l ∈ Rru from
activity i ∈ V0 to activity j by finish-to-start transfer.∑

i∈V0

∑
l∈Rru

uhijkl ≤ x1sthjk + x2ndhjk − yhjk
(
h ∈ V0; j ∈ V∗;

k ∈ Rsa

)
(5.49)

136

5.2 RCPSP with First- and Second-Tier Resource Transfers

Similarly, inequalities (5.50) ensure that only resource units of resource k ∈
Rsa that are transferred from activity h ∈ V0 to activity j ∈ V∗ by start-to-
start transfer can also be used to support the transfer of resource l ∈ Rru

from activity i ∈ V0 to activity j by start-to-start transfer.∑
i∈V0

∑
l∈Rru

vhijkl ≤ yhjk (h ∈ V0; j ∈ V∗; k ∈ Rsa) (5.50)

Now, the remaining binary variables αsa
ijk, α

ru
ijl, βijk, γhijkl, and δhijkl are

calculated in inequalities (5.51) to (5.60).

x1stijk + x2ndijk ≤ Rk · αsa
ijk (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.51)

αsa
ijk ≤ x1stijk + x2ndijk (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.52)

x1stijl ≤ Rl · αru
ijl (i ∈ V0; j ∈ V∗; l ∈ Rru) (5.53)

αru
ijl ≤ x1stijl (i ∈ V0; j ∈ V∗; l ∈ Rru) (5.54)

x1stijk + x2ndijk − yijk ≤ Rk · βijk (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.55)

βijk ≤ x1stijk + x2ndijk − yijk (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.56)

uhijkl + vhijkl ≤ Rk · γhijkl
(
h,i ∈ V0; j ∈ V∗;
k ∈ Rsa, l ∈ Rru

)
(5.57)

γhijkl ≤ uhijkl + vhijkl

(
h,i ∈ V0; j ∈ V∗;
k ∈ Rsa, l ∈ Rru

)
(5.58)

uhijkl ≤ Rk · δhijkl
(
h,i ∈ V0; j ∈ V∗;
k ∈ Rsa, l ∈ Rru

)
(5.59)

δhijkl ≤ uhijkl
(
h,i ∈ V0; j ∈ V∗;
k ∈ Rsa, l ∈ Rru

)
(5.60)

Finally, the starting times of the activities can be calculated based on the
selected resource transfers. For this, the actual transfer times of the re-
sources are calculated based on inequalities (5.28) to (5.32). Here, first of
all, inequalities (5.61) calculate the earliest time at which first-tier resource
k ∈ Rsa from activity h ∈ V0 can arrive at activity j ∈ V∗. Depending on
whether at least one unit of resource k is transferred from the end of activ-
ity h, these inequalities represent the two scenarios modeled by inequalities
(5.28) and (5.29).

Sj ≥ Sh + ph · βhjk +∆hjk −M · (1− αsa
hjk)

h ∈ V0;
j ∈ V∗;
k ∈ Rsa

 (5.61)

137

5 Resource-Constrained Project Scheduling with Resource Transfers

Here, M is a large integer value that should be chosen such that it is an
upper bound on the time required to process all activities. Also, it should
be noted that it does not matter if any unit of resource k is transferred from
activity h to activity j as a pure first-tier resource (as long as any unit is
transferred from activity h to activity j at all) because the transfer time for
a direct transfer of resource k can never be larger than the transfer time if
resource k is used to support the transfer of resources l ∈ Rru to activity j.

Next, inequalities (5.62) calculate the earliest time at which resource k ∈ Rsa

can arrive at activity j ∈ V∗ if it is transferred from either the start or the
end of activity h ∈ V0 and has to support the transfer of resource l ∈ Rru

from activity i ∈ V0 to activity j. These inequalities correspond to the two
scenarios represented by inequalities (5.31) as well as (5.32) where resource
k arrives at activity i not earlier than its completion time Ci, i.e. where the
further transfer to activity j is not delayed.

Sj ≥ Sh + ph · δhijkl +∆hik +∆ijl −M · (1− γhijkl)


h,i ∈ V0;
j ∈ V∗;
k ∈ Rsa;
l ∈ Rru

 (5.62)

Alternatively, if resource k ∈ Rsa arrives at activity i ∈ V0 before its com-
pletion time Ci, the further transfer to activity j ∈ V∗ is delayed until the
completion time Ci of activity i (as represented by inequalities (5.30)). In
this case, the earliest time at which resource k from activity h ∈ V0 arrives
at activity j is calculated by inequalities (5.63).

Sj ≥ Si + pi +∆ijl −M · (1− αru
ijl)

 i ∈ V0;
j ∈ V∗;
l ∈ Rru

 (5.63)

As described above, these latter inequalities always have to hold if resource
l ∈ Rru is transferred from activity i ∈ V0 to activity j ∈ V∗ even if ∆ijl = 0
holds for the transfer time of resource l between the two activities and no
supporting resources k ∈ Rsa are required.

Finally, the domains of the various variables used in this mixed-integer linear
programming formulation are defined by (5.64) through (5.75).

Si ∈ N (i ∈ Vall) (5.64)

x1stijk ∈ N (i ∈ V0; j ∈ V∗; k ∈ R) (5.65)

x2ndijk ∈ N (i ∈ Vo; j ∈ V∗; k ∈ Rsa) (5.66)

138

5.3 Comparison of the Models

yijk ∈ N (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.67)

zijl ∈ N (i ∈ V0; j ∈ V∗; l ∈ Rru) (5.68)

αsa
ijk ∈ {0,1} (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.69)

αru
ijl ∈ {0,1} (i ∈ V0; j ∈ V∗; l ∈ Rru) (5.70)

βijk ∈ {0,1} (i ∈ V0; j ∈ V∗; k ∈ Rsa) (5.71)

uhijkl ∈ N (h,i ∈ V0; j ∈ V∗; k ∈ Rsa; l ∈ Rru) (5.72)

vhijkl ∈ N (h,i ∈ V0; j ∈ V∗; k ∈ Rsa; l ∈ Rru) (5.73)

γhijkl ∈ {0,1} (h,i ∈ V0; j ∈ V∗; k ∈ Rsa; l ∈ Rru) (5.74)

δhijkl ∈ {0,1} (h,i ∈ V0; j ∈ V∗; k ∈ Rsa; l ∈ Rru) (5.75)

5.3 Comparison of the Models

In this section, we compare the RCPSP with generalized resource transfers
by Krüger (2009) as it has been described in Section 5.1.2 with the RCPSP
with first- and second-tier resource transfers as it has been introduced in
Section 5.2.1. In particular, we focus on the different management of second-
tier resource transfers used in both models.

First of all, it should be noted that only first- and second-tier resource trans-
fers are considered in the model presented in the previous section. Thus, a
resource k1 ∈ R that is required to support the transfer of a resource l ∈ R
may not itself require the support of another resource k2 ∈ R. Also, it is not
trivial to integrate higher-tier resource transfers into this model. In contrast
to this, higher-tier resource transfers are possible in the RCPSP with gener-
alized resource transfers by Krüger (2009). While this is a limitation of the
RCPSP with first- and second-tier resource transfers, higher-tier resource
transfers do not occur in the problem of hospital evacuations considered in
this thesis. For this reason, this limitation of the model is accepted here.

Next, we consider the management of second-tier resources as it is handled
in both models. For this, we assume that the transfer of one unit of first-tier
resource l ∈ R from activity i ∈ V0 to activity j ∈ V∗ has to be supported
by an amount of µkl > 0 units of second-tier resource k ∈ R. Now, in
the RCPSP with generalized resource transfers, these µkl units of resource
k have to be explicitly available at the end of activity i before both, one
unit of resource l as well as µkl units of resource k can be transferred to
activity j by finish-to-start transfer. Here, these resource units of resource k

139

5 Resource-Constrained Project Scheduling with Resource Transfers

can either be available at the end of activity i after they have been used to
process activity i, they can be pure-second-tier resource units that have been
transferred to the start of activity i and remain at activity i until its end, or
they can be transferred from activities h ∈ V0 to activity i by start-to-finish
or finish-to-finish transfer. In the latter case, however, the start of activity
i is delayed until all units of resource k that are transferred from activities
h ∈ V0 to activity i by start-to-finish or finish-to-finish transfer can arrive
at the end of activity i no later than the completion time of activity i (cf.
inequalities (5.4) and (5.6)).

On the other hand, in the RCPSP with first- and second-tier resource trans-
fers, resource units of second-tier resources k ∈ Rsa that are required in
order to transfer resource l ∈ Rru from activity i ∈ V0 to activity j ∈ V∗
do not have to be explicitly available at the end of activity i. Instead, the
resource units of resource k from activities h ∈ V0 are specifically assigned to
support the transfer of resource l from activity i to activity j. This results
in the composite transfers of resource k from activities h to activity i and
from there to activity j as shown in Figure 5.6. Furthermore, due to this ap-
proach of managing resource transfers, no explicit resource transfers to the
end of an activity have to be considered, i.e. start-to-finish and finish-to-
finish resource transfers can be neglected in this model. Thus, unlike in the
model by Krüger (2009), activities do not have to be delayed unnecessarily
and schedules based on this model either have an equal (i.e. all activities
still start as early as possible) or better (i.e. no activity is unnecessarily
delayed) makespan compared to schedules based on the model by Krüger
(2009) for comparable resource flows.

Example 5.3 We consider a small project consisting of n = 4 activities
i = 1, . . . , 4 as well as the two dummy activities 0 and 5. Additionally, r = 3
renewable resources k = 1,2,3 with unit capacities Rk = 1 are available.
Here, in order to support the transfer of one unit of resource 2, an amount
of µ12 = 1 unit of resource 1 is required. The remaining resources 1 and 3 can
be transferred by stand-alone transfer. Below, the processing times pi and
resource requirements rik for all activities i = 0, . . . , 5 as well as the transfer
times ∆ijk with ∆ijk = ∆ij for all resources k = 1,2,3 between all pairs
of activities i,j = 0, . . . , 5 are given in Table 5.4. Finally, an activity-on-
node network visualizing the precedence constraints between the activities
is displayed in Figure 5.12.

Now, an optimal resource flow for this problem instance based on the model
by Krüger (2009) (cf. Section 5.1.2) is displayed in Figure 5.13 while the

140

5.3 Comparison of the Models

i 0 1 2 3 4 5
pi 0 1 2 2 1 0
ri1 1 0 1 0 1 1
ri2 1 1 0 0 1 1
ri3 1 1 0 1 0 1

(a) Activity parameters.

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 1 1 1 0
2 0 1 0 1 1 0
3 0 1 1 0 1 0
4 0 1 1 1 0 0
5 0 0 0 0 0 0

(b) Transfer times.

Table 5.4: The processing times pi as well as resource requirements rik for
all activities i = 0, . . . , 5 are displayed in (a) while the transfer
times ∆ijk = ∆ij for all resources k = 1,2,3 between all pairs of
activities i,j = 0, . . . , 5 are displayed in (b).

3

0 1 5

2 4

Figure 5.12: Activity-on-node network displaying the precedence constraints
between the n = 4 real activities i = 1, . . . , 4 as well as the two
dummy activities 0 and 5.

corresponding earliest start schedule is shown in Figure 5.14. In this resource
flow, one unit of resource 1 is transferred as a first-tier resource from the
end of activity 2 to the end of activity 1. As a result of this, the start of
activity 1 is delayed until this resource unit can arrive at the end of activity
1 before its completion time, i.e. activity 1 can only start at time S1 = 2.
Afterward, both, one unit of first-tier resource 2 as well as one supporting
unit of second-tier resource 1 are transferred from the end of activity 1 to
the start of activity 4. The makespan of the resulting schedule is Cmax = 6.

141

5 Resource-Constrained Project Scheduling with Resource Transfers

0 1

2

3

4

5
q2 = 1
q3 = 1

q1 = 1 q1 = 1

q3 = 1

q1 = 1
q2 = 1

q3 = 1

q1 = 1
q2 = 1

Figure 5.13: Optimal resource flow for the problem instance considered in
Example 5.3 based on the model by Krüger (2009).

R1

0

1

0 1 2 3 4 5 6

2 ∆211 ∆142 4

R2

0

1

0 1 2 3 4 5 6

1 ∆142 4

R3

0

1

0 1 2 3 4 5 6

1 ∆133 3

Figure 5.14: The earliest start schedule corresponding to the optimal re-
source flow displayed in Figure 5.13.

Next, we solve the same problem instance based on the model considered in
this thesis (cf. Section 5.2.1). Here, an optimal resource flow is displayed
in Figure 5.15 while the corresponding earliest start schedule is shown in
Figure 5.16.

142

5.3 Comparison of the Models

0 1

2

3

4

5
q2 = 1
q3 = 1

q1 = 1

q2 = 1

q1 = 1

q3 = 1

q1 = 1
q2 = 1

q3 = 1

q1 = 1
q2 = 1

Figure 5.15: Optimal resource flow for the problem instance considered in
Example 5.3 based on the model introduced in Section 5.2.

R1

0

1

0 1 2 3 4 5 6

2 ∆211 ∆142 4

R2

0

1

0 1 2 3 4 5 6

1 ∆142 4

R3

0

1

0 1 2 3 4 5 6

1 ∆133 3

Figure 5.16: The earliest start schedule corresponding to the optimal re-
source flow displayed in Figure 5.15.

Unlike in the resource flow shown in Figure 5.13, here, one unit of resource 1
does not have to be explicitly transferred from activity 2 to activity 1 before
it can support the transfer of resource 2 to activity 4. Instead, one unit of
resource 1 from activity 2 is assigned to support the transfer of resource 2

143

5 Resource-Constrained Project Scheduling with Resource Transfers

from activity 1 to activity 4 such that the complete transfer of resource 1
from the end of activity 2 via activity 1 to the start of activity 4 can be
regarded as a finish-to-start transfer between activity 2 and activity 4. Due
to this different management of resource transfers, the start of activity 1
does not have to be delayed in this model and the resulting schedule has a
makespan of Cmax = 5. 2

As can be seen in Example 5.3, the different management of resource trans-
fers used in the RCPSP with first- and second-tier resource transfers results
in a better optimal solution for the same problem instance. This is due to
the delays of activities that can occur in the model by Krüger (2009) if re-
sources are transferred by either start-to-finish or finish-to-finish transfers.
Additionally, as shown in Theorem 4.1, it is not trivial to shift activities to
the left in a given schedule such that all support requirements of first-tier
resources are satisfied and the resulting schedule is feasible.

Finally, as already pointed out in Section 5.2.1, no non-renewable resources
are integrated into the RCPSP with first- and second-tier resource transfers.
For one reason, non-renewable resources are neglected because they are not
required in the model for the problem of hospital evacuations presented in
Chapter 4. For another reason, it is unlikely that new insights can be gained
from incorporating non-renewable resources beyond what has already been
described by Krüger (2009). If required, however, non-renewable resources
can still be integrated similar to Section 5.1.2.

144

6 A Solution Approach for the RCPSP with
Resource Transfers

After the resource-constrained project scheduling problem with first- and
second-tier resource transfers has been introduced in the previous chapter,
a solution approach based on resource flows is presented in this chapter. Be-
low, this solution representation is described in more detail in Section 6.1.
Also, in this section, some properties of this representation are discussed.
In particular, unlike the solution representation based on activity lists of-
ten used for the classical RCPSP, this representation allows us to directly
incorporate first- and second-tier resource transfers between activities.

Afterward, neighborhoods based on this solution representation are intro-
duced in Section 6.2. For this, modifications are defined on resource flows
that redirect resource transfers between activities in order to move between
feasible solutions. Apart from a formal definition of these neighborhoods,
we also consider some further properties of the neighborhoods, e.g. regard-
ing their connectivity. Finally, a tabu search algorithm for the RCPSP with
first- and second-tier resource transfers is presented in Section 6.3. In this
algorithm, solutions are represented as resource flows and new solutions are
generated based on the modifications described in Section 6.2.

In the following, both, the solution representation as well as the neigh-
borhoods are discussed for three separate problems: the classical RCPSP,
the RCPSP with first-tier resource transfers, as well as the RCPSP with
first- and second-tier resource transfers. Here, the classical RCPSP is de-
scribed in detail in Chapter 3 and is modeled based on resource flows by the
mixed-integer linear programming formulation (3.6) to (3.14) as it has been
introduced by Artigues et al. (2003) as well as Artigues et al. (2010) (cf.
Section 3.1.3). Unlike in the other two problems considered in this chapter,
resource transfers in this problem do not incur transfer times.

The RCPSP with first-tier resource transfers is discussed in detail by Krüger
(2009) as well as Krüger and Scholl (2009) and is modeled by the mixed-
integer linear program (3.20) to (3.29) (cf. Section 3.1.5). In this problem,

145

6 A Solution Approach for the RCPSP with Resource Transfers

all resources can be transferred as first-tier resources by finish-to-start stand-
alone transfers. Finally, the RCPSP with first- and second-tier resource
transfers is the topic of the previous chapter and is modeled by the mixed-
integer linear programming formulation (5.37) to (5.75) (cf. Section 5.2.2).

6.1 Solution Representation

As described by Brucker and Knust (2006), solutions for the classical RSPSP
are often represented by activity lists. These activity lists can then be
transformed into a schedule by using, for example, a schedule generation
scheme that schedules the activities in the order specified by the activity
list. For the RCPSP with resource transfers where each resource transfer
incurs a cost (e.g. a transfer time), a drawback of this representation is that
it does not represent from which activities resource units are transferred to
other activities. Instead, resource transfers have to be selected separately,
for example based on a priority rule. As a result of this, a local search
algorithm using this approach has only limited influence on how resource
transfers are chosen (limited to, for example, selecting one out of several
available priority rules).

Due to this drawback, an alternative solution representation based on re-
source flows is introduced in this section. Unlike activity lists, resource
flows exactly represent the amount of resource units of a resource k ∈ R
transferred from activity i ∈ V0 to activity j ∈ V∗. Then, based on the
neighborhoods described in Section 6.2, it is possible for a local search algo-
rithm to directly operate on these resource flows and adapt resource transfers
between activities. In the following, this solution representation is described
for the classical RCPSP in Section 6.1.1, for the RCPSP with first-tier re-
source transfers in Section 6.1.2, as well as for the RCPSP with first- and
second-tier resource transfers in Section 6.1.3.

6.1.1 Classical RCPSP

The resource flow representation can be regarded as an extension of the
disjunctive graph model as it has been introduced by Roy and Sussmann
(1964) which is often used as a solution representation for the job-shop
scheduling problem (cf. Fortemps and Hapke (1997)). Here, while a dis-
junctive graph represents the sequence in which disjunctive machines (i.e.

146

6.1 Solution Representation

resources with unit capacity) are used to process operations in a job-shop
scheduling problem, this representation is extended for the RCPSP to also
denote the amount of resource units of resources k ∈ R transferred from an
activity i ∈ V0 to another activity j ∈ V∗.

In the following, fijk denotes the amount of resource units of resource k ∈ R
transferred from activity i ∈ V0 to activity j ∈ V∗. All resource transfers fijk
of a resource k ∈ R between activities i ∈ V0 and j ∈ V∗ are then denoted
by resource flow Fk while a set of resource flows Fk for all resources k ∈ R
is denoted by resource flow F . Now, a feasible resource flow F is defined as
a flow that satisfies the following conditions. First of all, all resource units
are initially located at dummy source activity 0 and have to be collected
by dummy sink activity n + 1 after the completion of the project. Then,
for each activity i ∈ V , the amount of all incoming resource units as well
as the amount of all outgoing resource units of a resource k ∈ R has to be
equal to the resource requirement rik of this activity. These constraints can
also be regarded as flow conservation constraints. Finally, the resource flows
have to be acyclic (i.e. no activity may directly or indirectly sent resource
units to itself) and observe the given precedence constraints (i, j) ∈ A (i.e.
activity j may not directly or indirectly sent resource units to activity i).

Each feasible resource flow F can be represented by a graph such that each
activity i ∈ Vall is represented by a node and each resource transfer fijk > 0
of a resource k ∈ R from activity i ∈ V0 to activity j ∈ V∗ is represented
by a directed arc (i, j)k from node i to node j. It should be noted that the
resulting graph for a given resource flow F is a multigraph if more than one
resource k ∈ R is transferred from activity i to activity j, i.e. there may be
a total of r arcs (i, j)k connecting two activities i and j.

Similar to a disjunctive graph representing both, machine sequences as well
as precedence constraints, Artigues et al. (2003) describe a so-called AON-
flow network that incorporates the graph representing a feasible resource
flow F as well as an activity-on-node network representing the precedence
constraints (i, j) ∈ A between activities. Now, each node i ∈ Vall is weighted
with the processing time pi of activity i. In the following, we will generally
visualize the activity-on-node network as well as resource flows for problem
instances separately in order to represent these graphs more clearly. Also,
if multiple resources k ∈ R are transferred from an activity i ∈ V0 to an
activity j ∈ V∗, only one arc with an appropriate label is displayed in the
corresponding graph.

147

6 A Solution Approach for the RCPSP with Resource Transfers

Next, we consider the relationship between feasible schedules S and feasible
resource flows F . In particular, we are interested in the following questions:

• How can a (feasible) schedule S be calculated for a given feasible re-
source flow F?

• How can a (feasible) resource flow F be calculated for a given feasible
schedule S?

Regarding the first question, it is possible to generate an earliest start sched-
ule S (i.e. a schedule in which all activities start as early as possible with
respect to the given precedence constraints (i, j) ∈ A as well as the resource
transfers fijk) based on a feasible resource flow F by calculating the lengths
lij of the longest paths between the activities in the corresponding AON-
flow network. This can be done, for example, by using the Floyd-Warshall
algorithm (cf. Roy (1959), Floyd (1962), and Warshall (1962)). Then, each
activity i ∈ Vall is assigned the starting time Si = l0i equal to the length of a
longest path from dummy source activity 0 to activity i such that the length
is equal to the sum of the weights of all nodes on the path excluding node
i. An example visualizing an AON-flow network as well as a corresponding
earliest start schedule is given in Example 3.3 (cf. Section 3.1.3).

Algorithm 6.1: BuildFlowFromSchedule(f, S)

1 Set βik := rik for all i ∈ V and k ∈ R;
2 Set fi,n+1,k := rik for all i ∈ V0 and k ∈ R;
3 for j := πC1 to πCn do
4 for i := πC0 to πCn do
5 if i 6= j then
6 for k := 1 to r do
7 if Ci ≤ Sj then
8 ρ := min{fi,n+1,k, βjk};
9 βjk := βjk − ρ;

10 fi,n+1,k := fi,n+1,k − ρ;
11 fijk := fijk + ρ;
12 end
13 end
14 end
15 end
16 end

148

6.1 Solution Representation

Next, we regard the second question of computing a resource flow F corre-
sponding to a feasible schedule S. For this problem, Artigues et al. (2010)
present a greedy algorithm (cf. Algorithm 6.1). In this algorithm, βik de-
notes the amount of resource units of resource k ∈ R that still has to be
sent to activity i ∈ V . Additionally, all activities i ∈ V0 are stored in a list
LC = (πC0 , . . . , π

C
n) sorted according to non-decreasing completion times Ci.

The general idea of this algorithm is that, initially, only outgoing resource
transfers fi,n+1,k = rik from all activities i ∈ V0 to the dummy sink activity
n+ 1 are given. Then, in each iteration, the incoming resource transfers to
an activity j ∈ V (considered in the order of the list LC) are selected from
activities i ∈ V0 (also considered in the order of the list LC) that have been
completed before the start of activity j (i.e. for activities i with Ci ≤ Sj).
For this algorithm, we now show that it is not necessarily able to generate
a resource flow F corresponding to a feasible schedule S.

Example 6.1 We consider a project consisting of n = 3 real activities
i = 1,2,3 as well as the two dummy activities 0 and 4. Furthermore, r = 1
renewable resource with a capacity R1 = 2 is given. The processing times
pi as well as the resource requirements ri1 for all activities are displayed
in Table 6.1. Finally, no precedence constraints are given between the real
activities. A feasible schedule for this project is displayed in Figure 6.1.

i 0 1 2 3 4
pi 0 1 1 3 0
ri1 2 1 1 1 2

Table 6.1: Processing times pi and resource requirements rik of the activities
i = 0, . . . , 4 for the project considered in Example 6.1.

R1

0

1

2

0 1 2 3 4 5

1 2

3

Figure 6.1: Feasible schedule for the project considered in Example 6.1.

In this schedule, the completion times of the activities are given by C0 = 0,
C1 = 1, C2 = 2, and C3 = 3. As a result, the activity list LC = (0, 1, 2, 3)

149

6 A Solution Approach for the RCPSP with Resource Transfers

is calculated. Based on this list, Algorithm 6.1 tries to calculate a resource
flow F as visualized in Figure 6.2.

1

0 2 4

3

1

1

1
2

(a) Initial flow.

1

0 2 4

3

1

1

1
1

1

(b) Iteration 1: activity 1.

1

0 2 4

3

1

1

1

1

1

(c) Iteration 2: activity 2.

Figure 6.2: Calculation of a resource flow for the schedule from Figure 6.1
based on Algorithm 6.1. Starting with the initial flow displayed
in (a), incoming resources transfers to activities 1 and 2 are
calculated as displayed in (b) and (c), respectively.

Here, based on the initial flow, the incoming resource transfers to activity
πC1 = 1 are calculated first. For this, all activities i ∈ V0 with Ci ≤ S1 are
considered in the order of activity list LC such that the amount of r11 = 1
unit of resource 1 required by activity 1 is transferred from activities i to
activity 1. In order to redirect resource units of resource 1 from an activity
i ∈ V0 to activity 1, a resource transfer from activity i to dummy activity
n + 1 with fi,n+1,1 > 0 has to exist (i.e. there have to be resource units

150

6.1 Solution Representation

that actually can be redirected). In this case, one unit of resource 1 can be
transferred from activity 0 to activity 1. Similarly, in the second iteration,
one unit of resource 1 is redirected from activity 0 to activity πC2 = 2.

In the third iteration, however, when trying to redirect one resource unit
of resource 1 to activity πC3 = 3, no activity i ∈ V0 with Ci ≤ S3 and
fi,n+1,1 > 0 exists. Instead, both activities 1 and 2 are completed after the
start of activity 3 (i.e. S1 > C3 as well as S2 > C3 hold) and no unit of
resource 1 remains at activity 0 that could be redirected to activity 3 (i.e.
f0,n+1,1 = 0 holds). 2

As this example shows, the algorithm proposed by Artigues et al. (2010) is
not able to generate a resource flow F from an arbitrary feasible schedule S.
For this reason, we suggest an adaption of this algorithm using an additional
list LS = (πS1 , . . . , π

S
n) of activities in which all activities i ∈ V are sorted

according to non-decreasing starting times Si. Now, in line 3 of algorithm
6.1, we choose activity j from list LS instead of from list LC . The adapted
algorithm is outlined in Algorithm 6.2.

Algorithm 6.2: Adapted BuildFlowFromSchedule(f, S)

1 Set βik := rik for all i ∈ V and k ∈ R;
2 Set fi,n+1,k := rik for all i ∈ V0 and k ∈ R;
3 for j := πS1 to πSn do
4 for i := πC0 to πCn do
5 if i 6= j then
6 for k := 1 to r do
7 if Ci ≤ Sj then
8 ρ := min{fi,n+1,k, βjk};
9 βjk := βjk − ρ;

10 fi,n+1,k := fi,n+1,k − ρ;
11 fijk := fijk + ρ;
12 end
13 end
14 end
15 end
16 end

Example 6.2 We again consider the project from Example 6.1 with the
feasible schedule displayed in Figure 6.1. Now, instead of using only the

151

6 A Solution Approach for the RCPSP with Resource Transfers

activity list LC = (0,1,2,3), we calculate the additional activity list LS =
(1,3,2) in which the real activities i = 1,2,3 are sorted according to non-
decreasing starting times (with S1 = 0, S2 = 1, and S3 = 0). Based on these
lists, Algorithm 6.2 calculates a resource flow F as visualized in Figure 6.3.

1

0 2 4

3

1

1

1
2

(a) Initial flow.

1

0 2 4

3

1

1

1
1

1

(b) Iteration 1: activity 1.

1

0 2 4

3

1

1

1

1

1

(c) Iteration 2: activity 3.

1

0 2 4

3

1

1

1

1

1

(d) Iteration 3: activity 2.

Figure 6.3: Calculation of a resource flow for the schedule from Figure 6.1
based on Algorithm 6.2. Starting with the initial flow displayed
in (a), incoming resources transfers to activities 1, 3, and 2 are
calculated as displayed in (b) to (d).

Here, the real activities j ∈ V are considered in the order of activity list LS .
The incoming resource transfers are then selected as described in Example
6.1 by considering activities i ∈ V0 with Ci ≤ Sj and fi,n+1,1 > 0 in the
order of activity list LC . The graph shown in Figure 6.3(d) is a feasible
resource flow F corresponding to the given schedule S for this project. 2

152

6.1 Solution Representation

Now, in Theorem 6.1, we prove the correctness of this algorithm.

Theorem 6.1 For the RCPSP, Algorithm 6.2 always generates a corre-
sponding resource flow F for any feasible schedule S. 2

Proof We consider the problem of generating a resource flow F correspond-
ing to a feasible schedule S by using Algorithm 6.2. In each iteration, the
algorithm selects an activity j ∈ LS with the smallest starting time Sj and
redirects resource transfers for resources k ∈ R with rjk > 0 from activities
i ∈ LC to activity j. For this, an activity i with fi,n+1,k > 0 and Ci ≤ Sj
from the list LC with the smallest completion time Ci is chosen.

Now, we assume that the algorithm is unable to select resource transfers
for some resource k ∈ R required by an activity j ∈ LS . In this case,
fi,n+1,k = 0 holds for all activities i ∈ LC with Ci ≤ Sj . As the algorithm
has only redirected resource units of resource k from activities i ∈ LC with
Ci ≤ Sj to activities j′ ∈ LS with Sj′ ≤ Sj (i.e. no activity j′ can receive
resource units of resource k from activities i ∈ LC with Ci > Sj), not
enough resource units of resource k are available to start processing activity
j at starting time Sj . Thus, schedule S can not be feasible. This is a
contradiction to the condition that S has to be a feasible schedule. �

It should be noted that, while a unique earliest start schedule S can be
calculated for each resource flow F , multiple resource flows F might exist
that represent the same feasible schedule S. For example, if multiple ac-
tivities end at the same time t, it does not matter which resource units are
transferred from these activities to the next activities starting at time t or
later. On the other hand, if we do not restrict ourselves to earliest start
schedules, infinitely many schedules correspond to a given resource flow F ,
i.e. if subsets of activities are shifted to the right.

Next, in Theorem 6.2, we consider the relation between the starting times S′i
of activities i ∈ Vall in the earliest start schedule S′ that has been generated
for the AON-flow network incorporating a resource flow F based on a feasible
schedule S.

Theorem 6.2 For the RCPSP, if S is a feasible schedule, F is a resource
flow corresponding to this schedule as it is generated by Algorithm 6.2, and S′

is the earliest start schedule corresponding to the AON-flow network incor-
porating resource flow F , then the starting time S′i of any activity i ∈ Vall in
schedule S′ can not be later than the starting time Si of activity i in schedule
S (i.e. S′i ≤ Si holds). 2

153

6 A Solution Approach for the RCPSP with Resource Transfers

Proof Let S be a feasible schedule and F a corresponding resource flow
that has been generated by Algorithm 6.2. Furthermore, let S′ be the earliest
start schedule that has been computed for F based on the longest paths in
the corresponding AON-flow network.

Now, we assume that j ∈ V∗ is the activity with the earliest starting time S′j
in schedule S′ such that S′j > Sj holds, i.e. activity j starts later in schedule
S′ than it did in schedule S (where Sj is the starting time of activity j in
schedule S). In this case, S′i ≤ Si holds for all other activities i ∈ V0 with
S′i < S′j . Then, becauseS′ is an earliest start schedule, at least one resource
transfer fijk > 0 of some resource k ∈ R from an activity i ∈ V to activity
j exists such that C′i > Sj holds, i.e. this resource transfer delays the start
of activity j until after its original starting time Sj . Furthermore, because
activity i has to start before activity j in schedule S′ (i.e. S′i < S′j holds),
C′i ≤ Ci has to hold for the completion time of activity i. As a result
of this, Ci > Sj holds for the starting and completion times of activities
i and j in schedule S. This, however, is a contradiction to the condition
that Algorithm 6.2 only selects resource transfers for a resource k ∈ R from
activity i ∈ LC to activity j ∈ LS if Ci ≤ Sj holds. �

Based on these results, we can now show that the set of schedules represented
by resource flows always contains an optimal schedule.

Theorem 6.3 For the RCPSP, an optimal schedule for a regular objective
function is always contained in the set of schedules represented by resource
flows. 2

Proof Let S be an optimal schedule. This schedule can now be transformed
into a corresponding resource flow F based on Algorithm 6.2. For this
resource flow F , it is then possible to calculate a corresponding earliest start
schedule S′. As shown in Theorem 6.2, the starting time S′i of activity i ∈
Vall in schedule S′ can not be later than the starting time Si of activity i in
the optimal schedule S, i.e. S′i ≤ Si has to hold. Thus, for a regular objective
function, schedule S′ can not be worse than schedule S, i.e. schedule S′ also
has to be optimal. �

Finally, it should be noted that the set of schedules represented by resource
flows contains the set of semi-active (and hence active) schedules. This is
due to the fact that each semi-active schedule can be represented as an
earliest start schedule of a corresponding resource flow as it is generated
by Algorithm 6.2. On the other hand, there are schedules represented by
resource flows which are not semi-active (cf. Example 6.3).

154

6.1 Solution Representation

Example 6.3 We again consider the project from Example 6.1. A feasible
resource flow for this project is displayed in Figure 6.4 while the earliest
start schedule corresponding to this resource flow is shown in Figure 6.5.

0 1 2 3 41 1 1 1

1

Figure 6.4: Feasible resource flow for the project considered in Example 6.3.

R1

0

1

2

0 1 2 3 4 5

1 2 3

Figure 6.5: The earliest start schedule corresponding to the feasible resource
flow displayed in Figure 6.4.

As can be seen here, this schedule is not a semi-active schedule as either
activity 2 or activity 3 can still be shifted to the left. For this reason, the
set of schedules represented by resource flows is a proper superset of the set
of semi-active schedules. 2

6.1.2 RCPSP with First-Tier Resource Transfers

Next, we consider the solution representation for the RCPSP with first-tier
resource transfers. For this problem, the solution representation based on
resource flows described above is adapted to include transfer times ∆ijk de-
noting the amount of time required to transfer resource k ∈ R from activity
i ∈ V0 to activity j ∈ V∗. Then, in the AON-flow network corresponding to
a feasible resource flow F , each arc (i,j)k representing the resource transfer
of resource k from activity i to activity j is assigned a weight equal to the
corresponding transfer time ∆ijk.

Apart from this adaption of the solution representation, no further modi-
fications are required. Now, an earliest start schedule corresponding to a
feasible resource flow F can again be calculated based on the longest paths
in the respective AON-flow network. In this case, both, the processing times

155

6 A Solution Approach for the RCPSP with Resource Transfers

of the activities (i.e. the node weights) as well as the transfer times ∆ijk

(i.e. the arc weights) have to be taken into account. Here, if multiple arcs
(i,j)k for resources k ∈ R connect two activities i ∈ V0 and j ∈ V∗, an arc
with the largest weight between the two activities is selected in order to
calculate the longest paths.

Next, we again consider the problem of generating a resource flow F cor-
responding to a feasible schedule S. This problem can be modeled as a
feasible flow problem which is an extension of the maximum flow problem
(cf. Ahuja et al. (1993)). It should be noted that a similar approach is used
by Artigues et al. (2010) for the RCPSP in order to show that a feasible
resource flow exists for each feasible strict order P such that the makespan
of the corresponding earliest start schedule is not larger than the makespan
of the earliest start schedule induced by P . Here, a strict order P consists
of additional precedence constraints such that inequality Si + pi ≤ Sj has
to hold for all pairs of activities (i, j) ∈ P in every schedule induced by the
strict order P .

For a project consisting of n real activities i = 1, . . . , n as well as the two
dummy activities 0 and n + 1, a network consisting of 2 + 2n nodes is
introduced for each resource k ∈ R such that dummy source activity 0 is
represented by a supply node 0out with a supply b(0out) = Rk while dummy
sink activity n+1 is represented by a demand node (n+1)in with a demand
b((n + 1)in) = −Rk. For the remaining activities i = 1, . . . , n, two nodes
iout as well as iin are introduced for each activity i. Here, demand node
iin represents the inflow of resource units of resource k to activity i with
a demand b(iin) = −rik while supply node iout represents the outflow of
resource units of resource k from activity i with a supply b(iout) = rik.

Next, a directed arc (iout, jin) is introduced between a supply node iout and
a demand node jin if and only if the considered resource k can be transferred
from activity i ∈ V0 to activity j ∈ V∗, i.e. if inequality Si + pi +∆ijk ≤ Sj
holds for the starting times of activities i and j in schedule S. In this case,
the arc (iout,jin) is assigned a capacity uiout,jin = min{rik, rjk} (i.e. the
minimum of supply or demand of either node iout or node jin).

This feasible flow problem can then be transformed into a maximum flow
problem by adding a global source node s as well as a global sink node
t. Additionally, the global source node s is connected to each supply node
iout by a directed arc (s, iout) with the capacity us,iout = b(iout) and each
demand node jin is connected to the global sink node t by a directed arc
(jin, t) with the capacity ujin,t = −b(jin). Now, a solution for the feasible

156

6.1 Solution Representation

flow problem exists if the maximum flow problem has a maximum flow from
the global source s to the sink t with the value

f =
∑
i∈V0

b(iout) = −
∑
j∈V∗

b(jin).

This maximum flow problem can then be solved, for example, by the poly-
nomial time algorithm described by Ahuja et al. (1989).

Example 6.4 We again consider the project from Example 6.1 and extend
it by transfer times ∆ijk for resource k = 1 between all pairs of activities
i,j = 0, . . . , 4 as given in Table 6.2. A feasible schedule S for this project is
displayed in Figure 6.4. It should be noted that the actual resource transfers
are not shown in this schedule because a schedule S is usually only defined
by the starting times Si of activities i ∈ Vall.

0 1 2 3 4
0 0 0 0 0 0
1 0 0 3 2 0
2 0 3 0 1 0
3 0 2 1 0 0
4 0 0 0 0 0

Table 6.2: Transfer times ∆ijk for resource k = 1 between all pairs of activ-
ities i,j = 0, . . . , 4 for the project considered in Example 6.4.

R1

0

1

2

0 1 2 3 4 5

1 2

3

Figure 6.6: Feasible schedule for the project considered in Example 6.4.

Based on the starting times of the activities in this schedule, a network
for the feasible flow problem can now be constructed for resource k = 1 as
described above. The resulting network is displayed in Figure 6.7 while a
feasible flow for this network is shown in Figure 6.8. Finally, the resource
flow F corresponding to the feasible network flow from Figure 6.8 is displayed
in Figure 6.9. This resource flow represents the feasible schedule S from
Figure 6.6.

157

6 A Solution Approach for the RCPSP with Resource Transfers

1
in

1
out

0
out

2
in

2
out

4
in

3
in

3
out

2

−1 1

−1 1

−1 1

−2

1

1

1

1

1

2

1

1

1

Figure 6.7: Network graph resulting from the starting times Si of activities
i = 0, . . . , 4 in the feasible schedule displayed in Figure 6.6. The
supply b(iout) or demand b(iin) of the nodes is given above the
respective nodes while the capacities uiout,jin of the arcs are given
on the respective arcs.

1
in

1
out

0
out

2
in

2
out

4
in

3
in

3
out

2

−1 1

−1 1

−1 1

−2

1

1

1

1

1

Figure 6.8: Feasible flow for the network displayed in Figure 6.7. The flow
between the nodes is given on the respective arcs.

158

6.1 Solution Representation

1

0 2 4

3

1

1

1

1

1

Figure 6.9: Resource flow corresponding to the feasible network flow dis-
played in Figure 6.8.

It should be noted that an alternative feasible flow for the flow network
displayed in Figure 6.7 exists in which one unit of resource 1 is transferred
from activity 1 to activity 2. This visualizes the fact that multiple resource
flows might represent a given schedule S. On the other hand, both possible
resource flows would result in different earliest start schedules, i.e. activity
2 would either start immediately after activity 1 (with makespan Cmax = 3
or immediately after activity 3 (with makespan Cmax = 4). 2

Theorem 6.4 For the RCPSP with first-tier resource transfers, the ap-
proach based on the feasible flow problem outlined above generates a cor-
responding resource flow F for any feasible schedule S. 2

Proof Let S be a feasible schedule for which a resource flow F is generated
by calculating a solution for the corresponding feasible flow problem for each
resource k ∈ R as described above.

First of all, we show that any solution of the feasible flow problem for a
resource k ∈ R represents a feasible resource flow Fk for this resource. This
follows directly from the model. In particular, the amount of incoming
resource units of resource k to each activity j ∈ V∗ as well as the amount
of outgoing resource units of resource k from each activity i ∈ V0 has to be
equal to the respective resource requirements because the demand b(jin) or
supply b(iout) of the corresponding node jin or iout has to be satisfied in any
feasible flow for the feasible flow problem. Furthermore, the resource flow
Fk has to be acyclic and observe the given precedence constraints (i, j) ∈ A
because arcs (iout, jin) are only inserted if Si + pi +∆ijk ≤ Sj holds for the

159

6 A Solution Approach for the RCPSP with Resource Transfers

starting times of activities i ∈ V0 and j ∈ V∗ in schedule S. Thus, a feasible
solution for the feasible flow problem represents a resource flow Fk for the
corresponding resource k ∈ R. Furthermore, any set consisting of exactly
one feasible resource flow Fk for each resource k ∈ R constitutes a resource
flow F corresponding to schedule S because resource transfers for resources
k ∈ R can be chosen independently for the RCPSP with first-tier resource
transfers (i.e. resource transfers of different resources k ∈ R do not influence
each other).

Next, we show that it is possible to calculate a resource flow F as described
above for any feasible schedule S. Here, we assume to the contrary that a
feasible schedule S exists such that the corresponding feasible flow problem
does not posses a feasible solution for some resource k ∈ R. In this case, the
supply b(iout) of at least one node iout corresponding to an activity i ∈ V0

as well as the demand b(jin) of at least one node jout corresponding to an
activity j ∈ V∗ can not be satisfied. This follows from the fact that the
overall supply of the nodes always has to be equal to the overall demand
of the nodes. Then, a subset of nodes jin exists such that no flow exists in
which the demands of all of these nodes can be fulfilled simultaneously, i.e.
there is at least always one node jin corresponding to an activity j ∈ V∗
to which not a sufficient amount of resource k can be transferred until its
starting time Sj . This, however, implies that schedule S can not be feasible
which is a contradiction to the condition that S has to be a feasible schedule.

Thus, it can be concluded that this approach is able to generate a corre-
sponding resource flow F for any feasible schedule S for the RCPSP with
first-tier resource transfers. �

Now, using a similar argumentation as for Theorem 6.2, it can be shown that
the starting time S′i of any activity i ∈ Vall in the earliest start schedule S′

for a resource flow F corresponding to a feasible schedule S can not be
later than the starting time Si of activity i in schedule S. This property
holds because arcs (iout, jin) for a resource k ∈ R are only inserted in this
approach if Si + pi + ∆ijk ≤ Sj holds, i.e. if resource k can be transferred
from activity i to activity j until its original starting time Sj .

Finally, the results from Theorem 6.3 as well as from Example 6.3 also hold
for the RCPSP with first-tier resource transfers. In particular, the set of
schedules represented by resource flows always contains an optimal solution
for a regular objective function. This again follows from the results discussed
above.

160

6.1 Solution Representation

6.1.3 RCPSP with First- and Second-Tier Resource Transfers

Now, we consider the RCPSP with first- and second-tier resource transfers.
For this problem, the solution representation has to be adapted to include
both, first-tier and second-tier resource transfers as well as resource transfers
of resources k ∈ Rsa from either the start or the end of activities i ∈ V .

Formally, this problem can be represented by a hypergraph such that each
activity i ∈ Vall is represented by two nodes iin and iout denoting the start
and the end of the activity, respectively. Then, for each resource k ∈ R
required to process an activity i ∈ Vall (i.e. for each resource k with rik >
0), an arc (iin,iout)k is introduced between these two nodes denoting the
execution of the activity by this resource such that a total of rik units of
resource k are sent on the respective arc. In the following, these arcs are
weighted with the processing time pi of the corresponding activity i.

Next, we consider resource transfers of resources l ∈ Rru from the end of
activity i ∈ V0 to the start of activity j ∈ V∗. In the hypergraph, these
resource transfers fFSijl > 0 are represented by directed arcs (iout, jin)l that
are weighted with the respective transfer time ∆ijl. Additionally, if ∆ijl > 0
holds for the transfer time of resource l from activity i to activity j, second-
tier resources k ∈ Rsa are required to support the transfer. In this case, if
an amount of fFShijkl > 0 units of second-tier resource k ∈ Rsa from the end
of activity h ∈ V0 is used to support the transfer of resource l from activity
i to activity j, a directed arc (hout, iout, jin)kl is introduced. Similarly, if an
amount of fSShijkl > 0 units of second-tier resource k ∈ Rsa from the start
of activity h ∈ V0 is used to support the transfer of resource l from activity
i to activity j, a directed arc (hin, iout, jin)kl is introduced. It should be
noted that nodes hin, hout, and iout are tails of the corresponding hyperarc
while node jin is the head of the corresponding hyperarc. In the following,
these arcs are weighted with the transfer time ∆hik+∆ijl such that all three
scenarios denoted by inequalities (5.30) to (5.32) are accounted for.

Finally, if an amount of fFSijk > 0 units of (pure) first-tier resource k ∈ Rsa

is transferred from the end of activity i ∈ V0 to the start of activity j ∈ V∗,
an arc (iout, jin)k is introduced. Similarly, an arc (iin, jin)k is introduced if
an amount of fSSijk > 0 units of resource k is transferred from the start of
activity i to activity j. In both cases, the respective arc is weighted with
the corresponding transfer time ∆ijk. These two types of arcs represent the
two scenarios denoted by inequalities (5.28) and (5.29).

161

6 A Solution Approach for the RCPSP with Resource Transfers

Now, all first- and second-tier resource transfers of a resource k ∈ R again
denote a resource flow Fk for the corresponding resource k while a resource
flow F for a given project consists of exactly one resource flow Fk for each
resource k ∈ R. Finally, we have to adapt the conditions any feasible
resource flow F has to satisfy for the RCPSP with first- and second-tier
resource transfers. In particular, the amount of incoming resource units
of a resource k ∈ Rsa at a node jin might be larger than the resource
requirements rjk of activity j if pure second-tier resource units are required
to support the transfer of first-tier resources l ∈ Rru to activity j.

As described on page 126, the actual amount of resource units of pure second-
tier resource k ∈ Rsa that has to be transferred to an activity j ∈ V can
be calculated based on the selected resource transfers of resources l ∈ Rru

to activity j (cf. Theorem 5.1). Here, for each resource transfer fFSijl > 0
of a resource l ∈ Rru from activity i ∈ V0 to activity j ∈ V∗ with ∆ijl > 0,
an amount of µkl · fijl units of resource k ∈ Rru from activities h ∈ V0

are required to support this transfer as second-tier resources (as denoted by
resource transfers fFShijkl and f

SS
hijkl). These support requirements have to be

satisfied in any feasible resource flow F . Now, if the requirement of such
second-tier resource units is larger than the actual resource requirement rjk
of activity j, the surplus of resource units of second-tier resource k have to
be transferred as pure second-tier resource units to node jin. Additionally,
they also have to be transferred from node jin to the next activities by start-
to-start transfer in order to maintain flow conservation. Apart from these
adaptions, the remaining conditions a feasible resource flow has to satisfy
remain the same.

Example 6.5 We consider a project consisting of n = 3 real activities
i = 1,2,3 as well as the two dummy activities 0 and 4. Furthermore, r = 2
renewable resources with capacities Rk = 2 for k = 1,2 are available. Now,
an amount of µ12 = 1 unit of resource 1 is required to support the transfer
of one unit of resource 2. The processing times pi and resource requirements
rik as well as the transfer times ∆ijk with ∆ijk = ∆ij for both resources
k = 1,2 are given in Table 6.3. Finally, no precedence constraints i→ j are
given between the real activities.

A feasible resource flow F for this project is visualized as a hypergraph
in Figure 6.10. In this graph, each activity i ∈ Vall is represented by two
nodes iin and iout. These two nodes are connected by arcs (iin, iout)k for
resources k ∈ R with rik > 0 that represent the resource requirements of
activity i. It should be noted that one unit of pure second-tier resource

162

6.1 Solution Representation

i 0 1 2 3 4
pi 0 1 1 1 0
ri1 2 2 0 2 2
ri2 2 1 1 0 2

(a) Activity parameters.

0 1 2 3 4
0 0 1 1 2 0
1 1 0 1 1 0
2 1 1 0 1 0
3 2 1 1 0 0
4 0 0 0 0 0

(b) Transfer times.

Table 6.3: The processing times pi as well as resource requirements rik are
displayed in (a) while the transfer times ∆ijk = ∆ij for both
resources k = 1,2 are displayed in (b).

1
in

1
out

0
in

0
out

2
in

2
out

4
in

4
out

3
in

3
out

2

2

2

1

1

2

2

2

1

1

1
1

1

11

1

2
1

Figure 6.10: Feasible resource flow F for the project from Example 6.5. In
this hypergraph, resource transfers of resource 1 are visualized
by thick arcs while resource transfers of resource 2 are visualized
by thin arcs.

1 is transferred from the end of activity 0 to the start of activity 2 and
is immediately sent from there to activity 3 (i.e. is is not used to process
activity 2). Also, the transfer of first-tier resource 2 from the end of activity

163

6 A Solution Approach for the RCPSP with Resource Transfers

2 to activity 1 is modeled by an arc (2out, 1in)2 representing the actual
transfer of resource 2 as well as an hyperarc (3out, 2out, 1in)12 representing
the transfer of a supporting resource unit of resource 1 from the end of
activity 3.

0 2 4

1

3

q1 = 1
q2 = 1

q2 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 1
q2 = 1

q1 = 1

q1 = 2
q2 = 1

q2 = 1

Figure 6.11: Alternative representation of the feasible resource flow F .

R1

0

1

2

0 1 2 3 4 5 6

∆022

∆031

∆231

3
∆321 ∆212

∆311

1

R2

0

1

2

0 1 2 3 4 5 6

∆022 2 ∆212 1

Figure 6.12: The earliest start schedule corresponding to the feasible re-
source flow F displayed in Figure 6.10.

Now, resource flow F is visualized again in Figure 6.11 using the same

164

6.1 Solution Representation

network representation as it has been used before in this thesis. In the
following, we will use this representation as it represents resource flows more
clearly. Finally, the earliest start schedule corresponding to this feasible
resource flow F is displayed in Figure 6.12. 2

Similar to the other two problems considered in this chapter, it is again
possible to calculate an earliest start schedule for a given feasible resource
flow F based on the longest paths. In order to do this, the AON-flow net-
work for a given resource flow F (represented as a hypergraph as described
above) is considered such that each precedence constraint (i, j) ∈ A between
two activities i ∈ V0 and j ∈ V∗ is represented by an arc (iout, jin). The
initial distances can then be determined from the arc weights. It should be
noted that a hyperarc (hin, iout, jin)kl (or (hout, iout, jin)kl) is only used to
calculate the initial distances between nodes hin (or hout) and jin and not
between nodes iout and jin. Instead, the distance between these two nodes
is calculated based on the transfer of the corresponding first-tier resource
l ∈ Rru as it is represented by an arc (iout, jin)l. The starting time Si of
activity i ∈ Vall is then given by the length of a longest path from the start
of activity 0 (represented by node 0in) to the start of activity i (represented
by node iin), i.e. it is set to Si = l0iniin .

Next, we again consider the problem of generating a resource flow F for a
feasible schedule S. Unlike for the RCPSP with first-tier resource transfers,
the resource transfers of resources k ∈ R can not be selected independently
here because a different amount of supporting second-tier resources k ∈ Rsa

might be required based on the selection of resource transfers of resources
l ∈ Rru. At the same time, the arrival time of the selected first-tier resources
l ∈ Rru at activity j ∈ V∗ depends on the second-tier resources k ∈ Rsa

assigned to support the transfer. For this reason, we adapt the approach
based on the feasible flow problem as it has been introduced in Section 6.1.2
for the RCPSP with first-tier resource transfers as follows.

First of all, resource flows Fl are calculated for all resources l ∈ Rru based
on the feasible flow problem as described on page 156. For this, each activity
i ∈ V is represented by two nodes iin and iout and arcs (iout, jin) are inserted
between two nodes iout and jin if it is possible to transfer resource l ∈ Rru

from activity i ∈ V0 to activity j ∈ V∗ such that Si + pi + ∆ijl ≤ Sj holds
for the starting times Si and Sj of the activities in the feasible schedule S.

Based on these resource flows Fl it is then possible to calculate the actual
amount of resource k ∈ Rsa required to support the transfer of resources

165

6 A Solution Approach for the RCPSP with Resource Transfers

l ∈ Rru (cf. Theorem 5.1). Now, the problem of calculating resource flows
Fk for resources k ∈ Rsa can be tackled. For this, the dummy source activity
0 is again represented by a single node 0out

FS with a supply b(0out
FS) = Rk.

On the other hand, the dummy sink activity n + 1 may be represented
by multiple nodes such that, for each resource transfer fFSi,n+1,l > 0 of a
resource l ∈ Rru from an activity i ∈ V0 with a transfer time ∆i,n+1,l > 0,
one node (n+1)inil with a demand b((n+1)inil) = −µkl ·fFSi,n+1,l is introduced.
These nodes represent the amount of resource units of second-tier resource
k required to support the transfer of these fFSi,n+1,l units of first-tier resource
l to activity n+ 1. Additionally, a node (n+ 1)in with a demand

b((n+ 1)in) = −max

{
0, Rk −

∑
i∈V0

∑
l∈Rru

µkl · fFSi,n+1,l · zi,n+1,l

}

is introduced where zi,n+1,l = 1 denotes that the transfer of resource l from
activity i to activity n + 1 has a transfer time ∆i,n+1,l > 0. This node
represents the transfer of all units of resource k that are not required to
support the transfer of first-tier resources l ∈ Rru to activity n+1. Similarly,
for each activity j ∈ V , a node jinil with a demand b(jinil) = −µkl · fFSijl is
introduced for each resource transfer fFSijl > 0 of a resource l ∈ Rru from
activity i ∈ V0 to activity j with ∆ijl > 0 as well as a node jin with a
demand

b(jin) = −max

{
0, rjk −

∑
i∈V0

∑
l∈Rru

µkl · fFSijl · zijl

}

where zijl = 1 again denotes that the transfer of resource l from activity
i to activity j requires a transfer time ∆ijl > 0. Additionally, a node jout

FS

with a supply b(jout
FS) = rjk as well as a node jout

SS with a supply

b(jout
SS) = max

{
0,
∑
i∈V0

∑
l∈Rru

µkl · fFSijl · zijl − rjk

}

equal to the amount of resource units of pure second-tier resource k trans-
ferred to activity j are introduced for each activity j ∈ V . It should be
noted that all supply as well as demand nodes with a supply or demand
equal to zero can be omitted from the graph.

Finally, an arc (hout
FS , j

in) is inserted if Sh + ph + ∆hjk ≤ Sj holds between
the starting time Sh of activity h ∈ V0 and the starting time Sj of activity
j ∈ V∗ while an arc (hout

SS , j
in) is inserted if Sh+∆hjk ≤ Sj holds. These arcs

166

6.1 Solution Representation

represent the direct transfer of resource k from activity h to activity j by
either finish-to-start or start-to-start transfer. Similarly, an arc (hout

FS , j
in
il)

for i ∈ V0 and l ∈ Rru is inserted if Sh+ph+∆hik+∆ijl ≤ Sj holds while an
arc (hout

SS , j
in
il) is inserted if Sh+∆hik+∆ijl ≤ Sj holds. These arcs represent

the transfer of second-tier resource k from activity h to support the transfer
of first-tier resource l from activity i to activity j by either finish-to-start
or start-to-start transfer. For all of these arcs (e, f) between supply nodes
e ∈ {hout

SS , h
out
FS} (with h ∈ V0) and demand nodes f ∈ {jin, jinil } (with j ∈ V∗,

i ∈ V0 and l ∈ Rru), the capacity is set to u(e, f) = min{b(e),−b(f)}, i.e.
it is set to the minimum of supply or demand required by either node e or
node f .

This feasible flow problem can now be transformed into a maximum flow
problem as described in Section 6.1.2. It should be noted, however, that
no solution may exist for the feasible flow problem corresponding to some
resource k ∈ Rsa based on a given set of resource flows Fl for all resources
l ∈ Rru. For this reason, all possible sets of resource flows Fl for resources
l ∈ Rru have to be enumerated until it is possible to generate resource flows
Fk for all resources k ∈ Rsa.

Example 6.6 We again consider the project from Example 6.5. A schedule
for this project with the starting times S0 = 0, S1 = 5, S2 = 1, S3 = 2,
and S4 = 6 is displayed in Figure 6.12. Based on these starting times it is
now possible to calculate a flow network for the corresponding feasible flow
problem for resource 2 as displayed in Figure 6.13. A feasible flow for this
network is then shown in Figure 6.14.

Based on the corresponding resource flow F2, we can now calculate the flow
network for the feasible flow problem for resource 1 as shown in Figure 6.15.
In this network, for example, node 1in

02 ensures that an amount of µ12 = 1
unit of resource 1 has to support the transfer of resource 2 from activity 0
to activity 1 (i.e. based on the corresponding resource transfer selected in
Figure 6.14) while node 1in ensures that a sufficient amount of resource 1 has
to be transferred to activity 1 to satisfy its resource requirements r11 = 2
(i.e. one additional unit of resource 1 has to be transferred to activity 1 as a
first-tier resource). Also, it should be noted that one unit of resource 1 can
be transferred from activity 2 by start-to-start transfer. This is modeled by
node 2out

SS in this network.

It is easy to see that no feasible flow exists for this flow network such that the
demands of all nodes 1in, 1in

02, 2in
02, and 3in can be satisfied simultaneously.

In particular, these nodes have an overall demand of 5 resource units but

167

6 A Solution Approach for the RCPSP with Resource Transfers

1
in

1
out

0
out

2
in

2
out

4
in

2

−1 1

−1 1 −2

11

1

2

1

1

Figure 6.13: Flow network for resource 2 resulting from the starting times
Si of the activities i = 0, . . . , 4 in the given schedule displayed
in Figure 6.12. Activity 3 is missing in this graph because it
does not require resource 2 (i.e. r32 = 0 holds).

1
in

1
out

0
out

2
in

2
out

4
in

2

−1 1

−1 1 −2

1

1

1

1

Figure 6.14: Feasible flow for the network displayed in Figure 6.13.

can only be supplied a total of 4 resource units by nodes 0out
FS , 2out

SS , and
3out
FS . At the same time, it is also not possible for node 4in to consume the

total supply of 3 resource units from nodes 1out
FS and 3out

FS (i.e. these resource
units can not be sent to any other node). For this reason, we calculate an
alternative feasible flow for resource 2 based on the flow network from Figure
6.13 as displayed in Figure 6.16.

Now, the flow network displayed in Figure 6.17 for the feasible flow problem
for resource 1 can be calculated based on the resource flow F2 corresponding
to this alternative feasible flow. A feasible flow for this resulting flow network
can then be calculated because one unit of resource 1 can now be sent from
node 3out

FS to node 1in
22 such that all supplies and demands of the nodes are

satisfied (cf. Figure 6.18).

168

6.1 Solution Representation

1
in

1
out

FS

1
in

02

0
out

FS 2
in

02 2
out

SS
4
in

3
in

3
out

FS

2

−1 2

−1

−1 1

−2 2

−2

1

1

1

2

2

1

1

1

1

1

2

2

Figure 6.15: Network graph for resource 1 resulting from the starting times
Si of activities i = 0, . . . , 4 in the given schedule displayed in
Figure 6.12 as well as the resource flow F2 corresponding to the
feasible flow shown in Figure 6.14.

1
in

1
out

0
out

2
in

2
out

4
in

2

−1 1

−1 1 −2

1

1

1

1

1

Figure 6.16: Alternative flow for the network displayed in Figure 6.13.

It should be noted that the two resource flows F1 and F2 resulting from the
feasible flows displayed in Figures 6.16 and 6.18 constitute a resource flow
F corresponding to the feasible schedule S from Figure 6.12. This resource
flow F is visualized in Figures 6.10 and 6.11. 2

169

6 A Solution Approach for the RCPSP with Resource Transfers

1
in

1
out

FS

1
in

22

0
out

FS 2
in

02 2
out

SS
4
in

3
in

3
out

FS

2

−1 2

−1

−1 1

−2 2

−2

1

1

1

2

2

1

1

1

1

1

1

2

2

Figure 6.17: Network graph for resource 1 resulting from the resource flow
F2 corresponding to the feasible flow shown in Figure 6.16.

1
in

1
out

FS

1
in

22

0
out

FS 2
in

02 2
out

SS
4
in

3
in

3
out

FS

2

−1 2

−1

−1 1

−2 2

−2

1

1 1

1

1

2

Figure 6.18: Feasible flow for the network displayed in Figure 6.17.

170

6.1 Solution Representation

Below, we prove the correctness of this approach in Theorem 6.5.

Theorem 6.5 For the RCPSP with first- and second-tier resource trans-
fers, the approach based on the feasible flow problem always generates a
corresponding resource flow F for any feasible schedule S. 2

Proof First of all, it can be shown as in Theorem 6.4 that it is always
possible to generate resource flows Fl for resources l ∈ Rru for any feasible
schedule S.

Thus, it remains to be shown that it is also possible to generate resource
flows Fk for all resources k ∈ Rsa based on schedule S as well as on at least
one set of feasible resource flows Fl for all resources l ∈ Rru as they have
been calculated before. We assume to the contrary that no set of resource
flows Fl can be generated such that it is possible to calculate feasible flows
for all resources k ∈ Rsa for a given feasible schedule S. In this case, there
is always at least one resource k ∈ Rsa for which no feasible flow can be
generated, i.e. at least the demand of one demand node as well as the
supply of one supply node can not be satisfied. Similar to Theorem 6.4, this
can only occur if not a sufficient amount of resource k can be transferred to
an activity j ∈ V∗ until its starting time Sj (or not a sufficient amount of
resource k can support the transfer of resources l ∈ Rru to activity j until
time Sj), i.e. schedule S can not be feasible. This, however, contradicts the
condition that schedule S is feasible.

As a result, it is always possible to calculate feasible flows for all resources
k ∈ Rsa for at least one set of resource flows Fl. These flows correspond to
resource flows Fk which again follows from the model as all conditions for a
feasible resource flow are also fulfilled in any solution for the corresponding
feasible flow problem. Both, resource flows Fl for all resources l ∈ Rru as
well as resource flows Fk for all resources k ∈ Rsa then constitute a resource
flow F corresponding to the feasible schedule S. This again follows from the
fact that resource flows for resources l ∈ Rru as well as resource flows for
resources k ∈ Rsa can be generated independently because resource trans-
fers of different resources do not interfere with each other and all support
requirements for the selected resource transfers of resources l ∈ Rru are
satisfied in the resource flows for resources k ∈ Rsa. �

It should be noted that this approach is not a polynomial time algorithm
because all possible sets of resource flows Fl for resources l ∈ Rru may have
to be evaluated in order to generate a resource flow F for a given feasible
schedule S. Due to Theorem 4.1, already selecting resource transfers as well

171

6 A Solution Approach for the RCPSP with Resource Transfers

as assigning supporting resources for one activity such as to ensure that all
resource units arrive until the starting time of the activity in the feasible
schedule is NP-hard (this problem corresponds to the decision version of the
problem considered in Theorem 4.1 with a given upper bound T). For this
reason, this problem can not be any easier because the same problem has
to be solved for all activities i ∈ Vall simultaneously. This has no further
practical implications, however, because we only require these results for the
following conclusions.

First of all, similar to Theorem 6.2, it can be shown that the starting times
S′j of activities j ∈ Vall in schedule S′ can not be later than the starting times
Sj of activities j in schedule S where schedule S is the original schedule and
schedule S′ is the earliest start schedule corresponding to the resource flow
F that has been calculated for schedule S based on the approach outlined
above. This again follows from the model as a resource transfer of resource
k ∈ R from activity i ∈ V0 to activity j can only be selected if the resource
units can arrive at activity j until its original starting time Sj in schedule
S. Here, all five scenarios as modeled by inequalities (5.28) to (5.32) are
accounted for.

Finally, based on these results, it can be shown that the results from Theo-
rem 6.3 also hold for the RCPSP with first- and second-tier resource trans-
fers, i.e. the set of schedules represented by resource flows always contains
an optimal schedule for a regular objective function.

6.2 Neighborhoods

In this section, neighborhoods for the three problems considered in this chap-
ter are presented. Based on the solution representation introduced in the
previous section, these neighborhoods are defined on solutions represented
by resource flows. Before these neighborhoods are introduced, however, Sec-
tion 6.2.1 gives a short overview of modifications defined on resource flows
that have previously been described in literature. Afterward, neighborhoods
for the classical RCPSP are introduced in Section 6.2.2. These are then ex-
tended to the RCPSP with first-tier resource transfers in Section 6.2.3 as
well as the RCPSP with first- and second-tier resource transfers in Section
6.2.4. Apart from a description of these neighborhoods, some theoretical
results related to these neighborhoods are reported as well. In particular,
we consider the connectivity of these neighborhoods.

172

6.2 Neighborhoods

6.2.1 Previous Work

One of the first papers dealing with neighborhoods defined on solutions that
are represented by resource flows for the classical RCPSP has been published
by Fortemps and Hapke (1997). In this paper, they describe an extension
of a neighborhood in which solutions are represented as disjunctive graphs
as it has been introduced by van Laarhoven et al. (1992) for the job-shop
scheduling problem. Here, while van Laarhoven et al. (1992) define modifi-
cations that reverse critical arcs in disjunctive graphs in order to change the
sequence in which operations are processed, Fortemps and Hapke (1997) de-
scribe two types of modifications that redirect specific amounts of resource
units between activities in resource flows in order to change the sequence in
which activities are processed. These two types of modifications are referred
to as parallel and serial modifications and are described below.

First of all, for a serial modification, two activities i ∈ V and j ∈ V are
selected in a resource flow F such that at least one arc (i, j)k for a resource
k ∈ R with fijk > 0 exists between these activities and the activities lie
on a critical path in the graph representing the resource flow. Furthermore,
groups Uk with fuik > 0 for all activities u ∈ Uk as well as groups Vk with
fjvk > 0 for all activities v ∈ Vk have to be selected for each resource k ∈ R
with fijk > 0 such that∑

u∈Uk

fuik ≥ fijk and
∑
v∈Vk

fjvk ≥ fijk

hold for these groups of activities, respectively. Then, a serial modification
first reverses the direction of all arcs (i, j)k for resources k ∈ R with fijk > 0
between activities i and j such that an amount of f ′jik = fijk units of resource
k ∈ R is transferred from activity j to activity i in the resulting resource
flow F ′. Additionally, an amount of fijk units of each resource k ∈ R with
fijk > 0 has to be redirected from activities u ∈ Uk to activity j as well as
from activity i to activities v ∈ Vk in order to maintain flow conservation
in the resulting resource flow F ′. It should be noted that Fortemps and
Hapke (1997) do not describe how the sets Uk and Vk are selected or how
the resource units are redirected. Instead, they focus on the trivial case that
a single activity u ∈ V0 with fuik ≥ fijk as well as a single activity v ∈ V∗
with fjvk ≥ fijk can be selected for each resource k ∈ R with fijk > 0.

In this case, an amount of f ′ujk = fujk+fijk units of resource k are redirected
from activity u to activity j in the resulting resource flow F ′ while f ′uik =

173

6 A Solution Approach for the RCPSP with Resource Transfers

fuik−fijk units of resource k are still transferred from activity u to activity i.
Similarly, an amount of f ′ivk = fivk + fijk units of resource k are redirected
from activity i to activity v while f ′jvk = fjvk − fijk units of resource k
are still transferred from activity j to activity v. Even for this trivial case,
however, Fortemps and Hapke (1997) do not describe how activities u and
v are selected.

It should be noted that this serial modification closely resembles the neigh-
borhood for the job-shop scheduling problem based on disjunctive graphs as
it has been introduced by van Laarhoven et al. (1992). Because resources
for the classical RCPSP do not necessarily have unit capacity (i.e. unlike
for the job-shop scheduling problem, they are not necessarily disjunctive re-
sources), it is not sufficient to only change the sequence in which activities
are processed by the same resource units. For this reason, Fortemps and
Hapke (1997) propose a second modification, referred to as parallel modifi-
cation, that changes the resource plan for a selected resource k ∈ R. These
modifications can be used, for example, to allow different activities to be
processed in parallel by the same type of resource if a sufficient amount of
resource units of this resource is available.

Now, for a parallel modification, two arcs (i,j)k and (u,v)k for activities
i, u ∈ V0 and j, v ∈ V∗ representing resource transfers fijk > 0 and fuvk > 0
of a resource k ∈ R are selected in a resource flow F such that no directed
path exists between activities j and u or between activities v and i. Then, an
amount of q = min{fijk, fuvk} units of resource k is rerouted from activity i
to activity v as well as from activity u to activity j. This results in a resource
flow F ′ with the modified resource transfers f ′ijk = fijk−q, f ′uvk = fuvk−q,
f ′ivk = fivk + q, and f ′ujk = fujk + q between the activities.

Apart from introducing these two types of modifications, Fortemps and
Hapke (1997) do not report any further results (neither experimental not
theoretical) regarding this neighborhood. To the best of our knowledge,
neither has any additional literature been published until now that deals
with this neighborhood any further.

Finally, another neighborhood for the classical RCPSP based on resource
flows has been introduced by Artigues et al. (2003). This neighborhood is
based on modifications that first remove an activity from a given resource
flow F and then re-insert it. Here, resource transfers to and from this
activity have to be redirected both, when removing the activity as well as
when re-inserting it. For this neighborhood, Artigues et al. (2003) introduce

174

6.2 Neighborhoods

a polynomial time insertion algorithm that inserts activities in an optimal
position in relation to the current resource flow.

6.2.2 Classical RCPSP

In this section, we introduce neighborhoods for the RCPSP based on the
parallel as well as serial modifications introduced by Fortemps and Hapke
(1997). We focus on these modifications because they can more easily be
adapted to the RCPSP with first- and second-tier resource transfers than, for
example, the neighborhood introduced by Artigues et al. (2003) (cf. Section
6.2.4). In particular, in order to re-insert an activity into a resource flow, it
is necessary to redirect incoming resource transfers to this activity as well as
outgoing resource transfers from this activity. While Artigues et al. (2003)
present a polynomial-time algorithm to find an optimal insertion position
for the classical RCPSP, the same problem for the RCPSP with first- and
second-tier resource transfers is NP-hard. This again follows from Theorem
4.1 because the resource transfers to the activity have to be selected such
that the resource units arrive as early as possible.

Below, apart from describing these neighborhoods, we consider some the-
oretical aspects of them. In particular, we regard their connectivity. As
described for example by Brucker and Knust (2006), a neighborhood N is
called connected if it is possible to transform an arbitrary solution s into
each other solution s′ by a finite number of modifications in N . Here, for
neighborhoods defined on solutions represented by resource flows, two re-
source flows F and F ′ (i.e. the two solutions) are equal if f ′ijk = fijk holds
for all i ∈ V0, j ∈ V∗, and k ∈ R. Even if a neighborhood N is not con-
nected, the weaker concept of opt-connectivity may still hold for N . In this
case, a neighborhood N is called opt-connected if it is possible to transform
an arbitrary solution s into an optimal solution s∗ by a finite number of
modifications in N .

Now, we introduce a neighborhood Nreroute that defines modifications (re-
ferred to as reroute moves) based on the parallel modification by Fortemps
and Hapke (1997). Here, similar to parallel modifications, two arbitrary
arcs (i, j)k and (u, v)k with fijk > 0 and fuvk > 0 are selected for a resource
k ∈ R in resource flow F such that no directed path exists from activity v
to activity i or from activity j to activity u in the AON-flow network. Then,
an amount of q ∈ {1, . . . ,min{fijk, fuvk}} units of resource k are redirected

175

6 A Solution Approach for the RCPSP with Resource Transfers

from activity i to activity v as well as from activity u to activity j. As de-
scribed above, this results in a resource flow F ′ with the modified resource
transfers f ′ijk = fijk−q, f ′uvk = fuvk−q, f ′ivk = f ′ivk+q, and f ′ujk = fujk+q
between the activities (cf. Figure 6.19). It should be noted that, unlike for
parallel modifications, we do not restrict these moves to always reroute the
maximal amount of resource units.

i j

u v

fijk

fuvk

fivk

fujk

(a) Before modification.

i j

u v

fijk − q

fuvk − q

fivk + q

fujk + q

(b) After modification.

Figure 6.19: The resource transfers of a resource k ∈ R with fijk > 0 and
fuvk > 0 between activities i,u ∈ V0 and j,v ∈ V∗ before the
resource transfers are modified by a reroute modification are
displayed in (a) while the resource transfers after an amount
of q ∈ {1, . . . ,min{fijk, fuvk}} units of resource k has been
rerouted from activity i to activity v as well as from activity u
to activity j are displayed in (b).

Next, we introduce a neighborhood Nreverse that defines modifications (re-
ferred to as reverse moves) based on the serial modification by Fortemps and
Hapke (1997). Here, instead of restricting ourselves to arcs (i, j)k between
critical activities i ∈ V and j ∈ V , arbitrary activities i ∈ V and j ∈ V with
fijk > 0 for at least one resource k ∈ R are selected in resource flow F such
that activity i is no direct or indirect predecessor of activity j according
to the precedence constraints and no other directed path from activity i to
activity j exists in the AON-flow network. Otherwise, if either of these two
conditions does not hold, reversing all arcs (i, j)k between the two selected
activities would result in a cyclic (and hence infeasible) resource flow.

As described in the previous section, Fortemps and Hapke (1997) do not
explain in any detail how incoming as well as outgoing resource transfers
for a serial modification are modified in the general case. Here, for a re-

176

6.2 Neighborhoods

verse modification in the neighborhood Nreverse, we adapt and extend their
general idea and select sets Uk of activities from which resource transfers
are redirected to activity j as well as sets Vk of activities to which resource
transfers are redirected from activity i based on a priority rule as follows.
First of all, sets Uk of activities u ∈ V0 are selected for each resource k ∈ R
with fijk > 0 based on a priority rule such that an arc (u,i)k with fuik > 0
exists between each activity u ∈ Uk as well as activity i and∑

u∈Uk

fuik ≥ fijk

holds for the amount of resource units of resource k transferred from these
activities to activity i. These sets are selected such that no activity u ∈ Uk
can be removed from the set Uk without violating this inequality (i.e. the
inequality does not hold for any proper subset of the set Uk). Similarly, sets
Vk of activities v ∈ V∗ are selected for each resource k ∈ R with fijk > 0
based on a priority rule such that an arc (j,v)k with fjvk > 0 exists between
activity j as well as each activity v ∈ Vk and∑

v∈Vk

fjvk ≥ fijk

holds for the amount of resource units of resource k transferred from activity
j to these activities. Again, these sets Vk are chosen such that no activity
v ∈ Vk can be removed from the set Vk without violating this inequality. In
the following, we assume that the subset Uk contains a total of ak activities
u1, . . . , uak for each resource k ∈ R with fijk > 0 while the subset Vk
contains a total of bk activities v1, . . . , vbk . Furthermore, we assume that the
activities contained in these sets are sorted according to the same priority
rule that has been used to calculate the sets. This initial situation for a
resource k ∈ R with fijk > 0 before a reverse modification is applied to a
resource flow F is visualized in Figure 6.20(a).

As stated above, the sets Uk and Vk of activities are selected based on a
priority rule. In the remainder of this section, we assume that the activities
are selected according to increasing numbers. The actual priority rules used
in the tabu search algorithm are then described in Section 6.3. It should be
noted that the priority rules used here have no influence on the connectivity
of the neighborhood.

Now, a reverse modification first reverses the direction of all arcs (i,j)k for
all resources k ∈ R with fijk > 0 between activities i and j such that an

177

6 A Solution Approach for the RCPSP with Resource Transfers

u1 v1

... i j

...

uak
vbk

fu1ik

fu1jk

fuak
ik

fuak
jk

fijk

fjv1k

fiv1k

fjvbk
k

fivbk
k

(a) Before modification.

u1 v1

... i j

...

uak
vbk

fu1jk + fu1ik

fuak
ik − qak

fuak
jk + qak

fijk

fiv1k + fjv1k

fjvbk
k − qbk

fivbk
k + qbk

(b) After modification.

Figure 6.20: The resource transfers of a resource k ∈ R with fijk > 0
between two activities i ∈ V and j ∈ V as well as two sets
Uk = {u1, . . . , uak} and Vk = {v1, . . . , vbk} before the resource
transfers are modified by a reverse modification are displayed
in (a) while the resource transfers after a reverse modification
has been applied are displayed in (b).

amount of f ′jik = fijk units of resource k ∈ R is transferred from activity j
to activity i in the resulting resource flow F ′. Additionally, for each resource
k ∈ R with fijk > 0, the resource transfers for all activities u ∈ Uk as well
as for all activities v ∈ Vk are adapted. Here, for all activities uλ ∈ Uk

178

6.2 Neighborhoods

with λ = 1, . . . , ak−1, all units of resource k transferred from activity uλ to
activity i are redirected such that an amount of f ′uλjk = fuλjk + fuλik units
of resource k is transferred from activity uλ to activity j in the resulting
resource flow F ′. For the remaining activity uak , an amount of

qak = fijk −
ak−1∑
λ=1

fuλik

units of resource k is redirected such that f ′uak jk = fuak jk + qak units of
resource k are transferred from activity uak to activity j in the resulting
resource flow F ′ and an amount of f ′uak ik = fuak ik− qak units of resource k
is still transferred from activity uak to activity i. Similarly, for all activities
vν with ν = 1, . . . , bk−1, all units of resource k transferred from activity j to
activity vν are redirected such that an amount of f ′ivνk = fivνk+fjvνk units
of resource k is transferred from activity i to activity uν in the resulting
resource flow F ′. For the remaining activity vbk , an amount of

qbk = fijk −
bk−1∑
ν=1

fjvνk

units of resource k is redirected such that f ′ivbkk = fivbkk + qbk units of
resource k are transferred from activity i to activity vbk in the resulting
resource flow F ′ and an amount of f ′jvbkk = fjvbkk − qbk units of resource
k is still transferred from activity j to activity vbk . These modifications
ensure that the amount of resource k transferred from activities u ∈ Uk to
activity j is equal to the amount fijk on the reversed arc and, similarly, the
amount of resource k transferred from activity i to activities v ∈ Vk is also
equal to the amount fijk for each resource k ∈ R with fijk > 0. As a result
of this, flow conservation is maintained in the resulting resource flow F ′.
Here, a modified graph for a resource k ∈ R with fijk > 0 after a reverse
modification has been applied to a given resource flow F is visualized in
Figure 6.20(b).

As described above, some conditions have to apply for the selected activities
for a reroute or reverse modification in order to ensure that the resulting
resource flow is acyclic. Here, ensuring that no directed path exists from
either activity j ∈ V∗ to activity u ∈ V0 or from activity v ∈ V∗ to activity
i ∈ V0 for a modification in the neighborhood Nreroute can be done in O(1)
time based on the matrix containing the longest path lengths between the
activities. Similarly, it can be ensured in O(1) time that activity i ∈ V is

179

6 A Solution Approach for the RCPSP with Resource Transfers

no direct or indirect predecessor of activity j ∈ V for a modification in the
neighborhood Nreverse. On the other hand, however, additional computa-
tional time is required in order to ensure for a reverse modification that no
other directed path from activity i ∈ V to activity j ∈ V exists in the AON-
flow network. This can, for example, be determined by a depth-first search
in O(n2) time if an adjacency matrix is used to represent which activities
are connected by arcs. It should be noted that this approach is also used
in the tabu search algorithm introduced in Section 6.3 if the neighborhood
Nreverse (or a corresponding neighborhood for the RCPSP with first- and
second-tier resources) is used.

Example 6.7 We consider a project consisting of n = 5 real activities
i = 1, . . . , 5 as well as the two dummy activities 0 and 6. Furthermore, r = 2
renewable resources with capacities R1 = 3 and R2 = 2 are available. The
processing times pi as well as the resource requirements rik of the activities
are given in Table 6.4 while the activity-on-node network visualizing the
precedence constraints between the activities is displayed in Figure 6.21.

i 0 1 2 3 4 5 6
pi 0 1 2 2 1 1 0
ri1 3 2 1 2 2 0 3
ri2 2 0 0 1 1 2 2

Table 6.4: Processing times pi and resource requirements rik of the activities
of the project from Example 6.7.

1 2

0 3 4 6

5

Figure 6.21: Activity-on-node network displaying the precedence constraints
between the activities of the project from Example 6.7.

180

6.2 Neighborhoods

A feasible resource flow F for this project is displayed in Figure 6.22 while
the earliest start schedule corresponding to this resource flow is shown in
Figure 6.23.

1 2

0 3 4 6

5

q1 = 1

q1 = 2

q2 = 2

q1 = 1

q1 = 1

q1 = 1

q1 = 1
q2 = 1

q1 = 1q1 = 1

q1 = 1
q2 = 1

q2 = 1 q2 = 1

Figure 6.22: A feasible resource flow F for the project from Example 6.7.

R1

0

1

2

3

0 1 2 3 4 5 6 7

3

1

4
2

R2

0

1

2

0 1 2 3 4 5 6 7

5
3 4

Figure 6.23: The earliest start schedule corresponding to the feasible re-
source flow F displayed in Figure 6.22.

Below, we now use a modification in the neighborhood Nreverse in order to
reverse the direction of the arc (5, 3)2 with f532 = 1 between activities 5

181

6 A Solution Approach for the RCPSP with Resource Transfers

1 2

0 3 4 6

5

q1 = 1

q1 = 2
q2 = 1

q2 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 1q1 = 1

q1 = 1
q2 = 1

q2 = 1 q2 = 1 q2 = 1

Figure 6.24: A feasible resource flow F ′ for the project from Example 6.7
after a reverse modification has been used on resource flow F
from Figure 6.22 to reverse all arcs between activities 5 and 3.

R1

0

1

2

3

0 1 2 3 4 5 6 7

3

1

4
2

R2

0

1

2

0 1 2 3 4 5 6 7

5
3 4

Figure 6.25: The earliest start schedule corresponding to the feasible re-
source flow F ′ displayed in Figure 6.24.

and 3. In addition to these two activities, two sets U2 = {0} and V2 = {4}
are selected as described above. The resource flow F ′ resulting from this
modification is displayed in Figure 6.24 while the earliest start schedule

182

6.2 Neighborhoods

1 2

0 3 4 6

5

q1 = 1

q1 = 2
q2 = 1

q2 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 2
q2 = 1

q2 = 1 q2 = 1 q2 = 1

Figure 6.26: A feasible resource flow F ′′ for the project from Example 6.7
after a reroute modification has been used on resource flow F ′
from Figure 6.24 to redirect one unit of resource 1 from activity
1 to activity 2 as well as from activity 4 to activity 6.

R1

0

1

2

3

0 1 2 3 4 5 6 7

3

1

4

2

R2

0

1

2

0 1 2 3 4 5 6 7

5
3 4

Figure 6.27: The earliest start schedule corresponding to the feasible re-
source flow F ′′ displayed in Figure 6.26.

corresponding to this resource flow is shown in Figure 6.25. In this resource
flow F ′, the modification of the selected arc (5, 3)2 results in the reversed arc
(3, 5)2 such that activity 3 is processed before activity 5. Additionally, one

183

6 A Solution Approach for the RCPSP with Resource Transfers

unit of resource 2 is transferred from activity 0 to activity 3 and one unit of
resource 2 is transferred from activity 5 to activity 4 in order to maintain
flow conservation.

Next, we use a modification in the neighborhood Nreroute on resource flow F ′
in order to redirect one unit of resource 1 on the arcs (1,6)1 and (4,2)1. These
arcs can be selected because no directed path exists from either activity 6 to
activity 4 or from activity 2 to activity 1 in the AON-flow network. In the
resulting resource flow F ′′, one unit of resource 1 is rerouted from activity 1
to activity 2 and one unit of resource 1 is rerouted from activity 4 to activity
6. This resource flow F ′′ is displayed in Figure 6.26 while the corresponding
earliest start schedule is shown in Figure 6.27.

In this schedule, it can be seen that activity 2 is now processed by another
resource unit of resource 1 than before, i.e. instead of changing the order
in which activities are processed by the same resource units of a resource,
reroute modifications change the resource plan and allow activities that re-
quire the same types of resources to be scheduled in parallel. Furthermore,
it should be noted that this example also shows that both modifications are
actually able to improve a given resource flow F . Here, while the earliest
start schedule for the initial resource flow F as it is displayed in Figure 6.23
has a makespan of Cmax = 7, the earliest start schedule for resource flow F ′
as it is displayed in Figure 6.25 has a makespan of C′max = 6 after a reverse
modification has been used. Finally, the earliest start schedule for resource
flow F ′′ as it is displayed in Figure 6.27 has a makespan of C′′max = 5 after a
reroute modification has been used. This latter schedule also is an optimal
solution for this project. 2

Now, we consider the size of the neighborhoods Nreroute and Nreverse. Here,
because an acyclic directed graph representing a resource flow Fk for a
resource k ∈ R consists of at most n·(n−1)

2
directed arcs, the size of the

neighborhood Nreverse is bounded by O(n2). It should be noted that the
size of this neighborhood does not depend on the number of arcs connecting
two activities i ∈ V and j ∈ V because all arcs between these activities are
reversed simultaneously by a modification in the neighborhood Nreverse.

On the other hand, two arbitrary arcs (i, j)k and (u, v)k as well as an amount
q ∈ {1, . . . ,min{fijk, fuvk}} of resource units have to be selected for a mod-
ification in the neighborhood Nreroute. Thus, the size of this neighborhood
is bounded by O(rn4Rmax) where

Rmax = max
k∈R
{Rk}

184

6.2 Neighborhoods

is the maximal amount of available resource units of a resource k ∈ R.
For this neighborhood, if multiple arcs for resources k ∈ R connect two
activities, each of these arcs has to be considered separately.

Due to the size of these neighborhoods (in particular, the pseudo-polynomial
neighborhood Nreroute may be quite large), we now reduce the neighbor-
hoods. First of all, similar to Fortemps and Hapke (1997), we introduce
a neighborhood N ca

reverse in which reverse moves are limited to critical ac-
tivities i ∈ V and j ∈ V with fijk > 0 for at least one resource k ∈ R.
As before, in order to reverse the arcs (i, j)k for all resources k ∈ R with
fijk > 0 between these activities, activity i may not be a direct or indirect
predecessor of activity j according to the precedence constraints. If this
condition is satisfied, however, reversing these arcs always results in a feasi-
ble resource flow, i.e. no additional computational time is required in order
to ensure that no other directed path from activity i to activity j exists in
resource flow F (cf. Theorem 6.6). The corresponding proof is based on
the proof by van Laarhoven et al. (1992) for the neighborhood Nca which is
based on modifications of critical arcs in disjunctive graphs for the job-shop
scheduling problem.

Theorem 6.6 Let h ∈ V and j ∈ V be two consecutive critical activities in
a feasible resource flow F with fhjk > 0 for at least one resource k ∈ R such
that activity h is no direct or indirect predecessor of activity j according to
the precedence constraints. Then, reversing the critical arcs (h, j)k for all re-
sources k ∈ R with fhjk > 0 between these activities based on a modification
in the neighborhood N ca

reverse always results in a feasible (acyclic) resource
flow F ′. 2

Proof Let F be a feasible (acyclic) resource flow. Furthermore, let h ∈ V
and j ∈ V be two consecutive critical activities with fhjk > 0 for at least
one resource k ∈ R such that activity h is no direct or indirect predeces-
sor of activity j according to the precedence constraints. Now, we assume
to the contrary that reversing all critical arcs (h, j)k for resources k ∈ R
with fhjk > 0 between these two activities based on a modification in the
neighborhood N ca

reverse results in a cyclic (infeasible) resource flow F ′. In this
case, because F is acyclic and only the order of activities h and j is changed
in the resulting resource flow (cf. the proof of Theorem 6.7), the reversed
arcs (j, h)k have to be part of the cycle. Then, a path (h, i, . . . , j) from
activity h to activity j via at least one activity i ∈ V must exist in resource
flow F ′ which also exists in resource flow F . This path (h, i, . . . ,j) must be
longer than the direct path (h, j) from activity h to activity j because all

185

6 A Solution Approach for the RCPSP with Resource Transfers

processing times pi of real activities i ∈ V can be assumed to be positive
integers. Thus, the arcs (h, j)k between activities i and j can not be critical
arcs, which contradicts the assumption. �

The size of this reduced neighborhood N ca
reverse is limited to O(n) if only one

critical path in the AON-flow network is considered. Next, we introduce
a reduced neighborhood Nmax

reroute in which always the maximal amount of
q = min{fijk, fuvk} units of resource k is rerouted (i.e. similar to the parallel
modification described by Fortemps and Hapke (1997)). The size of this
neighborhood is then limited to O(rn4). This neighborhood can be further
reduced by always selecting a critical arc (i, j)k as well as an arbitrary arc
(u, v)k (instead of two arbitrary arcs) representing resource transfers fijk > 0
and fuvk > 0 such that no directed path exists from activity v ∈ V∗ to
activity i ∈ V0 or from activity j ∈ V∗ to activity u ∈ V0 in the AON-
flow network. In this case, the size of the resulting neighborhood Nmax,ca

reroute
is bounded by O(rn3) if only one critical path in the AON-flow network is
considered.

In the following, we deal with the question whether the defined neighbor-
hoods (as well as combinations of these neighborhoods) are connected or at
least opt-connected. First of all, in Example 6.8, we show that neither the
neighborhood Nreroute nor the neighborhood Nreverse alone is opt-connected
(and hence also not connected) for the RCPSP.

Example 6.8 We consider a project consisting of n = 3 real activities as
well as the two dummy activities 0 and 4. Additionally, r = 1 renewable
resource with a capacity of R1 = 2 is given. The processing times pi and
resource requirements ri1 of the activities are given in Table 6.5. Finally,
the precedence constraint 1→ 3 is given for this project.

i 0 1 2 3 4
pi 0 1 1 1 0
ri1 2 2 1 1 2

Table 6.5: Processing times pi and resource requirements rik of the activities
of the project considered in Example 6.8.

The unique optimal resource flow F∗ for this project is displayed in Figure
6.28 while the earliest start schedule corresponding to this resource flow with
the optimal makespan C∗max = 2 is shown in Figure 6.29.

186

6.2 Neighborhoods

2

0 1 3 4q1 = 2

q1 = 1

q1 = 1 q1 = 1

q1 = 1

Figure 6.28: The unique optimal resource flow F∗ for the project considered
in Example 6.8.

R1

0

1

2

0 1 2 3 4 5

1
2

3

Figure 6.29: The earliest start schedule corresponding to the optimal re-
source flow F∗ displayed in Figure 6.28.

2

0 1 3 4q1 = 2

q1 = 1

q1 = 1 q1 = 1

q1 = 1

Figure 6.30: A feasible resource flow F for the project from Example 6.8.

R1

0

1

2

0 1 2 3 4 5

1
2 3

Figure 6.31: The earliest start schedule corresponding to the feasible re-
source flow F displayed in Figure 6.30.

187

6 A Solution Approach for the RCPSP with Resource Transfers

Now, we consider a feasible resource flow F for this project as it is displayed
in Figure 6.30. The earliest start schedule corresponding to this resource
flow with the makespan Cmax = 3 is shown in Figure 6.31. Here, if only the
neighborhoodNreverse is available, it is not possible to improve the makespan
of this schedule by reversing all arcs (i,j)1 between two activities i ∈ V and
j ∈ V because this only changes the sequence in which the activities are
processed but not the resource plan. As a result of this, it is not possible to
transform this resource flow F into the optimal resource flow F∗ by using
only the neighborhood Nreverse, i.e. the neighborhood Nreverse is not opt-
connected. Instead, in order to transform this resource flow into the optimal
resource flow F∗, the arcs (2,3)1 and (1,4)1 would have to be rerouted based
on a modification in the neighborhood Nreroute.

Finally, we consider another feasible resource flow F ′ as it is displayed in
Figure 6.32. The earliest start schedule corresponding to this resource flow
with the makespan C′max = 3 is shown in Figure 6.33.

2

0 1 3 4

q1 = 1

q1 = 1

q1 = 1

q1 = 1 q1 = 1

q1 = 1

Figure 6.32: A feasible resource flow F ′ for the project from Example 6.8.

R1

0

1

2

0 1 2 3 4 5

2
1

3

Figure 6.33: The earliest start schedule corresponding to the feasible re-
source flow F ′ displayed in Figure 6.32.

In this case, if only the neighborhood Nreroute is available, it is not possible
to improve the makespan of the resulting schedule by only rerouting arcs. In
particular, it is not possible to select an arc from the left side of the graph

188

6.2 Neighborhoods

(i.e. between activities 0, 1, and 2) as well as one arc from the right side
of the graph (i.e. between activities 1, 3, and 4) for a modification because
these arcs are always connected by a path via activity 1. For this reason, it
is not possible to transform this resource flow into the optimal resource flow
F∗ by using only the neighborhood Nreroute, i.e. the neighborhood Nreroute

is not opt-connected. Instead, in order to transform this resource flow into
the optimal resource flow F∗, it is necessary to reverse the critical arc (2,1)1
between activities 2 and 1 based on a modification in the neighborhood
Nreverse. Using a priority rule that selects activities according to increasing
numbers, this results in resource flow F as it is displayed in Figure 6.30 which
can then be transformed into the optimal resource flow F∗ as described
above. 2

Thus, as visualized in this example, neither the neighborhood Nreroute nor
the neighborhood Nreverse (nor any of the reduced neighborhoods Nmax

reroute,
Nmax,ca

reroute , and N ca
reverse) is opt-connected (and hence also not connected) by

itself. For this reason, we now consider the neighborhood N1 = Nreroute ∪
Nreverse. Below,we show that this neighborhood is connected in Theorem
6.7. In order to prove this theorem, it is necessary to calculate topological
orderings for AON-flow networks based on given resource flows. A topolog-
ical ordering then defines an order in which the activities can be processed
such that all precedence constraints as well as all resource transfers between
the activities are observed (i.e. if a precedence constraint i→ j or a resource
transfer fijk > 0 for some resource k ∈ R exists between activities i ∈ V0

and j ∈ V∗, activity i comes before activity j in the topological ordering).

It should be noted, however, that a topological ordering is not necessarily
unique. In particular, if no directed path exists from either activity i to
activity j or from activity j to activity i, no particular order has to exist
between activities i and j (i.e. activity i can come either before or after
activity j in a topological ordering). This is the case, for example, if both
activities can be processed in parallel by different resource units. In this
case, we assume that activities that can be processed in parallel are ordered
according to increasing numbers. Then, a unique topological ordering can
be calculated for each AON-flow network.

Theorem 6.7 The neighborhood N1 is connected for the RCPSP. 2

Proof Let F and F ′ be two arbitrary feasible resource flows with F 6=
F ′. Furthermore, let π = (π0, . . . , πn+1) and π′ = (π′0, . . . , π

′
n+1) be the

topological orderings of the corresponding AON-flow networks. We now

189

6 A Solution Approach for the RCPSP with Resource Transfers

show that the neighborhood N1 is connected by transforming resource flow
F ′ into resource flow F by a finite number of modifications in N1.

First, we consider all activities i ∈ V and j ∈ V with f ′ijk > 0 for some
resource k ∈ R in resource flow F ′ (i.e. activity i comes before activity j
in the corresponding topological ordering π′) where activity j comes before
activity i in the topological ordering π for resource flow F . This implies that
there exist no direct or indirect resource transfers from activity i to activity
j in resource flow F . If such activities i and j exist, it is always possible
to select two of these activities in resource flow F ′ such that no other path
exists from activity i to activity j via other activities. This follows from the
following reasoning.

Let u ∈ V and w ∈ V be two of these candidates for which at least one
path P = (u, v1, . . . , vµ, w) via µ other activities v1, . . . , vµ ∈ V exists from
activity u to activity w. In this case, none of the activities v1 to vµ can
simultaneously be a successor of activity u as well as a predecessor of activity
w in the topological ordering π for resource flow F . Otherwise, if an activity
v ∈ {v1, . . . , vµ} came after activity u as well as before activity w in the
topological ordering π for resource flow F , this would imply that also activity
u comes before activity w which contradicts the condition that activity w
comes before activity u in the topological ordering π. Thus, it is always
possible to identify two consecutive activities i ∈ {u, v1, . . . , vµ} and j ∈
{v1, . . . , vµ, w} on this path such that activity i comes after activity j in the
topological ordering π. By this reasoning, we find two activities i ∈ V and
j ∈ V with the above property.

Now, the arcs (i, j)k for all resources k ∈ R with f ′ijk > 0 between the
selected activities i and j can be reversed based on a modification in the
neighborhoodNreverse. In the resulting resource flow, activity j comes before
activity i, i.e. the order of these two activities is reversed and matches the
order of the activities in the topological ordering π for resource flow F .
Additionally, incoming resource transfers to activity i as well as outgoing
resource transfers from activity j have to be adapted as described above.
Here, it can be inferred from Figure 6.20 as well as from Figure 6.34 that the
order in which these activities have to be processed in relation to activities
i and j does not change. Instead, all activities u ∈ V0 from which resource
units are redirected to activity j are still predecessors of activity i in the
resulting topological ordering and all activities v ∈ V∗ to which resource
units are redirected from activity i are still successors of activity j.

190

6.2 Neighborhoods

2 8

6 7 4 5

1 3

qk = 1

qk = 1

qk = 1

qk = 1

qk = 1

qk = 1

qk = 1

(a) Before modification (with π = (1, 2, 6, 7, 4, 3, 5, 8)).

2 8

6 7 4 5

1 3

qk = 1

qk = 1

qk = 1

qk = 1

qk = 1

qk = 1

qk = 1

(b) After modification (with π = (1, 2, 4, 5, 6, 7, 3, 8)).

Figure 6.34: Extract of a resource flow before (cf. (a)) as well as after (cf.
(b)) the only arc between activities 7 and 4 has been reversed.
In the resulting resource flow, activity 4 comes before activity
5. Additionally, activity 6 (from which no resource unit is redi-
rected to activity 4) can be processed in parallel to activities 4
and 5, and activity 5 (to which no resource unit is redirected
from activity 7) can be processed in parallel to activities 7,
3, and 8 such that the topological ordering of these activities
changes based on their numerical ordering.

It should be noted that activities u ∈ V0 from which resource units are
transferred to activity i in resource flow F ′ (as well as direct and indirect
predecessors of these activities u) that are not affected by a reverse mod-
ification (i.e. no resource units are redirected from these activities u to
activity j) can be processed in parallel to activity j (as well as in parallel to

191

6 A Solution Approach for the RCPSP with Resource Transfers

direct and indirect successors of activity j) in the resulting resource flow un-
less other directed paths exist between these activities. Similarly, activities
v ∈ V∗ to which resource units are transferred from activity j in resource
flow F ′ (as well as direct and indirect successors of these activities v) that
are not affected by a reverse modification (i.e. no resource units are redi-
rected from activity i to these activities v) can be processed in parallel to
activity i (as well as in parallel to direct and indirect successors of activity
i) in the resulting resource flow unless other directed paths exist between
these activities. Here, while the topological ordering of these activities may
be different in the resulting resource flow, no additional arcs are inserted
into the resource flow that might have to be reversed in order to obtain π.
An example for this situation is visualized in Figure 6.34.

Thus, each reverse modification restores the order of two activities i ∈ V and
j ∈ V to the same order as in the topological ordering π for resource flow
F and no additional arcs result from these moves that have to be reversed
in order to obtain π. For this reason, it is possible to transform resource
flow F ′ into a resource flow F ′′ by a finite number of modifications in the
neighborhood Nreverse such that the topological ordering of all activities
i ∈ V and j ∈ V on directed paths in resource flow F ′′ is the same as for
resource flow F .

Now, if f ′′ijk = fijk holds for all resource transfers of resource k ∈ R between
activities i ∈ V0 and j ∈ V∗ in resource flows F ′′ and F , resource flow F ′ has
been transformed into resource flow F and we are finished. Otherwise, due
to flow conservation, at least two resource transfers f ′′ijk > 0 and f ′′uvk > 0
between activities i, u ∈ V0 and j, v ∈ V∗ have to exist with the following
properties:

• The amount of resource units of resource k transferred on these arcs is
larger than in resource flow F , i.e. fijk < f ′′ijk and fuvk < f ′′uvk hold.

• Without loss of generality it can be assumed that the amount of re-
source units of resource k transferred from activity i to activity v in
resource flow F ′′ is smaller than in resource flow F , i.e. fivk > f ′′ivk
holds.

• Activity j does not come before activity u in the topological ordering
π for resource flow F . This is assured because all activities share at
least one common predecessor (i.e. dummy activity 0) as well as one
common successor (i.e. dummy activity n + 1) and all activities on

192

6.2 Neighborhoods

directed paths from dummy source node 0 to dummy sink node n+ 1
are ordered according to the topological ordering π.

After such activities have been identified in resource flow F ′′, it is possible
to reroute an amount of q = min{f ′′ijk−fijk, f ′′uvk−fuvk, fivk−f ′′ivk} units of
resource k from activity i to activity v as well as from activity u to activity
j by a modification in the neighborhood Nreroute. Now, we can consider the
four affected resource transfers before as well as after the modification in
comparison to resource flow F :

• We have fijk < f ′′ijk before the modification. After the modification,
q ≤ f ′′ijk − fijk units of resource k are redirected from activity i to
activity v, i.e. we have fijk ≤ f ′′ijk − q. Thus, the deviation of the
resulting resource transfers is reduced by q units.

• We have fuvk < f ′′uvk before the modification. After the modification,
q ≤ f ′′uvk − fuvk units of resource k are redirected from activity u to
activity j, i.e. we have fuvk ≤ f ′′uvk − q. Thus, the deviation of the
resulting resource transfers is reduced by q units.

• We have fivk > f ′′ivk before the modification. After the modification,
q ≤ fivk − f ′′ivk units of resource k are redirected from activity i to
activity v, i.e. we have fivk ≥ f ′′ivk + q. Thus, the deviation of the
resulting resource transfers is reduced by q units.

• In the worst case, we have fujk ≤ f ′′ujk before the modification. After
the modification, q units of resource k are redirected from activity u
to activity j, i.e. we have fujk < f ′′ujk + q. Thus, the deviation of the
resulting resource transfers is increased by q units.

As a result of this, the deviation for three of the resulting resource trans-
fers is reduced by q units each while it is increased by at most q units for
one resource transfer. Then, because all other resource transfers remain un-
changed, the deviation of the resulting resource flow from resource flow F
is always reduced by at least 2q units compared to the deviation of resource
flow F ′′ and resource flow F . Furthermore, because the modified resource
transfers are selected such that activity u comes before activity j in the
topological ordering π for resource flow F , no arc is inserted that might
have to be reversed based on a modification in the neighborhood Nreverse.

Thus, because each reroute modification reduces the deviation of the corre-
sponding flows (and at least one resource transfer is set to the same value
as in resource flow F), it is possible to transform resource flow F ′′ into a

193

6 A Solution Approach for the RCPSP with Resource Transfers

resource flow F ′′′ by a finite number of modifications in the neighborhood
Nreroute such that f ′′′ijk = fijk holds for all i ∈ V0, j ∈ V∗, and k ∈ R, i.e.
resource flow F ′ can be transformed into resource flow F by a finite number
of modifications in the neighborhood N1. �

Next, we consider the connectivity of the reduced neighborhood N2 =
Nmax,ca

reroute ∪N ca
reverse. For this neighborhood, it is easy see that it is no longer

connected. In particular, limiting the neighborhoods Nmax,ca
reroute and N ca

reverse

to critical arcs prevents the neighborhoods from modifying resource trans-
fers between activities that are not critical. Thus, if two resource flows F
and F ′ with F 6= F ′ have the same critical paths, it is not always possible
to transform resource flow F into F ′ by modifications in the neighborhood
N2 (cf. Example 6.9).

Example 6.9 We consider a project consisting of n = 5 real activities
as well as two dummy activities 0 and 5. Furthermore, r = 2 renewable
resources with capacities R1 = 1 and R2 = 1 are available. The processing
times pi and resource requirements rik of the activities are given in Table
6.6. Finally, no precedence constraints are given between the real activities.

i 0 1 2 3 4 5
pi 0 1 1 2 3 0
ri1 1 0 0 1 1 1
ri2 2 1 1 1 0 2

Table 6.6: Processing times pi and resource requirements rik for the project
considered in Example 6.9.

1 2

0 3 4 5

q2 = 1

q2 = 1

q2 = 1

q1 = 1
q2 = 1

q1 = 1 q1 = 1

q2 = 1

Figure 6.35: Feasible resource flow F for the project from Example 6.9. The
unique critical path is highlighted in this graph.

194

6.2 Neighborhoods

R1

0

1

0 1 2 3 4 5 6 7

3 4

R2

0

1

2

0 1 2 3 4 5 6 7

3

1 2

Figure 6.36: The earliest start schedule corresponding to the feasible re-
source flow F displayed in Figure 6.35.

1 2

0 3 4 5

q2 = 1

q2 = 1
q2 = 1

q1 = 1
q2 = 1

q2 = 1

q1 = 1 q1 = 1

Figure 6.37: Feasible resource flow F ′ for the project from Example 6.9. The
unique critical path is highlighted in this graph.

R1

0

1

0 1 2 3 4 5 6 7

3 4

R2

0

1

2

0 1 2 3 4 5 6 7

3 2 1

Figure 6.38: The earliest start schedule corresponding to the feasible re-
source flow F ′ displayed in Figure 6.37.

195

6 A Solution Approach for the RCPSP with Resource Transfers

A feasible resource flow F for this project is displayed in Figure 6.35 while
another feasible resource flow F ′ is given in Figure 6.37. The earliest start
schedules corresponding to these resource flows are shown in Figures 6.36
and 6.38, respectively. Here, it is not possible to transform resource flow
F ′ into resource flow F based on modifications in the neighborhood N2

because the unique critical path is the same in both graphs. Instead, in
order to transform F ′ into F , it would be required to reverse the arc (2,1)2
based on a modification in the neighborhood Nreverse and then reroute q = 1
unit of resource 1 on the arcs (0,5)2 and (3,1)2 based on a modification in
the neighborhood Nreroute. 2

It should be noted that this example does not imply that the reduced neigh-
borhood N2 is not opt-connected. In particular, schedules that share at
least one critical path from dummy source activity 0 to dummy sink activ-
ity n + 1 also have the same makespan. Thus, both schedules displayed in
Figures 6.36 and 6.38 are optimal solutions for the project considered in Ex-
ample 6.9. Finally, we show in Example 6.10 that already the neighborhood
N3 = Nmax

reroute ∪Nreverse is no longer connected.

Example 6.10 We consider a project consisting of n = 4 real activities as
well as r = 1 renewable resource with a capacity of R1 = 4. The processing
times of the real activities are pi = 1 for i = 1, . . . , 4 while the resource
requirements are ri1 = 2 for all real activities i = 1, . . . , 4. Finally, no prece-
dence constraints are given between the real activities. A feasible resource
flow F for this project is displayed in Figure 6.39 while another feasible
resource flow F ′ is shown in Figure 6.40.

1 3

0 2 4 5

q1 = 2

q1 = 2 q1 = 1

q1 = 1

q1 = 1

q1 = 1

q1 = 2

q1 = 2

Figure 6.39: Feasible resource flow F for the project from Example 6.10.

Here, because modifications in both neighborhoods Nmax
reroute and Nreverse

always redirect the maximal amount of q = 2 units of resource 1 in resource
flow F ′ as well as in any resulting resource flow, it is impossible to transform
resource flow F ′ into resource flow F . 2

196

6.2 Neighborhoods

1 3

0 2 4 5

q1 = 2

q1 = 2 q1 = 2

q1 = 2

q1 = 2

q1 = 2

Figure 6.40: Feasible resource flow F ′ for the project from Example 6.10.

While this example shows that the neighborhood N3 is not connected, it
again does not imply that it is not opt-connected. In particular, because
the amount of resource units transferred between two activities has no in-
fluence on the quality of a solution with respect to the makespan Cmax, a
feasible resource flow F ′ can not have a larger makespan than another feasi-
ble resource flow F if no arc (i, j)k between activities i ∈ V0 and j ∈ V∗ for
a resource k ∈ R exists in resource flow F ′ that does not exist in resource
flow F . Thus, both resource flows displayed in Figures 6.39 and 6.40 are
optimal solutions for the project considered in Example 6.10.

Neighborhood connected opt-connected
N1 = Nreroute ∪Nreverse X X

N2 = Nmax,ca
reroute ∪N ca

reverse × open
N3 = Nmax

reroute ∪Nreverse × open

Table 6.7: Results concerning the connectivity of the three neighborhoods
N1, N2, and N3 considered in Section 6.2.2.

The results concerning the connectivity of the three neighborhoods N1, N2,
and N3 considered in this section are summarized in Table 6.7. As can be
seen in this table, it remains an open question whether the two reduced
neighborhoods N2 and N3 are opt-connected.

6.2.3 RCPSP with First-Tier Resource Transfers

For the RCPSP with first-tier resource transfers, the only difference of the
solution representation in comparison to the classical RCPSP is that arcs

197

6 A Solution Approach for the RCPSP with Resource Transfers

(i, j)k representing resource transfers of resource k ∈ R between two activ-
ities i ∈ V0 and j ∈ V∗ are weighted with the transfer time ∆ijk between
the two activities (cf. Section 6.1.2). Thus, because the neighborhoods in-
troduced in the previous section have been defined on modifications that
are independent of the arc weights, these neighborhoods can be used for the
RCPSP with first-tier resource transfers as they have been described above.
Additionally, all results related to the neighborhoods Nreroute, Nreverse, and
N1 = Nreroute ∪ Nreverse also hold for the RCPSP with first-tier resource
transfers because all of these results are independent of the arc weights.
In particular, the neighborhood N1 is also connected for the RCPSP with
first-tier resource transfers.

Regarding the reduced neighborhoods, however, the result from Theorem 6.6
does not hold for the RCPSP with first-tier resource transfers. In particular,
another shorter path via other activities i ∈ V might exist between two
consecutive critical activities h ∈ V and j ∈ V with fhjk > 0 for some
resource k ∈ R even if the triangle inequality ∆hik +∆ijk ≥ ∆hjk holds for
the transfer times of resources k ∈ R. For this reason, it may not always be
possible to reverse all arcs (h, j)k between these activities even if activity h
is no direct or indirect predecessor of activity j according to the precedence
constraints. Based on this result, it can be shown that the neighborhood
N2 = Nmax,ca

reroute ∪ N ca
reverse is not opt-connected for the RCPSP with first-tier

resource transfers.

Example 6.11 We consider a project consisting of n = 4 real activities as
well as r = 3 renewable resources with the capacities R1 = 1, R2 = 1, and
R3 = 1. The processing times pi of the activities are given in Table 6.8 while
the transfer times ∆ijk for resources k = 1,2 are given in Table 6.9. For this
project, it is assumed that ∆ij3 = 0 holds for all transfer times of resource
k = 3 between activities i,j = 0, . . . , 5. Finally, the precedence constraints
1→ 2 and 3→ 4 are given between real activities.

i 0 1 2 3 4 5
pi 0 1 3 1 1 0
ri1 1 1 0 1 0 1
ri2 1 1 0 1 1 1
ri3 1 1 1 0 0 1

Table 6.8: Processing times pi and resource requirements rik of the activities
for the project considered in Example 6.11.

198

6.2 Neighborhoods

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 4 4 4 0
2 0 4 0 4 4 0
3 0 4 4 0 4 0
4 0 4 4 4 0 0
5 0 0 0 0 0 0

(a) Transfer times ∆ij1.

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 1 1 1 0
2 0 1 0 1 1 0
3 0 1 1 0 1 0
4 0 1 1 1 0 0
5 0 0 0 0 0 0

(b) Transfer times ∆ij2.

Table 6.9: The transfer times ∆ij1 for resource k = 1 are displayed in (a)
while the transfer times ∆ij2 for resource k = 2 are shown in (b).

1 2

0 5

3 4

q1 = 1
q2 = 1
q3 = 1

q1 = 1
q2 = 1

q2 = 1

q1 = 1

q3 = 1

q3 = 1

q2 = 1

Figure 6.41: The unique optimal resource flow F∗ for the project considered
in Example 6.11.

R1

0

1

0 1 2 3 4 5 6 7 8 9

1 ∆131 3

R2

0

1

0 1 2 3 4 5 6 7 8 9

1 ∆132 3 ∆342 4

R3

0

1

0 1 2 3 4 5 6 7 8 9

1 2

Figure 6.42: Earliest start schedule corresponding to the optimal resource
flow F∗ from Figure 6.41.

199

6 A Solution Approach for the RCPSP with Resource Transfers

The unique optimal resource flow F∗ for this project is displayed in Figure
6.41 while another feasible resource flow F is shown in Figure 6.43. The
corresponding earliest start schedules with makespan C∗max = 8 for resource
flow F∗ and makespan Cmax = 9 for resource flow F are visualized in Figures
6.42 and 6.44, respectively.

1 2

0 5

3 4

q3 = 1

q1 = 1
q2 = 1

q1 = 1

q2 = 1

q2 = 1

q1 = 1
q2 = 1

q3 = 1

q3 = 1

Figure 6.43: Feasible resource flow F for the project from Example 6.11.
The unique critical path is highlighted in this graph.

R1

0

1

0 1 2 3 4 5 6 7 8 9

3 ∆311 1

R2

0

1

0 1 2 3 4 5 6 7 8 9

3 ∆342 4 ∆412 1

R3

0

1

0 1 2 3 4 5 6 7 8 9

1 2

Figure 6.44: Earliest start schedule corresponding to the feasible resource
flow F from Figure 6.43.

Here, resource flow F can not be transformed into the optimal resource flow
F∗ based on modifications in the neighborhood N2 = Nmax,ca

reroute ∪ N ca
reverse

for the following reasons. First of all, no modification in the neighborhood
Nmax,ca

reroute (or even in the neighborhood Nreroute) can be used because all
resources have unit capacity (i.e. no resource units can be rerouted). Fur-
thermore, on the critical path, only the order of activities 3 and 1 is not
predetermined by precedence constraints. The arc (3, 1)1 between these ac-

200

6.2 Neighborhoods

tivities can not be reversed based on a modification in the neighborhood
N ca

reverse, however, because another directed path from activity 3 to activ-
ity 1 via activity 4 exists (i.e. reversing the arc (3, 1)1 would result in a
cyclic and hence infeasible resource flow). Thus, the neighborhood N2 is
not opt-connected for the RCPSP with first-tier resource transfers. 2

Neighborhood connected opt-connected
N1 = Nreroute ∪Nreverse X X

N2 = Nmax,ca
reroute ∪N ca

reverse × ×
N3 = Nmax

reroute ∪Nreverse × open
N4 = Nmax,ca

reroute ∪Nreverse × open

Table 6.10: Results concerning the connectivity of the four neighborhoods
N1, N2, N3, and N4 considered in Section 6.2.3.

Based on these results, Table 6.7 from Section 6.2.2 can be updated for the
RCPSP with first-tier resource transfers (cf. Table 6.10). Here, in particular,
it remains an open question whether the two reduced neighborhoods N3 =
Nmax

reroute ∪Nreverse or N4 = Nmax,ca
reroute ∪Nreverse are opt-connected.

6.2.4 RCPSP with First- and Second-Tier Resource Transfers

In this section, we consider the RCPSP with first- and second-tier resource
transfers. For this problem, the neighborhoods introduced above have to be
adapted in order to accommodate second-tier resource transfers that require
supporting resources. Below, we introduce modified neighborhoods Ñreroute

and Ñreverse based on the neighborhoods Nreroute and Nreverse described
above. For this, resource transfers of resources k ∈ Rsa as well as resource
transfers of resources l ∈ Rru are regarded separately.

First of all, we deal with resource transfers of resources k ∈ Rsa. In this
case, arcs (hin, jin)k represent start-to-start transfers of a first-tier resource
k ∈ Rsa from activity h ∈ V0 to activity j ∈ V∗ while arcs (hout, jin)k
represent finish-to-start transfers. Similarly, arcs (hin, iout, jin)kl represent
start-to-start transfer of a second-tier resource k ∈ Rsa from activity h ∈ V0

that supports the transfer of first-tier resource l ∈ Rru from activity i ∈ V0 to
activity j ∈ V∗ while arcs (hout, iout, jin)kl represent finish-to-start transfers.

201

6 A Solution Approach for the RCPSP with Resource Transfers

Now, if two first-tier resource transfers of resource k ∈ Rsa are rerouted
based on a modification in the neighborhood Ñreroute, the resulting resource
transfers are calculated as described above for the classical RCPSP. For
example, if two arbitrary arcs (hin, jin)k and (uout, win)k are selected such
that no directed path exists from either node jin to node uout or from node
win to node hin, an amount of q ∈ {1, . . . ,min{fSShjk, fFSuwk}} units of resource
k are redirected from the start of activity h to the start of activity w as well
as from the end of activity u to the start of activity j.

On the other hand, if at least one of the selected arcs represents a second-tier
resource transfer, it has to be ensured that the supported first-tier resource
l ∈ Rru is still supported after the modification has been applied. For
example, we assume that an arbitrary arc (hin, jin)k representing a first-tier
resource transfer as well as an arbitrary arc (uout, vout, win)kl representing a
second-tier resource transfer are selected such that no directed path exists
from either node jin to node uout or from node win to node hin. Then, an
amount of q ∈ {1, . . . ,min{fSShjk, fFSuvwkl}} units of resource k are rerouted
from the end of activity u to the start of activity j as a first-tier resource
transfer, i.e. this transfer is represented by an arc (uout, jin)k. Additionally,
an amount of q units of resource k are rerouted from the start of activity
h to support the transfer of resource l from activity v to activity w as
a second-tier resource transfer, i.e. this transfer is represented by an arc
(hin, vout, win)kl. Thus, the amount of supporting second-tier resource units
is conserved in the resulting resource flow.

It should be noted that resource transfers from the start of an activity in
resource flow F still originate from the start of this activity in the result-
ing resource flow after a reroute modification has been used while resource
transfers from the end of an activity in resource flow F still originate from
the end of this activity in the resulting resource flow.

Example 6.12 We consider a project consisting of n = 4 real activities
as well as r = 2 renewable resources with capacities R1 = 3 and R2 = 2
such that a transfer of resource 2 has to be supported by µ12 = 1 unit of
resource 1. The processing times pi and resource requirements rik as well as
the transfer times ∆ijk with ∆ijk = ∆ij for k = 1,2 are given in Table 6.11.
Finally, no precedence constraints are given between the real activities.

A feasible resource flow F for this project is displayed in Figure 6.45 while
the corresponding earliest start schedule with the makespan Cmax = 9 is
shown in Figure 6.46. Now, we modify this resource flow F by rerout-
ing an amount of q = 1 unit of resource 1 on the arcs (3out, 0out, 1in)12

202

6.2 Neighborhoods

0

1 2

3 4

5

q1 = 2

q2 = 1

q1 = 1

q1 = 1
q2 = 1

q1 = 1

q1 = 1
q2 = 1

q2 = 1

q2 = 1

q1 = 1
q1 = 1
q2 = 1

q1 = 1
q2 = 1

Figure 6.45: Feasible resource flow F for the project from Example 6.12.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8 9

∆031 3
∆301 ∆012

∆321 ∆242 4

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

∆012 1 2 ∆242 4

Figure 6.46: The earliest start schedule corresponding to the feasible re-
source flow F displayed in Figure 6.45.

203

6 A Solution Approach for the RCPSP with Resource Transfers

0

1 2

3 4

5

q1 = 2

q1 = 1
q2 = 1

q1 = 1

q2 = 1

q2 = 1

q2 = 1

q1 = 1
q1 = 1
q2 = 1

q1 = 1
q2 = 1

q1 = 1

Figure 6.47: Resulting resource flow F (1) after one unit of resource 1 has
been rerouted from activity 3 to activity 5 as well as from ac-
tivity 0 to activity 1.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8 9

∆031

∆012

3
∆321 ∆242 4

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

∆012 1 2 ∆242 4

Figure 6.48: The earliest start schedule corresponding to the feasible re-
source flow F (1) displayed in Figure 6.47.

204

6.2 Neighborhoods

i 0 1 2 3 4 5
pi 0 1 2 1 1 0
ri1 3 0 0 2 1 3
ri2 2 1 1 0 1 2

(a) Activity parameters.

0 1 2 3 4 5
0 0 1 1 1 1 0
1 1 0 0 1 1 0
2 1 0 0 1 1 0
3 1 1 1 0 1 0
4 1 1 1 1 0 0
5 0 0 0 0 0 0

(b) Transfer times.

Table 6.11: The processing times pi and resource requirements rik of the
activities are displayed in (a) while the transfer times ∆ijk with
∆ijk = ∆ij for k = 1,2 are displayed in (b).

and (0out, 5in)1. The resulting resource flow F (1) is shown in Figure 6.47
while the earliest start schedule corresponding to this resource flow with the
makespan C(1)

max = 6 is displayed in Figure 6.48. In this resource flow F (1),
one unit of resource 1 is transferred on the resulting arcs (3out, 5in)1 and
(0out, 0out, 1in)12, respectively. It should be noted that this latter arc is rep-
resented by an arc (0out, 1in)12 in the resulting graph because both resource
units originate from the end of activity 0. 2

Next, modifications of resource transfers of resources k ∈ Rsa in the neigh-
borhood Ñreverse are considered. For a modification in this neighborhood,
two arbitrary activities h ∈ V and j ∈ V are selected such that activity h
is no direct or indirect predecessor of activity j and no other directed path
exists from activity h to activity j in the AON-flow network. In this case,
up to 2 + 2n · |Rru| arcs might exist for each resource k ∈ Rsa between the
two selected activities, i.e. one arc representing a pure first-tier resource
transfer fSShjk > 0 from the start of activity h to the start of activity j, one
arc representing a pure first-tier resource transfer fFShjk > 0 from the end of
activity h to the start of activity j, n · |Rru| arcs representing second-tier
resource transfers fSShijkl > 0 from the start of activity h to the start of ac-
tivity j, as well as n · |Rru| arcs representing second-tier resource transfers
fFShijkl > 0 from the end of activity h to the start of activity j. Then, in
order to reverse all arcs between the two selected activities, each of these
resource transfers has to be considered separately as follows.

In order to reverse one arc between the two selected activities, additional
incoming resource transfers to activity h as well as outgoing resource trans-

205

6 A Solution Approach for the RCPSP with Resource Transfers

fers from activity j have to be modified in order to ensure flow conservation.
Unlike before, however, it is not sufficient to select two sets of activities
because up to 2 + 2n · |Rru| arcs representing resource transfers of resource
k ∈ Rsa might exist between the selected activities (i.e. first-tier and second-
tier resource transfers from either the start or the end of activity u ∈ V0 to
the start of activity h as well as first-tier and second-tier resource transfers
from either the start or the end of activity j to the start of activity v ∈ V∗).
For this reason, we calculate two sets Ũk and Ṽk consisting of a sufficient
amount of resource transfers based on priority rules such that the amount
of resource units transferred on the corresponding arcs is at least as large
as the amount of resource units transferred on the considered arc between
the selected activities h and j. Furthermore, no resource transfer can be
removed from either of these sets without violating this condition.

Now, the resource transfers are modified as follows by a modification in the
neighborhood Ñreverse. First of all, a sufficient amount of resource units
of resource k are redirected from activities u ∈ V0 to activity j based on
the resource transfers from the set Ũk. Here, depending on whether the
considered arc between the two selected activities h and j represents a first-
tier or a second-tier resource transfer, the resulting resource transfers are
also first-tier or second-tier resource transfers from the start or the end of
activities u ∈ V0 to the start of activity j. Similarly, a sufficient amount
of resource units of resource k is redirected from activity h to activities
v ∈ V∗ based on the resource transfers from the set Ṽk. In this case, first-
tier resource transfers from either the start or the end of activity j to the
start of activity v are replaced by first-tier resource transfers from either the
start of activity h (i.e. if the considered arc originates at the start of activity
h) or the end of activity h (i.e. if the considered arc originates at the end
of activity h) to the start of activity v while second-tier resource transfers
are replaced by corresponding second-tier resource transfers.

Finally, the considered arc between the selected activities h and j itself has
to be reversed. Here, all first-tier as well as all second-tier resource transfers
of resource k from the set Ũk that have been redirected to activity j have
to be replaced by corresponding first-tier or second-tier resource transfers
from either the start or the end of activity j to the start of activity h. The
actual amount of resource units of resource k that is transferred from either
the start or the end of activity j to the start of activity h depends on the
amount of resource units that has previously been transferred from either
the start or the end of activity j to activities v ∈ V∗ before the corresponding
resource transfers from the set Ṽk have been modified as described above.

206

6.2 Neighborhoods

For example, we assume that two activities h ∈ V and j ∈ V are selected
such that activity h is no predecessor of activity j and no other directed
path exists from activity h to activity j in the AON-flow network. Between
these two activities, one unit of a resource k ∈ Rsa is transferred from
the start of activity h ∈ V to the start of activity j ∈ V as a first-tier
resource (represented by an arc (hin, jin)k) and one unit of resource k from
the end of activity h supports the transfer of a resource l1 ∈ Rru from
the end of activity i ∈ V0 to the start of activity j as a second-tier resource
(represented by an arc (hout, iout, jin)kl1). Furthermore, we assume that two
units of resource k from the end of activity u1 ∈ V0 support the transfer of a
resource l2 ∈ Rru from the end of activity u2 ∈ V0 to the start of activity h as
a second-tier resource (represented by an arc (uout

1 , uout
2 , hin)kl2). Similarly,

we assume that one unit of resource k is transferred from the end of activity
j to the start of activity v1 ∈ V∗ as a first-tier resource (represented by
an arc (jout, vin

1)k) and one unit of resource k from the start of activity j
supports the transfer of a resource l3 ∈ Rru from the end of activity v2 ∈ V0

to the start of activity v3 ∈ V∗ as a second-tier resource (represented by an
arc (jin, vout

2 , vin
3)kl3).

Now, we first reverse the arc (hin, jin)k between the two selected activities.
For this, we assume that the set Ũk = {fFSu1u2hkl2

} as well as the set Ṽk =
{fSSjv2v3kl3} are calculated based on the selected priority rules. Then, one
unit of resource k is transferred from the end of activity u1 to the start of
activity j as a first-tier resource (represented by an arc (uout

1 , jin)k), one unit
of resource k from the start of activity h supports the transfer of resource l3
from the end of activity v2 to the start of activity v3 as a second-tier resource
(represented by an arc (hin, vout

2 , vin
3)kl3), and one unit of resource k from

the start of activity j supports the transfer of resource l2 from the end of
activity u2 to the start of activity h as a second-tier resource (represented
by an arc (jin, uout

2 , hin)kl2).

Next, we reverse the arc (hout, iout, jin)kl1 between nodes hout and jin. Here,
we assume that the set Ũk = {fFSu1u2hkl2

} as well as the set Ṽk = {fFSjv1k} are
calculated based on the selected priority rules. Then, one unit of resource k
from the end of activity u1 supports the transfer of resource l1 from the end
of activity i to the start of activity j as a second-tier resource (represented by
an arc (uout

1 , iout, jin)kl1), one unit of resource k is transferred from the end
of activity h to the start of activity v1 as a first-tier resource (represented
by an arc (hout, vin

1)k), and one unit of resource k from the end of activity j
supports the transfer of resource l2 from the end of activity u2 to the start of
activity h as a second-tier resource (represented by an arc (jout, uout

2 , hin)kl2).

207

6 A Solution Approach for the RCPSP with Resource Transfers

If more than one arc representing a resource transfer of a resource k ∈ Rsa

exists between the two selected activities h ∈ V and j ∈ V , it should be
noted that these arcs have to be reversed one after the other as performed
in the example above. Otherwise, if all arcs were reversed simultaneously,
the sets Ũk and Ṽk that are calculated for each of these arcs might contain
resource transfers such that the same resource units have to be redirected
for multiple arcs. In the following, we assume that the arcs in this case are
reversed in an arbitrary order such that always the intermediate resource
flow is considered in order to calculate the sets Ũk and Ṽk.

Example 6.13 We again consider the project from Example 6.12. Now, we
modify the feasible resource flow F displayed in Figure 6.45 by reversing the
arc (3out, 0out, 1in)12 between activities 3 and 1 based on a modification in the
neighborhood Ñreverse. The resulting resource flow F (2) is displayed in Fig-
ure 6.49 while the corresponding earliest-start schedule with the makespan
C

(2)
max = 6 is shown in Figure 6.50.

In the resulting resource flow F (2), one unit of resource 1 of the outgoing re-
source transfer from activity 1 to activity 5 (represented by an arc (1in, 5in)1)
is redirected from activity 3 to activity 5 (represented by an arc (3out, 5in)1).
Similarly, one unit of resource 1 of the incoming resource transfer from ac-
tivity 0 to activity 3 (represented by an arc (0out, 3in)1) is redirected from
activity 0 to support the transfer of resource 2 from activity 0 to activity 1
(represented by an arc (0out, 0out, 1in)12). As before, this latter arc is rep-
resented by an arc (0out, 1in)12 in the resulting graph. Finally, the selected
arc is reversed, i.e. one unit of resource 1 is transferred from activity 1 to
activity 3 as a first-tier resource (represented by an arc (1in, 3in)1). 2

Next, we consider resource transfers of resources l ∈ Rru. These resources
can only be transferred as first-tier resources from the end of an activity to
the start of another activity. For this reason, arcs (iout, jin)l representing
resource transfers of first-tier resources l ∈ Rru between activities i ∈ V0

and j ∈ V∗ can be handled as described for the classical RCPSP in both
neighborhoods Ñreroute and Ñreverse. Additionally to rerouting or reversing
these arcs, however, it is also necessary to adapt the supporting second-tier
resource transfers of resources k ∈ Rsa. In the following, four different cases
have to be considered depending on the transfer times between the activities.
Here, without loss of generality, we assume that ql units of resource l ∈ Rru

are transferred from activity i ∈ V0 to activity j ∈ V∗ before the modification
and from activity u ∈ V0 to activity j after the modification. The transfer
times of these resource transfers are denoted by ∆ijl and ∆ujl, respectively.

208

6.2 Neighborhoods

0

1 2

3 4

5

q1 = 1

q1 = 1
q2 = 1

q1 = 1

q2 = 1

q2 = 1

q2 = 1

q1 = 1
q1 = 1
q2 = 1

q1 = 1
q2 = 1

q1 = 1

Figure 6.49: Resulting resource flow F (2) after the arc (3out, 0out, 1in)12 be-
tween activities 3 and 1 has been reversed.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8 9

∆012

∆031

∆131

3
∆321 ∆242 4

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

∆012 1 2 ∆242 4

Figure 6.50: The earliest start schedule corresponding to the feasible re-
source flow F (2) displayed in Figure 6.49.

209

6 A Solution Approach for the RCPSP with Resource Transfers

• If ∆ijl = ∆ujl = 0 holds, no supporting resources k ∈ Rsa are required
either before or after the modification. Thus, no additional adaptions
of the resource flow are required (cf. Figure 6.51).

iout
jin

uout

fFS
ijl

fFS
ujl

(a) Before modification.

iout
jin

uout

fFS
ijl − ql

fFS
ujl + ql

(b) After modification.

Figure 6.51: If ∆ijl = ∆ujl = 0 holds, no supporting resources k ∈ Rsa are
required either before or after the modification.

• If ∆ijl > 0 and ∆ujl > 0 hold, supporting resources k ∈ Rsa are
required before as well as after the modification. In this case, it is
sufficient to redirect resource units of second-tier resources k ∈ Rsa

that have previously been used to support the transfer of resource l
from activity i to activity j to now support the transfer of resource
l from activity u to activity j. For this, a set Ũk is calculated for
each resource k ∈ Rsa with µkl > 0 consisting of a sufficient amount
of second-tier resource transfers of resource k from activities h ∈ V0

that support the transfer of resource l from activity i to activity j.
These resource transfers are then redirected to support the transfer
of resource l from activity u to activity j. As before, the sets Ũk are
calculated based on priority rules.

Below, this situation is shown in Figure 6.52. Here, we assume that a
sufficient amount of qk = ql · µkl units of second-tier resource k ∈ Rsa

from the end of activity h ∈ V0 support the transfer of ql units of
resource l from activity i to activity j before the modification (i.e. the
set Ũk = {fFShijkl} can be calculated). Then, after the modification, qk
units of resource k from the end of activity h are used to support the
transfer of ql units of resource l from activity u to activity j instead.

• If ∆ijk > 0 and ∆ujl = 0 hold, supporting resources k ∈ Rsa are
required before the modification but not after the modification. Due
to this, an amount of qk = ql ·µkl units of resource k ∈ Rsa is no longer

210

6.2 Neighborhoods

hout iout
jin

uout

fFS
ijl

fFS
ujl

fFS
hijkl

fFS
hujkl

(a) Before modification.

hout iout
jin

uout

fFS
ijl − ql

fFS
ujl + ql

fFS
hijkl − qk

fFS
hujkl + qk

(b) After modification.

Figure 6.52: If ∆ijl > 0 and ∆ujl > 0 hold, the same units of resource k ∈
Rsa can be used both before as well as after the modification.

required to support the transfer of resource l to activity j. Now, if an
amount of q̃k units of resource k is transferred from activities h ∈ V0

to activity j as pure second-tier resource (i.e. these resource units
are not required to process activity j and can be transferred from
activity j to activities v ∈ V∗ by start-to-start transfer), an amount of
q1k = min{qk, q̃k} units of resource k is no longer required by activity j.
Instead, these resource units can be transferred directly from activities
h to activities v ∈ V∗ where activities v receive resource k from activity
j by start-to-start transfer before the modification.

In this case, we calculate a set Ũ1
k as well as a set Ṽk for each resource

k ∈ Rsa with q1k > 0 such that the set Ũ1
k contains a sufficient amount

of second-tier resource transfers from activities h ∈ V0 that support

211

6 A Solution Approach for the RCPSP with Resource Transfers

the transfer of resource l from activity i to activity j and the set Ṽk
contains a sufficient amount of first-tier or second-tier resource trans-
fers from the start of activity j to activities v ∈ V∗. Then, resource
transfers of resource k from the set Ũ1

k are redirected from the corre-
sponding activities h ∈ V0 to activities v ∈ V∗ as denoted by the set Ṽk.
Here, depending on whether resource k is transferred from the start
of activity j to the start of activity v as a first-tier or as a second-tier
resource before the modification, resource k is transferred from activ-
ity h to activity v as either a first-tier or a second-tier resource after
the modification, respectively.

Finally, if q1k < qk holds, an amount of q2k = max{0, qk − q1k} units of
resource k can be transferred directly from activities h to activity j
as first-tier resources. For this, another set Ũ2

k is calculated for each
resource k ∈ Rsa with q2k > 0 such that this set contains a sufficient
amount of second-tier resource transfers from activities h ∈ V0 that
support the transfer of resource l from activity i to activity j. These
resource transfers are then redirected such that an amount of q2k units
of resource k is transferred from activities h ∈ V0 to activity j as first-
tier resources. It should be noted that all sets Ũ1

k , Ũ
2
k , and Ṽk are

again calculated based on priority rules.

This situation is visualized in Figure 6.53. We again assume that a
sufficient amount of qk = ql · µkl units of resource k from the end of
activity h ∈ V0 supports the transfer of ql units of resource l from
activity i to activity j before the modification (i.e. the sets Ũ1

k =
Ũ2
k = {fFShijkl} can be calculated based on the selected priority rule).

Furthermore, we assume that all q̃k units of pure second-tier resource
k transferred to activity j are transferred from the start of activity j to
an activity v ∈ V∗ as first-tier resources (i.e. the set Ṽk = {fSSjvk} can be
calculated based on the selected priority rule). Then, because qk units
of resource k are no longer required to support the transfer of ql units
of resource l from activity u to activity j after the modification, an
amount of q1k = min{qk, q̃k} units of resource k is instead transferred
from the end of activity h to the start of activity v (based on the sets
Ũ1
k and Ṽk) while an amount of q2k = max{0, qk− q1k} units of resource

k is transferred from the end of activity h to the start of activity j as
first-tier resources (based on the set Ũ2

k).

• If ∆ijl = 0 and ∆ujl > 0 hold, no supporting resources k ∈ Rsa are re-
quired before the modification but are required after the modification.

212

6.2 Neighborhoods

hout iout
jin vin

uout

fFS
ijl

fSS
jvk

fFS
hvk

fFS
ujl

fFS
hijkl

fFS
hjk

(a) Before modification.

hout iout
jin vin

uout

fFS
ijl − ql

fSS
jvk − q1k

fFS
ujl + ql

fFS
hijkl − qk

fFS
hjk + q2k

fFS
hvk + q1k

(b) After modification.

Figure 6.53: If ∆ijl > 0 and ∆ujl = 0 hold, the supporting second-tier
resources k ∈ Rsa are no longer required and can either be
transferred to other activities v ∈ V∗ (if they have been trans-
ferred to activity j as pure second-tier resources) or they can
be transferred to activity j as first-tier resources.

In this case, an amount of qk = ql · µkl units of resource k ∈ Rsa has
to be assigned to support the transfer of resource l from activity u to
activity j. Now, if an amount of q̃k units of resource k is transferred
from activities h ∈ V0 to activity j as first-tier resources (i.e. these

213

6 A Solution Approach for the RCPSP with Resource Transfers

resource units are not required to support the transfer of resources
l ∈ Rru to activity j), an amount of q1k = min{qk, q̃k} of these resource
units can be used to support the transfer of resource l from activity
u to activity j. For this, a set Ũ1

k consisting of a sufficient amount of
first-tier resource transfers from activities h ∈ V0 to activity j is cal-
culated. These resource transfers are then redirected to support the
transfer of resource l from activity u to activity i.

If this amount of resource units of resource k is not sufficient (i.e. if
q1k < qk holds), an additional amount of q2k = max{0, qk − q1k} units
of resource k has to be redirected to activity j as pure second-tier re-
sources to support the transfer of resource l from activity u to activity
j. For this, a set Ũ2

k consisting of a sufficient amount of either first-
or second-tier resource transfers of resource k from activities h ∈ V0

to activities v ∈ V∗ are selected such that activity h may not be a
(direct or indirect) successor of activities u and j and activity v may
not be a (direct or indirect) predecessor of activities u and j. These
resource transfers are then redirected such that an amount of q2k units
of resource k from activities h ∈ V0 supports the transfer of resource
l from activity u to activity j as pure second-tier resources. From
there, these resource units of resource k are then transferred to the
corresponding activities v by start-to-start transfer. Depending on
whether a modified resource transfer between activities h and v has
been a first-tier or a second-tier resource transfer before the modifi-
cation, the resource units of resource k are transferred from the start
of activity j to activity v by either first-tier or second-tier resource
transfer after the modification, respectively. As before, the sets Ũ1

k

and Ũ2
k are calculated based on the selected priority rule.

Below, this situation is shown in Figure 6.54. Here, an amount of ql
units of resource l are transferred from activity i to activity j without
the aid of supporting resources k ∈ Rsa before the modification. After
the modification, however, an amount of qk = ql ·µkl units of resource
k is required to support the transfer of resource l from activity u to
activity j. In order to supply these resource units, we assume that an
amount of q̃k units of first-tier resource k is transferred from the end
of activity h1 ∈ V0 to activity j such that no further pure first-tier
resource units of resource k are transferred to activity j (i.e. the set
Ũ1
k = {fFSh1jk

} can be calculated based on the selected priority rule).
Additionally, we assume that an amount of at least q2k = max{0, qk −
min{qk, q̃k}} units of resource k is transferred from the end of activity

214

6.2 Neighborhoods

hout

1
iout

jin vin

hout

2
uout

fFS
ijl fSS

jvk

fFS
h1jk

fFS
ujl

fFS
h1ujkl

fFS
h2ujkl

fFS
h2vk

(a) Before modification.

hout

1
iout

jin vin

hout

2
uout

fFS
ijl − ql fSS

jvk + q2k

fFS
h1jk − q1k

fFS
ujl + ql

fFS
h1ujkl + q1k

fFS
h2ujkl + q2k

fFS
h2vk − q2k

(b) After modification.

Figure 6.54: If ∆ijl = 0 and ∆ujl > 0 hold, supporting second-tier resources
k ∈ Rsa are required to support the transfer of resource l from
activity u to activity j after the modification. These second-
tier resource units can either be redirected to activity j based
on existing first-tier resource transfers of resource k to activity
j or as additional pure second-tier resources transfers.

215

6 A Solution Approach for the RCPSP with Resource Transfers

h2 ∈ V0 to activity v by first-tier resource transfer such that no directed
path exists from either activity j or activity u to activity h2 and no
directed path exists from activity v to either activity j or activity u
(i.e. the set Ũ2

k = {fFSh2vk
} can be calculated).

Then, after the modification, an amount of q1k = min{qk, q̃k} units
of resource k from activity h1 is used to support the transfer of re-
source l from activity u to activity j. Additionally, an amount of
q2k = max{0, qk − q1k} units of resource k from activity h2 is redirected
to support the transfer of resource l from activity u to activity j. As
these latter resource units are transferred as pure second-tier resource
units to the start of activity j, they can then immediately be trans-
ferred from the start of activity j to the start of activity v.

These four cases can be applied for all resource transfers of resources l ∈ Rru

that are modified based on a modification in either neighborhood Ñreroute or
Ñreverse. As a modification in neighborhood Ñreverse might modify both, re-
source transfers of resources k ∈ Rsa as well as resource transfers of resources
l ∈ Rru in a single move, resource transfers of resources k ∈ Rsa between
the two selected activities i ∈ V and j ∈ V are adapted first. Afterward,
all resource transfers of resources l ∈ Rru between the two activities i and j
are adapted based on the resulting intermediate resource flow.

Example 6.14 We again consider the project from Example 6.12. Now, we
modify the feasible resource flow F (1) displayed in Figure 6.47 by rerouting
one unit of resource 2 on the arcs (2out, 4in)2 and (0out, 5in)2 based on a
modification in the neighborhood Ñreroute. The resulting resource flow F (3)

is displayed is Figure 6.55 while the corresponding earliest start schedule
with the makespan C(3)

max = 5 is shown in Figure 6.56.

Here, because ∆242 > 0 and ∆042 > 0 hold for the transfer time of resource
2 to activity 4, the same resource unit of resource 1 can be used to support
the transfer of resource 2 in the resulting resource flow F (3) as in resource
flow F (1). Thus, one unit of resource 1 from the end of activity 3 supports
the transfer of resource 2 from activity 0 to activity 4. Similarly, because
∆452 = 0 and ∆252 = 0 hold for the transfer time of resource 2 to dummy
activity 5, no supporting resource units of resource 1 are required either
before or after the modification.

Finally, we modify resource flow F (1) from Figure 6.47 by reversing the arc
(1out, 2in)2 between activities 1 and 2 based on a modification in the neigh-
borhood Ñreverse. The resulting resource flow F (4) is displayed in Figure 6.57

216

6.2 Neighborhoods

0

1 2

3 4

5

q1 = 2

q1 = 1
q2 = 1

q2 = 1

q1 = 1

q1 = 1
q2 = 1

q1 = 1

q2 = 1

q2 = 1

q1 = 1
q2 = 1

q1 = 1

Figure 6.55: Resulting resource flow F (2) after one unit of resource 2 has
been rerouted from activity 2 to activity 5 as well as from ac-
tivity 0 to activity 4.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8 9

∆031

∆012

3
∆301 ∆042 4

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

∆012 1 2

∆042 4

Figure 6.56: The earliest start schedule corresponding to the feasible re-
source flow F (3) displayed in Figure 6.55.

217

6 A Solution Approach for the RCPSP with Resource Transfers

0

1 2

3 4

5

q1 = 2

q1 = 1

q2 = 1

q2 = 1

q1 = 1
q2 = 1

q1 = 1

q1 = 1
q2 = 1

q1 = 1
q2 = 1

q1 = 1

q2 = 1

Figure 6.57: Resulting resource flow F (4) after the arc (1out, 2in)2 between
activities 1 and 2 has been reversed.

R1

0

1

2

3

0 1 2 3 4 5 6 7 8 9

∆031

∆022

3
∆311 ∆142 4

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

∆022 2 1 ∆142 4

Figure 6.58: The earliest start schedule corresponding to the feasible re-
source flow F (4) displayed in Figure 6.57.

218

6.2 Neighborhoods

while the corresponding earliest start schedule with the makespan C(4)
max = 6

is shown in Figure 6.58.

Here, multiple steps are necessary in order to apply this modification. First
of all, the incoming resource transfers to activity 2 have to be adapted. For
this, one unit of resource 2 on the arc (0out, 1in)2 is redirected from activity
0 to activity 2. In this case, because no supporting resources have been
required to support the transfer of resource 2 from activity 1 to activity 2
before the modification (i.e. due to ∆122 = 0) but one unit of resource 1 is
required to support the transfer of resource 2 from activity 0 to activity 2
after the modification (i.e. due to ∆022 = 1), one unit of resource 1 has to
be redirected to activity 2 as a pure second-tier resource. For this, the arc
(0out, 0out, 1in)12 (which is represented by an arc (0out, 1in)12 in the actual
graph) is selected based on a priority rule that selects resource transfers
according to increasing numbers (here, the activities from which the resource
transfer of resource 1 originates are considered) and one unit of resource 1 is
transferred from activity 0 to activity 2 to support the transfer of resource 2.
Furthermore, in an intermediate resource flow, this pure second-tier resource
unit is transferred from the start of activity 2 to the start of activity 1 on
the temporary arc (2in, 0out, 1in)12.

Next, the arc (1out, 2in)2 is reversed such that one unit of resource 2 is
transferred from activity 2 to activity 1. In this case, one unit of resource
1 has been required to support the transfer of resource 2 from activity 0 to
activity 1 before the modification (i.e. due to ∆012 = 1) but no supporting
resources are required after the modification (i.e. due to ∆212 = 0). Thus,
one unit of resource 1 that has been transferred to activity 1 as a pure second-
tier resource from the start of activity 2 on the temporary arc (2in, 0out, 1in)12
in the intermediate resource flow is no longer required. Instead, it can
immediately be transferred from the start of activity 2 to activity 5.

Finally, the outgoing resource transfers from activity 1 have to be adapted.
Here, one unit of resource 2 on the arc (2out, 4in)2 is redirected from activity
1 to activity 4. In this case, because one unit of resource 1 is required to
support the transfer of resource 2 to activity 4 both before as well as after
the modification (i.e. due to ∆242 > 0 and ∆142 > 0), the same resource
unit of resource 1 can be used both before as well as after the modification.
For this reason, one unit of resource 1 from activity 3 is used to support the
transfer of resource 2 from activity 1 to activity 4. 2

As before, the two neighborhoods Ñreroute and Ñreverse are neither con-

219

6 A Solution Approach for the RCPSP with Resource Transfers

nected nor opt-connected on their own. Next, regarding the neighborhood
Ñ1 = Ñreroute ∪ Ñreverse, we have been unable to either prove or disprove
that the neighborhood is connected or opt-connected, i.e. this question re-
mains an open problem. Now, it is again possible to introduce reduced
neighborhoods Ñmax

reroute, Ñmax,ca
reroute , and Ñ ca

reverse based on the definitions of
the corresponding neighborhoods from Section 6.2.2. For this, reroute mod-
ifications in the neighborhoods Ñmax

reroute and Ñmax,ca
reroute are again restricted

to always reroute the maximal amount of resource units between the two
selected arcs. Furthermore, both neighborhoods Ñmax,ca

reroute and Ñ ca
reverse are

limited to modifications between critical activities.

Additionally, if a hyperarc (hout, iout, jin)kl or a hyperarc (hin, iout, jin)kl lies
on a critical path, both, the resource transfer of resource k ∈ Rsa as denoted
by this hyperarc as well as the resource transfer of the supported resource
l ∈ Rru as denoted by the arc (iout, jin)l are considered for modification
in the neighborhoods Ñmax,ca

reroute and Ñ ca
reverse even if the arc (iout, jin)l is not

a critical arc itself. Otherwise, situations might arise in which a feasible
resource flow F can not be transformed into an optimal resource flow F∗ by
modifications in the resulting neighborhood Ñ2 = Ñmax,ca

reroute ∪ Ñ ca
reverse.

Example 6.15 We consider a project consisting of n = 3 activities and
r = 2 renewable resources with capacities R1 = 1 and R2 = 2 such that an
amount of µ12 = 1 unit of resource 1 is required to support the transfer of
one unit of resource 2. The processing times pi and resource requirements
rik of the activities as well as the transfer times ∆ijk with ∆ijk = ∆ij for
both resources k = 1,2 are given in Table 6.12. Finally, only the precedence
constraints 1→ 3 and 2→ 3 are given between the real activities.

i 0 1 2 3 4
pi 0 1 2 1 0
ri1 1 0 1 1 1
ri2 2 1 0 1 2

(a) Activity parameters.

0 1 2 3 4
0 0 0 0 0 0
1 0 0 1 1 0
2 0 1 0 1 0
3 0 1 1 0 0
4 0 0 0 0 0

(b) Transfer times.

Table 6.12: The processing times pi and resource requirements rik of the
activities are displayed in (a) while the transfer times ∆ijk with
∆ijk = ∆ij for k = 1,2 are displayed in (b).

220

6.2 Neighborhoods

0 1

2

3 4

q2 = 1

q1 = 1

q2 = 1 q2 = 1

q1 = 1

q1 = 1
q2 = 1

Figure 6.59: Optimal resource flow F∗ for the project from Example 6.15.

R1

0

1

0 1 2 3 4 5 6 7 8 9

2 ∆231 3

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

1

3

Figure 6.60: The earliest start schedule corresponding to the optimal re-
source flow F∗ displayed in Figure 6.59.

0 1

2

3 4

q2 = 1

q1 = 1

q1 = 1

q2 = 1 q1 = 1
q2 = 1

q1 = 1
q2 = 1

q2 = 1

Figure 6.61: Feasible resource flow F for the project from Example 6.15.
The unique critical path is highlighted in this graph.

221

6 A Solution Approach for the RCPSP with Resource Transfers

R1

0

1

0 1 2 3 4 5 6 7 8 9

2 ∆211 ∆132 3

R2

0

1

2

0 1 2 3 4 5 6 7 8 9

1 ∆132 3

Figure 6.62: The earliest start schedule corresponding to the feasible re-
source flow F displayed in Figure 6.61.

The unique optimal resource flow F∗ for this project is displayed in Figure
6.59 while the earliest start schedule corresponding to this resource flow
with the makespan C∗max = 4 is shown in Figure 6.60. Another feasible
resource flow F for this project as well as the corresponding earliest start
schedule with the makespan Cmax = 5 are given in Figures 6.61 and 6.62,
respectively.

Here, in resource flow F , the arcs (0out, 2in)1, (2out, 1out, 3in)12, (3out, 4in)1,
and (3out, 4in)2 constitute the unique critical path. None of these arcs can
be modified using either a reroute or a reverse move, i.e. it is not possible
to transform this resource flow into the optimal resource flow F∗ if only the
actual critical arcs are considered. Instead, it is necessary to reroute the two
non-critical arcs (1out, 3in)2 and (0out, 4in)2 in order to transform resource
flow F into resource flow F∗. 2

Now, similar to the RCPSP with first-tier resource transfers, Theorem 6.6
does not hold for the neighborhood Ñ ca

reverse introduced above. Thus, neigh-
borhood Ñ2 is not opt-connected (and hence also not connected) for the
RCPSP with first- and second-tier resource transfers. Unlike for the RCPSP
with first-tier resource transfers, however, this result also holds if all re-
sources k ∈ R have the same transfer times ∆hjk = ∆hj between activities
h ∈ V0 and j ∈ V∗ and the triangle inequality ∆hik +∆ijk ≥ ∆hjk holds for
these transfer times. This follows from the fact that two critical activities
h ∈ V and j ∈ V may be connected by a critical arc from the end of activity
h to the start of activity j as well as by a non-critical directed path from
the start of activity h to the start of activity j via at least one other activity
i ∈ V . Here, the directed path from the start of activity h may be shorter

222

6.2 Neighborhoods

than the critical arc from the end of activity h to the start of activity j be-
cause the processing time ph of activity h does not contribute to the length
of the path.

Example 6.16 We consider a project consisting of n = 4 real activities as
well as r = 4 renewable resources with capacities Rk = 1 for k = 1,2,3,4
such that an amount of µ12 = 1 unit of resource 1 is required in order to
support the transfer of one unit of resource 2. The processing times pi and
resource requirements rik of the activities as well as the transfer times ∆ijk

with ∆ijk = ∆ij for k = 1,2,3,4 are given in Table 6.13. Finally, only the
precedence constraint 3→ 4 is given between the real activities.

i 0 1 2 3 4 5
pi 0 4 1 1 1 0
ri1 1 0 1 1 0 1
ri2 1 1 0 0 0 1
ri3 1 1 0 1 0 1
ri4 1 0 0 1 1 1

(a) Activity parameters.

0 1 2 3 4 5
0 0 1 1 1 1 0
1 1 0 1 1 1 0
2 1 1 0 1 1 0
3 1 1 1 0 1 0
4 1 1 1 1 0 0
5 ∞ ∞ ∞ ∞ ∞ 0

(b) Transfer times.

Table 6.13: The processing times pi and resource requirements rik of the
activities are displayed in (a) while the transfer times ∆ijk with
∆ijk = ∆ij for k = 1,2,3,4 are displayed in (b).

The unique optimal resource flow F∗ for this project is displayed in Figure
6.63 while the earliest start schedule corresponding to this resource flow
with the makespan C∗max = 8 is shown in Figure 6.64. Another feasible
resource flow F for this project as well as the corresponding earliest start
schedule with the makespan Cmax = 9 are given in Figures 6.65 and 6.66,
respectively.

In this resource flow F , only the arc (1out, 3in)3 is eligible for a modification
in the neighborhood Ñ2. This is due to the fact that all resources k = 1,2,3,4
have unit capacity such that no modification in the neighborhood Ñmax,ca

reroute
is possible and only the order of activities 1 and 3 on the critical path is not
predetermined by precedence constraints. The arc (1out, 3in)3 can not be
reversed, however, because another path from the start of activity 1 to the
start of activity 3 via activity 2 exists, i.e. a cycle (1in, 2in, 2out, 3in, 3out, 1in)
would result from a reverse modification. Thus, resource flow F can not be

223

6 A Solution Approach for the RCPSP with Resource Transfers

0 1 2

3 4

5

q1 = 1
q3 = 1
q4 = 1

q2 = 1
q1 = 1
q2 = 1

q1 = 1

q1 = 1 q2 = 1
q3 = 1

q3 = 1

q4 = 1

q1 = 1

q4 = 1

Figure 6.63: Optimal resource flow F∗ for the project from Example 6.16.

R1

0

1

0 1 2 3 4 5 6 7 8 9

∆031 3 ∆301 ∆012 ∆121 2

R2

0

1

0 1 2 3 4 5 6 7 8 9

∆012 1

R3

0

1

0 1 2 3 4 5 6 7 8 9

∆033 3 ∆313 1

R4

0

1

0 1 2 3 4 5 6 7 8 9

∆034 3 ∆344 4

Figure 6.64: The earliest start schedule corresponding to the optimal re-
source flow F∗ displayed in Figure 6.63.

transformed into the optimal resource flow F∗ based on modifications in the
neighborhood Ñ2. Instead, it would be necessary to first reverse the arc
(2out, 3in)1 based on a modification in the neighborhood Ñreverse and then
to reverse both resulting arcs between activities 1 and 3. 2

224

6.2 Neighborhoods

0 1 2

3 4

5

q4 = 1

q1 = 1
q2 = 1
q3 = 1

q3 = 1

q1 = 1 q2 = 1

q1 = 1

q1 = 1
q3 = 1

q4 = 1

q4 = 1

Figure 6.65: Feasible resource flow F for the project from Example 6.16.
The critical arcs are highlighted in this graph.

R1

0

1

0 1 2 3 4 5 6 7 8 9

∆012 ∆121 2 ∆231 3

R2

0

1

0 1 2 3 4 5 6 7 8 9

∆012 1

R3

0

1

0 1 2 3 4 5 6 7 8 9

∆013 1 ∆133 3

R4

0

1

0 1 2 3 4 5 6 7 8 9

∆034 3 ∆344 4

Figure 6.66: The earliest start schedule corresponding to the feasible re-
source flow F ′ displayed in Figure 6.65.

225

6 A Solution Approach for the RCPSP with Resource Transfers

Neighborhood connected opt-connected
Ñ1 = Ñreroute ∪ Ñreverse open open

Ñ2 = Ñmax,ca
reroute ∪ Ñ ca

reverse × ×
Ñ3 = Ñmax

reroute ∪ Ñreverse × open

Ñ4 = Ñmax,ca
reroute ∪ Ñreverse × open

Table 6.14: Results concerning the connectivity of the four neighborhoods
Ñ1, Ñ2, Ñ3 and Ñ4 considered in Section 6.2.4.

Finally, the two neighborhoods Ñ3 = Ñmax
reroute ∪ Ñreverse as well as Ñ4 =

Ñmax,ca
reroute ∪ Ñreverse can be considered. While both neighborhoods are not

connected (this again follows from Example 6.10), it remains an open ques-
tion whether these two neighborhoods are opt-connected for the RCPSP
with first- and second-tier resource transfers. The results concerning the
connectivity of the four neighborhoods Ñ1, Ñ2, Ñ3, and Ñ4 considered in
this section are summarized in Table 6.14.

6.3 A Tabu Search Algorithm

Finally, a tabu search algorithm for the RCPSP with first- and second-tier
resource transfers is introduced in this section. An outline of this algorithm
is given in Algorithm 6.3. In the following, this tabu search algorithm is
described in more detail.

In this algorithm, solutions are represented by resource flows as they have
been introduced in Section 6.1. Here, in line 1, an initial solution s ∈ S
(i.e. an initial resource flow) is calculated by a parallel schedule generation
scheme based on a selected activity rule as well as the transfer rule ES. The
schedule generation scheme used in this algorithm differs from the parallel
schedule generation scheme outlined in Algorithm 4.2 (cf. Section 4.2.1) in
the following aspects.

First of all, activities i ∈ Vall have to be scheduled instead of jobs consist-
ing of multiple operations. Then, it is important to note that no blocking
resources exist in the model considered here. For this reason, the loop in
line 7 of Algorithm 4.2 can be omitted as each activity i ∈ Vall is completed
pi time units after it has been started and can be removed from the set

226

6.3 A Tabu Search Algorithm

Algorithm 6.3: Tabu Search

1 Generate an initial solution s ∈ S;
2 best := c(s); s∗ := s; TL := ∅; S∗ := ∅;
3 repeat
4 Choose a solution s′ from the selected neighborhood that is not tabu;
5 if no solution s′ could be generated then
6 if S∗ 6= ∅ then
7 Restart with an elite solution (s, TL) ∈ S∗;
8 else
9 Generate a new solution s ∈ S;

10 TL := ∅
11 end
12 else
13 Update the tabu list TL;
14 s := s′;
15 if c(s′) < best then
16 best := c(s′); s∗ := s′; TL := ∅; S∗ := S∗ ∪ {(s′, TL)};
17 if |S∗| > lmax then
18 Remove the oldest elite solution from S∗;
19 end
20 end
21 if an intensification condition is satisfied then
22 if S∗ 6= ∅ then
23 Restart with an elite solution (s, TL) ∈ S∗;
24 end
25 else if a diversification condition is satisfied then
26 Generate a new solution s ∈ S;
27 TL := ∅
28 end
29 end
30 until a stopping condition is satisfied ;

Aλ of active activities at time point tλ = Si + pi (i.e. lines 16 to 19 of
Algorithm 4.2 can also be omitted). Finally, for the RCPSP with first- and
second-tier resource transfers, pure second-tier resource transfers are possi-
ble. Here, the Procedure CalculateResourceTransfers has to be be modified
such that resource transfers of resources k ∈ Rsa can start from either the
start or the end of an activity i ∈ V . Now, an initial resource flow F can

227

6 A Solution Approach for the RCPSP with Resource Transfers

be computed by storing all first- and second-tier resource transfers selected
by the modified Procedure CalculateResourceTransfers. It should be noted
that, alternatively, the serial schedule generation scheme can be modified
accordingly and also be used to generate an initial resource flow.

After an initial solution has been generated, new resource flows are gener-
ated based on modifications in the selected neighborhood in line 4 of the
algorithm. Here, the various neighborhoods introduced in Section 6.2.4 can
be used, e.g. the neighborhood Ñ4 = Ñmax,ca

reroute ∪ Ñreverse. In any of these
neighborhoods, whenever resource transfers have to be adapted based on a
priority rule, sets Ũk (or Uk) consisting of incoming resource transfers are
selected based on the transfer rule ES (i.e. based on the earliest arrival time
of the resource units at the receiving activity) while sets Ṽk (or Vk) of outgo-
ing resource transfers are selected based on the transfer rule TT. The latter
transfer rule TT selects resource transfers in the order of non-decreasing
transfer times between the activities.

In order to evaluate a reroute move of two arcs between activities i ∈ V0

and j ∈ V∗ as well as between u ∈ V0 and v ∈ V∗, it is possible to calculate
the maximal possible improvement of the makespan by regarding the latest
finish times LFj and LFv of activities j and v in the current schedule as
well as the possible earliest finish times EFj and EFv of these activities
after the modification if only the redirected arcs are considered. Then, if
LFj − EFj ≤ δ or LFv − EFv ≤ δ hold, the selected reroute move can not
improve the makespan of the current resource flow by more than δ time
units and the actual makespan does not have to be calculated. Here, we
select δ as the improvement of the makespan for the best move evaluated
so far. This preliminary evaluation can be performed in O(1) time based
on the longest path lengths between the activities for the current resource
flow. In the case of reverse moves, these are always evaluated by actually
performing the move and evaluating the resulting resource flow.

Now, only moves based on modifications in the selected neighborhood that
are not tabu are evaluated in the tabu search algorithm, i.e. no aspiration
criteria are used due to the size of the neighborhoods. Additionally, if a
resource flow is generated with a smaller objective function value than the
objective function value of the current solution s, this solution s′ is accepted
immediately (first-fit). Otherwise, the best solution s′ is selected for the next
iteration, if such a solution exists.

After a solution s′ has been chosen during an iteration, the tabu list TL
is updated based on the selected move. Here, two tabu lists TLadd and

228

6.3 A Tabu Search Algorithm

TLdrop are used as described by Glover and Laguna (1998). While the
tabu list TLdrop stores information about arcs that have been added to
the resource flow (or on which additional resource units are transferred),
the tabu list TLadd stores information about arcs that have been removed
from the resource flow (or on which fewer resource units are transferred).
In particular, if a reroute modification has been applied to reroute resource
units of resource k ∈ R on two selected arcs between activities i ∈ V0 and
j ∈ V∗ as well as between activities u ∈ V0 and v ∈ V∗, the tabu list TLdrop
stores the triples (i, v, k) and (u, j, k) (i.e additional units of resource k are
transferred from activity i to activity v as well as from activity u to activity
j) while the tabu list TLadd stores the triples (i, j, k) and (u, v, k) (i.e. fewer
units of resource k are transferred from activity i to activity j as well as
from activity u to activity v). Similarly, if a reverse modification has been
applied to reverse all arcs between two activities i ∈ V and j ∈ V , the tabu
list TLdrop stores all triples (j, i, k) corresponding to resources k ∈ R for
which at least one arc has been reversed while the tabu list TLadd stores all
triples (i, j, k).

Now, a reroute move for two selected arcs of a resource k′ ∈ R between
activities i′ ∈ V0 and j′ ∈ V∗ as well as between activities u′ ∈ V0 and v′ ∈ V∗
is tabu if either the triple (i′, j′, k′) or the triple (u′, v′, k′) is contained in
the tabu list TLdrop (i.e. the corresponding arcs may not be removed from
the resource flow if they have only recently been added) or if either the
triple (i′, v′, k′) or the triple (u′, j′, k′) is contained in the tabu list TLadd
(i.e. the corresponding arcs may not be added to the resource flow if they
have only recently been removed). Similarly, a reverse move between two
selected activities i′ ∈ V and j′ ∈ V is tabu if at least one triple (i′, j′, k′)
is contained in the tabu list TLdrop or if at least one triple (j′, i′, k′) is
contained in the tabu list TLadd for all resources k′ ∈ R for which at least
one arc exists in the resource flow.

It should be noted that each of these two tabu lists TLadd and TLdrop is able
to avoid cycling (i.e. the revisiting of a solution that has previously been
visited) by itself. In particular, the tabu list TLdrop prevents the tabu search
from removing specific arcs from a resource flow that have only recently been
inserted while the tabu list TLadd prevents the tabu search from inserting
specific arcs to a resource flow that have only recently been removed. In the
tabu search algorithm, it is possible to use either only one of the two tabu
lists or both depending on the selected tabu tenures. If both tabu lists are
used, this generally results in a stronger tabu restriction because the tabu
condition is satisfied more frequently for similar tabu tenures.

229

6 A Solution Approach for the RCPSP with Resource Transfers

The tabu tenures tadd and tdrop (i.e. the number of iterations for which
moves are considered tabu) are chosen independently for both tabu lists
TLadd and TLdrop based on the size of the selected neighborhood N :

tadd := rand(a) + α · |N | and tdrop := rand(b) + β · |N |

Here, a and b are two positive integer values such that the function rand
randomly selects an integer number from the interval [0, a[and [0, b[, re-
spectively. For this, a random number generator with a fixed seed is used.
Furthermore, α and β are selected with α, β ∈ [0, 1[.

If no new solution could be generated during an iteration (e.g. if all moves
are tabu) or if either an intensification or a diversification condition is satis-
fied, the tabu search either restarts from an elite solution if such a solution
exists (cf. Section 4.2) or a new solution is generated by the parallel schedule
generation scheme. Here, in order to diversify the search, we calculate the
amount of iterations that activities i ∈ V have been critical activities and
use this information in order to select these activities with a higher prior-
ity (i.e. the priority values based on the selected activity rule are modified
accordingly).

230

7 A Solution Approach for the HEP based
on Resource Flows

In Chapter 4, a solution approach based on priority rules for the problem
of hospital evacuations has been described. A drawback of this solution
approach is that resource transfers of aids are selected by priority rules that
do not necessarily ensure that a job is started as early as possible, i.e. no
optimal solution might exist in the solution space generated by the schedule
generation schemes. For this reason, an alternative solution approach for
the HEP is described in this chapter. This solution approach is based on
the resource flow representation introduced in Chapter 6. In contrast to the
RCPSP with first- and second-tier resource transfers for which this solution
representation has been introduced, however, the following differences have
to be taken into account.

First of all, the problem of hospital evacuations is modeled as a multi-mode
RCPSP such that the selected modes influence the required assistants and
aids as well as the operations that actually have to be scheduled. For this
reason, changing either of the two modes may make it necessary to repair
the current resource flow, e.g. if different amounts of assistants or aids are
required to process a job j ∈ J after its equipment mode m1 ∈ Mj1 has
been changed, or different operations of a job have to be scheduled after its
route mode m2 ∈Mj2 has been changed.

Next, while both first-tier as well as second-tier resource transfers can occur
in the problem of hospital evacuations (i.e. assistants can be transferred as
first-tier or second-tier resources), it is assumed that all assistants that are
required to transport aids to the initial location of a patient are also used
to evacuate the patient. As a result of this, no pure second-tier resource
transfers can occur. Finally, blockings between operations of different jobs
that require the same building section have to be incorporated into the
resource flow representation.

In the following, the problem of hospital evacuations is decomposed into two
subproblems. These subproblems are referred to as evacuation subproblem

231

7 A Solution Approach for the HEP based on Resource Flows

as well as routing subproblem. An outline of this solution approach is visu-
alized in Figure 7.1.

Instance

Evacuation

Subproblem

Best Solution

Routing

Subproblem

Relaxed Solution

Complete Solution

Figure 7.1: Outline of the solution approach described in Chapter 7.

As can be seen in this figure, the evacuation subproblem is solved first.
For this, the problem of hospital evacuations is relaxed by assuming that
all building sections have unlimited capacity (i.e. it is assumed that no
blockings can occur). As a result of this, the usage of the building sections
can be neglected for the evacuation subproblem. For this subproblem, every
job j ∈ J is assigned a route modem2 ∈Mj2 that can not be changed by the
solution approach for this subproblem itself but relies on feedback from the
solution approach for the routing subproblem. Then, the relaxed problem
consists of selecting and modifying the equipment modes m1 ∈ Mj1 of the
jobs j ∈ J (i.e. regarding the required types of assistant and aids for the
evacuation of the patient) as well as deciding in which order the patients
are evacuated to the safety zones by the the available assistants and aids.
This problem is solved by a tabu search algorithm in which solutions are
represented by resource flows between jobs (cf. Section 7.1).

Now, whenever a given stopping condition SC1 is satisfied, the best resource
flow for the evacuation subproblem that has been found since the last time
the stopping condition SC1 has been satisfied is handed to the routing sub-
problem. For the routing subproblem, we no longer consider the relaxation
of unlimited capacity in the building sections. Instead, the routing subprob-
lem consists of modifying the route modes m2 ∈ Mj2 of the jobs j ∈ J as

232

7.1 Evacuation Subproblem

well as deciding in which order the patients are evacuated through the cor-
responding building sections. For this, the resource flow for the evacuation
subproblem that has been handed to the routing subproblem is converted
into additional precedence constraints between the operations, i.e. the usage
of assistants and aids is assumed to be fixed. Then, the routing subproblem
is solved by a tabu search algorithm in which solutions are represented by
resource flows between operations (cf. Section 7.2).

The resource flows generated during this second stage correspond to com-
plete solutions that satisfy all constraints of the hospital evacuation problem.
After a given stopping condition SC2 has been satisfied, the best resource
flow generated during this stage is returned to the first stage. For the evacu-
ation subproblem, we then replace the route modesm2 ∈Mj2 of the jobs by
the route modes of this solution for the routing subproblem in order to in-
fluence the further search. In particular, changing the evacuation routes for
the patients such that these are evacuated to different safety zones might
influence the transfer times between the jobs. Finally, the best complete
solution is returned as output at the end of the algorithm after another
stopping condition SC3 has been satisfied.

The solution approach outlined here as well as the decomposition of the
problem into an evacuation as well as a routing subproblem has been chosen
in order to reduce the size of the solution space. In particular, the solution
space for the HEP can be very large due to the large number of operations
that might have to be considered (i.e. depending on the number of building
sections required to model the evacuation routes for the patients). By using
the solution approach outlined above, the evacuation subproblem is solved
first such that only the jobs have to be scheduled. As the number of jobs
is generally smaller than the number of operations, the solution space for
the evacuation subproblem is reduced compared to a one-stage algorithm.
Additionally, the resource flow for the evacuation subproblem is translated
into additional precedence constraints for the routing subproblem such that
the solution space for the routing subproblem can be further constrained.
Thus, in each subproblem, it is possible to consider a reduced solution space.

7.1 Evacuation Subproblem

In this section, we present a tabu search algorithm for the evacuation prob-
lem that represents solutions as resource flows. As described above, the

233

7 A Solution Approach for the HEP based on Resource Flows

evacuation subproblem deals with a relaxed version of the hospital evac-
uation problem that is concerned with scheduling all jobs with respect to
the available assistants and aids while neglecting the usage of the building
sections. Instead, it is assumed that all patients can be evacuated from
their initial locations to the safety zones without interruptions (i.e. without
blockings). Here, because jobs instead of operations have to be scheduled,
we use an adapted version of the model introduced in Section 4.1. In this
adapted model, each job j ∈ J is assigned processing times pjm as well as
resource requirements rjmk for all resources k ∈ Rtrf based on the possible
mode combinations m = (m1,m2) ∈ Mj of job j (with m1 ∈ Mj1 and
m2 ∈Mj2).

For this, the processing times pjm of jobs j ∈ J are calculated as the mini-
mum time required to evacuate the patient corresponding to job j from his
or her initial location to a safety zone based on the evacuation route de-
noted by route mode m2 ∈ Mj2 as well as the required assistants and aids
denoted by equipment mode m1 ∈ Mj1. On the other hand, the resource
requirements rjmk for resources k ∈ Rtrf of j ∈ J correspond to the required
assistants and aids for equipment mode m1 ∈ Mj1. Here, as stated above,
the usage of building sections k ∈ Rsect is neglected for this subproblem.
Finally, transfer time ∆ϕ(i)ψ(j)k denotes the time required to transfer re-
source k ∈ Rtrf from the end of job i ∈ J (where ϕ(i) denotes the safety
zone to which the patient corresponding to job i is evacuated to in route
mode m2 ∈ Mi2) to the start of job j ∈ J (where ψ(j) denotes the initial
location of the patient corresponding to job j).

In the following, a route mode m2 ∈ Mj2 is selected for each job j ∈ J
based on some priority rule. Together with a solution for the evacuation
subproblem (i.e. an assignment of an equipment mode m1 ∈ Mj1 to each
job j ∈ J as well as a feasible resource flow F), it is then possible to evaluate
a given solution for this subproblem. For this, an earliest start schedule is
calculated based on the modified processing times pjm and transfer times
∆ϕ(i)ψ(j)k as they have been discussed above. As before, an earliest start
schedule is calculated based on the lengths of the longest paths in the AON-
flow network corresponding to a given solution (i.e. the mode assignments
m = (m1,m2) of the jobs j ∈ J as well as the resource flow F).

Example 7.1 We consider the problem from Example 4.4 where N = 3
patients have to be evacuated from the hospital displayed in Figure 4.1 with
the help of two assistants (referred to as resource 1) as well as one stretcher
(referred to as resource 2). Here, each job can be performed in only one

234

7.1 Evacuation Subproblem

mode combination m = (m1,m2) = (1, 1) = 1 such that patient 1 has to
be evacuated from room 5 to exit 1 by one assistant, patient 2 has to be
evacuated from room 3 to exit 2 by two assistants as well as one stretcher,
and patient 3 has to be evacuated from room 3 to exit 1 by one assistant.
The processing times of the three jobs can then be calculated as p11 = 6,
p21 = 5, and p31 = 5 based on the data from Example 4.4. The transfer
times between the different locations are given in Table 4.1.

0

1

2

3

4

q1 = 1

q2 = 1

q1 = 1

q1 = 1

q1 = 1
q2 = 1 q1 = 1

q1 = 2
q2 = 1

Figure 7.2: Solution for the evacuation subproblem displaying the resource
transfers of assistants (resource 1) and aids (resource 2) between
the jobs of the problem instance considered in Example 7.1.

Assistants

0 2 4 6 8 10 12 14 16 18 20 22 24

∆011

∆031

1

3 ∆321

∆101 ∆022

2

Stretcher

0 2 4 6 8 10 12 14 16 18 20 22 24

∆022 2

Figure 7.3: The earliest start schedule corresponding to the feasible resource
flow displayed in Figure 7.2.

A feasible resource flow for the evacuation subproblem of this instance is

235

7 A Solution Approach for the HEP based on Resource Flows

displayed in Figure 7.2. The earliest start schedule with the makespan
Cmax = 24 corresponding to this resource flow is shown in Figure 7.3. 2

Now, the tabu search algorithm for the evacuation subproblem is described.
An outline of this algorithm is given in Algorithm 7.1. In line 1 of this
algorithm, an initial solution srelax for the relaxed problem is generated by
assigning an equipment mode m1 ∈ Mj1 as well as a route mode m2 ∈
Mj2 to each job j ∈ J as described in Section 4.2. Based on these mode
assignments, an initial resource flow is then generated by a parallel schedule
generation scheme. Here, we have adapted the parallel schedule generation
from Section 4.2.1 to schedule the jobs (instead of the operations) with
respect to the available assistants and aids. It should be noted that this
parallel schedule generation scheme is always able to generate a feasible
resource flow because no blockings or deadlocks occur in the relaxed problem.
After an initial solution srelax has been generated, a complete solution s∗compl
based on this solution is calculated in line 2 of the algorithm. This is done
by solving the corresponding routing subproblem (cf. Section 7.2).

Then, in the while-loop between lines 4 to 28, the tabu search algorithm
chooses a solution s′relax based on the current solution srelax in line 5. For
this, reroute and reverse moves in the neighborhoods described in Section
6.2 can be used. Here, in particular, we use the neighborhoods Ñmax,ca

reroute
and Ñ ca

reverse. Additionally, we have implemented a neighborhood N eqpt
mode

that defines modifications to change the equipment mode m1 ∈Mi1 of one
job i ∈ J . As pointed out above, changing the equipment mode m1 of
a job i ∈ J generally invalidates the current resource flow because some
resource k ∈ Rtrf may no longer be required by job i while other resources
k ∈ Rtrf may become required. In this case, the resource flow is repaired by
redirecting resource transfers of resources k ∈ Rtrf that are affected by the
modification. Thus, if resource units of a resource k ∈ Rtrf are no longer
required by job i, they can immediately be transferred from jobs h ∈ J that
have sent these resource units to job i to jobs j ∈ J that have received these
resource units from job i. Similarly, if additional resource units of a resource
k ∈ Rtrf are required after the modification, resource transfers of resource
k between two jobs h ∈ J and j ∈ J are redirected such that resource k is
first transferred from job h to job i and then from job i to job j such that
no cycles occur in the resulting resource flow.

After a new solution s′relax has been generated, the corresponding move is
stored in the tabu list in line 14 of the algorithm and the previous solution
srelax is replaced by solution s′relax in line 15. Here, three tabu lists TLadd,

236

7.1 Evacuation Subproblem

TLdrop, and TLmode are used as described in Sections 4.2 and 6.3. Addi-
tionally, if this solution s′relax is better than the currently best solution s∗relax
(i.e. if c(s′relax) < c(s∗relax) holds), the currently best solution is replaced by
this solution in line 17 of the algorithm.

Algorithm 7.1: Tabu Search for the Evacuation Subproblem

1 Generate an initial solution srelax ∈ S;
2 Calculate s∗compl := RSP (srelax); c∗compl := c(s∗compl);
3 c∗relax := c(srelax); s∗relax := srelax; TL := ∅;
4 repeat
5 Choose a solution s′relax from the neighborhood of the current solution

srelax that is not tabu;
6 if no solution s′relax could be generated then
7 Calculate scompl := RSP (s∗relax) with ccompl := c(scompl);
8 if ccompl < c∗compl then
9 c∗compl := ccompl; s∗compl := scompl;

10 end
11 Change the route modes m2 ∈Mj2 of jobs j ∈ J in solution srelax

to the route modes m̃2 ∈Mj2 of the jobs in solution scompl;
12 c∗relax := c(srelax); s∗relax := srelax; TL := ∅;
13 else
14 Update the tabu list TL;
15 srelax := s′relax;
16 if c(s′relax) < c∗relax then
17 c∗relax := c(s′relax); s∗relax := s′relax; TL := ∅;
18 end
19 end
20 if stopping condition SC1 is satisfied then
21 Calculate scompl := RSP (s∗relax) with ccompl := c(scompl);
22 if ccompl < c∗compl then
23 c∗compl := ccompl; s∗compl := scompl;
24 end
25 Change the route modes m2 ∈Mj2 of jobs j ∈ J in solution srelax

to the route modes m̃2 ∈Mj2 of the jobs in solution scompl;
26 c∗relax := c(srelax); s∗relax := srelax; TL := ∅;
27 end
28 until stopping condition SC3 is satisfied ;

If either no new solution s′relax could be generated during an iteration or if

237

7 A Solution Approach for the HEP based on Resource Flows

stopping condition SC1 has been satisfied, the routing subproblem (RSP) is
solved for the best solution s∗relax found since the last restart of the algorithm
(cf. lines 7 and 21). Then, if c(scompl) < c(s∗compl) holds for the objective
function value of the resulting complete solution scompl, this solution scompl

replaces the currently best complete solution s∗compl found so far (cf. lines 9
and 23). Additionally, the route modes m2 ∈ Mj2 of jobs j ∈ J that have
been used since the last restart of the algorithm are changed to the route
modes m̃2 ∈Mj2 of the jobs in solution scompl (cf. lines 11 and 25). Finally,
the solution s∗relax is replaced by this new solution and the tabu lists TLadd,
TLdrop, and TLmode are reset (cf. lines 12 and 26).

Above, changing the fixed route modes m2 ∈ Mj2 of jobs j ∈ J based on
a complete solution scompl for the routing subproblem can be regarded as
feedback to influence the further search. In particular, the transfer times
between the jobs depend on the safety zones to which the corresponding
patients are evacuated to. Thus, changing the route modes m2 ∈ Mj2 of
jobs j ∈ J (and hence the safety zones to which the corresponding patients
are evacuated to) also influences these transfer times and the tabu search
algorithm might be able to visit other regions of the solution space. This is
visualized in Example 7.2.

Example 7.2 We consider a problem consisting of N = 2 jobs i = 1,2 that
both require one assistant (referred to as resource 1) for the evacuation. It
is assumed that patient 1 is initially located in a room R1 and patient 2 is
initially located in a room R2. Additionally, both patients can be evacuated
to either a safety zone E1 or a safety zone E2. Thus, both jobs can be
performed in two possible mode combinations m = (m1,m2) = (1, 1) = 1
and m = (m1,m2) = (1, 2) = 2. Here, the processing times pim of the jobs
are given by p11 = 1, p12 = 2, p21 = 3, and p22 = 1. The transfer times
between the different locations are given in Table 7.1. Finally, one assistant
is available for the evacuation. This assistant is assumed to be initially
located at safety zone E1.

R1 R2 E1 E2

R1 0 3 1 2
R2 3 0 3 1
E1 1 3 0 3
E2 2 1 3 0

Table 7.1: The transfer times between the locations from Example 7.2.

238

7.1 Evacuation Subproblem

Now, we assume that the tabu search algorithm for the evacuation sub-
problem initially selects mode combination 1 for job 1 (i.e. this patient is
evacuated to safety zone E1) as well as mode combination 2 for job 2 (i.e.
this patient is evacuated to safety zone E2). A feasible resource flow for
the evacuation problem is displayed in Figure 7.4 while the earliest start
schedule with the makespan Cmax = 6 corresponding to this solution (i.e.
the resource flow as well as the mode assignments) is shown in Figure 7.5.

0

1

2

3q1 = 1

q1 = 1

q1 = 1

Figure 7.4: Solution for the evacuation subproblem displaying the resource
transfers of the available assistant (resource 1) between the jobs
of the problem instance considered in Example 7.2.

R1

0

1

0 1 2 3 4 5 6

∆E1,R1,1 1 ∆E1,R2,1 2

Figure 7.5: The earliest start schedule corresponding to the feasible resource
flow displayed in Figure 7.4 if patient 1 is evacuated to safety
zone E1 before patient 2 is evacuated to safety zone E2.

R1

0

1

0 1 2 3 4 5 6

∆E1,R1,1 1 ∆E2,R2,1 2

Figure 7.6: The earliest start schedule corresponding to the feasible resource
flow displayed in Figure 7.4 if patient 1 is evacuated to safety
zone E2 before patient 2 is evacuated to safety zone E2.

Alternatively, if patient 1 is evacuated to safety zone E1 instead (i.e. if

239

7 A Solution Approach for the HEP based on Resource Flows

mode combination 2 is selected for job 1), the earliest start schedule with
the makespan Cmax = 5 displayed in Figure 7.6 can be calculated based
on the resource flow displayed in Figure 7.4. It should be noted that this
schedule corresponds to the unique optimal solution for this example. Thus,
changing the route modes of the jobs might influence the solutions that can
be found by the tabu search algorithm for the evacuation subproblem. 2

Finally, the tabu search algorithm terminates after stopping condition SC3
is satisfied. It should be noted that the constraints regarding the transfer
of resources k ∈ Rtrf for the evacuation subproblem differ slightly from
those for the RCPSP with first- and second-tier resource transfers described
in Section 5.2. In particular, no pure second-tier resource transfers can
occur in the problem of hospital evacuations, i.e. the amount of assistants
required to evacuate a patient is always sufficient to support the transfer of
the required aids to the initial location of the patient. As a result of this, no
start-to-start transfers have to be taken into account but only finish-to-start
transfers of resources k ∈ Rtrf.

7.2 Routing Subproblem

In this section, the tabu search algorithm for the routing subproblem is
introduced. As described above, this tabu search algorithm is handed the
best solution s∗relax for the relaxed problem that has been obtained since the
last time the routing subproblem has been solved. This solution s∗relax is
then transformed and extended into an initial solution scompl for the com-
plete problem. Here, similar to the evacuation subproblem, solutions for the
routing subproblem are represented as resource flows. After an initial solu-
tion scompl has been generated, the tabu search algorithm tries to improve
this solution scompl by modifying the selected route modes m2 of the jobs as
well as by changing the order in which the patients are evacuated through
the building sections.

In the following, the solution representation for this problem is outlined in
Section 7.2.1 while the neighborhoods that have been defined on this solution
representation are described in Section 7.2.2. In both of these sections, we
primarily focus on the differences of the solution representation as well as
the neighborhoods that arise from the blocking constraint as compared to
the solution representation and the neighborhoods introduced in Chapter 6.
Finally, the tabu search algorithm itself is presented in Section 7.2.3.

240

7.2 Routing Subproblem

7.2.1 Solution Representation

The solution representation for the routing subproblem is outlined in this
section. As described above, solutions for this subproblem are represented
as resource flows. Here, first of all, it is important to note that all resources
k ∈ Rsect can be transferred from an operation u ∈ V0 to another operation
v ∈ V∗ as first-tier resources by finish-to-start transfers without an associated
transfer time (i.e. ∆uvk = 0 holds for all u ∈ V0, v ∈ V∗, and k ∈ Rsect). In
this, the routing subproblem corresponds to a multi-mode RCPSP without
transfer times as opposed to the multi-mode RCPSP with first- and second-
tier transfers that has to be solved in the evacuation subproblem. On the
other hand, however, blockings have to be taken into account for the routing
subproblem (cf. Section 4.1.1).

In the following, a solution for the routing subproblem is represented as a
resource flow as described in 6.1.1. Thus, if a resource k ∈ Rsect is trans-
ferred from an operation u ∈ V0 to another operation w ∈ V∗, this transfer
is represented by a resource transfer fuwk > 0 denoting the amount of re-
source units (or space) transferred from operation u to operation w. Then,
the blocking constraint is incorporated into the AON-flow network repre-
senting a given resource flow. This is done in order to ensure that blockings
are taken into account when calculating the earliest start schedule based on
the lengths of the longest paths between the operations. In particular, if
an amount of fuwk > 0 units of resource k ∈ Rsect is transferred from a
blocking operation u ∈ V to another operation w ∈ V∗, it has to be ensured
that operation w can only start at time Sw ≥ Sv after the successor v ∈ V
of operation u (with (u, v) ∈ B) has been started.

Now, in order to integrate the blocking constraint into the AON-flow network
representing a given resource flow, we adapt the following idea used by
Mascis and Pacciarelli (2000, 2002) in the alternative graph representation
for the job-shop problem with blockings. If an operation i is blocking (i.e.
if the machine required by this operation only becomes available again after
the next operation j of the same job has been started), a directed arc is
inserted from the start of operation j to the start of the next operation u
that requires the machine instead of from operation i to operation u directly.
As a result of this, the starting time Su of operation u as it is calculated
based on the lengths of the longest paths can not be earlier than the starting
time Sj of operation j (i.e. Su ≥ Sj ≥ Si + pi has to hold for the starting
time of operation u).

241

7 A Solution Approach for the HEP based on Resource Flows

In the following, we use this idea in order to represent blockings in an AON-
flow network corresponding to a given resource flow. At the same time,
however, it should be noted that the adapted AON-flow network represent-
ing a given resource flow as it is used here differs from the alternative graph
model introduced by Mascis and Pacciarelli (2002). In particular, an al-
ternative graph for a given problem instance represents the solution space
consisting of all semi-active schedules for the problem instance. On the
other hand, an AON-flow network corresponding to a given resource flow
represents exactly one earliest start schedule.

Now, we describe the adapted AON-flow network representation for the
routing subproblem in more detail. Here, first of all, each operation u ∈ Vall

is represented by two nodes uin and uout that correspond to the start as
well as the end of the operation. Then, if an amount of fuwk > 0 units
of resource k ∈ Rsect are transferred from a blocking operation u ∈ V to
another operation w ∈ V∗ in resource flow F (i.e. the space in building
section k required by operation u only becomes available after the patient
has arrived in the next building section), an arc (vin, win)k from the start of
operation v ∈ V to the start of operation w is inserted into the AON-flow
network where operation v is the direct successor of the blocking operation
u (i.e. (u, v) ∈ B holds). This situation is visualized in Figure 7.7.

u v

w

fuwk

Figure 7.7: The resource transfer fuwk > 0 of resource k ∈ Rsect from a
blocking operation u ∈ V to another operation w ∈ V∗ is repre-
sented by an arc (vin, win)k from the start of operation v to the
start of operation w where operation v is the direct successor of
operation u (i.e. (u, v) ∈ B holds). Here, the resource trans-
fer fuwk > 0 is represented by a thick arc while the precedence
constraint u→ v is represented by a thin arc.

In this graph, the arc (vin, win)k from the start of operation v to the start
of operation w is assigned the label fuwk denoting the resource transfer of

242

7.2 Routing Subproblem

resource k from operation u to operation w it represents. In the following,
we use this representation in order to clarify which resource transfers are
modeled by the arcs in an AON-flow network. Now, the arc (v, w)k is
assigned a weight equal to zero. Then, when calculating the starting time of
operation w based on the lengths of the longest paths between the operations
in the AON-flow network, operation w can only start in building section k
after operation v has been started (i.e. Sw ≥ Sv has to hold) and the
building section is no longer occupied by operation u.

Finally, if an amount of fuwk > 0 units of space in a building section k ∈
Rsect are transferred from a non-blocking operation u ∈ V0 (e.g. the last
operation of the corresponding job σ(u) ∈ J) to another operation w ∈ V∗,
the transfer is represented by an arc (uout, win)k with a weight equal to zero
in the AON-flow network. In this case, resource k immediately becomes
available after operation u has been completed and operation w can start at
time Sw ≥ Su + pum based on the length of the longest paths.

7.2.2 Neighborhoods

Next, the neighborhoods based on the solution representation introduced
above that can be used for the routing subproblem are described. In par-
ticular, adapted neighborhoods N̂reroute and N̂reverse are outlined based on
the neighborhoods Nreroute and Nreverse. Here, while resource transfers be-
tween non-blocking operations can be redirected based on modifications in
the neighborhoods N̂reroute and N̂reverse as described in Section 6.2, addition-
ally, resource transfers between blocking operations (or pairs of one blocking
and one non-blocking operation) have to be considered.

Now, we first consider reroute modifications in the neighborhood N̂reroute.
In this case, the two selected resource transfers can be rerouted as described
in Section 6.2 regardless of whether they originate from blocking or non-
blocking operations. For example, we assume that two resource transfers
fijk > 0 and fuwk > 0 for a resource k ∈ Rsect have been selected for
a modification in the neighborhood N̂reroute such that operation i ∈ V0

is non-blocking (i.e. the corresponding resource transfer is represented by
an arc (iout, jin)k from the end of operation i to the start of operation
j ∈ V∗) and operation u ∈ V is blocking (i.e. the corresponding resource
transfer is represented by an arc (vin, win)k from the start of operation v ∈ V
to the start of operation w ∈ V∗ where operation v is the successor of
operation u with (u, v) ∈ B). Furthermore, we assume that no directed

243

7 A Solution Approach for the HEP based on Resource Flows

path exists from either operation j to operation v or from operation w
to operation i in the AON-flow network. In this case, an amount of q =
{1, . . . ,min{fijk, fuwk}} units of resource k is rerouted from operation u to
operation j as well as from operation i to operation w in the resulting
resource flow. In the corresponding graph, these two resource transfers
f ′ujk = fujk + q and f ′iwk = fiwk + q are represented by the arcs (vin, jin)k
and (iout, win)k. This situation is visualized in Figure 7.8.

i

j

w

u v

fijk

fiwk

fuwk

fujk

(a) Before modification.

i

j

w

u v

fijk − q

fiwk + q

fuwk − q

fujk + q

(b) After modification.

Figure 7.8: The resource transfers before a reroute modification has been
used to redirect the resource transfers fuwk > 0 and fijk > 0
are shown in (a) while the resource transfers after an amount
of q = {1, . . . ,min{fijk, fuwk}} units of resource k ∈ Rsect have
been rerouted are displayed in (b).

Next, we consider the adapted neighborhood N̂reverse. Here, for a reverse
modification in this neighborhood, two operations i ∈ V and u ∈ V are
selected such that operation i may not be a direct or indirect predecessor
of operation u and no other directed path may exist from operation i to
operation u. Then, in order to reverse all resource transfers between these
operations, it is important to consider whether operation u is blocking or

244

7.2 Routing Subproblem

non-blocking. Depending on this, the arcs representing the resulting re-
source transfers from operation u either start from the operation itself (i.e.
if operation u is non-blocking) or from the successor of operation u (i.e.
if operation u is blocking). Finally, the incoming resource transfers to op-
eration i as well as the outgoing resource transfers from operation u are
redirected as before (cf. Section 6.2).

For example, we assume that a resource transfer fiuk > 0 of a resource
k ∈ Rsect from operation i ∈ V to operation u ∈ V exists such that operation
i is no direct or indirect predecessor of operation u and no other directed path
exists from operation i to operation u. Furthermore, we assume that both
i and u are blocking operations. Then, this resource transfer is represented
by the arc (jin, uin)k in the AON-flow network where operation j ∈ V is the
successor of operation i (i.e. (i, j) ∈ B holds). Additionally, we assume that
operation i receives a sufficient amount of fgik ≥ fiuk units of resource k
from the blocking operation g ∈ V (i.e. the set Uk = {g} can be calculated)
and operation u sends a sufficient amount of fuwk ≥ fiuk units of resource
k to operation w ∈ V∗ (i.e. the set Vk = {w} can be calculated). These two
resource transfers are represented by arcs (hin, iin)k and (vin, win)k where
operation h ∈ V is the successor of operation g (i.e. (g, h) ∈ B holds) and
operation v ∈ V is the successor of operation u (i.e. (u, v) ∈ B holds).
It should be noted that the sets Uk and Vk are again computed based on
priority rules as described in Section 6.2 and might contain more operations.

Now, if the resource transfer fiuk is reversed based on a modification in
the neighborhood N̂reverse, an amount of f ′uik = fiuk units of resource k is
transferred from operation u to operation i in the resulting resource flow F ′.
Here, because operation u is a blocking operation, this resource transfer is
represented by the arc (vin, iin)k from the start of operation v to the start
of operation i. Additionally, an amount of fiuk units of resource k are redi-
rected from operation g to operation u (represented by the arc (hin, uin)k) as
well as from operation i to operation w (represented by the arc (jin, win)k).
This situation is visualized in Figure 7.9.

Similar to Section 6.2, it is again possible to introduce reduced neigh-
borhoods N̂max,ca

reroute and N̂ ca
reverse. Here, for neighborhood N̂max,ca

reroute , at least
one of the two selected arcs representing resource transfers fijk > 0 and
fuvk > 0 has to be a critical arc. Furthermore, always the maximal amount
of q = min{fijk, fuvk } units of resource k ∈ Rsect are redirected by a modi-
fication in the neighborhood N̂max,ca

reroute . On the other hand, the neighborhood
N̂ ca

reverse is again limited to modifications between critical activities i ∈ V and

245

7 A Solution Approach for the HEP based on Resource Flows

i j

g h w

u v

fgik

fguk

fiuk

fiwk

fuwk

(a) Before modification.

i j

g h w

u v

fgik − fiuk

fguk + fiuk

fiuk

fiwk + fiuk

fuwk − fiuk

(b) After modification.

Figure 7.9: The resource transfers of a resource k ∈ Rsect before the re-
source transfer fiuk > 0 between operations i ∈ V and u ∈ V is
reversed are shown in (a) while the resource transfers after the
modification are displayed in (b). Apart from reversing the cor-
responding arc, incoming as well as outgoing resource transfers
between the operations have been redirected accordingly.

246

7.2 Routing Subproblem

j ∈ V such that at least one critical arc representing the resource transfer
of a resource k ∈ Rsect exists between these two activities.

It should be noted that a problem occurs if resource transfers from two or
more consecutive operations of one job exist to two or more consecutive
operations of another job. In this case, reversing any of these arcs based on
a modification in either the neighborhood N̂reverse or N̂ ca

reverse always results
in a cycle. This situation is visualized in Figure 7.10 where resource transfers
fhuk1 > 0 and fivk2 > 0 exist from the two consecutive blocking operations
h ∈ V and i ∈ V of one job to the two consecutive blocking operations
u ∈ V and v ∈ V of another job. In this case, we assume that the precedence
constraints (h, i) ∈ B, (i, j) ∈ B, (u, v) ∈ B, and (v, w) ∈ B are given such
that the two resource transfers are represented by the arcs (iin, uin)k1 and
(jin, vin)k2 , respectively. Then, reversing the resource transfer fhuk1 results
in a cycle between operations h, i, j, and v while reversing the resource
transfer fivk2 results in a cycle between operations u, v, w, and i. Here,
incoming resource transfers as well as outgoing resource transfers that are
redirected as part of a reverse modification do not have to be considered
because the order in which the corresponding operations are processed in
relation to the selected operations does not change.

It is easy to see that this limitation might lead to situations in which a
given resource flow F can not be transformed into an optimal resource flow
F∗ by a finite number of modifications in either the neighborhood N̂1 =
N̂reroute ∪ N̂reverse or the neighborhood N̂2 = N̂max,ca

reroute ∪ N̂ ca
reverse. As a result

of this, neither of these neighborhoods is opt-connected (and hence also not
connected) for the problem considered here.

For this reason, we now introduce modified neighborhoods N̂ cons
reverse and

N̂ cons,ca
reverse such that both of these neighborhoods reverse all resource transfers

between consecutive operations of the same jobs. Here, for both of these
neighborhoods, two maximal sets P and Q are computed such that the set
P contains a total of λ consecutive operations i1 → . . .→ iλ of one job while
the set Q contains a total of λ consecutive operations v1 → . . .→ vλ of an-
other job. Furthermore, resource transfers fi1v1k1 > 0, . . . , fiλvλkλ > 0 for
resources k1, . . . , kλ ∈ Rsect have to exist between the operations contained
in these sets. It should be noted that these sets contain the same number
of operations due to the fact that each evacuation route is represented as
a chain of operations such that each operation of the same job requires a
different building section. These sets are called maximal if no pair of opera-
tions h ∈ V and u ∈ V (with h→ i1 and u→ v1 being direct predecessors of

247

7 A Solution Approach for the HEP based on Resource Flows

h i j

u v w

fhuk1
fivk2

(a) Before modification.

h i j

u v w

f ′

uhk1

fivk2

(b) After modification of resource transfer fhuk1 .

h i j

u v w

fhuk1 f ′

vik2

(c) After modification of resource transfer fivk2 .

Figure 7.10: If resource transfers from two or more consecutive operations
of one job to two or more consecutive operations of another
job exist (cf. (a)), reversing either of these resource transfers
always results in a cycle (cf. (b) and (c)).

operations i1 and v1 of the corresponding jobs) or j and w (with iλ → j and
vλ → w being direct successors of operations iλ and vλ of the corresponding
jobs) with resource transfers fhuk > 0 or fjwk > 0 exist for some resource
k ∈ Rsect. Then, a modification in the neighborhood N̂ cons

reverse reverses all

248

7.2 Routing Subproblem

resource transfers between the operations contained in these sets. Finally,
for a modification in the neighborhood N̂ cons,ca

reverse , at least one of the arcs
representing the resource transfers between operations from the sets P and
Q has to be a critical arc.

It should be noted that the size of these neighborhoods is again bounded by
O(n2) for the neighborhood N̂ cons

reverse (i.e. each resource transfer between two
activities can belong to at most one pair of sets P and Q) and O(n) for the
neighborhood N̂ cons,ca

reverse (i.e. for a given critical path, the sets P and Q have
to be calculated for each pair of critical activities at most once). Finally,
we did not further study the connectivity of the different combinations of
neighborhoods that are possible. Based on the results from Section 6.2,
however, all neighborhoods except for the neighborhood N̂3 = N̂reroute ∪
N̂reverse ∪ N̂ cons

reverse can be opt-connected at most.

7.2.3 A Tabu Search Algorithm

In the following, a tabu search algorithm for the routing subproblem is pre-
sented. As described above, this algorithm is called by the tabu search algo-
rithm for the evacuation subproblem in order to generate a complete solution
scompl for a given problem instance based on the best solution s∗relax for the
relaxed problem that has been found since the last time the routing subprob-
lem has been solved. For this, the given solution s∗relax is first transformed
and extended into an initial solution scompl for the routing subproblem. This
is done by replacing each job j ∈ V by the operations u ∈ Vj(m2) repre-
senting the evacuation route corresponding to the route mode m2 ∈Mj2 of
this job that has been used in the evacuation subproblem.

Next, the resource transfers fijk > 0 of resources k ∈ Rtrf between jobs
i ∈ J and j ∈ J are replaced by additional precedence constraints between
the operations. Here, if a resource transfer fijk > 0 of some resource k ∈ Rtrf

exists between jobs i ∈ J and j ∈ J , a precedence constraint u→ v between
the last operation u ∈ V ′out of the selected evacuation route of job i and the
first operation v ∈ V ′in of the selected evacuation route of job j is introduced.
In the AON-flow network, the arcs representing these additional precedence
constraints are weighted with a value corresponding to the longest transfer
time of any resource k ∈ Rtrf transferred between the two jobs as it is
calculated based on inequalities (4.2) to (4.4). These weights are later used
in order to calculate the starting times of the operations based on the lengths
of the longest paths in the AON-flow network.

249

7 A Solution Approach for the HEP based on Resource Flows

Finally, the initial resource transfers of resources k ∈ Rsect between the
operations have to be calculated. For this, all jobs j ∈ J are sorted with
respect to the precedence constraints according to a given priority rule.
Then, each job j ∈ J is considered in this order and resource transfers
from already completed operations to each operation u ∈ Vj(m2) of the
evacuation route corresponding to the selected route mode m2 ∈ Mj2 are
calculated such that no cycles occur in the resulting graph. Here, because
all operations of a job are inserted before operations of another job are
considered and because operations can only be inserted between already
completed operations as well as the dummy end operation n+1, it is always
possible to generate a feasible resource flow (i.e. no deadlocks occur).

Example 7.3 We again consider the problem from Example 4.4 as well as
the resource flow for the evacuation subproblem displayed in Figure 7.2 (cf.
Example 7.1). Based on this resource flow, we now generate an initial solu-
tion for the routing subproblem. For this, in a first step, the jobs 1, 2, and
3 are replaced by the corresponding chains of operations representing the
respective evacuation routes. Additionally, the resource transfers of assis-
tants and aids between the jobs are transformed into additional precedence
constraints between the operations. For example, the resource transfer of
resource 1 from job 3 to job 2 is replaced by a precedence constraint 16→ 7
between the last operation of job 3 and the first operation of job 2.

Next, the initial resource transfers of resources k ∈ Rsect between the oper-
ations have to be calculated. For this, the three jobs are sorted according
to a selected priority rule with respect to the precedence constraints. For
example, we assume that the order 1, 3, 2 is calculated. In this case, resource
transfers to all operations of job 1 are selected for the required building sec-
tions based on a priority rule. Afterward, resource transfers to all operations
of job 3 and finally to all operations of job 2 are selected. As a result of
this, all resource transfers to operations of job 1 originate at the dummy
source operation 0, all resource transfers to operations of job 3 originate at
either the dummy source operation 0 or an operation of job 1 that requires
the same building section, and all resource transfers to operations of job 2
originate at either the dummy source operation 0 or an operation of either
job 1 or 3 that requires the same building section.

A partial AON-flow network displaying both, the precedence constraints
between the operations as well as the resource transfers of resources R3
(room 3), C4 (corridor section 4), and E1 (exit 1) is displayed in Figure
7.11. For the sake of clarity, the remaining resource transfers have been

250

7.2 Routing Subproblem

1
2

3
4

5
6

0
7

8
9

1
0

1
1

1
7

1
2

1
3

1
4

1
5

1
6

3 4 4

0

1
0

4

C
4

C
4

C
4

C
4

R
3

R
3

R
3

E
1

E
1

E
1

F
ig
ur
e
7.
11
:P

ar
ti
al

A
O
N
-fl
ow

ne
tw

or
k
fo
r
th
e
pr
ob

le
m

in
st
an

ce
co
ns
id
er
ed

in
E
xa

m
pl
e
7.
3.

T
he

th
in

ar
cs

be
tw

ee
n
th
e
op

er
at
io
ns

re
pr
es
en
t
pr
ec
ed

en
ce

co
ns
tr
ai
nt
s
w
hi
le

th
e
th
ic
k
ar
cs

re
pr
es
en
t
re
so
ur
ce

tr
an

sf
er
s
of

th
e
bu

ild
in
g
se
ct
io
ns

R
3
(r
oo

m
3)
,
C
4
(c
or
ri
do

r
se
ct
io
n

4)
,
as

w
el
l
as

E
1
(e
xi
t
1)

be
tw

ee
n
th
e
op

er
at
io
ns
.

251

7 A Solution Approach for the HEP based on Resource Flows

omitted from this figure. In this AON-flow network, the precedence con-
straints 0 → 1, 0 → 7, 0 → 12, 6 → 7, 16 → 7, and 11 → 17 represent the
additional precedence constraints that have been calculated based on the
resource flow for the evacuation subproblem displayed in Figure 7.2. These
arcs are weighted with the time required to transfer the respective resources
k ∈ Rtrf between the operations. The arcs visualizing the resource transfers
of resources k ∈ Rsect are labeled with the name of the corresponding re-
source. These arcs are assigned a weight equal to zero in order to calculate
the starting times of the operations based on the lengths of the longest paths
between the operations.

Finally, it should be noted that this AON-flow network represents a com-
plete solution for the problem instance considered in this example. The
corresponding earliest start schedule with the makespan Cmax = 24 is dis-
played in Figure 4.8. 2

After an initial solution scompl has been generated, the tabu search algorithm
tries to generate and evaluate a new solution s′compl in each iteration until
either no new solution s′compl could be generated during an iteration or
until a given stopping condition is satisfied. For this algorithm, we use the
adapted neighborhoods N̂max,ca

reroute , N̂ ca
reverse, and N̂ cons,ca

reverse in order to generate
new solutions s′compl. Additionally, a neighborhood N route

mode is used such that
a modification in this neighborhood changes the route mode m2 ∈ Mj2 of
exactly one job j ∈ J . It should be noted that changing the route modem2 ∈
Mj2 of a job j ∈ J makes it necessary to replace the operations representing
the previous evacuation route of the job by the operations representing the
new evacuation route.

In order to insert operations u ∈ Vj(m2) corresponding to the new route
mode m2 ∈Mj2 of a job j ∈ J , it is first tested if the same building section
k ∈ Rsect has been used by an operation of the same job before the modifi-
cation. If this is the case, it is always possible to redirect all incoming as well
as outgoing resource transfers of resource k from this operation to operation
u. This is due to the fact that each building section k ∈ Rsect is required
by at most one operation of each job (i.e. a patient is not moved through
the same building section more than once during the evacuation) and the
required space is the same both before as well as after the modification (i.e.
the required assistants and aids do not change).

Otherwise, if building section k has not been required by an operation of
the same job before the modification, resource transfers between other op-

252

7.2 Routing Subproblem

erations have to be redirected to operation u as described in Section 6.2.4.
Additionally, resource transfers of building sections k ∈ Rsect from opera-
tions corresponding to the old evacuation route that are no longer required
also have to be redirected, i.e. they can immediately be transferred from
operations that send resource units of resource k to this operation to op-
erations that receive resource units of resource k from this operation. It
should be noted that the tabu search algorithm may not always be able to
repair the graph after the route mode m2 of a job has been changed due to
deadlocks. In this case, the tabu search algorithm has to choose a different
modification based on the current solution scompl.

After a new solution s′compl has been generated, the tabu lists TLadd, TLdrop,
and TLmode are updated based on the modification that has resulted in this
new solution s′compl. As before, these tabu lists are used as described in
Sections 4.2 and 6.3. Additionally, if this solution s′compl is better than
the currently best solution s∗compl (i.e. if c(s′compl) < c(s∗compl) holds), the
currently best solution is replaced by this solution. Finally, the tabu search
terminates after either no new solution s′compl could be generated in an
iteration or after a given stopping condition has been satisfied. In this case,
the best solution s∗compl is returned to the evacuation subproblem and the
algorithm continues as described in Section 7.1.

253

8 Computational Results

In this chapter, we evaluate the performance of the different algorithms
introduced in this thesis. In particular, we test the tabu search algorithm
described in Section 6.3 that has been implemented to solve the RCPSP
with first- and second-tier resource transfers as well as the two solution
approaches for the problem of hospital evacuations outlined in Section 4.2
as well as in Chapter 7, respectively. All of these algorithms have been
implemented in Java and the evaluation has been performed on a computer
with an Intel Core 2 Quad Q6600 (2.4 GHz) processor and 4 GB RAM.

In the following, results for the tabu search algorithm that has been intro-
duced in Section 6.3 are reported in Section 8.1. Here, we primarily report
results for the classical RCPSP as well as the RCPSP with first-tier resource
transfers because problem instances for both of these problems can be ob-
tained and computational results for other heuristics have been published.
On the other hand, for the RCPSP with first- and second-tier resource trans-
fers, neither problem instances nor prior results exist in literature to the best
of our knowledge. For this reason, we have generated our own test data and
compare the results obtained by our algorithm with those obtained by IBM
ILOG CPLEX 12.1 (by the IBM Corporation) based on the mixed-integer
linear programming formulation introduced in Section 5.2.2. Finally, in
Section 8.2, we report results for the solution approaches that have been
implemented in order to solve the problem of hospital evacuations.

8.1 Results for the RCPSP with and without Transfer Times

In this section, we evaluate the performance of the tabu search algorithm
introduced in Section 6.3. Below, computational results for the classical
RCPSP are reported in Section 8.1.1, results for the RCPSP with first-tier
resource transfers are reported in Section 8.1.2, and results for the RCPSP
with first- and second-tier resource transfers are reported in Section 8.1.3.

255

8 Computational Results

8.1.1 Classical RCPSP

In order to evaluate the tabu search algorithm, we solve the four sets of
problem instances for the classical RCPSP consisting of 30, 60, 90, and 120
activities, respectively, as they have been introduced by Kolisch and Sprecher
(1997) and Kolisch et al. (1999). For each of these problem instances, a
total of r = 4 renewable resources are available. Additionally, the network
complexity NC, the resource factor RF , as well as the resource strength
RS have been varied in order to generate these problem instances. These
parameters are described in detail by Kolisch et al. (1995) and determine
the complexity of the problem instances (i.e. they determine how hard
individual instances are to solve). In total, each of the sets of problem
instances consisting of 30, 60, and 90 activities contains 480 instances while
the set of problem instances consisting of 120 activities contains a total of
600 instances. These problem instances are available online at the website
of the project scheduling problem library (PSPLIB, http://www.om-db.wi.
tum.de/psplib/main.html).

The tabu search algorithm used to solve these problem instances has been set
up as follows: First of all, we use the neighborhood N2 = Nmax,ca

reroute ∪N ca
reverse

described in Section 6.2.2 in order to find new solutions. Then, the stopping
condition for the tabu search algorithm is set to 10 000 iterations (i.e. the
tabu search terminates after at most 10 000 iterations have been performed).
It should be noted that this stopping condition differs from the stopping
condition used by Hartmann and Kolisch (2000) and Kolisch and Hartmann
(2006) in their extensive evaluation of heuristics for the RCPSP. Instead,
they use a stopping condition based on the number of partial or complete
schedules generated during the search.

We have opted to use a different stopping condition because individual mod-
ifications in our tabu search algorithm may often have only a limited effect
on the resulting schedule. For example, if resource transfers for all r = 4
resources exist between two activities i ∈ V and j ∈ V , at least four reroute
modifications would be required in order to reroute all of these resource
transfers such that the two activities can be processed in parallel. Addition-
ally, in order to perform these four modifications, a total of four iterations
are required because only one modification per iteration can be selected. At
the same time, the number of modifications that are evaluated in each iter-
ation might be very large due to the size of the neighborhoods (in particular
due to the size of the neighborhood Nmax,ca

reroute). Then, because each of these
modifications is counted as one schedule, the overall number of iterations

256

http://www.om-db.wi.tum.de/psplib/main.html
http://www.om-db.wi.tum.de/psplib/main.html

8.1 Results for the RCPSP with and without Transfer Times

that can be performed before a stopping condition based on the number of
schedules generated during the search is satisfied can be very small. For
example, already for some of the problem instances consisting of 30 oper-
ations, less than 100 iterations are performed for a stopping condition of
5 000 schedules depending on how the schedules are counted.

Next, lmax = 1 elite solutions can be stored at any time during the search.
The algorithm restarts from this elite solution if no improving solution (i.e.
a solution with a smaller makespan than the makespan of the currently
best solution) could be found in the last 750 iterations. If no improving
solution could be found in the last 1 500 iterations, the algorithms restarts
from a new solution as described in Section 6.3. These parameters have
been selected based on some preliminary tests and are used to solve all
problem instances. Finally, the parameters a, b, α, and β used to calculate
tadd and tdrop have been selected independently for each set of problem
instances based on preliminary tests such that two passes are performed
over all problem instances (cf. Table 8.1). Here, only the tabu list TLadd is
used for the first pass while both tabu lists TLadd and TLdrop are used for
the second pass.

n a α b β

30 5 0.3 0 0
60 10 0.1 0 0
90 10 0.4 0 0
120 15 0.1 0 0

(a) Parameter settings 1.

n a α b β

30 4 0.3 3 0.005
60 5 0.1 3 0.01
90 5 0.3 3 0.01
120 10 0.1 3 0.01

(b) Parameter settings 2.

Table 8.1: Parameter settings used to evaluate the problem instances. The
parameters for the first pass if only the tabu list TLadd is used
are displayed in (a) while the parameters for the second pass if
both tabu lists TLadd and TLdrop are used are displayed in (b).

Based on these parameters, we now evaluate the problem instances. The
obtained results are shown in Table 8.2. Similar to the computational study
by Kolisch and Hartmann (2006), we report the average deviation ∆ (in
percent) from the optimal solutions for the problem instances consisting of
30 activities as well as the average deviation ∆ (in percent) from the critical
path lower bounds LB0 for the problem instances consisting of 60, 90, and
120 activities. Furthermore, the average time t (in seconds) required by the

257

8 Computational Results

Iter.
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0
0

1
0

0
0
0

n
∆

[%
]

t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

3
0

4
.2

8
0
.0

2
.3

1
0
.1

1
.7

5
0
.5

1
.5

3
1
.0

0
.8

6
4
.3

0
.6

6
7
.8

6
0

1
7
.3

3
0
.0

1
5
.1

3
0
.9

1
4
.5

2
4
.3

1
4
.2

0
8
.2

1
3
.3

3
3
7
.6

1
3
.0

2
7
3
.1

9
0

1
5
.7

0
0
.0

1
4
.4

4
3
.3

1
4
.0

1
1
4
.6

1
3
.7

9
2
8
.4

1
3
.0

0
1
2
8
.5

1
2
.7

9
2
5
0
.2

1
2
0

4
3
.7

6
0
.0

4
1
.9

8
1
4
.9

4
1
.1

4
6
9
.4

4
0
.7

6
1
3
7
.9

3
8
.9

3
6
5
3
.7

3
8
.3

2
1
2
9
7
.9

(a)
R
esults

for
the

fi
rst

pass
(param

eter
settings

1).

Iter.
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0
0

1
0

0
0
0

n
∆

[%
]

t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

3
0

4
.2

8
0
.0

2
.4

1
0
.1

1
.8

5
0
.5

1
.6

5
1
.0

0
.9

1
4
.4

0
.7

4
8
.2

6
0

1
7
.3

3
0
.0

1
5
.3

2
0
.9

1
4
.6

8
4
.1

1
4
.4

1
8
.0

1
3
.5

1
3
7
.2

1
3
.1

9
7
3
.2

9
0

1
5
.7

0
0
.0

1
4
.5

1
3
.1

1
4
.1

3
1
4
.1

1
3
.9

2
2
7
.5

1
3
.0

7
1
2
8
.7

1
2
.8

3
2
5
3
.0

1
2
0

4
3
.7

6
0
.0

4
2
.0

1
1
4
.3

4
1
.1

8
6
6
.2

4
0
.8

2
1
3
1
.6

3
9
.0

6
6
3
3
.8

3
8
.5

1
1
2
5
4
.7

(b)
R
esults

for
the

second
pass

(param
eter

settings
2).

T
able

8.2:R
esults

obtained
by

the
tabu

search
algorithm

for
the

problem
instances

from
the

P
SP

L
IB

consisting
of

3
0,

6
0,

9
0,

and
1
2
0
activities.

T
he

results
for

the
first

pass
based

on
the

param
eter

settings
from

T
able

8.1(a)
are

reported
in

(a)
w
hile

the
results

for
the

second
pass

based
on

the
param

eter
settings

from
T
able

8.1(b)
are

reported
in

(b).

258

8.1 Results for the RCPSP with and without Transfer Times

tabu search algorithm is displayed. These results are reported after 0, 100,
500, 1 000, 5 000, as well as 10 000 iterations.

In Figure 8.1, we display the average deviation from the optimal solutions
after 0, 100, 500, 1 000, 5 000, as well as 10 000 iterations for the problem
instances consisting of 30 activities during the first pass. It can be seen
that the largest improvements have been achieved during the first 500 iter-
ations. Also, between 1 000 and 5 000 iterations a large improvement can be
observed. Apart from the greater number of iterations since the last mea-
surement, this is also due to the intensification and diversification strategies
used during the tabu search.

0%

1%

2%

3%

4%

5%

0 100 500 1 000 5 000 10 000

b

b

b
b

b
b

* *

A
v
er

a
g
e

D
ev

ia
ti

o
n

Iterations

Figure 8.1: Average deviation from the optimal solutions after 0, 100, 500,
1 000, 5 000, and 10 000 iterations for the problem instances con-
sisting of 30 activities obtained during the first pass based on
the parameter settings from Table 8.1(a). The asterisks mark
the average deviation for the same parameter settings if no in-
tensification and diversification strategies are used.

For comparison, we have solved the problem instances consisting of 30 ac-
tivities without intensification and diversification strategies using the same
parameters as displayed in Table 8.1(a). In this case, the average deviation
after 0, 100, 500, and 1 000 remains the same while it is ∆ = 1.03 % after

259

8 Computational Results

5 000 iterations and only ∆ = 0.89 % after 10 000 iterations. These results
are also displayed in Figure 8.1. It should be noted that similar results can
be observed for the other sets of problem instances (cf. Table 8.2).

Now, we compare our results to other available results. For this, we report
our best results in Table 8.3 and compare them to the best results obtained
by heuristics as they have been reported on the website of the PSPLIB.
In particular, we calculate the average deviation ∆best (in percent) of the
best solutions obtained in either the first or the second pass as described
above and compare it to the average deviation ∆heur (in percent) of the best
heuristic solutions reported on the website of the PSPLIB. As before, the
average deviation is calculated from the optimal solutions for the problem
instances consisting of 30 activities as well as from the critical path lower
bounds LB0 for the problem instances consisting of 60, 90, and 120 activities.
Apart from these results, we also report the number opt of problem instances
for which an optimal solution could be found. Here, a solution is referred
to as being optimal if its makespan is either equal to the makespan of the
optimal solution for problem instances consisting of 30 activities or if the
makespan is equal to the best known lower bound (as reported on the website
of the PSPLIB) for the remaining sets of problem instances.

n ∆best [%] opt ∆heur [%] opt

30 0.58 401 0.00 480
60 12.85 345 10.37 431
90 12.54 340 9.48 402
120 37.85 171 29.18 291

Table 8.3: Average deviation ∆best of the best solution obtained in either
the first or the second pass. These values are compared to the
average deviation ∆heur of the best solutions obtained by heuris-
tic algorithms as reported on the website of the PSPLIB. The
number opt denotes the number of problem instances for which
the solution could be proved to be optimal.

It should be noted that here as well as in the following tables, we will gener-
ally not compare the computational times required by different algorithms
because these algorithms have been used on different systems using different
stopping conditions. It is likely, however, that our algorithm requires a sim-
ilar or longer computational time in order to solve the problem instances.
On the one hand, this is due to the size of the neighborhood Nmax,ca

reroute which

260

8.1 Results for the RCPSP with and without Transfer Times

depends on the number of resource transfers between activities that can be
adapted. On the other hand, evaluating a single modification in the neigh-
borhood N ca

reverse is bounded by O(n3) because the lengths of the longest
paths between the activities have to be calculated. In contrast to this, the
time complexity for generating a schedule for a given activity list based on a
schedule generation scheme is bounded by O(n2r) for the classical RCPSP
(cf. Section 3.2.3). As described above, this is the approach employed in the
majority of heuristics that have been developed for the classical RCPSP.

In can be seen in Table 8.3 that our results are worse (up to almost 9 %
for the instances consisting of 120 activities) than the best results reported
on the website of the PSPLIB for all sets of problem instances. It should
be noted, however, that these results have been obtained by a multitude of
different heuristics. For this reason, we now compare our results to those
of individual algorithms as they are listed by Kolisch and Hartmann (2006)
in their computational study. A selection of these results for the problem
instances consisting of 30, 60, and 120 activities is given in Table 8.4.

As this comparison reveals, the results obtained by our algorithm are worse
than those obtained by state-of-the-art algorithms specifically designed for
the classical RCPSP. Indeed, even the sampling method used by Tormos
and Lova (2003) with a stopping condition of 1 000 schedules is able to
obtain better results than our algorithm. This algorithm generates schedules
using either the parallel or the serial schedule generation scheme and then
improves the solution by either forward-backward improvement passes or
backward-forward improvement passes. On the other hand, some of the
earlier heuristics that do not employ forward-backward improvement (e.g.
the tabu search algorithm introduced by Baar et al. (1998) or the sampling
methods evaluated by Kolisch (1996a,b)) obtain similar results.

Next, we compare the results obtained by our algorithm to those obtained
by the tabu search algorithm introduced by Artigues et al. (2003). As de-
scribed in Section 3.2.3, solutions in this tabu search algorithm are also
represented by resource flows. Based on this solution representation, they
use modifications that remove individual activities from a resource flow and
then reinsert them into the resource flow. As described by Artigues et al.
(2003), the algorithm terminates after at most 5 000 iterations without an
improvement of the best solution for the problem instances consisting of 60
activities as well as after at most 11 000 iterations without an improvement
of the best solution for the problem instances consisting of 120 activities.
Based on these settings, they report an average deviation of ∆ = 12.05 %

261

8 Computational Results

Approach Reference 1 000 5 000 50 000

GA, TS Kochetov and Stolyar (2003) 0.10 0.04 0.00
SS Debels et al. (2006) 0.27 0.11 0.01
GA Valls et al. (2008) 0.27 0.06 0.02
Sampling Tormos and Lova (2003) 0.25 0.13 0.05
TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05
TS Baar et al. (1998) 0.86 0.44 -

(a) Results for the problem instances consisting of 30 activities.

Approach Reference 1 000 5 000 50 000

SS Debels et al. (2006) 11.73 11.10 10.71
GA Valls et al. (2008) 11.56 11.10 10.73
GA, TS Kochetov and Stolyar (2003) 11.71 11.17 10.74
Sampling Tormos and Lova (2003) 11.88 11.62 11.36
TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58
TS Baar et al. (1998) 13.80 13.48 -

(b) Results for the problem instances consisting of 60 activities.

Approach Reference 1 000 5 000 50 000

GA Valls et al. (2008) 34.07 32.54 31.24
SS Debels et al. (2006) 35.22 33.10 31.57
GA, TS Kochetov and Stolyar (2003) 34.74 33.36 32.06
Sampling Tormos and Lova (2003) 35.01 34.41 33.71
TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85

(c) Results for the problem instances consisting of 120 activities.

Table 8.4: A selection of results for the problem instances as they have been
obtained by other heuristic algorithms (cf. Kolisch and Hartmann
(2006)). Here, the average deviation (in percent) from the opti-
mal solutions for the problem instances consisting of 30 activities
is reported in (a), the average deviation (in percent) from the crit-
ical path lower bounds LB0 for the problem instances consisting
of 60 activities is reported in (b), and the average deviation (in
percent) from the critical path lower bounds LB0 for the prob-
lem instances consisting of 120 activities is reported in (c). These
results are reported after a maximum of 1 000, 5 000, and 50 000
schedules have been generated.

262

8.1 Results for the RCPSP with and without Transfer Times

from the critical path lower bounds for the problem instances consisting of
60 activities as well as an average deviation of ∆ = 36.16 % from the critical
path lower bounds for the problem instances consisting of 120 activities.

Thus, also this algorithm obtains better results than our algorithm. As
before, however, it should be noted that this algorithm has been specifically
designed for the classical RCPSP. In particular, activities are reinserted in
optimal positions in relation to the current resource flow. As described in
Section 6.2.2, the same property could not be ensured in polynomial time
for the RCPSP with first- and second-tier resource transfers because the
problem of selecting incoming (first- and second-tier) resource transfers to
an activity is NP-hard.

Finally, we take a closer look at problem instances that are hard to solve.
Here, problem instances with a large resource factor RF and a small re-
source strength RS are particularly hard to solve (cf. Hartmann and Kolisch
(2000)). For these problem instances, a large resource factor RF indicates
that the real activities require a large portion of the available resource types
(i.e. a resource factor RF = 1 denotes that each real activity i ∈ V has re-
source requirements rik > 0 for every resource k ∈ R) while a small resource
strength RS indicates that the available resources are scarce in relation to
the resource requirements of the activities (i.e. a resource strength RS = 0
for a resource k ∈ R denotes that rik = Rk holds for the resource require-
ments of a real activity i ∈ V).

In Table 8.5, we report the average deviation ∆best (in percent) of the best
solution obtained during either the first or the second pass of our algorithm
for the problem instances with a resource factor RF < 1.0 and a resource
strength RS > 0.3 as well as for the problem instances with a resource factor
RF < 0.75 and a resource strength RS > 0.3, respectively. In the former
case, the sets of problem instances consisting of 30, 60, and 90 activities
contain a total of 450 instances while the set of problem instances consisting
of 120 activities contains a total of 510 instances. In the latter case, all four
sets of problem instances contain a total of 420 instances. As before, we
compare our results to the average deviation ∆heur (in percent) of the best
solutions obtained by heuristic algorithms as reported on the website of the
PSPLIB. In both cases, the average deviation is calculated from the optimal
solutions for the problem instances consisting of 30 activities as well as from
the critical path lower bounds LB0 for the problem instances consisting
of 60, 90, and 120 activities. Finally, we again report the number opt of
problem instances for which the solution could be proved to be optimal.

263

8 Computational Results

As can be seen in this table, the results for problem instances with a smaller
resource factor RF and a larger resource strength RS are better than those
reported in Table 8.3 where all problem instances have been considered.
This is due to the considerable influence these two parameters have on the
solution space. On the one hand, the resource factor RF influences the
number of resource types required by the real activities. Here, for a large
resource factor RF , the activities require multiple types of resources in order
to be processed. As a result of this, more resource transfers exist between
the activities and the size of the solution space is increased.

n ∆best [%] opt ∆heur [%] opt

30 0.32 398 0.00 450
60 8.22 345 6.60 431
90 8.34 340 6.05 402
120 28.00 171 20.68 290

(a) RF < 1.0 and RS > 0.3.

n ∆best [%] opt ∆heur [%] opt

30 0.15 390 0.00 420
60 4.57 345 3.72 419
90 4.32 340 2.97 402
120 17.49 171 12.28 289

(b) RF < 0.75 and RS > 0.3.

Table 8.5: The results obtained by our algorithm as well as the best results
obtained by heuristic algorithms as reported on the website of the
PSPLIB for the problem instances with a resource factor RF <
1.0 and a resource strength RS > 0.3 are given in (a) while the
results for a resource factor RF < 0.75 and a resource strength
RS > 0.3 are given in (b).

On the other hand, the resource strength RS influences the tightness of
the resource constraints. Here, for a large resource strength RS, it is more
likely that activities can be started as early as possible with respect to the
given precedence constraints (i.e. a schedule generation scheme is generally
already able to obtain good solutions) while a small resource strength RS
makes this less likely. In particular, the order in which activities are pro-
cessed by the available resource units is very important in order to obtain a
good solution for problem instances with a small resource strength RS.

264

8.1 Results for the RCPSP with and without Transfer Times

As a result of this, the problem instances with a large resource factor RF as
well as a small resource strength RS are particularly hard to solve for our
algorithm because the number of resource transfers between the activities
in the resource flow is generally larger than for a smaller resource factor
RF (i.e. the size of the solution space is increased) and the order in which
activities are processed by the available resource units is more important in
order to obtain a good solution (i.e. very specific modifications are required
in order to obtain a good solution). While the same problem also applies for
other heuristic algorithms (cf. Hartmann and Kolisch (2000)), it does not
increase the size of the solution space for heuristics that represent solutions
as activity lists.

8.1.2 RCPSP with First-Tier Resource Transfers

In this section, we evaluate the performance of the tabu search algorithm
for problem instances of the RCPSP with first-tier resource transfers. For
this, we use the extended sets of problem instances consisting of 30 as well
as 60 activities as they have been generated by Krüger and Scholl (2009).
These sets of problem instances have been generated as follows.

First of all, Krüger and Scholl (2009) have tried to solve as many problem
instances as possible from the sets of problem instances consisting of 30 as
well as 60 activities that can be obtained from the website of the PSPLIB for
the classical RCPSP (i.e. the same problem instances that have been used
above). For this, they have used a branch-and-bound algorithm with a time
limit of 3 600 s. Here, optimal solutions could be obtained for all problem
instances consisting of 30 activities as well as for 400 problem instances
consisting of 60 activities. These problem instances have then been extended
by symmetric transfer times ∆ijk = ∆jik between all pairs of activities
i, j ∈ V as well as for all resources k ∈ R such that the triangle inequality
∆hik +∆ijk ≥ ∆hjk holds for these transfer times and the optimality of the
solution found by the branch-and-bound algorithm as well as the makespan
of this solution are retained in the extended problem instance.

Now, in order to evaluate these problem instances, we use the same settings
for our tabu search algorithm as they have been described in Section 8.1.1.
In particular, we again perform two passes over the problem instances based
on the parameters given in Table 8.1. The results obtained by our algorithm
are reported in Table 8.6. As before, we report the average deviation ∆ (in
percent) from the optimal solutions as well as the average time t (in seconds)

265

8 Computational Results

Iter.
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0
0

1
0

0
0
0

n
∆

[%
]

t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

3
0

8
.2

7
0
.0

4
.0

8
0
.1

3
.0

0
0
.6

2
.6

5
1
.1

1
.5

2
4
.8

1
.2

7
8
.8

6
0

5
.7

9
0
.0

2
.7

2
0
.5

1
.9

4
2
.3

1
.6

6
4
.3

1
.1

4
1
7
.3

0
.9

8
3
1
.8

(a)
R
esults

for
the

fi
rst

pass
(param

eter
settings

1).

Iter.
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0
0

1
0

0
0
0

n
∆

[%
]

t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

∆
[%

]
t
[s]

3
0

8
.2

7
0
.0

3
.9

5
0
.1

3
.0

7
0
.6

2
.6

6
1
.1

1
.5

9
4
.9

1
.3

0
9
.1

6
0

5
.7

9
0
.0

2
.7

5
0
.5

2
.0

9
2
.3

1
.8

9
4
.4

1
.3

5
1
9
.8

1
.2

1
3
7
.4

(b)
R
esults

for
the

second
pass

(param
eter

settings
2).

T
able

8.6:R
esults

obtained
by

the
tabu

search
algorithm

for
the

problem
instances

consisting
of

3
0
as

w
ell

as
6
0
activities

that
have

been
extended

by
K
rüger

and
Scholl

(2009)
for

the
R
C
P
SP

w
ith

first-tier
resource

transfers.
T
he

results
for

the
first

pass
based

on
the

param
eter

settings
from

T
able

8.1(a)
are

reported
in

(a)
w
hile

the
results

for
the

second
pass

based
on

the
param

eter
settings

from
T
able

8.1(b)
are

reported
in

(b).
It

should
be

noted
that

the
average

deviation
∆

is
calculated

from
the

optim
alsolutions

for
both

sets
of

problem
instances.

266

8.1 Results for the RCPSP with and without Transfer Times

required by the tabu search algorithm after 0, 100, 500, 1 000, 5 000, and
10 000 iterations. It should be noted that here, the optimal solutions are
known for both sets of problem instances.

In Table 8.7, we now compare the average deviation ∆best (in percent) of the
best solutions obtained by our algorithm during either the first or the second
pass to the results obtained by other heuristic solution approaches. Here,
we can only compare our results to those reported by Krüger and Scholl
(2009) as well as Krüger (2009) because no further results for these problem
instances have been reported to the best of our knowledge. In particular,
we compare our results to the average deviation ∆SGS (in percent) obtained
by a multi-pass heuristic as well as to the average deviation ∆GA (in per-
cent) obtained by a genetic algorithm as they have been reported by Krüger
(2009). Here, for the multi-pass heuristic, she uses both the serial as well
as the parallel schedule generation scheme with forward-backward improve-
ment as well as all possible combinations of priority rules (both, priority
rules to select activities as well as priority rules to select resource transfers)
in order to solve the problem instances. The best solutions obtained by
any of these combinations are then used in order to calculate the average
deviation ∆SGS . Finally, the genetic algorithm is a one-gene self adapting
algorithm for which both, the activity list as well as the schedule generation
scheme used to transform an activity list into a schedule can be modified.
For this algorithm, the results are reported for a stopping condition of 5 000
schedules.

n ∆best [%] opt ∆SGS [%] opt ∆GA [%] opt

30 1.10 382 1.63 322 0.16 459
60 0.82 339 1.61 284 0.38 355

Table 8.7: Average deviation ∆best of the best solution obtained by our al-
gorithm during either the first or the second pass. These results
are compared to the average deviation ∆SGS obtained by a multi-
pass heuristic as well as the average deviation ∆GA obtained by a
genetic algorithm as they have been reported by Krüger (2009).

As can be seen here, the results obtained by our algorithm are again worse
than the results obtained by the genetic algorithm introduced by Krüger
(2009). The difference is particularly large for the problem instances con-
sisting of 30 activities for which our algorithm is on average 1 % worse than
the genetic algorithm. As before, this is due to the fact that problem in-

267

8 Computational Results

stances with a large resource factor RF as well as a small resource strength
RS are particularly hard to solve for our algorithm. Here, in Table 8.8, we
report the average deviation ∆best (in percent) of the best solution obtained
by our algorithm during either the first or the second pass over the 30 hard
problem instances with transfer times consisting of 30 activities with a re-
source factor RF = 1.0 and a resource strength RS = 0.2. We compare
these results to the average deviation ∆sampl (in percent) as well as the
average deviation ∆GA (in percent) obtained by either a random sampling
procedure or by a one-gene self adapting genetic algorithm as they have
been reported by Krüger (2009) for a stopping condition of 5 000 schedules.

∆best [%] opt ∆sampl [%] opt ∆GA [%] opt

6.3 3 5.41 1 1.03 22

Table 8.8: The results obtained by our algorithm as well as the results ob-
tained by a random sampling procedure and a genetic algorithm
as they have been reported by Krüger (2009) for the 30 hard
problem instances consisting of 30 activities with a resource fac-
tor RF = 1.0 and a resource strength RS = 0.2.

These results highlight the problem of our algorithm to solve hard problem
instances with a large resource factor RF and a small resource strength RS.
In particular, even the random sampling method obtains a better average
deviation than our algorithm (with a difference of almost 1 %). At the same
time, it can be seen in Table 8.7 that the results obtained by our algorithm
for the problem instances consisting of 60 activities are better than those
obtained by the multi-pass heuristic and less than 0.5 % worse than those
obtained by the genetic algorithm. This is due to the fact that a lot of the
hard problem instances are not contained in this set of problem instances.
Thus, as already stated in Section 8.1.1, our algorithm is able to obtain good
results for problem instances with a smaller resource factor RF and a larger
resource strength RS.

8.1.3 RCPSP with First- and Second-Tier Resource Transfers

In order to evaluate the performance of the tabu search algorithm for the
RCPSP with first- and second-tier resource transfers, we first have to gener-
ate problem instances for this problem because no problem instances exist

268

8.1 Results for the RCPSP with and without Transfer Times

in literature to the best of our knowledge. For this, we have first gener-
ated problem instances for the classical RCPSP using the project schedul-
ing problem instance generator (ProGen) introduced by Kolisch et al. (1995)
and available on the website of the PSPLIB. These problem instances have
then been extended into problem instances for the RCPSP with first- and
second-tier resource transfers by generating support requirements and trans-
fer times for these instances as described below.

First of all, we have generated a total of 24 problem instances for the classical
RCPSP using the instance generator ProGen. For this, we have used similar
base parameter settings as those used by Kolisch and Sprecher (1997) for the
single-mode problem instances for the classical RCPSP consisting of 30 and
60 activities. In particular, r = 4 renewable resources are available such that
each activity requires between Umin = 1 and Umax = 10 units of between
Qmin = 1 and Qmax = 4 of these resources. Furthermore, each activity
i ∈ V is assigned a processing time between pmini = 1 and pmaxi = 10. We
have generated two sets of problem instances consisting of 10 as well as 20
real activities using the combinations of network complexity NC, resource
factor RF , and resource strength RS given in Table 8.9.

NC RF RS

1 1.5 0.5 0.2
2 1.5 0.5 0.5
3 1.5 0.5 0.7
4 1.5 1.0 0.2
5 1.5 1.0 0.5
6 1.5 1.0 0.7

Table 8.9: Combinations of network complexity NC, resource factor RF ,
and resource strength RS used to generate the problem instances
for the RCPSP with first- and second-tier resource transfers.

For each of these combinations of parameters, we have generated two prob-
lem instances. In the following, we use the same naming conventions as
those used by Kolisch and Drexl (1997) for these problem instances. Then,
the first problem instance for parameter combination 3 consisting of 20 ac-
tivities is referred to as problem instance j203_1 while the second problem
instance for this parameter combination consisting of 20 activities is referred
to as j203_2.

269

8 Computational Results

Next, we extended these problem instances by support requirements. For
this, we first define the set Rsa = {1, 2} of resources that can be used
to support the transfer of other resources as well as the set Rru = {3, 4}
of resources that require supporting resources. Now, we scale down the
resource availabilities and resource requirements for resources l ∈ Rru by a
factor σ = 3 to Rl = dRl/σe and ril = dril/σe for all real activities i ∈ V .
Afterward, we randomly choose support requirements µkl for k = 1, 2 and
l = 3, 4 such that the following conditions are fulfilled. First of all, it has
to be ensured that µkl > 0 holds for at least one resource k ∈ Rsa for each
resource l ∈ Rru. Otherwise, no supporting resources would be required for
the transfer of resource l. Additionally, it has to be ensured that∑

l∈Rru

µkl ·Rl ≤ Rk

holds for each resource k ∈ R. In particular, this latter condition ensures
that it is still possible to satisfy all support requirements of resources l ∈ Rru

if all units of these resources are required by an activity.

Finally, we extended the problem instances by transfer times. Here, we set
∆0jk = 0 for the transfer time of resource k ∈ R from dummy source activity
0 to all activities j ∈ Vall and ∆i,n+1,k = 0 for the transfer time of resource
k ∈ R from all activities i ∈ Vall to dummy sink activity n+1. The remaining
transfer times ∆ijk for resources k ∈ R between real activities i ∈ V and
j ∈ V have to be chosen such as to fulfill the following conditions. First of
all, ∆iik = 0 has to hold for the transfer time of resource k ∈ R from each
activity i ∈ V to itself. Then, the triangle inequality∆hik+∆ijk ≥ ∆hjk has
to hold for all transfer times of resource k ∈ R between activities h, i, j ∈ V .
Finally, ∆ijk ≤ ∆ijl has to hold for the transfer of resources k ∈ Rsa and
l ∈ Rru between activities i ∈ V and j ∈ V if µkl > 0 holds for the amount
of resource units of resource k required to support the transfer of resource l.

In order to generate these transfer times, we have generated random pairs of
values (xi, yi) with 0 ≤ xi, yi ≤ 4 for each activity i ∈ V . Additionally, we
have generated four random values δk ∈]0, 1] (with k = 1,2,3,4) and sorted
these according to increasing numbers. Then we have calculated transfer
times

∆ijk = min
{

5,
⌈
δk ·

√
(xi − xj)2 + (yi − yj)2

⌉}
for all resources k ∈ R between all pairs of activities i ∈ V and j ∈ V . This
ensures that all conditions listed above are satisfied for the generated transfer

270

8.1 Results for the RCPSP with and without Transfer Times

times. All transfer times generated here take values between ∆min = 0 and
∆max = 5. At the same time, however, only a small portion of these transfer
times are equal to zero because values are generally rounded up to the next
integer value.

Now, we evaluate the performance of our tabu search algorithm based on
these problem instances. For this, we use the neighborhood Ñ4 = Ñmax,ca

reroute ∪
Ñreverse as it has been introduced in Section 6.2.4. The base parameter
settings (i.e. the stopping condition as well as the parameters related to
the intensification and diversification strategies) are the same as described
in Section 8.1.1. Finally, we perform only one pass using the parameters a,
b, α, and β given in Table 8.10. These parameters have again been selected
based on some preliminary tests.

n a α b β

10 5 0.2 2 0.0
20 7 0.2 3 0.0

Table 8.10: Parameter settings for parameters a, b, α, and β used to evaluate
the problem instances.

In order to compare the results obtained by our algorithm, we have modeled
all problem instances as mixed-integer linear programs (cf. Section 5.2.2 for
the mixed-integer linear programming formulation) using the Zimpl model-
ing language (cf. Koch (2004), made available by the Zuse Institute Berlin)
and solve them using IBM ILOG CPLEX 12.1 with a time limit of 3 600 s.
The results obtained by both our algorithm as well as CPLEX for the prob-
lem instances consisting of 10 activities are reported in Table 8.11 while the
results for the problem instances consisting of 20 activities are reported in
Table 8.12. Here, apart from reporting the makespan obj obtained for each
problem instance as well as the required time t (in seconds), we also report
the deviation ∆ (in percent) from the best lower bound LB that has been
found by CPLEX.

Now, we first consider the results for the problem instances consisting of
10 activities. Here, CPLEX has been able to obtain optimal solutions for
9 problem instances and feasible solutions for 2 more problem instances
(i.e. only for one problem instance, no feasible solution could be generated
within the time limit). In comparison to this, our algorithm could only find
optimal solutions for 6 problem instances within 10 000 iterations. It should

271

8 Computational Results

C
P
L
E
X

0
1

0
0
0

1
0

0
0
0

Inst.
L
B

obj
∆

[%
]

t
[s]

obj
∆

[%
]

t
[s]

obj
∆

[%
]

t
[s]

obj
∆

[%
]

t
[s]

j1
0
1_

1
5
4
∗

5
4

0
.0

0
1
1
3
.4

6
8

2
5
.9

3
0
.0

5
9

9
.2

6
2
.2

5
4

0
.0

0
1
0
.0

j1
0
1_

2
4
4
∗

4
4

0
.0

0
4
.9

5
1

1
5
.9

1
0
.0

4
9

1
1
.3

6
0
.5

4
9

1
1
.3

6
5
.1

j1
0
2_

1
2
9
∗

2
9

0
.0

0
1
5
.0

3
3

1
3
.7

9
0
.0

2
9

0
.0

0
0
.8

2
9

0
.0

0
8
.7

j1
0
2_

2
3
8
∗

3
8

0
.0

0
3
.9

4
7

2
3
.6

8
0
.0

3
8

0
.0

0
0
.6

3
8

0
.0

0
6
.5

j1
0
3_

1
3
6
∗

3
6

0
.0

0
2
.7

4
3

1
9
.4

4
0
.0

3
6

0
.0

0
0
.4

3
6

0
.0

0
4
.7

j1
0
3_

2
2
7
∗

2
7

0
.0

0
1
.6

3
4

2
5
.9

3
0
.0

2
7

0
.0

0
0
.6

2
7

0
.0

0
6
.0

j1
0
4_

1
4
0

−
−

3
6
0
0
.0

6
7

6
7
.5

0
0
.0

6
5

6
2
.5

0
1
.4

6
5

6
2
.5

0
1
3
.0

j1
0
4_

2
4
1

6
4

5
6
.1

0
3
6
0
0
.0

6
8

6
5
.8

5
0
.0

6
7

6
3
.4

1
1
.3

6
1

4
8
.7

8
1
3
.4

j1
0
5_

1
3
1
∗

3
1

0
.0

0
1
2
4
5
.2

3
8

2
2
.5

8
0
.0

3
2

3
.2

3
1
.7

3
1

0
.0

0
1
6
.3

j1
0
5_

2
3
9

4
4

1
2
.8

2
3
6
0
0
.0

4
6

1
7
.9

5
0
.0

4
4

1
2
.8

2
1
.4

4
4

1
2
.8

2
1
5
.0

j1
0
6_

1
3
4
∗

3
4

0
.0

0
3
5
4
.2

3
5

2
.9

4
0
.0

3
5

2
.9

4
1
.5

3
5

2
.9

4
1
5
.9

j1
0
6_

2
3
2
∗

3
2

0
.0

0
1
1
3
6
.4

3
6

1
2
.5

0
0
.0

3
3

3
.1

3
1
.8

3
3

3
.1

3
1
7
.0

2
6
.1

7
0
.0

1
4
.0

4
1
.2

1
1
.7

9
1
1
.0

T
able

8.11:R
esults

for
the

problem
instances

consisting
of

1
0
activities

as
they

have
been

obtained
by

both
C
P
L
E
X

12.1
w
ithin

a
tim

e
lim

it
of

3
6
0
0
s
as

w
ell

as
by

our
tabu

search
algorithm

after
0,

1
0
0
0,

and
1
0

0
0
0
iterations.

A
part

from
the

m
akespan

obj
and

the
required

tim
e
t
(in

seconds),w
e
report

the
deviation

∆
(in

percent)
from

the
best

low
er

bound
L
B

that
has

been
found

by
C
P
L
E
X
.If

the
low

er
bound

L
B

for
a
problem

instance
could

be
proved

to
be

optim
al,it

has
been

m
arked

w
ith

an
asterisk.

272

8.1 Results for the RCPSP with and without Transfer Times

C
P
L
E
X

0
1

0
0
0

1
0

0
0
0

In
st
.

L
B

ob
j

∆
[%

]
t
[s
]

ob
j

∆
[%

]
t
[s
]

ob
j

∆
[%

]
t
[s
]

ob
j

∆
[%

]
t
[s
]

j2
0
1
_

1
3
7

7
7

1
0
8
.1

1
3
6
0
0
.0

7
1

9
1
.8

9
0
.0

6
4

7
2
.9

7
7
.1

6
2

6
7
.5

7
6
4
.4

j2
0
1
_

2
4
6

−
−

3
6
0
0
.0

8
4

8
2
.6

1
0
.0

7
7

6
7
.3

9
5
.6

6
7

4
5
.6

5
5
5
.6

j2
0
2
_

1
4
5

−
−

3
6
0
0
.0

7
6

6
8
.8

9
0
.0

6
7

4
8
.8

9
7
.4

6
3

4
0
.0

0
7
2
.0

j2
0
2
_

2
4
4

6
1

3
8
.6

4
3
6
0
0
.0

6
2

4
0
.9

1
0
.0

5
8

3
1
.8

2
6
.9

5
6

2
7
.2

7
6
8
.3

j2
0
3
_

1
4
4

5
5

2
5
.0

0
3
6
0
0
.0

6
2

4
0
.9

1
0
.0

5
5

2
5
.0

0
8
.5

5
4

2
2
.7

3
8
5
.5

j2
0
3
_

2
4
4

4
9

1
1
.3

6
3
6
0
0
.0

6
0

3
6
.3

6
0
.0

5
0

1
3
.6

4
7
.6

4
9

1
1
.3

6
7
2
.5

j2
0
4
_

1
4
4

−
−

3
6
0
0
.0

1
1
1

1
5
2
.2

7
0
.0

1
0
9

1
4
7
.7

3
9
.0

1
0
9

1
4
7
.7

3
8
9
.7

j2
0
4
_

2
3
5

−
−

3
6
0
0
.0

7
2

1
0
5
.7

1
0
.0

7
0

1
0
0
.0

0
1
2
.5

6
8

9
4
.2

9
1
1
9
.4

j2
0
5
_

1
4
5

−
−

3
6
0
0
.0

8
0

7
7
.7

8
0
.0

7
6

6
8
.8

9
9
.4

7
2

6
0
.0

0
9
8
.7

j2
0
5
_

2
4
1

−
−

3
6
0
0
.0

6
8

6
5
.8

5
0
.0

6
6

6
0
.9

8
1
1
.2

6
4

5
6
.1

0
1
2
0
.2

j2
0
6
_

1
3
1

−
−

3
6
0
0
.0

4
7

5
1
.6

1
0
.0

4
4

4
1
.9

4
1
1
.8

4
4

4
1
.9

4
1
2
1
.4

j2
0
6
_

2
3
3

−
−

3
6
0
0
.0

5
2

5
7
.5

8
0
.0

4
8

4
5
.4

5
1
1
.4

4
6

3
9
.3

9
1
1
0
.4

7
2
.7

0
0
.0

6
0
.3

9
9
.0

5
4
.5

0
8
9
.8

T
ab

le
8.
12
:R

es
ul
ts

fo
r
th
e
pr
ob

le
m

in
st
an

ce
s
co
ns
is
ti
ng

of
2
0
ac
ti
vi
ti
es

as
th
ey

ha
ve

be
en

ob
ta
in
ed

by
bo

th
C
P
L
E
X

12
.1

w
it
hi
n
a
ti
m
e
lim

it
of

3
6
0
0
s
as

w
el
l
as

by
ou

r
ta
bu

se
ar
ch

al
go
ri
th
m

af
te
r

0
,

1
0
0
0
,

an
d

1
0

0
0
0
it
er
at
io
ns
.
A
pa

rt
fr
om

th
e
m
ak
es
pa

n
ob
j
an

d
th
e
re
qu

ir
ed

ti
m
e
t
(i
n
se
co
nd

s)
,w

e
re
po

rt
th
e
de

vi
at
io
n
∆

(i
n
pe

rc
en
t)

fr
om

th
e
be

st
lo
w
er

bo
un

d
L
B

th
at

ha
s
be

en
fo
un

d
by

C
P
L
E
X
.H

er
e,

no
ne

of
th
e
so
lu
ti
on

s
(a
nd

he
nc
e
no

ne
of

th
e
lo
w
er

bo
un

ds
)
co
ul
d
be

pr
ov
ed

to
be

op
ti
m
al
.

273

8 Computational Results

be noted, however, that the deviation of the makespan obtained by our
algorithm for problem instances j106_1 and j106_2 from the makespan of
the optimal solution is only one time unit. At the same time, our algorithm
could generate better solutions for the problem instances that CPLEX has
been unable to solve to optimality. As before, it can be noted that problem
instances with a large resource factor RF and a small resource strength RS
are especially hard to solve for both CPLEX as well as our algorithm. In
particular, this can be seen for problem instances with a resource factor
RF = 1.0 (i.e. if rik > 0 for all k ∈ R holds for all real activities i ∈ V).

Next, we consider the results for the problem instances consisting of 20
activities. Here, CPLEX has been unable to find an optimal solution for any
problem instance. Moreover, CPLEX could only obtain feasible solutions
for 4 of the problem instances within the time limit. On the other hand,
our algorithm could obtain and improve feasible solutions for all problem
instances. In particular, it should be noted that the solution obtained by
our algorithm is always better or at least as good as the solution obtained
by CPLEX.

Based on these results, we can see that our algorithm is able to obtain good
results for the RCPSP with first- and second-tier resource transfers also for
larger problem instances. Furthermore, the tabu search algorithm has been
able to improve the average deviation of the makespan of the initial solutions
generated by the parallel schedule generation from the lower bounds LB by
more than 15 % within 10 000 iterations for both sets of problem instances.
This is a much larger improvement than for any of the sets of problem
instances considered in Sections 8.1.1 and 8.1.2 and implies that the schedule
generation scheme is not able to generate good solutions for the RCPSP with
first- and second-tier resource transfers based on priority rules.

Finally, we consider the computational time required by our algorithm. It
can be seen that the average time required to perform 10 000 iterations for
the problem instances consisting of 10 activities is already very large with
tavg = 11 s. The reason for this is twofold. On the one hand, redirect-
ing resource transfers of resources l ∈ Rru that require supporting resources
requires more computational time than for resources that do not require sup-
porting resources because apart from modifying the corresponding resource
transfers, it is also necessary to redirect supporting resource transfers and
possibly to repair the graph as described in Section 6.2.4. More impor-
tantly, however, the number of resource transfers between the activities can
be much larger for the RCPSP with first- and second-tier resource transfers

274

8.2 Results for the Problem of Hospital Evacuations

than for either the classical RCPSP or the RCPSP with first-tier resource
transfers. In particular, while at most one resource transfer of a resource
k ∈ R can exist between two activities h ∈ V0 and j ∈ V∗ for the latter two
problems, up to 2 + 2n · |Rru| resource transfers of a resource k ∈ Rsa can
exist between two activities h ∈ V0 and j ∈ V∗ for the RCPSP with first-
and second-tier resource transfers (i.e. two first-tier resource transfers from
either the start or the end of activity h to activity j as well as 2n · |Rru|
second-tier resource transfers from either the start or the end of activity
h that support the transfer of a resource l ∈ Rru from activity i ∈ V0 to
activity j). This has a large impact on the number of reroute modifications
in the neighborhood Nmax,ca

reroute that have to be evaluated in each iteration.

8.2 Results for the Problem of Hospital Evacuations

In this section, we evaluate the performance of the two solution approaches
for the problem of hospital evacuations that have been introduced in Section
4.2 as well as in Chapter 7, respectively. For this, in Section 8.2.1, we first
describe how test data for this problem has been generated. Afterward,
in Section 8.2.2, the computational results obtained for this test data are
reported.

8.2.1 Generation of Test Data

In this section, we describe how the test data for the problem of hospital
evacuations has been generated. First of all, we consider the infrastructure
of the hospital itself. Here, we have been able to obtain floor plans for the
Asklepios Harzklinik Goslar, a hospital for acute care services in the city of
Goslar that is providing a total of 331 beds. Due to the size of the hospital,
we have opted to only model a part of it for the tests performed in this
section. In particular, we have modeled the third floor of the hospital which
is consisting of a total of 34 sick rooms. In the following, between one and
four patients can be accommodated in each sick room such that a maximum
of 73 patients can be placed in these sick rooms at any time. Here, the
actual number of beds per sick room could also be obtained from the floor
plan. Finally, two elevators as well as five stairs have been modeled while
another two elevators as well as another stair have been omitted from the
model. A rough sketch of this floor is displayed in Figure 8.2.

275

8 Computational Results

4
R

.
6

R
.

1
R

.

1
1

R
.

2
R

.

1
0

R
.

S
.

S
.

S
.

E
.

S
.

E
.

S
.

F
igure

8.2:A
rough

sketch
of

a
part

of
the

third
floor

of
the

A
sklepios

H
arzklinik

G
oslar

as
it

is
used

for
the

evaluation
of

the
solution

approaches.
T
he

third
floor

considered
here

consists
of

a
total

of
34

sick
room

s
(abbreviated

as
R
.)

as
w
ell

as
tw

o
elevators

(abbreviated
as

E
.)

and
five

stairs
(abbreviated

as
S.).

T
w
o
further

elevators
as

w
ell

as
one

stair
have

been
om

itted.
In

each
sick

room
,
betw

een
one

and
four

patients
can

be
accom

m
odated.

T
he

actual
num

bers
have

been
obtained

from
the

floor
plan

but
are

om
itted

in
this

sketch.
Furtherm

ore,this
sketch

displays
w
here

doors
have

to
be

taken
into

account
(i.e.

either
doors

connecting
a
room

or
a
staircase

to
a
corridor

section
or

doors
connecting

tw
o
corridor

sections).
F
inally,crosshatched

areas
in

this
figure

denote
other

room
s
that

do
not

have
to

be
considered

in
the

m
odel.

276

8.2 Results for the Problem of Hospital Evacuations

Now, the corridors displayed in this Figure are divided into a total of 38 cor-
ridor sections that connect the various locations considered in this model.
The length of the individual corridor sections has been obtained from the
floor plan and is later used in order to calculate the time required to evac-
uate a patient through the corridor section by the required assistants and
aids. Finally, a building section such as a sick room or a staircase is always
connected to the corresponding corridor section by a door while additional
doors might exist between two consecutive corridor sections. These doors
are also visualized in Figure 8.2.

In the following, we assume that all stairs as well as the two elevators cor-
respond to safety zones. Thus, as soon as a patient has been evacuated
through the corresponding building section, he is assumed to be safe and
the assistants and aids used for the evacuation of the patient are available
again. Finally, the capacity of a building section (i.e. the available space
inside this building section) is selected as follows. First of all, each sick room
is assumed to have a sufficient amount of space such that all patients inside
this sick room can simultaneously be prepared for the evacuation regardless
of the required aids. Next, corridor sections as well as staircases have a ca-
pacity proportional to their length. Here, it should be noted that corridors
generally have a width of at least 2.5m such that two hospital beds can pass
each other (cf. Wolf (2001)). Finally, it is assumed that each elevator can
be used for the evacuation of at most one patient at any time regardless of
the aid used for the evacuation of the patient.

Next, we consider the assistants and aids available for the evacuation of
the patients. Here, we assume that only one type of assistants is used for
the evacuation of the patients (i.e. we neglect the case that some patients
might require the supervision of assistants with special skills). Furthermore,
we assume that a limited amount of wheelchairs and stretchers is available
for the evacuation of the patients. In the following, we assume that one
assistant is required in order to support the transfer of one stretcher or one
wheelchair. For another test performed in Section 8.2.2, we additionally
assume that some patients can also be evacuated in their hospital beds. In
this case, a hospital bed can be assumed to be available for each patient in
his or her sick room such that hospital beds do not have to be modeled as
scarce resources.

In order to evacuate a patient from his or her initial location to a safety zone,
the following combinations of assistants and aids are possible depending on
the severity of the condition of the patient. First of all, if a patient can

277

8 Computational Results

walk, it is sufficient if the evacuation of the patient is aided by one assistant.
Otherwise, patients can either be evacuated in a sitting position (i.e. in a
wheelchair with the help of one assistant) or in a lying position (i.e. on
a stretcher with the help of three assistants or on a bed with the help of
two assistants). Various parameters associated with these combinations are
given in Table 8.13. These values are approximations of values as they
have been reported by Wolf (2001) and are later used in order to calculate
resource requirements as well as processing and transfer times.

rspace tprep tdoor vempty vevac
Assistant 1 60 4 1.4 1.0
Wheelchair 2 80 7 1.2 1.2
Stretcher 3 100 4 1.2 1.3
Bed 3 60 6 − 1.0

Table 8.13: Parameters related to the possible combinations of assistants
and aids that can be used for the evacuation of a patient. Here,
rspace (in square meters) denotes the space required in a building
section for the evacuation of a patient, tprep (in seconds) denotes
the time required to prepare the patient before the evacuation,
tdoor (in seconds) denotes the time required to pass through a
door, vempty (in meters/second) denotes the speed with which the
assistants and aids can be transferred between the evacuation of
two patients, and vevac (in meters/second) denotes the speed with
which the required assistants and aids can evacuate a patient.

Here, the space required to evacuate a patient through a building section
using either of these combinations of assistants and aids is denoted by rspace

(in square meters). As described above, this amount of space is required
in any building section the patient is evacuated through with the exception
of an elevator (which can only be used to evacuate one patient at a time
independent of the required space).

Next, the time required to evacuate a patient through a specific building
section can be calculated for each of these combinations. These times cor-
respond to the processing times of the operations and are calculated based
on equation (4.1). For this, first of all, the time (in seconds) required to
evacuate a patient through a corridor section is calculated by dividing the
length of the corridor section (in meters) by the speed vevac (in meters/second).
In the following, this result is always rounded up to the next integer value.

278

8.2 Results for the Problem of Hospital Evacuations

Additionally, the time tdoor (in seconds) has to be taken into account if a
door exists between two consecutive building sections while the time tprep

(in seconds) has to be included at the beginning of the evacuation of a pa-
tient in order to prepare the patient for the evacuation. Finally, we add a
fixed time of 60 s if an elevator has to be used for the evacuation of a patient
as well as a fixed time of 90 s if stairs have to be used. These latter values
have been selected due to the problem that we have been unable to obtain
more realistic values for these two types of building sections.

Finally, the transfer times for assistants and aids between the different loca-
tions in the hospital can be computed. For this, we first calculate a shortest
path between each pair of locations (as denoted by the length of the build-
ing sections). Then, we calculate the sum of the lengths of the corridor
sections of the shortest path between two locations (in meters) and divide
this value by the speed vempty (in meters/second). As before, the resulting time
(in seconds) is rounded up to the next integer value. To this, we add the
corresponding time tdoor (in seconds) for each door along the route as well
as a fixed time of 60 s for each time an elevator or stairs have to be used for
the transfer of either assistants or aids.

In the following, all of this data remains the same for all problem instances.
As a result of this, only the number of patients (as well as their initial
location and the severity of their condition) and the amounts of available
assistants and aids can be varied in order to generate problem instances.
Now, we created three sets of problem instances such that the first set con-
sists of problem instances in which 30 patients have to be evacuated, the
second set consists of problem instances in which 50 patients have to be
evacuated, and the third set consists of problem instances in which 70 pa-
tients have to be evacuated. The initial location for each patient (i.e. his or
her sick room) has been selected randomly such that in each room, no more
than the corresponding maximal amount of patients can be located.

Additionally, approximately 60 % of the patients can walk, 20 % of the pa-
tients have to be evacuated while sitting, and 20 % of the patients have to
be evacuated while lying. These values have again been selected based on
the values reported by Wolf (2001). Here, patients that can walk always
have to be evacuated by one assistant (i.e. no aids are required for the evac-
uation of these patients). Thus, only one equipment mode m1 exists for the
corresponding jobs. Additionally, these patients can be evacuated via both
stairs as well as elevators. For this reason, we computed the shortest evacu-
ation route from the initial location of each patient to each safety zone and

279

8 Computational Results

modeled these evacuation routes as chains of operations with the resource
requirements and processing times described above. Thus, a total of seven
route modes m2 (i.e. one for each safety zone) are available for each of these
patients. Next, patients that can be evacuated while sitting can either be
evacuated in a wheelchair, on a stretcher, or in a hospital bed (if hospital
beds are considered) while patients that have to be evacuated while lying
can only be evacuated on either a stretcher or in a hospital bed. In both
cases, these patients can only be evacuated by elevator, i.e. there are only
two possible safety zones to which these patients can be evacuated.

Finally, the amounts of available assistants and aids have been selected.
Here, we considered the following three cases. In the first case, a small
amount of assistants and aids is available (i.e. between 5 to 10 assistants as
well as between 1 to 3 wheelchairs and stretchers). Then, in the second case,
a medium amount of assistants and aids is available (i.e. between 10 to 20
assistants as well as between 3 to 6 wheelchairs and stretchers). Finally, in
the third case, a large amount of assistants and aids is available (i.e. between
20 to 40 assistants as well as between 6 to 10 wheelchairs and stretchers).
The actual values for all three cases have been selected randomly for each
problem instance.

Based on these settings regarding the number of patients as well as the avail-
able amounts of assistants and aids, a total of 9 combinations are possible.
For each of these combinations, we have generated two problem instances
such that a total of 18 problem instances have been created. In the following,
we use a similar naming convention for these problem instances as for the
problem instances for the classical RCPSP from the PSPLIB. In particular,
the first problem instance consisting of 50 jobs for the second case (i.e. if a
medium amount of assistants and aids is available) is referred to as h502_1
while the second problem instance consisting of 50 jobs for the second case
is referred to as h502_2.

It should be noted that a lot of the parameters used in this model are only
approximations of real values. Also, various simplifications and assumptions
have been made that do not necessarily have to hold in reality. For example,
the time required to evacuate a patient through specific building sections is
generally more complex and depends on specific properties of the hospital,
e.g. the width of the corridor and doors. Furthermore, additional regula-
tions (e.g. public building emergency regulations) might have to be taken
into account for some hospitals regarding the evacuations of the patients.
Due to a lack of such detailed information, we have opted to restrict our

280

8.2 Results for the Problem of Hospital Evacuations

evaluation to the base parameters described above. For a more realistic sce-
nario, however, it is easily possible to adapt many of these settings in order
to meet the requirements without having to change the model.

8.2.2 Computational Results

Now, we evaluate the performance of the two solution approaches for the
problem of hospital evacuations based on the test data that has been gen-
erated as described above. Here, first of all, we use the solution approach
based on priority rules as it has been described in Section 4.2 in order to
solve the problem instances. In particular, we use the tabu search algorithm
with either the serial or the parallel schedule generation scheme as well as
all five priority rules listed in Table 4.2 (i.e. the priority rules SPT, LPT,
LST, LFT, and RAND). As a result of this, we perform a total of 10 tests
for this solution approach (i.e. combining each of the five priority rules with
each of the two schedule generation schemes).

In order to evaluate the problem instances, we have set up the tabu search
algorithm as follows. First of all, the minimal length of the tabu list is
set to TLmin = 10 while the maximal length is set to TLmax = 30. The
actual length of the tabu list is then adapted according to equations (4.34)
and (4.35). Next, lmax = 1 elite solution can be stored. The tabu search
algorithm continues from this elite solution if the currently best solution
could not be improved in the last tmax = 50 iterations. Finally, we use
a stopping condition of approximately 120 s for the algorithm. We have
decided to use this stopping condition because it allows for a more fair
comparison of the different solution approaches.

Then, the problem instances have been solved based on these settings. Here,
for a first test, we have set up the problem instances such that patients that
can not walk can either be evacuated in a wheelchair or on a stretcher, i.e.
no hospital beds can be used. Below, the results obtained by the tabu search
algorithm using the different combinations of schedule generation schemes
and priority rules are reported in Table 8.14. As can be seen from these
results, the tabu search algorithm obtains much better results if it is using
the parallel schedule generation scheme than if it is using the serial schedule
generation scheme. This is due to the fact that the serial schedule generation
scheme is not able to insert a selected operation between other operations
that have already been scheduled and require the same resources (cf. Sec-
tion 4.2.2). In particular, this is not possible because the completion time

281

8 Computational Results

P
arallelSchedule

G
eneration

Schem
e

SerialSchedule
G
eneration

Schem
e

Instance
SP

T
L
P
T

L
ST

L
F
T

R
A
N
D

SP
T

L
P
T

L
ST

L
F
T

R
A
N
D

h
3
0
1_

1
1
9
3
2

1
8
8
6

2
1
6
8

1
9
3
1

1
9
3
2

2
1
6
3

1
6
3
8

1
7
4
0

1
6
0
9

1
6
0
6
∗

h
3
0
1_

2
2
0
3
1

2
0
3
1

2
0
3
1

2
0
3
1

2
0
3
1

2
5
8
1

2
0
3
1

2
0
1
8
∗

2
0
4
3

2
0
2
4

h
3
0
2_

1
8
1
4
∗

8
1
4
∗

8
1
4
∗

8
1
4
∗

8
1
4
∗

1
1
3
6

1
1
7
9

2
5
6
3

9
8
3

1
1
5
7

h
3
0
2_

2
1
1
1
2

1
1
3
9

1
0
8
7
∗

1
1
4
6

1
1
2
5

1
3
3
0

1
9
4
9

1
8
9
4

1
2
1
2

1
4
6
5

h
3
0
3_

1
6
7
4
∗

6
7
4
∗

6
7
4
∗

6
7
4
∗

6
7
4
∗

6
7
4
∗

6
9
3

6
7
4
∗

6
7
4
∗

7
1
7

h
3
0
3_

2
5
6
6
∗

5
6
6
∗

5
6
6
∗

5
6
6
∗

5
6
6
∗

6
3
2

9
0
9

1
7
2
1

7
9
8

7
7
4

h
5
0
1_

1
3
5
7
0

3
5
2
5

3
5
3
8

3
5
3
8

3
5
5
3

5
0
2
4

3
6
6
8

3
2
8
4
∗

3
2
8
4
∗

4
2
4
3

h
5
0
1_

2
2
6
0
7

2
6
0
7

2
6
0
7

2
6
0
7

2
3
1
7
∗

2
8
6
7

3
6
0
2

6
8
4
1

2
5
5
3

3
3
2
9

h
5
0
2_

1
1
9
8
3

2
2
1
0

2
1
3
8

2
0
0
2

1
8
7
6
∗

2
3
1
6

2
8
4
0

3
3
6
2

2
0
9
8

2
7
7
4

h
5
0
2_

2
1
5
2
4

1
4
9
6

1
5
4
3

1
4
1
4
∗

1
4
4
7

1
7
4
2

2
1
4
4

2
9
9
0

1
7
4
9

2
2
3
9

h
5
0
3_

1
9
0
7

8
6
9
∗

8
6
9
∗

8
8
8

8
9
4

1
2
2
4

1
5
9
2

1
9
1
8

1
2
2
6

1
5
0
2

h
5
0
3_

2
9
7
4
∗

9
7
4
∗

1
1
2
2

1
0
6
2

9
7
4
∗

1
5
4
0

1
2
6
6

1
3
2
9

1
2
4
3

1
5
9
8

h
7
0
1_

1
4
4
1
3
∗

4
4
1
3
∗

4
4
1
3
∗

4
4
1
3
∗

4
4
1
9

6
0
6
3

5
7
2
4

6
9
6
2

4
5
7
5

5
7
5
9

h
7
0
1_

2
4
2
0
8
∗

4
3
5
1

4
6
4
3

4
6
1
1

4
7
6
6

5
6
2
8

5
1
4
4

1
0
9
2
4

4
3
1
7

5
8
3
3

h
7
0
2_

1
2
5
7
8

2
5
7
8

2
5
7
8

2
5
7
8

2
5
6
8
∗

3
1
0
0

5
2
1
3

5
2
7
5

2
9
4
0

3
7
7
5

h
7
0
2_

2
3
0
2
0

2
8
5
8
∗

2
8
6
0

2
8
5
9

2
8
9
8

3
7
5
5

3
7
5
9

5
8
3
8

3
2
6
6

3
9
4
6

h
7
0
3_

1
1
4
1
4

1
4
1
4

1
3
8
9
∗

1
4
1
4

1
4
0
0

2
2
2
2

1
9
2
8

2
8
4
2

1
4
7
1

2
2
3
4

h
7
0
3_

2
1
5
9
7

1
5
9
7

1
5
9
7

1
5
9
7

1
5
9
2
∗

2
2
4
5

2
0
3
8

2
0
2
1

1
7
0
7

2
4
6
0

T
able

8.14:R
esults

obtained
by

the
tabu

search
algorithm

that
has

been
introduced

in
Section

4.2
for

allpossible
com

binations
of

schedule
generation

schem
es

and
priority

rules.
T
he

best
solution

that
has

been
found

by
any

of
these

com
binations

is
m
arked

w
ith

an
asterisk.

T
he

problem
instances

for
these

tests
have

been
set

up
such

that
no

hospitalbeds
could

be
used

in
order

to
evacuate

the
patients.

282

8.2 Results for the Problem of Hospital Evacuations

of the operation is not known at the time when it is being scheduled due to
blockings. As a result of this, the performance of the serial schedule genera-
tion scheme depends more strongly on the order in which the operations are
scheduled than the performance of the parallel schedule generation scheme.

Before we take a closer look at individual results, we now use the solution
approach that has been introduced in Chapter 7 in order to solve the problem
instances. For this solution approach, we use the following settings. First
of all, the stopping condition for the algorithm is again set to 120 s (this
corresponds to stopping condition SC3). Then, the tabu search algorithm
for the evacuation subproblem is set up to call the tabu search algorithm for
the routing subproblem if no improving solution could be found in the last
300 iterations (this corresponds to stopping condition SC1). Finally, the
tabu search algorithm for the routing subproblem terminates after either no
improving solution could be generated in the last 10 iterations or after at
most 20 s (this corresponds to stopping condition SC2).

In the following, we use the parameters TLevacmin = 4 and TLevacmax = 10 for the
evacuation subproblem as well as the parameters TLroutemin = 2 and TLroutemax =
7 for the routing subproblem in order to determine the tabu tenure for the
tabu list TLmode. While these parameters are used to solve all problem
instances, the parameters a, b, α, and β used to calculate the tabu tenures
for tabu lists TLadd and TLdrop for both subproblems have been selected
separately for each set of problem instances consisting of 30, 50 and 70 jobs
(cf. Table 8.15). All of these parameters have again been selected based on
some preliminary tests.

Evacuation Routing
N a α b β a α b β

30 2 0.20 2 0 5 0.20 0 0
50 4 0.25 2 0 5 0.20 2 0
70 6 0.20 3 0 6 0.20 2 0

Table 8.15: Settings for parameters a, b, α, and β for both subproblems that
have been used to evaluate the problem instances.

Below, the results that have been obtained by this solution approach based
on these parameter settings are reported in Table 8.16. Here, we compare
these results to the best solution obtained by the solution approach based
on priority rules for any of the combinations of a schedule generation scheme

283

8 Computational Results

and a priority rule (cf. Table 8.14). Additionally, in this table, we display
the best results obtained for the relaxed problem that have been found by
the tabu search algorithm for the evacuation subproblem. As described in
Chapter 7, the usage of building sections is neglected for these solutions, i.e.
it is assumed that the patients can be evacuated from their sick rooms to
the selected safety zones without blockings. It should be noted, however,
that these results do not constitute lower bounds for the problem and better
solutions might exist in the solution space.

Instance Priority Rules Relaxed Complete
h301_1 1606 1387 1387∗

h301_2 2018∗ 2018 2018∗

h302_1 814∗ 785 841
h302_2 1087∗ 1058 1092
h303_1 674∗ 506 674∗

h303_2 566 509 556∗

h501_1 3284∗ 3284 3284∗

h501_2 2317 2068 2167∗

h502_1 1876∗ 1695 1911
h502_2 1414 1236 1358∗

h503_1 869∗ 786 968
h503_2 974∗ 687 1011
h701_1 4413 4040 4378∗

h701_2 4208 3671 3849∗

h702_1 2568 2223 2490∗

h702_2 2858 2494 2660∗

h703_1 1389 919 1337∗

h703_2 1592 815 1273∗

Table 8.16: Results obtained by the solution approach based on resource
flows. Here, the best solution for the relaxed problem as well as
the best solution for the complete problem are reported. These
results are compared to the best solution obtained by the solu-
tion approach based on priority rules for any combination of a
schedule generation scheme and a priority rule. The best solu-
tion that has been found by either of the two solution approaches
is marked with an asterisk.

As can be seen, the solution approach based on resource flows has been
able to find solutions with either a better or at least an equal makespan for

284

8.2 Results for the Problem of Hospital Evacuations

13 out of 18 problem instances. Additionally, for 4 out of the remaining
5 problem instances, the difference of the makespan of the solution found
by the solution approach based on resource flows from the makespan of the
best solution found by the solution approach based on priority rules amounts
to less than 50 units (i.e. seconds). Also, the best solution found by the
solution approach based on priority rules has been obtained as a result of 10
runs with different combinations of schedule generation schemes and priority
rules. Thus, while the solution approach based on resource flows only had
2 minutes to find a solution, the solution approach based on priority rules
had a total of 20 minutes (i.e. 2 minutes for each of the 10 combinations).
For this reason, we now compare the results of the individual runs. Here,
in Table 8.17, we report the average deviation (in percent) from the best
solutions found by either the solution approach based on priority rules or the
solution approach based on resource flows (cf. Table 8.16) for all algorithms
that have been tested.

Parallel Schedule Generation Scheme Priority
RulesSPT LPT LST LFT Rand

8.54 8.60 10.63 8.89 7.58 4.35

Serial Schedule Generation Scheme Resource
FlowSPT LPT LST LFT Rand

38.24 46.05 96.77 17.88 45.25 1.16

Table 8.17: The average deviation (in percent) from the best solutions found
by either the solution approach based on priority rules or the
solution approach based on resource flows for all combinations
of schedule generation schemes and priority rules based on the
results displayed in Table 8.14. Also, the average deviation (in
percent) of the best solutions found by all of these combinations
and the average deviation (in percent) of the best solutions found
by the solution approach based on resource flows are reported.

These results show that the solution approach based on resource flows out-
performs the solution approach based on priority rules. In particular, the
average deviation for the best combination of a schedule generation scheme
and a priority rule is more than 6 % worse than the average deviation for
the solution approach based on resource flows. Indeed, even the average
deviation of the best solutions found by all combinations of schedule gen-

285

8 Computational Results

eration schemes and priority rules is still more than 3 % worse. Also, these
results show that our initial observation that the parallel schedule generation
scheme is able to obtain better solutions than the serial schedule generation
scheme is correct.

Here, even for the best priority rule (i.e. the priority rule LFT), the se-
rial schedule generation scheme obtains an average deviation that is more
than 7 % worse than the average deviation for the worst priority rule (i.e.
the priority rule LST) for the parallel schedule generation scheme. Finally,
while the selected priority rule has a large influence on the quality of the
solutions obtained by the serial schedule generation scheme, the same is not
true for the solutions obtained by the parallel schedule generation scheme.
Instead, with the exception of the priority rule LST, the difference between
the average deviations obtained for the various priority rules is generally less
than or around 1 %.

It should be noted that despite all this we can not compare the overall
performance of the algorithms due to a lack of optimal solutions or even
lower bounds for the problems. Here, while we have modeled the problem of
hospital evacuations as a mixed-integer linear program in Section 4.1.2, it is
highly unlikely that the problem instances can be solved (or even a feasible
solution can be found) by a mixed-integer linear program solver such as
CPLEX. This is due to the fact that, apart from the 30 to 70 jobs that have
to be scheduled, each job consists of multiple operations for each evacuation
route. For the larger problem instances, this can amount to several thousand
operations. At the same time, only a portion of these operations actually
have to be scheduled depending on the selected route modes of the jobs.

Next, we have solved the problem instances again. Unlike before, however,
patients can now also be evacuated inside their hospital beds. Thus, three
equipment modes are available for patients that can be evacuated while sit-
ting and two equipment modes are available for patients that can only be
evacuated while lying. Here, the best solution obtained by the solution ap-
proach based on priority rules for any combination of a schedule generation
scheme and a priority rule as well as the solution obtained by the solution
approach based on resource flows are reported in Table 8.18. Furthermore,
the average deviations (in percent) from the best solutions found by either of
these two solution approaches for all algorithms are reported in Table 8.19.
It should be noted that the solutions for the problem instances if no hospi-
tal beds can be used for the evacuation of the patients are always contained
in the solution space for the instances if hospital beds can be used. This

286

8.2 Results for the Problem of Hospital Evacuations

Instance Priority Rules Relaxed Complete
h301_1 1249 1186 1183∗

h301_2 1241 1180 1194∗

h302_1 749∗ 719 760
h302_2 960 916 953∗

h303_1 654∗ 466 654∗

h303_2 534∗ 482 556
h501_1 1866 1639 1745∗

h501_2 2274 1687 1830∗

h502_1 1756 1274 1493∗

h502_2 1205 1014 1192∗

h503_1 772∗ 687 804
h503_2 954∗ 523 1057
h701_1 4631 2779 3014∗

h701_2 4274 3221 3336∗

h702_1 2505 1735 1957∗

h702_2 2736 1942 2124∗

h703_1 1418 712 1150∗

h703_2 1603 734 1225∗

Table 8.18: Results obtained by the solution approach based on resource
flows if beds can be used for the evacuation of the patients.
These results are compared to the best result obtained by the
solution approach based on priority rules for any combination of
a schedule generation scheme and a priority rule.

Parallel Schedule Generation Scheme Priority
RulesSPT LPT LST LFT Rand

18.15 16.76 17.59 18.99 15.67 13.99

Serial Schedule Generation Scheme Resource
FlowSPT LPT LST LFT Rand

53.56 56.12 108.50 28.35 71.16 1.14

Table 8.19: The average deviation (in percent) from the best solutions found
by either the solution approach based on priority rules or the
solution approach based on resource flows for all algorithms that
have been tested. These results are for the case that hospital
beds can be used for the evacuation of the patients.

287

8 Computational Results

is due to the fact that no other parameters of the problem instances have
been changed and these solutions can still be generated if the corresponding
modes are selected.

Here, even more than for the first run, these results show that the solution
approach based on resource flows is able to obtain better results than the
solution approach based on priority rules. In particular, the average devia-
tion for the solution approach based on resource flows is 13 % better than
the average deviation of the best solutions obtained by any combination of
a schedule generation scheme and a priority rule. This is likely due to the
fact that the additional modes for the jobs have a larger influence on the
solution approach based on priority rules because the schedule generation
schemes always have to schedule all operations corresponding to the selected
route modes. On the other hand, for the solution approach based on resource
modes, the jobs themselves are taken into account in the evacuation problem
such that evaluating a single modification requires less time.

Finally, we consider some observations concerning the evacuation of hospi-
tals that can be made from these results. Here, first of all, it can be seen
that allowing hospital beds for the evacuation of the patients has the largest
influence on the estimated time required for the evacuation for problem in-
stances in which fewer assistants and aids are available in relation to the
patients that have to be evacuated. On the one hand, this is because two
instead of three assistants are sufficient to evacuate a patient in a hospital
bed instead of on a stretcher (which before had to be used in order to evacu-
ate patients that have to be evacuated while lying). On the other hand, it is
possible that the amount of additional resource transfers can be reduced if
assistants and aids are not in the same location (i.e. because hospital beds
are available in the sick rooms of the patients).

Next, the difference between the best solution for the relaxed problem and
the best solution for the complete problem is largest for problem instances
in which a lot of assistants and aids are available (cf. Tables 8.16 and
8.18). This is due to the fact that blockings are more likely to occur in
this case because more patients can be evacuated at the same time. Here,
a closer look at the solutions reveals that the majority of these blockings
occur in some key locations of the hospital. In particular, the elevators can
be identified as bottlenecks. Here, for a more realistic scenario, it might be
feasible to identify these bottleneck resources beforehand and model them
with additional care while neglecting other building sections. For example,
multiple smaller corridor sections that are less critical could be combined

288

8.2 Results for the Problem of Hospital Evacuations

to one larger corridor section. As a side effect, this would also reduce the
number of operations that have to be scheduled.

Apart from this, various other tests can be performed for the problem of
hospital evacuations. For example, each aid can be assigned to a fixed team
of assistants (e.g. if two wheelchairs are available, two teams consisting of
one wheelchair as well as one assistant could be formed). On the one hand,
this would render second-tier transfers for this problem unnecessary. On the
other hand, this would reduce the solution space and might exclude better
solutions (e.g. if only a limited number of patients have to be evacuated in
a wheelchair, the assistants that are assigned to the corresponding teams
can not be used in order to evacuate other patients that require different
or no aids). Also, various other parameters that have been used for these
tests can be adapted. For example, different aids could be considered for
the evacuation of the patients or different times could be associated with
the usage of stairs and elevators.

Here, we will not perform any of these additional tests for the following
reasons. First of all, many of these parameters and variations depend on
the actual hospital that has to be evacuated as well as further requirements
that might have to be taken into account. Apart from a lack of such specific
data, it is also unlikely that any new insights can be gained regarding the
performance of the two solution approaches. The latter is also due to the
problem that the results obtained by the algorithms can not be compared
to any other results. In particular, no optimal solutions or lower bounds for
these problem instances exist.

289

9 Conclusions

The problem of hospital evacuations that has been tackled in this thesis
poses a greater difficulty than typical evacuation problems considered in
literature. In particular, patients that have to be evacuated can not always
help themselves but rely on the help of assistants and aids. At the same
time, this problem has received very little attention in literature despite its
relevance. For example, Sternberg et al. (2004) and Lipp et al. (1998) remark
that many hospitals are insufficiently prepared for an actual evacuation.
Due to this, we have tackled the problem of hospital evacuations in order
to estimate the time required to evacuate all patients from their sick rooms
inside the hospital to safety zones inside or outside the hospital. Apart from
this, because of its significance to the model that has been presented for the
problem of hospital evacuations, we have especially dealt with the RCPSP
with resource transfers and presented a solution approach based on resource
flows for this problem. In the following, we will summarize the key findings
of this thesis. Furthermore, we will discuss some limitations of the models
and solution approaches and give an outlook on possible research that can
be conducted based on these findings.

First of all, we considered the problem of hospital evacuations. We have
modeled this problem as a multi-mode RCPSP with resource transfers and
blockings. Additionally, we have presented two solution approaches for the
problem. Here, the first solution approach uses schedule generation schemes
as well as priority rules in order to generate schedules. For this solution
approach, we have shown that an optimal solution may not be contained in
the solution space considered by the schedule generation schemes due to the
priority rules used to select resource transfers to an operation. In particular,
we have proved that the problem of selecting first- and second-tier resource
transfers to an operation is NP-hard (cf. Section 4.2.3).

Due to this drawback, we have then integrated first- and second-tier resource
transfers as well as blockings into a solution representation based on resource
flows that is used for the second solution approach. This approach is a two-
stage algorithm for the problem such that, in the first stage, the jobs are

291

9 Conclusions

scheduled with respect to the available assistants and aids while, in the
second stage, the operations are scheduled with respect to the available
space in the building sections based on the results from the first stage. For
both of these solution approaches we have reported computational results.
These results have shown that the solution approach based on resource flows
outperforms the solution approach based on priority rules. At the same
time, however, we have been unable to evaluate the overall performance of
the algorithms due to a lack of optimal solutions or lower bounds.

Apart from this, further limitations of both the model as well as the solution
approaches that have been presented for the problem of hospital evacuations
exist. For instance, the model primarily focuses on the constraints that are
given by the available assistants and aids as well as the infrastructure of
the hospital. Possible other requirements that may depend on the actual
hospital that has to be evacuated are not taken into account. Additionally,
it is assumed that the situation within the hospital is static and predictable.
In reality, however, many unpredictable situations or stochastic parameters
have to be taken into account, e.g. if part of a corridor is blocked by a hos-
pital bed or based on the physical condition, preparedness, and exhaustion
of the assistants. All of these limitations contribute to the fact that our
solution approaches can only give a rough estimate on how much time is
required for an actual evacuation. This problem can further be aggravated
by the actual parameters used for the problem instances, e.g. depending on
how accurately the infrastructure as well as the parameters related to the
different resources could be modeled.

Due to these limitations, various opportunities for further research related
to the problem of hospital evacuations exist. For example, it would be
interesting to model and evaluate the evacuation of a real hospital and com-
pare the results to values obtained in actual evacuations or evacuation ex-
ercises. Also, in order to better be able to evaluate the performance of the
algorithms, lower bounds for the problem of hospital evacuations should be
developed. Apart from this, two extensions of the model as well as of the so-
lution approach are of particular interest. On the one hand, for evacuations
where patients have to be transported to sheltering facilities, an integrated
approach can be developed that uses the results obtained by our algorithms
in order to better schedule the further transport of the patients from the
staging areas to these sheltering facilities. On the other hand, because the
evacuation of a hospital is seldom static, stochastic elements can be taken
into account and a simulation can be developed. This simulation could be
used, for example, to test and improve the reliability of a solution that has

292

been calculated by our algorithms. Also, this latter approach might be of
interest in order to evaluate more dynamic situations such as a fire or a
hazardous materials spill inside the hospital.

Next, we tackled the RCPSP with first- and second-tier resource transfers.
As described in Chapter 5, higher-tier resource transfers have only been con-
sidered by Krüger (2009) as well as by Krüger and Scholl (2010). To the best
of our knowledge, no solution approach for this problem has previously been
presented in literature. Thus, due to the importance of resource transfers to
the model for the problem of hospital evacuations, we have dealt with this
problem in detail in this thesis.

For this, we have first introduced a model for this problem and compared it
to the model presented by Krüger (2009). This resulted in the observation
that, in the model by Krüger (2009), the start of an activity might be
delayed because an activity can only be completed when all resource units
that are transferred to the end of the activity have arrived. Due to this,
better solutions might be excluded from the solution space in this model
whereas this problem does not occur in our model (cf. Section 5.3). At the
same time, a limitation of both models is that resource units that have been
transferred to the start of an activity by pure second-tier transfers have to
remain at the activity until the start of the activity. This, in turn, might also
lead to the exclusion of better solutions from the solution space. For this
reason, it might be interesting to adapt the model such that pure second-tier
resource units do not have to wait at the activity to which they support the
transfer of a first-tier resource until the starting time of this activity.

Afterward, we have introduced a solution approach for the RCPSP with
first- and second-tier resource transfers. For this, we have extended the so-
lution representation based on resource flows to this problem. Additionally,
we have shown that a feasible resource flow exists for every project that
represents an optimal (earliest start) schedule. Based on this solution repre-
sentation, we have then defined modifications to redirect resource transfers.
Here, while it remains an open question whether any of the resulting neigh-
borhoods for the RCPSP with first- and second-tier resource transfers is
connected or opt-connected, we have been able to show that at least the
neighborhood N1 = Nreroute ∪ Nreverse is connected for both, the classical
RCPSP as well as the RCPSP with first-tier resource transfers.

In order to solve the RCPSP with first- and second-tier resource transfers,
we have implemented a tabu search algorithm that represents solutions as
resource flows. The results that have been obtained by this algorithm for

293

9 Conclusions

problem instances for the classical RCPSP as well as for the RCPSP with
first-tier resource transfers are generally worse than those obtained by other
algorithms. In part, this is due to the fact that we did not especially develop
the algorithm in order to solve these problems. On the other hand, for the
RCPSP with first- and second-tier resource transfers, our algorithm has been
shown to reliably obtain results even for larger problem instances. As for the
problem of hospital evacuations, however, we have been unable to evaluate
the actual performance of the algorithm due to a lack of lower bounds or
already existing computational results. A general problem related to this
solution approach is that we have been unable as of yet to better guide the
search for good solutions.

Regarding this solution approach, the following opportunities for further
research might be of interest. First of all, various open questions regarding
the connectivity of the different neighborhoods remain. Next, it might be
possible to further reduce the size of the existing neighborhoods as well as to
use them in different local search algorithms. Also, criteria should be found
that can guide the search to regions of the solution space that contain good
solutions. Related to these possibilities for further research, the solution
approach could also be adapted to the more special situation encountered in
either the classical RCPSP or the RCPSP with first-tier resource transfers.

Finally, we considered the blocking constraint in the context of the RCPSP.
Similar to the extension of resource transfers, this problem has received
little attention until now. Likewise, in this thesis we only considered this
constraint to a lesser content because the blocking constraint has a smaller
influence on the problem of hospital evacuations considered in this thesis
than resource transfers. Also, it can be assumed that the blocking con-
straint is primarily of interest for some specialized applications whereas re-
source transfers are more likely to occur in other applications. We have been
able, however, to incorporate the blocking constraint into the solution rep-
resentation based on resource flows as well as into the modifications based
on this solution representation. Here, it might be interesting to take a closer
look at the RCPSP with blockings and to either build on the initial results
reported in this thesis or to develop a more specific approach to deal with
blockings. In the former case, for example, the connectivity of the neigh-
borhoods that have been presented for this problem should be considered.
Also, it might be possible to further reduce the size of the neighborhoods.

294

A Notation

Below, some general notation as well as the notation and symbols used
for the classical RCPSP, the RCPSP with first- and second-tier resource
transfers, and the problem of hospital evacuations is summarized. Further
notation used only locally in the different chapters is not listed here.

A.1 General Notation

RCPSP Resource-constrained project scheduling problem
HEP Hospital evacuation problem
MILP Mixed-integer linear program
Cmax Makespan of a feasible schedule
LB Lower bound
UB Upper bound

A.2 Classical RCPSP

n Number of (real) activities
r Number of renewable resources
V Set of activities i = 1, . . . , n

Vall Set of activities i = 0, 1, . . . , n, n+ 1

V0 Set of activities i = 0, 1, . . . , n

V∗ Set of activities i = 1, . . . , n, n+ 1

R Set of renewable resources k = 1, . . . , r

A Set of precedence constraints i → j between activities i ∈ Vall

and j ∈ Vall

Rk Capacity of resource k ∈ R
pi Processing time of activity i ∈ Vall

295

A Notation

rik Resource requirements of activity i ∈ Vall for resource k ∈ R
Si Starting time of activity i ∈ Vall in a feasible schedule
Ci Completion time of activity i ∈ Vall in a feasible schedule

A.3 RCPSP with First- and Second-Tier Resource Transfers

Additional to the notation for the classical RCPSP, the following notation
is used for the RCPSP with first- and second-tier resource transfers.

Rsa Set of resources that can be transferred by stand-alone transfer
Rru Set of resources that have to be transferred by resource-using

transfer
∆ijk Transfer time for resource k ∈ R from activity i ∈ V0 to activity

j ∈ V∗
µkl Amount of resource units of resource k ∈ Rsa required to support

the transfer of one unit of resource l ∈ Rru

A.4 Problem of Hospital Evacuations

N Number of jobs
r Number of all renewable resources
J Set of jobs j = 0, 1, . . . , N,N + 1

R Set of all renewable resources k = 1, . . . , r

Rasst Set of all resources representing assistants
Raid Set of all resources representing aids
Rtrf Set of all resources associated with a transfer time
Rsect Set of all resources representing building sections
Rk Capacity of resource k ∈ R
mj1 Number of equipment modes for job j ∈ J
mj2 Number of route modes for job j ∈ J
Mj1 Set of equipment modes m1 = 1, . . . ,mj1 for job j ∈ J
Mj2 Set of route modes m2 = 1, . . . ,mj2 for job j ∈ J
mj Number of mode combinations m = (m1,m2) with m1 ∈ Mj1

and m2 ∈Mj2 for job j ∈ J

296

A.4 Problem of Hospital Evacuations

Mj Set of mode combinations m = 1, . . . ,mj for job j ∈ J
n Number of operations
nj Number of operations associated with job j ∈ J
V Set of operations u = 1, . . . , n

Vall Set of operations u = 0, 1, . . . , n, n+ 1

V0 Set of operations u = 0, 1, . . . , n

V∗ Set of operations u = 1, . . . , n, n+ 1

Vin Set containing the first operation of each evacuation route of jobs
j = 1, . . . , N

Vout Set containing the last operation of each evacuation route of jobs
j = 1, . . . , N

V ′in Set containing the first operation of each evacuation route of jobs
j = 1, . . . , N as well as dummy operation n+ 1

V ′out Set containing the last operation of each evacuation route of jobs
j = 1, . . . , N as well as dummy operation 0

Vj(m2) Set of operations representing the evacuation route denoted by
route mode m2 ∈Mj2 of job j ∈ J

σ(u) Job j ∈ J to which operation u ∈ Vall belongs
B Set of precedence constraints u→ v between blocking operations

u ∈ Vall and operations v ∈ Vall

NB Set of precedence constraints u→ v between non-blocking oper-
ations u ∈ Vall and operations v ∈ Vall

pum Processing time of operation u ∈ Vall if it is executed in mode
combination m ∈Mσ(u)

rumk Resource requirements of operation u ∈ Vall for resource k ∈ R
if it is executed in mode combination m ∈Mσ(u)

∆uvk Transfer time for resource k ∈ Rtrf from operation u ∈ Vall to
operation v ∈ Vall

Su Starting time of operation u ∈ Vall in a feasible schedule
Cu Completion time of operation u ∈ Vall in a feasible schedule

297

Acknowledgements

This thesis is the result of the PhD studies that I have been engaged in
during my time as a research associate at the Institute of Applied Stochastics
and Operations Research at the Clausthal University of Technology. In the
following, I would like to thank those people that have helped in various
ways during this time.

First and foremost, my thanks go to my doctoral adviser Prof. Dr. Sigrid
Knust who has not only offered me the opportunity to write this thesis but
has also supported and encouraged my work during this time. For this,
her readiness to discuss the various questions that have cropped up along
the way, as well as her invaluable advice, I am, and remain, very thankful.
Furthermore, I would like to thank Prof. Dr. Michael Kolonko for his
support during my time as a research associate in Clausthal as well as Prof.
Dr. Jürgen Zimmermann for accepting to review this thesis.

For bringing the problem of hospital evacuations to my attention as well as
for the invitation to attend an evacuation exercise in a hospital, I would like
to thank Mr. Stefan Kruse of Asklepios Kliniken GmbH. Also, my thanks
go to Mr. Heiko Schnitker of the fire brigade of the city of Osnabrück for
answering my questions related to the evacuation of hospitals as well as to
Mr. Peter Broszeit of Asklepios Harzkliniken GmbH for providing me with
floor plans of the Asklepios Harzklinik Goslar.

Then, for their feedback and advice, I would like to thank my friends and
colleagues both in Clausthal as well as in Osnabrück. In particular, my
thanks go to Stefan Waldherr for the discussions and help related to a proof
in this thesis.

I am very grateful for the support and encouragement of my family not only
during the creation of this thesis.

Last but not least, I would like to thank my boyfriend Yiyang Su for his
understanding and support during this time as well as for reminding me
that work is not everything.

299

Bibliography

R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved time bounds for the
maximum flow problem. SIAM Journal on Computing, 18(5):939–954,
1989.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Al-
gorithms, and Applications. Prentice-Hall, Englewood Cliffs, New Jersey,
USA, 1993.

A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov. A survey
of scheduling problems with setup times or costs. European Journal of
Operational Research, 187(3):985–1032, 2008.

C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for static
and dynamic resource-constrained project scheduling. European Journal
of Operational Research, 149(2):249–267, 2003.

C. Artigues, S. Demassey, and E. Néron. Resource-Constrained Project
Scheduling. Control systems, robotics and manufacturing series. John
Wiley & Sons, New York, USA, 2010.

T. Baar, P. Brucker, and S. Knust. Tabu search algorithms and lower bounds
for the resource-constrained project scheduling problem. In S. Voss,
S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Ad-
vances and Trends in Local Search Paradigms for Optimization, pages
3–13. Kluwer Academic Publishers, Boston, USA, 1998.

P. Baptiste and S. Demassey. Tight LP bounds for resource constrained
project scheduling. OR Spectrum, 26(2):251–262, 2004.

M. Bartusch, R. Möhring, and F. Radermacher. Scheduling project net-
works with resource constraints and time windows. Annals of Operations
Research, 16(1):199–240, 1988.

A. Beaudry, G. Laporte, T. Melo, and S. Nickel. Dynamic transportation
of patients in hospitals. OR Spectrum, 32:77–107, 2010.

301

Bibliography

D. D. Bedworth and J. E. Bailey. Integrated Production Control Systems:
Management, Analysis, Design. John Wiley & Sons, Inc., New York,
USA, 1982.

T. Berthold, S. Heinz, M. Lübbecke, R. Möhring, and J. Schulz. A constraint
integer programming approach for resource-constrained project schedul-
ing. In A. Lodi, M. Milano, and P. Toth, editors, Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, volume 6140 of Lecture Notes in Computer Science, pages
313–317. Springer, Berlin, Heidelberg, Germany, 2010.

D. R. Bish, E. Agca, and R. Glick. Decision support for hospital evacuation
and emergency response. Annals of Operations Research, 2011. to appear.

J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject
to resource constraints: classification and complexity. Discrete Applied
Mathematics, 5(1):11–24, 1983.

F. F. Boctor. Some efficient multi-heuristic procedures for resource-
constrained project scheduling. European Journal of Operational Re-
search, 49(1):3–13, 1990.

J. Böttcher, A. Drexl, R. Kolisch, and F. Salewski. Project scheduling under
partially renewable resource constraints. Management Science, 45(4):543–
559, 1999.

K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm
for the resource-constrained project scheduling problem and its multiple
mode version. European Journal of Operational Research, 149(2):268–281,
2003.

E. H. Bowman. The schedule-sequencing problem. Operations Research, 7
(5):621–624, 1959.

S. Bretschneider. Mathematical Models for Evacuation Planning in Urban
Areas. Springer, Berlin, Heidelberg, Germany, 2013.

P. Brucker and S. Knust. A linear programming and constraint propagation-
based lower bound for the rcpsp. European Journal of Operational Re-
search, 127(2):355–362, 2000.

P. Brucker and S. Knust. Complex Scheduling. Springer, Berlin, Heidelberg,
Germany, 2006.

302

Bibliography

P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algo-
rithm for the resource-constrained project scheduling problem. European
Journal of Operational Research, 107(2):272–288, 1998.

P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-
constrained project scheduling: notation, classification, models, and
methods. European Journal of Operational Research, 112(1):3–41, 1999.

R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. Math-
ematical Methods of Operations Research, 37(1):31–58, 1993.

California Emergency Medical Services Authority. Hospital incident com-
mand system. URL http://www.emsa.ca.gov/hics/. Visited on 2012-
09-11.

L. G. Chalmet, R. L. Francis, and P. B. Saunders. Network models for
building evacuation. Fire Technology, 18(1):90–113, 1982.

L. Chen and E. Miller-Hooks. The building evacuation problem with shared
information. Naval Research Logistics, 55(4):363–376, 2008.

A. K. Childers and K. M. Taaffe. Healthcare facility evacuations: lessons
learned, research activity, and the need for engineering contributions.
Journal of Healthcare Engineering, 1(1):125–140, 2010.

W. Choi, H. W. Hamacher, and S. Tufekci. Modeling of building evacuation
problems by network flows with side constraints. European Journal of
Operational Research, 35(1):98–110, 1988.

N. Christofides, R. Alvarez-Valdes, and J. M. Tamarit. Project schedul-
ing with resource constraints: a branch and bound approach. European
Journal of Operational Research, 29(3):262–273, 1987.

R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Addison-Wesley, Reading, USA, 1967.

E. W. Davis. Project scheduling under resource constraints - historical re-
view and categorization of procedures. AIIE Transactions, 5(4):297–313,
1973.

D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke. A hybrid scatter
search / electromagnetism meta-heuristic for project scheduling. European
Journal of Operational Research, 169(2):638–653, 2006.

303

http://www.emsa.ca.gov/hics/

Bibliography

S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-based
cutting planes: an application to the resource-constrained project schedul-
ing problem. INFORMS Journal on Computing, 17(1):52–65, 2005.

E. L. Demeulemeester and W. Herroelen. Project Scheduling: A Research
Handbook. International Series in Operations Research & Management
Science. Kluwer Academic Publishers, Boston, USA, 2002.

E. L. Demeulemeester and W. S. Herroelen. A branch-and-bound procedure
for the multiple resource-constrained project scheduling problem. Man-
agement Science, 38(12):1803–1818, 1992.

E. L. Demeulemeester and W. S. Herroelen. New benchmark results for the
resource-constrained project scheduling problem. Management Science,
43(11):1485–1492, 1997.

J. Du, J. Y.-T. Leung, and C. S. Wong. Minimizing the number of late jobs
with release time constraint. Journal of Combinatorial Mathematics and
Combinatorial Computing, 11:97–107, 1992.

S. E. Elmaghraby. Activity Networks: Project Planning and Control by
Network Models. John Wiley & Sons, New York, USA, 1977.

R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5
(6):345, 1962.

J. W. Fondahl. A non-computer approach to the critical path method for the
construction industry. Technical report, Department of Civil Engineering,
Stanford University, 1961.

L. R. Ford, Jr. and D. R. Fulkerson. Constructing maximal dynamic flows
from static flows. Operations Research, 6(3):419–433, 1958.

P. Fortemps and M. Hapke. On the disjunctive graph for project scheduling.
Foundations of Computing and Decision Sciences, 22(3):195–209, 1997.

D. Gale. Transient flows in networks. Michigan Mathematical Journal, 6(1):
59–63, 1959.

H. L. Gantt. A graphical daily balance in manufacture. In Transactions
of the American Society of Mechanical Engineers, volume XXIV, pages
1322–1336. 1903.

H. L. Gantt. Work, Wages, and Profits. The Engineering magazine, New
York, USA, 1910.

304

Bibliography

M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117–129,
1976.

F. Glover. Tabu search - part I. ORSA Journal on Computing, 1(3):190–206,
1989.

F. Glover. Tabu search - part II. ORSA Journal on Computing, 2:4–32,
1990.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1998.

D. Golmohammadi and D. Shimshak. Estimation of the evacuation time in
an emergency situation in hospitals. Computers & Industrial Engineering,
61(4):1256–1267, 2011.

B. H. Gray and K. Hebert. Hospitals in hurricane katrina: challenges facing
custodial institutions in a disaster. Journal of Health Care for the Poor
and Underserved, 18(2):283–298, 2007.

P. Gretenkort and H. Harke. Ärztliche Leitungsfunktion bei einer innerkli-
nischen Gefahrenlage. Anästhesiologie & Intensivmedizin, 42(3):170–175,
2001.

N. G. Hall and C. Sriskandarajah. A survey of machine scheduling problems
with blocking and no-wait in process. Operations Research, 44(3):510–525,
1996.

H. W. Hamacher and S. A. Tjandra. Mathematical modelling of evacuation
problems: a state of the art. In M. Schreckenberg and S. D. Sharma,
editors, Pedestrian and Evacuation Dynamics, pages 227–266. Springer,
Berlin, Heidelberg, Germany, 2002.

T Hanne, T. Melo, and S. Nickel. Bringing robustness to patient flow man-
agement through optimized patient transports in hospitals. Interfaces, 39
(3):241–255, 2009.

S. Hartmann. A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics, 45(7):733–750, 1998.

S. Hartmann. A self-adapting genetic algorithm for project scheduling under
resource constraints. Naval Research Logistics, 49(5):433–448, 2002.

305

Bibliography

S. Hartmann and D. Briskorn. A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of
Operational Research, 207(1):1–14, 2010.

S. Hartmann and A. Drexl. Project scheduling with multiple modes: a
comparison of exact algorithms. Networks, 32(4):283–297, 1998.

S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem. Euro-
pean Journal of Operational Research, 127(2):394–407, 2000.

W. Herroelen, B. De Reyck, and E. Demeulemeester. Resource-constrained
project scheduling: A survey of recent developments. Computers & Op-
erations Research, 25(4):279–302, 1998.

B. Hoppe and É. Tardos. Polynomial time algorithms for some evacuation
problems. In Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 433–441, Arlington, USA, 1994.

B. Hoppe and É. Tardos. The quickest transshipment problem. In Proceed-
ings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 512–521, San Francisco, USA, 1995.

IBM Corporation. IBM CPLEX Optimizer. URL http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/. Visited on 2013-
08-16.

L. A. Kaplan. Resource-Constrained Project Scheduling with Preemption of
Jobs. PhD thesis, University of Michigan, Michigan, USA, 1988.

L. A. Kaplan. Resource-constrained project scheduling with setup times.
Unpublished Paper, Department of Management Science, University of
Tennessee, Knoxville, USA, 1991.

I. Katter, O. Kunitz, and A. Deller. Tagebuch einer Krankenhausevakuie-
rung. Der Anaesthesist, 57(7):693–703, 2008.

J. E. Kelley, Jr. The critical-path method: resources planning and schedul-
ing. In J. F. Muth and G. L. Thompson, editors, Industrial Scheduling,
pages 347–365. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1963.

J. E. Kelley, Jr. and M. R. Walker. Critical-path planning and scheduling.
In Proceedings of the Eastern Joint Computer Conference, pages 160–173,
New York, USA, 1959.

306

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Bibliography

A. Kirchner and A. Schadschneider. Simulation of evacuation processes us-
ing a bionics-inspired cellular automaton model for pedestrian dynamics.
Physica A: Statistical Mechanics and its Applications, 312(1–2):260–276,
2002.

R. Klein. Bidirectional planning: improving priority rule-based heuristics
for scheduling resource-constrained projects. European Journal of Opera-
tional Research, 127(3):619– 638, 2000.

R. Klein and A. Scholl. Computing lower bounds by destructive improve-
ment: an application to resource-constrained project scheduling. European
Journal of Operational Research, 112(2):322–346, 1999.

T. Koch. Rapid Mathematical Programming. PhD thesis, Technische Uni-
versität Berlin, Berlin, Germany, 2004.

Y. A. Kochetov and A. A. Stolyar. Evolutionary local search with variable
neighborhood for the resource constrained project scheduling problem. In
Proceedings of the 3rd International Workshop of Computer Science and
Information Technologies, Ufa, Russia, 2003.

E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-
dependent transit times. In R. Möhring and R. Raman, editors, Algo-
rithms - ESA 2002, volume 2461 of Lecture Notes in Computer Science,
pages 49–561. Springer, Berlin, Heidelberg, Germany, 2002.

R. Kolisch. Serial and parallel resource-constrained project scheduling meth-
ods revisited: theory and computation. European Journal of Operational
Research, 90(2):320–333, 1996a.

R. Kolisch. Efficient priority rules for the resource-constrained project
scheduling problem. Journal of Operations Management, 14(3):179–192,
1996b.

R. Kolisch and A. Drexl. Adaptive search for solving hard project scheduling
problems. Naval Research Logistics, 43(1):23–40, 1996.

R. Kolisch and A. Drexl. Local search for nonpreemptive multi-mode
resource-constrained project scheduling. IIE Transactions, 29(11):987–
999, 1997.

R. Kolisch and S. Hartmann. Experimental investigation of heuristics for
resource-constrained project scheduling: an update. European Journal of
Operational Research, 174(1):23–37, 2006.

307

Bibliography

R. Kolisch and R. Padman. An integrated survey of deterministic project
scheduling. Omega, 29(3):249–272, 2001.

R. Kolisch and A. Sprecher. PSPLIB - a project scheduling problem library.
European Journal of Operational Research, 96(1):205–216, 1997.

R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation
of a general class of resource-constrained project scheduling problems.
Management Science, 41(10):1693–1703, 1995.

R. Kolisch, C. Schwindt, and A. Sprecher. Benchmark instances for project
scheduling problems. In J. Wȩglarz, editor, Project Scheduling, volume 14
of International Series in Operations Research & Management Science,
pages 197–212. Springer, New York, USA, 1999.

Konrad-Zuse-Zentrum für Informationstechnik Berlin. Zimpl. URL http:
//zimpl.zib.de/. Visited on 2013-08-16.

B. Kotnyek. An annotated overview of dynamic network flows. Technical
Report 4936, Institut national de recherche en informatique et en automa-
tique (INRIA), 2003.

N. O. Kröger. Optimierte Kran- und Förderanlagenplanung im Megahub.
Master’s thesis, Universität Osnabrück, Osnabrück, Germany, 2013.

D. Krüger. Multi-Project Scheduling with Resource Transfers. Books on
Demand GmbH, Norderstedt, Germany, 2009.

D. Krüger and A. Scholl. A heuristic solution framework for the resource
constrained (multi-) project scheduling problem with sequence-dependent
transfer times. European Journal of Operational Research, 197(2):492–
508, 2009.

D. Krüger and A. Scholl. Managing and modelling general resource transfers
in (multi-) project scheduling. OR Spectrum, 32(2):369–394, 2010.

K. Y. Li and R. J. Willis. An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Re-
search, 56(3):370–379, 1992.

M. Lipp, H. Paschen, M. Daubländer, R. Bickel-Petrup, A. Thierbach,
R. Müller, and W. Dick. Planung deutscher Krankenhäuser für Groß-
schadensfälle. Notfall + Rettungsmedizin, 1(4):208–213, 1998.

308

http://zimpl.zib.de/
http://zimpl.zib.de/

Bibliography

A. Lova, P. Tormos, M. Cervantes, and F. Barber. An efficient hybrid genetic
algorithm for scheduling projects with resource constraints and multiple
execution modes. International Journal of Production Economics, 117(2):
302–316, 2009.

G. G. Løvås. Models of wayfinding in emergency evacuations. European
Journal of Operational Research, 105(3):371–389, 1998.

D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar. Application of
a technique for research and development program evaluation. Operations
Research, 7(5):646–669, 1959.

A. Mascis and D. Pacciarelli. Machine scheduling via alternative graphs.
Technical Report RT-DIA-46-2000, Dipartimento di Informatica e Au-
tomazione, Università Roma Tre, Rome, Italy, 2000.

A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517,
2002.

M. Mika, G. Waligóra, and J. Wȩglarz. Modelling setup times in project
scheduling. In J. Józefowska and J. Wȩglarz, editors, Perspectives in Mod-
ern Project Scheduling, volume 92, pages 131–163. Springer, New York,
USA, 2006.

M. Mika, G. Waligóra, and J. Wȩglarz. Tabu search for multi-mode resource-
constrained project scheduling with schedule-dependent setup times. Eu-
ropean Journal of Operational Research, 187(3):1238–1250, 2008.

A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm
for the resource-constrained project scheduling problem based on a new
mathematical formulation. Management Science, 44(5):714–729, 1998.

G. Müller. Kriterien für Evakuierungsempfehlungen bei Chemikalienfreiset-
zungen, volume 32 of Zivilschutz-Forschung. Bundesamt für Zivilschutz,
Bonn, Germany, 1998.

K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling
with Time Windows and Scarce Resources: Temporal and Resource-
Constrained Project Scheduling with Regular and Nonregular Objective
Functions. Springer, Berlin, Heidelberg, Germany, 2003.

K. Neumann, C. Schwindt, and J. Zimmermann. Resource-constrained
project scheduling with time windows. In J. Józefowska and J. Wȩglarz,

309

Bibliography

editors, Perspectives in Modern Project Scheduling, volume 92, pages 375–
407. Springer, New York, USA, 2006.

K. Nonobe and T. Ibaraki. Formulation and tabu search algorithm for the
resource constrained project scheduling problem. In Essays and Surveys
in Metaheuristics, volume 15 of Operations Research / Computer Science
Interfaces Series, pages 557–588. Springer, New York, USA, 2002.

E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job
shop problem. Management Science, 42(6):797–813, 1996.

X. Pan, C. Han, K. Dauber, and K. Law. A multi-agent based framework
for the simulation of human and social behaviors during emergency evac-
uations. AI & Society, 22(2):113–132, 2007.

F. S. Pappert, E. Angelidis, and O. Rose. Framework for simulation based
scheduling of assembly lines. In Proceedings of the 2010 Winter Simulation
Conference, pages 1690–1698, Baltimore, USA, 2010.

J. H. Patterson. A comparison of exact approaches for solving the multiple
constrained resource, project scheduling problem. Management Science,
30(7):854–867, 1984.

J. H. Patterson, R. Słowiński, F. B. Talbot, and J. Wȩglarz. An algo-
rithm for a general class of precedence and resource constrained scheduling
problems. In R. Słowiński and J. Wȩglarz, editors, Advances in Project
Scheduling, pages 3–28. Elsevier, Amsterdam, Netherlands, 1989.

A. A. B. Pritsker, L. J. Waiters, and P. M. Wolfe. Multiproject scheduling
with limited resources: a zero-one programming approach. Management
Science, 16(1):93–108, 1969.

A. Quilliot and H. Toussaint. Flow models for project scheduling with trans-
fer delays. In Proceedings of the Federated Conference on Computer Sci-
ence and Information Systems, pages 439–446, Wrocław, Poland, 2012.

B. Roy. Transitivité et connexité. Comptes Rendus de l’Académie des Sci-
ences, 249:216–218, 1959.

B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec con-
straintes disjonctives. Technical Report Note D.S. no. 9 bis, SEMA, Paris,
France, 1964.

310

Bibliography

F. Salewski, A. Schirmer, and A. Drexl. Project scheduling under resource
and mode identity constraints: model, complexity, methods, and applica-
tion. European Journal of Operational Research, 102(1):88–110, 1997.

A. Schutt, T. Feydy, P. Stuckey, and M. Wallace. Why cumulative decom-
position is not as bad as it sounds. In I. Gent, editor, Principles and
Practice of Constraint Programming - CP 2009, volume 5732 of Lecture
Notes in Computer Science, pages 746–761. Springer, Berlin, Heidelberg,
Germany, 2009.

R. Słowiński. Multiobjective network scheduling with efficient use of re-
newable and nonrenewable resources. European Journal of Operational
Research, 7(3):265–273, 1981.

A. Sprecher and A. Drexl. Multi-mode resource-constrained project schedul-
ing by a simple, general and powerful sequencing algorithm. European
Journal of Operational Research, 107(2):431–450, 1998.

A Sprecher, R. Kolisch, and A. Drexl. Semi-active, active, and non-delay
schedules for the resource-constrained project scheduling problem. Euro-
pean Journal of Operational Research, 80(1):94–102, 1995.

A. Sprecher, S. Hartmann, and A. Drexl. An exact algorithm for project
scheduling with multiple modes. OR Spectrum, 19(3):195–203, 1997.

E. Sternberg, G. C. Lee, and D. Huard. Counting crises: Us hospital evac-
uations, 1971-1999. Prehospital and Disaster Medicine, 19(2):150–157,
2004.

J. P. Stinson, E. W. Davis, and B. M. Khumawala. Multiple resource-
constrained scheduling using branch and bound. AIIE Transactions, 10
(3):252–259, 1978.

K. M. Taaffe, R. Kohl, and D. L. Kimbler. Hospital evacuation: issues and
complexities. In Proceedings of the 2005 Winter Simulation Conference,
pages 943–950, Orlando, USA, 2005.

K. M. Taaffe, M. Johnson, and D. Steinmann. Improving hospital evacuation
planning using simulation. In Proceedings of the 2006 Winter Simulation
Conference, pages 509–515, Monterey, USA, 2006.

F. B. Talbot. Resource-constrained project scheduling with time-resource
tradeoffs: the nonpreemptive case. Management Science, 28(10):1197–
1210, 1982.

311

Bibliography

E. Tayfur and K. M. Taaffe. Allocation of resources for hospital evacuations
via simulation. In Proceedings of the 2007 Winter Simulation Conference,
pages 1148–1154, Washington, USA, 2007.

E. Tayfur and K. M. Taaffe. A model for allocating resources during hospital
evacuations. Computers & Industrial Engineering, 57(4):1313–1323, 2009.

S. A. Tjandra. Dynamic Network Optimization with Application to the
Evacuation Problem. PhD thesis, Technische Universität Kaiserslautern,
Kaiserslautern, Germany, 2003.

P. Tormos and A. Lova. Integrating heuristics for resource-constrained
project scheduling: one step forward. Technical report, Department of
Statistics and Operations Research, Universidad Politécnica de Valencia,
2003.

B. Urban, U. Kreimeier, S. Prückner, K. G. Kanz, and C. K. Lackner.
Krankenhaus-Alarm- und Einsatzpläne für externe Schadenslagen an ei-
nem Großklinikum. Notfall + Rettungsmedizin, 9(3):296–303, 2006.

A. Valls, F. Ballestín, and S. Quintanilla. Justification and rcpsp: a tech-
nique that pays. European Journal of Operational Research, 165(2):375–
386, 2005.

A. Valls, F. Ballestín, and S. Quintanilla. A hybrid genetic algorithm for
the resource-constrained project scheduling problem. European Journal
of Operational Research, 185(2):495–508, 2008.

P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop
scheduling by simulated annealing. Operations Research, 40(1):113–125,
1992.

M. Vanhoucke. Setup times and fast tracking in resource-constrained project
scheduling. Computers & Industrial Engineering, 5(4):1062–1070, 2008.

S. Waldherr, J. Poppenborg, and S. Knust. The transportation problem
with second tier resources. Submitted for publication, 2013.

S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):
11–12, 1962.

J. D. Wiest. The Scheduling of Large Projects with Limited Resources. PhD
thesis, Carnegie Institute of Technology, Pittsburgh, USA, 1963.

J. D. Wiest. Some properties of schedules for large projects with limited
resources. Operations Research, 12(3):395–418, 1964.

312

Bibliography

T. Wolf. Modellierung von Räumungen in Krankenhäusern und anderen
Pflegeeinrichtungen. Wuppertaler Berichte zum Brand- und Explosionss-
chutz. VdS-Schadenverhütung, Köln, Germany, 2001.

X. Zheng, T. Zhong, and M. Liu. Modeling crowd evacuation of a building
based on seven methodological approaches. Building and Environment,
44(3):437–445, 2009.

X. Zheng, W. Li, and C. Guan. Simulation of evacuation processes in a
square with a partition wall using a cellular automaton model for pedes-
trian dynamics. Physica A: Statistical Mechanics and its Applications,
389(11):2177–2188, 2010.

313

	Contents
	Introduction
	Hospital Evacuations
	Evacuation Planning
	Network Flow Models
	Other Approaches

	The Problem of Hospital Evacuations
	Literature Review
	Problem Description

	Resource-Constrained Project Scheduling
	The Resource-Constrained Project Scheduling Problem
	Activity-On-Node Network
	Critical Path
	Mixed-Integer Linear Programming Formulations
	Multi-Mode RCPSP
	Setup Times
	Further Extensions

	Solution Approaches
	Time Complexity
	Classification of Schedules
	Heuristic Approaches
	Other Approaches

	A Solution Approach for the HEP based on Priority Rules
	Model
	Problem Description
	Mixed-Integer Linear Programming Formulation
	Further Considerations

	A Tabu Search Algorithm
	Parallel Schedule Generation Scheme
	Serial Schedule Generation Scheme
	Shortcomings of this Solution Approach

	Resource-Constrained Project Scheduling with Resource Transfers
	Project Scheduling with Resource Transfers in Literature
	Classification of Resource Transfers
	RCPSP with Generalized Resource Transfers
	Mixed-Integer Linear Programming Formulation

	RCPSP with First- and Second-Tier Resource Transfers
	Problem Description
	Mixed-Integer Linear Programming Formulation

	Comparison of the Models

	A Solution Approach for the RCPSP with Resource Transfers
	Solution Representation
	Classical RCPSP
	RCPSP with First-Tier Resource Transfers
	RCPSP with First- and Second-Tier Resource Transfers

	Neighborhoods
	Previous Work
	Classical RCPSP
	RCPSP with First-Tier Resource Transfers
	RCPSP with First- and Second-Tier Resource Transfers

	A Tabu Search Algorithm

	A Solution Approach for the HEP based on Resource Flows
	Evacuation Subproblem
	Routing Subproblem
	Solution Representation
	Neighborhoods
	A Tabu Search Algorithm

	Computational Results
	Results for the RCPSP with and without Transfer Times
	Classical RCPSP
	RCPSP with First-Tier Resource Transfers
	RCPSP with First- and Second-Tier Resource Transfers

	Results for the Problem of Hospital Evacuations
	Generation of Test Data
	Computational Results

	Conclusions
	Notation
	General Notation
	Classical RCPSP
	RCPSP with First- and Second-Tier Resource Transfers
	Problem of Hospital Evacuations

	Acknowledgements
	Bibliography

