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ABSTRACT: 

 

In this work, the control system problems, the set point tracking and the periodic 

disturbance rejection, are considered in general and in particular for an angular velocity servo 

control drive-load system.  The sources of the periodic disturbances are that either the drive 

side, the load side or both of them have angle dependent parameters, this could take place 

because of the working principle of the drive as in internal combustion engines, electrical 

(induction or permanent magnet synchronous) motors, etc., as well as in the load side e.g. 

eccentricity as in crankshaft or camshaft mechanisms.  These types of periodic disturbances 

are also called self-excited periodic disturbances generated by state dependent (periodic) para-

meters and have been classified and modeled in this work as internal periodic disturbances.  

On the other hand, periodic disturbances that do not depend on any of the system states or 

parameters are classified and modeled as external periodic disturbances. 

Therefore, for analysis and design objectives, a mathematical model has been built for 

a rigid and flexible drive-load system with angle dependent spring, damper and moment of 

inertia load elements plus an external periodic disturbance source.  This has led to build an 

identification model representing the drive-load system that consists of input to output dyna-

mic part plus an internal and external input periodic disturbance part.  Thus, an identification 

algorithm is used to identify this identification model.  Then, by using the identified periodic 

disturbance parameters of the identification model, a feed-forward controller has been desig-

ned to compensate the drive-load system periodic disturbances as an add-on to an already 

existing set point tracking feedback controller.  This algorithm has turned out to be an indirect 

adaptive feed-forward periodic disturbance controller.  The algorithm has been tested in 

simulation as well as in real-time control implementation intensively with very good results.  

Therefore as a next step, a test platform for a drive-load system has been built up, where the 

load side has a crankshaft mechanism that generates state (angle) dependent oscillations.  And 

finally, the algorithm has been implemented in a real-time controller and successfully applied 

on the test platform to model, identify and consequently to compensate the periodic 

disturbances. 
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𝐹𝑘  Force generated by the linear motion spring load element [N] 

𝑇𝑘  Reaction torque of the linear motion spring load element [Nm]  

𝐾(𝜑)  Converted rotational angle dependent spring (torque) function [Nm] 

𝐾𝑟  Constant of Converted rotational angle dependent spring function [Nm] 

𝑑  Linear motion damping constant [Ns/m]  

𝐹𝑑  Force generated by the linear motion damper load element [N] 

𝑇𝑑  Reaction torque of the linear motion damper load element [Nm]  

𝐷(𝜑)  Converted rotational angle dependent damper function [Nms] 
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𝐷𝑟  Constant of Converted rotational angle dependent damper function [Nms] 

𝐷0  Damping coefficient of the rotational system [Nms] 

𝐷𝑡𝑜𝑡𝑎𝑙(𝜑)  Total damping coefficient function of the rotational system [Nms] 

𝑚  Linear motion mass [kg]  

𝐹𝑚  Force generated by the linear motion mass load element [N] 

𝑇𝑚  Reaction torque of the linear motion mass load element [Nm]  

𝐽(𝜑)  Converted rotational angle dependent moment of inertia function [Kgm
2
] 

𝐽𝑟  Constant of Converted rotational angle dependent moment of inertia 

function [Kgm
2
] 

𝐽0  Moment of inertia of the rotational system [Kgm
2
] 

𝐽𝑡𝑜𝑡𝑎𝑙(𝜑)  Total moment of inertia function of the rotational system [Kgm
2
] 

𝐾𝑃, 𝐾𝐼 Proportional and integral actions of PI-controller 

𝑙  Linking rod between the rotational and reciprocating linear motion of the 

crank mechanism [m] 

𝑛 = 𝑙/𝑟  Ratio between the linking rod to the rotational motion radius of the crank 

mechanism 

𝛼  Angle of the linking rod 𝑙 of the crank mechanism [rad] 

�́� Angle dependent part of the reciprocating linear motion of the crank 

mechanism [m] 

 

Appendix B Variables 

𝑦 Process output due to measured (manipulated, control) input and 

disturbance input 

𝑦𝑚 Process measured output 

𝑦𝑢 Process output due to measured (manipulated, control) input only 

𝑢 Measured (manipulated, control) input 

𝑑𝑜 Output disturbance 

𝑒𝑚 Output measurement error 

 𝑡 Sampling time sequence index (𝑡 = 0, 1, 2,⋯) 

𝐺𝑃(𝑠), 𝐺𝑃(𝑧−1) Process continuous and discrete transfer functions 

𝑛  Oder of the process dynamics 

𝐴(𝑠), 𝐵(𝑠) Denominator and numerator of the process continuous transfer function 
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𝛽0, ⋯ , 𝛽𝑛−1 Numerator polynomial coefficients of the process continuous transfer 

function 

𝛼0, ⋯ , 𝛼𝑛−1 Denominator polynomial coefficients of the process continuous 

transfer function 

𝐴(𝑧−1), 𝐵(𝑧−1) Denominator and numerator of the process discrete transfer function 

𝑏1, ⋯ , 𝑏𝑛 Numerator polynomial coefficients of the process discrete transfer 

function 

𝛼1, ⋯ , 𝑎𝑛 Denominator polynomial coefficients of the process discrete transfer 

function 

𝝓𝑢  Data vector contains past samples of  𝑦𝑢 and 𝑢. 

𝜽  Process Parameter vector 

𝝓𝑚  Data vector contains past samples of  𝑦𝑚 and 𝑢. 

𝑒𝐸𝐸  Equation Error (filtered measurement error)  

�̂�𝑚  Estimation (Prediction) of the process measured output  

�̂�  Estimation (Prediction) of the process parameter vector 

�̂�1, ⋯ , �̂�𝑛;  �̂�1,⋯ , �̂�𝑛 Estimated discrete process parameters 

𝑁  Number of sampled input-output pairs 

𝑒𝑃𝐸  Prediction error 

𝐽𝑁  Performance index 

𝚽m  Data matrix for 𝑁 sampled input-output data pairs 

𝐘𝑚  Measured output array for 𝑁 sampled input-output data pairs 

𝑬𝑃𝐸  Prediction error array for 𝑁 sampled input-output data pairs 

𝑬𝐸𝐸  Equation Error array for 𝑁 sampled input-output data pairs  

𝜁  White noise with zero mean 

�̂�𝑢 Estimation of Process output due to measured (manipulated, control) 

input only 

�̂�𝑢  Data vector contains past samples of  �̂�𝑢 and 𝑢. 

�̂�𝑢  Data matrix for 𝑁 sampled input-(estimated) output data pairs 

𝑒𝑂𝐸  Output error 

𝑬𝑂𝐸  Output error array for 𝑁 sampled input-output data pairs 

𝜆  Forgetting factor 

𝑷  Covariance matrix 
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𝑲  Gain vector 

𝛾  Scalar for covariance matrix initialization 

ℳ(𝜽, 𝑢)  Mathematical model 

𝐽𝑁
′ (𝜽(𝑘))  Jacobian of the functional 𝐽𝑁(𝜽) at 𝜽(𝑘) 

𝐽𝑁
′′(𝜽(𝑘))  Hessian matrix of the functional 𝐽𝑁(𝜽) at 𝜽(𝑘) 

𝑁𝑝  Number of the parameters 

𝑬𝑁  Output error vector with 𝑁 samples 

𝚿N  Gradient matrix of the error vector with respect to the parameters 

𝑯𝑁  Hessian matrix approximation 

�̂�  State estimate 

𝑨(𝜽), 𝑩(𝜽), 𝑪(𝜽) Parameterized state space matrices/vectors of a dynamic system 

𝚾𝑖  Innovation model states 

𝛙  Gradient vector  

𝑲𝑂  Observer gain 

 

Block Diagram Symbols 

 

 

Sum block   

𝑦 = 𝑢1 + 𝑢2 

 

 

Sum (subtraction) block   

𝑦 = 𝑢1 − 𝑢2 

 

 

Sum (subtraction) block   

𝑦 = 𝑢1 + 𝑢2 − 𝑢3 

 

 

Amplifier block 

𝑦 = 𝐴𝑥 

𝑢1 

𝑢2 

𝑦 

𝑢1 

𝑢2 

𝑦 - 

𝑦 
Σ 

𝑢1 

𝑢2 

𝑢3 
- 

𝐴 
𝑥 𝑦 
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Integrator block 

𝑥(𝑡) = ∫ �̇� (𝑡)  𝑑𝑡 

 

 

Multiplication block 

𝑧 = 𝑥𝑦 

 

 

Division block 

𝑧 = 𝑥/𝑦 

 

 

Square block 

 

 

Nonlinear function block 

𝑦 = 𝑎(𝑥) 

 

 

Scalars to vector block 

 

 

Vector to scalars block 

 

 

Samples accumulator: It accumulates N samples 

of 𝑥(𝑡) into a vector 𝒙. 

 

 

Vector to matrix block: It combines the input 

vectors 𝑰𝑖  in an output matrix 𝑿. 

 

∫  
𝑥(𝑡) �̇�(𝑡) 

𝑥 
X 

𝑦 

𝑧 

÷ 
× 

𝑦 

𝑥 𝑧 

𝑥 
X

2
 

𝑥2 

𝑥 
𝑎(𝑥) 

𝑦 

𝑥1 

𝑥2 

𝒙 

𝑥1 

𝑥2 
𝒙 

 N 
𝑥(𝑡) 𝒙 

 Vector to   

Matrix 

𝑰1 

𝑰2 

𝑰3 

𝑿 = [𝑰1 𝑰2 𝑰3] 



 

 

 

XX 

LIST OF FIGURES 

Figure 1.1: Control system with feedback and feed-forward controllers. .................................. 1 

Figure 2.1: Drive-load system. ................................................................................................. 10 

Figure 2.2: Drive-load system using the physical parameters. ................................................ 11 

Figure 2.3: Drive-load system using the mathematical parameters. ........................................ 11 

Figure 2.4: Externally disturbed system. .................................................................................. 12 

Figure 2.5: Frequency response. .............................................................................................. 13 

Figure 2.6: Unit step response with different external periodic disturbance frequencies. ....... 13 

Figure 2.7: Eccentric mechanisms ........................................................................................... 16 

Figure 2.8: Drive-load system with angle dependent mathematical parameters. ..................... 16 

Figure 2.9: Drive-load system with internal periodic disturbances. ........................................ 18 

Figure 2.10: Nonlinear state space representation of the drive-load system. ........................... 18 

Figure 2.11: Separated linear nonlinear state space representation of the drive-load 

system. ................................................................................................................... 19 

Figure 2.12: Drive-load system with nonlinear spring, damper and approximate moment 

of inertia load elements. ........................................................................................ 21 

Figure 2.13: Externally and internally disturbed rigid drive-load system. ............................... 21 

Figure 2.14: Stair case step response and the variable nonlinear spring torque value. ............ 23 

Figure 2.15: Stair case step response and the variable state dependent damper load 

element. ................................................................................................................. 23 

Figure 2.16: Stair case step response and the variable angle dependent moment of inertia 

for exact 1/J and constant approximation of 1/J cases. ......................................... 24 

Figure 2.17: The drive-load system with gear. ......................................................................... 25 

Figure 2.18: The physical parameters of the flexibly linked drive-load system with gear. ..... 25 

Figure 2.19: Block diagram of the flexibly linked drive-load system. .................................... 27 

Figure 2.20: Compact block diagram of the flexibly linked drive-load system. ...................... 27 

Figure 2.21: Block diagram of the flexible drive-load system. ................................................ 28 

Figure 2.22: Block diagram of the flexibly linked drive-load system with angle 

dependent physical parameters. ............................................................................. 31 

Figure 2.23: Flexible drive-load system with a separate external and internal periodic 

disturbance torque function. .................................................................................. 34 

Figure 2.24: Block diagram of externally and internally disturbed flexibel drive-load 

system. ................................................................................................................... 35 

Figure 2.25: Externally and internally disturbed flexible drive-load system in state space 

representation. ....................................................................................................... 35 

Figure 3.1: Feedback control of disturbed process................................................................... 36 

Figure 3.2: Addition of PDRF in two variations A and B. ....................................................... 39 

Figure 3.3: The PDRF poles in 𝑠-plane for 𝜔𝑑 = 𝛾 and   𝜉𝑑 = 0. .......................................... 39 

Figure 3.4: Disturbance frequency inside the (demanded) system bandwidth......................... 40 

Figure 3.5: Disturbance frequency outside (demanded) system bandwidth. ........................... 41 



LIST OF FIGURES 

 

 

XXI 

Figure 3.6: Disturbances and their feed-forward control. ........................................................ 44 

Figure 3.7: Output-input disturbance observer. ....................................................................... 45 

Figure 3.8: Computing the input disturbance without using the inverse of estimated 

dynamics. ............................................................................................................... 46 

Figure 3.9: Model following control concept. .......................................................................... 47 

Figure 3.10: The adaptive periodic disturbance canceler ......................................................... 50 

Figure 3.11: Feed-forward control of internally and externally disturbed system. .................. 52 

Figure 3.12: Phasor diagram. ................................................................................................... 53 

Figure 3.13: Load-side disturbance feed-forward control of the flexible drive-load 

system. ................................................................................................................... 53 

Figure 3.14: Input disturbance feed-forward control of the flexible drive-load system. ......... 53 

Figure 4.1: General control strategy of the adaptive set point feedback controller and 

periodic disturbance feed-forward controller. ....................................................... 55 

Figure 4.2: Externally and internally disturbed identification model. ..................................... 56 

Figure 4.3: Identification model for externally and internally disturbed system. .................... 62 

Figure 5.1: Example 1.1: Closed loop frequency response to the set point and the 

disturbance for the parameter sets A and B of the PI feedback controller. ........... 70 

Figure 5.2: Example 1.1: Closed loop set point step response for parameter sets A and B 

of the PI feedback controller. ................................................................................ 70 

Figure 5.3: Example 1.2: Set point and disturbance frequency response of closed loop 

system for only PI controller (parameter set A), with PDRF variant A and 

with PDRF variant B. ............................................................................................ 71 

Figure 5.4: Example 1.2: Set point step response of closed loop system for only PI         

(parameter set A), with PDRF variant A and with PDRF variant B. .................... 71 

Figure 5.5: Example1.3: Open-loop identification run. ........................................................... 73 

Figure 5.6: Example 1.3: Compensation in open loop. ............................................................ 74 

Figure 5.7: Example 1.3: Compensation in closed loop under PI controller. .......................... 74 

Figure 5.8: Example 1.3: Closed loop adaptive run. ................................................................ 75 

Figure 5.9: Example 1.4: 5-harmonics open loop identification run. ...................................... 77 

Figure 5.10: Example 1.4: 5-Harmonics open loop compensation. ......................................... 78 

Figure 5.11: Example 1.4: 5-Harmonics closed loop compensation. ....................................... 78 

Figure 5.12: Example 1.4: Adaptive run. ................................................................................. 79 

Figure 5.13: Example 1.5: Open loop identification. ............................................................... 82 

Figure 5.14: Example 1.5: Periodic disturbance compensation in open loop. ......................... 83 

Figure 5.15: Example 1.5: Periodic disturbance compensation in closed loop. ....................... 83 

Figure 5.16: Example 1.5: Adaptive run. ................................................................................. 84 

Figure 5.17: Example 2.1: Frequency response of the drive and disturbance load 

torques. .................................................................................................................. 87 

Figure 5.18: Example 2.1: Comparison between real and identified dynamics. ...................... 87 

Figure 5.19: Example 2.1: Open loop identification run. ......................................................... 88 

Figure 5.20: Example 2.1: Periodic disturbance compensation in open loop. ......................... 89 

Figure 5.21: Example 2.1: Periodic disturbance compensation in closed loop. ....................... 89 

Figure 5.22: Example 2.1: Adaptive run. ................................................................................. 90 



LIST OF FIGURES 

 

 

XXII 

Figure 5.23: Example 2.2: Frequency response of the flexible drive-load system. ................. 92 

Figure 5.24: Example 2.2: The frequency response of the real flexible and the identified 

first order system dynamics. .................................................................................. 92 

Figure 5.25: Example 2.2: Closed loop adaptive run. .............................................................. 93 

Figure 5.26: Example 2.3: Closed loop adaptive run. .............................................................. 94 

Figure 5.27: Example 2.4: Frequency response of the real and the identified system 

dynamics. ............................................................................................................... 95 

Figure 5.28: Example 2.4: Closed loop adaptive run. .............................................................. 96 

Figure 5.29: Example 2.5: Closed loop adaptive run. .............................................................. 99 

Figure 5.30: Example 2.6: Closed loop adaptive run. ............................................................ 100 

Figure 5.31: Example 2.6: Periodic disturbance compensation in open loop. ....................... 101 

Figure 5.32: Example 2.6: Periodic disturbance compensation in closed loop. ..................... 101 

Figure 5.33: Example 2.7: Closed loop adaptive with 5-harmonics. ..................................... 103 

Figure 5.34: Example 2.8: Closed loop adaptive with 3-harmonics. ..................................... 104 

Figure 6.1: Overview of the torsional plant real-time control system from Educational 

Control Products Company. ................................................................................ 107 

Figure 6.2: Matlab-Simulink diagram of experiment 1.1. ...................................................... 108 

Figure 6.3: The system time response of experiment 1.1. ...................................................... 108 

Figure 6.4: The Matlab-Simulink diagram of experiment 1.2. .............................................. 109 

Figure 6.5: Experiment 1.2 run. ............................................................................................. 110 

Figure 6.6: Experiment 1.3 run. ............................................................................................. 112 

Figure 6.7: MatLab-Simulink diagram of experiment 1.4. .................................................... 115 

Figure 6.8: MatLab-Simulink diagram of experiment 1.5. .................................................... 115 

Figure 6.9: Experiment 1.4 run. ............................................................................................. 116 

Figure 6.10: Experiment 1.5 run. ........................................................................................... 117 

Figure 6.11: Experiment 1.6 run. ........................................................................................... 118 

Figure 6.12: The schematic diagram of the drive-load self-excited machine. ....................... 121 

Figure 6.13: The drive-load self-excited rotational machine. ................................................ 122 

Figure 6.14: The crankshaft mechanism moving a mass, spring and damper load. ............... 122 

Figure 6.15: Time and finite DFT frequency spectrum estimate without compensation. ...... 125 

Figure 6.16: Time and finite DFT frequency spectrum estimate without compensation 

(gray line) and with 4-harmonics compensation (black line). ............................. 126 

Figure 6.17: Identification and compensation of 5-harmonics. ............................................. 127 

Figure 6.18: System output of uncompensated; compensated with 4-harmonics and 

compensated with 5-harmonics. .......................................................................... 128 

Figure 6.19: The finite DFT frequency spectrum estimates of uncompensated; 

compensated with 4-harmonics and compensated with 5-harmonics. ................ 128 

Figure 6.20: Stepwise variable set point and periodic disturbance compensation. ................ 129 

Figure 6.21: Consistently varying set point tracking and periodic disturbance 

compensation. ...................................................................................................... 130 

 

  



LIST OF FIGURES 

 

 

XXIII 

Appendix A 

Figure A.1: Scotch yoke mechanism ...................................................................................... 137 

Figure A.2: Block diagram of the Scotch yoke dynamic model. ........................................... 140 

Figure A.3: Angular velocity finite DFT frequency spectrum estimate of Scotch yoke 

mechanism with linear motion damper and spring load elements. ..................... 141 

Figure A.4: Angular velocity finite DFT frequency spectrum estimate of Scotch yoke 

mechanism with linear motion mass load element. ............................................. 141 

Figure A.5: Crank mechanism moving a mass, spring and damper load elements. ............... 142 

Figure A.6: Time plot (top) and frequency spectrum plot (bottom) of the angle 

dependent linear motion part at 50 [rad/s] rotational velocity. ........................... 145 

Figure A.7: Time plot (top) and frequency spectrum plot (bottom) of angle dependent 

linear motion velocity part at 50 [rad/s] rotational velocity. ............................... 146 

Figure A.8: Time plot (top) and frequency spectrum plot (bottom) of angle dependent 

linear motion acceleration part at 50 [rad/s] rotational velocity.......................... 146 

Appendix B 

Figure B.1: Disturbed process with output measurement error. ............................................ 150 

Figure B.2: Prediction error system identification. ................................................................ 153 

Figure B.3: Output error system identification. ..................................................................... 154 

Figure B.4: Output error parameter identification strategy. ................................................... 157 

Figure B.5: Batch (offline) iterative (successive) Gauss-Newton output error method. ........ 161 

Figure B.6: Online recursive Gauss-Newton output error method. ....................................... 163 

Figure B.7: Prediction error parameter identification strategy. ............................................. 164 

 

 

 





 

 

1 INTRODUCTION 

 

1.1 Problem Description 

1.1.1 Set Point Tracking and Disturbance Rejection 

Set-point tracking and disturbance rejection are the main goals to achieve in control system 

theory and its applications.  The main job of a controller is first to guarantee the set point 

tracking and second is to suppress the effect of any kind of disturbances acting on the system.  

The set point tracking and disturbance rejection in control applications can be done by using a 

negative feedback controller, a feed-forward controller or a combination of them.  Figure 1.1 

shows a block diagram of a typical control system that has a feedback controller, a set point 

feed-forward controller and a disturbance feed-forward controller.  To realize the feedback 

controller, the process output must be measured.  Also, to realize the disturbance feed-forward 

controller, the disturbance must be available either by direct measurement, observation, 

estimation or prediction. 

1.1.2 Disturbances in General 

Generally, the disturbance models a real physical effect on the process either that comes from 

inside (internal) or outside (external) of the process, see Figure 1.1.  On the other hand, noise 

is also assumed to be some sort of disturbance that usually models, for example, the errors 

that take place during the measurement of the controlled variable which is the output.  

Therefore, the influence of the disturbance on the process output should be regulated, while 

the measurement error (noise) needs to be canceled from the measurements, or it should be as 

small as possible to be ignored.  Moreover, disturbance can be classified as deterministic sig-

nal (for example constant, ramp, sine or square wave, etc.) or stochastic (random) signal, 

stationary signal (its parameter does not change with time) or non-stationary (for time-varying 

parameters).  However, the periodic disturbances (oscillations) are exclusively considered in 

this work. 

 

Figure 1.1: Control system with feedback and feed-forward controllers. 
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1.1.3 Oscillation Sources and their Classification 

Undesirable oscillations are in particular assumed to be periodic disturbances, which could be 

generated by external sources, called forced oscillations, or internally by linear system 

dynamics, called free response oscillations.  If one or more of the system modes are excited, 

this could lead to a constant oscillation (pure sinusoidal oscillation when a system has a pair 

of complex conjugate imaginary poles or more at the imaginary-axis in the 𝑠-plane), or a 

transient oscillation when the system has positive or negative damping coefficient.  Moreover, 

sustained oscillations could also take place because of nonlinear system dynamics (Harris and 

Piersol 2002).  For example, limit cycle oscillations induced from hysteresis elements, or 

oscillations generated because of state dependent (periodic) parameters like in rotational 

drive-load systems, which could cause the rotor angular position or velocity to oscillate, and 

this is mainly because of angle dependent drive or load parameters.  Moreover, these types of 

oscillations can also be called or classified as self-excited oscillations. 

In practice, such oscillations could actually be induced in the angular velocity servo control 

drive-load systems either from the drive side and/or from the load side.  The drive side sys-

tems are, for example, reciprocating engines, where according to their construction and 

working principles, they generate angle dependent pulses of torque that cause oscillation in 

the rotational velocity.  Therefore, a lot of work has been done in order to reduce these osci-

llations, for example, Zaremba, Burkov and Stuntz (1998) have developed a control algorithm 

to reduce the oscillations of the engine idle speed, Gusev, Johnson and Miller (1997) have 

developed an active flywheel algorithm to reduce the engine speed oscillation and Njeh, 

Cauet and Coirault (2010) have developed a new control strategy to reduce the torque ripples 

of the combustion engine in hybrid electric vehicles.  Moreover, electrical drives also have 

torque ripples that need to be reduced, for example, in induction motor (Basu, et al. 2010; Itoh 

and Kubota 2005), as well as the cogging torque in permanent magnet synchronous-motors 

(Li and Slemon 1988; Jahns and Soong 1996; Holtz and Springob 1996; Petrovic, et al. 2000; 

Gan and Qui 2004; Wang, Gan and Qiu 2007; Maier, Bals and Bodson 2011), etc. 

On the other hand, the angle dependent load machines can also be the main source of oscilla-

tions in the drive-load systems, as in load machines with reciprocating motion like in crank-

shaft or camshaft machines.  As examples for these types of machines are reciprocating air 

compressor machines, rectilinear or reciprocating saw machines, weaving machines 

(Smolders, et al. 2005), etc.; also machines with undesirable eccentricity like disc drive 

systems (Sacks, Bodson and Khosla 1993; Nagashima, Usui and Kobayashi 2006); or in 

noncircular roll machines (Garimella and Srinivasan 1994; Kugi, et al. 2000; Shin, et al. 

2003). 

Therefore, it is very important for the performance of the drive-load system to prevent (reject) 

the oscillation generated at the drive side to go to the load side, or the oscillation generated at 

some load to affect the other coupled loads, especially, when drive-load system has more than 

one load linked together. Actually, this can be done by using passive control methods, by 

using passive elements (flywheels, dampers), or semi-active control by using passive ele-

ments with tunable (adaptive) parameters.  Nevertheless, this work is mainly interested in 

active control methods that generate an anti-action (force, torque …) actively against the 

periodic disturbances by utilizing the already existing computer control system. 
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1.2 Periodic Disturbance Rejection Methods 

Disturbance rejection is a classical problem of control system theory and its applications.  

Periodic (sinusoidal) disturbance is a special case that has its distinction discretely in the fre-

quency domain.  The integral part of the classical Proportional-Integral-Derivative (PID) con-

troller deals explicitly only with a constant disturbance that has a zero frequency component.  

Therefore, to compensate a sinusoidal disturbance, an internal model representing this distur-

bance should be added to a controller according to the Internal Model Principle (IMP) 

(Francis and Wonham 1976; Bodson 2005) by means of complex conjugate poles at the 

disturbance frequency.  The added internal model will alternatively be called in this context as 

Periodic Disturbance Rejection Filter (PDRF).  The filter will create a notch in the resulted 

closed loop disturbance frequency response.  Moreover, the disturbance frequency is assumed 

to be either known as the case of internal disturbance in rotational machines or measurable in 

the case of external periodic disturbance.   

However, most of the use of the notch filters in control applications is to shape the frequency 

response of the feedback control system in order to suppress the resonance modes of flexible 

structure characteristics, which are actually the cause of the oscillations (see, for example, 

Schmidt and Rehm 1999; Yoo, et al. 2011).  On the other hand, the “inverse” notch filter can 

also be used to suppress the external periodic disturbances (see, for example, Zaremba and 

Davis 2000).  But the challenge here is to compromise between a perfect disturbance rejection 

and the set point tracking characteristics mostly in terms of the closed loop system relative 

stability (for more details of periodic disturbance rejection, see chapter  3).  Generally, for 

multi-harmonic disturbances, a number of PDRFs can be designed and used to reject every 

harmonic distinctively or one PDRF for a band of disturbance frequencies.  For the case of 

infinite harmonics, a repetitive control filter can be applied to reject them, for example, as 

presented by Kobayashi, Hara and Tanaka (1990); Steinbuch (2002); Quan and Cai (2010). 

Also, Iterative Learning Control (ILC) can be used to reject periodic disturbances, although it 

is originally designed to optimize the repeated (set-point trajectory) task tracking of robots.  

However, the ILC can be used to iteratively learn (estimate or adapt) a proper (feed-forward) 

control signal to reject a periodic disturbance given in the repeated task period, which is at the 

end acts as repetitive control algorithm, for example, see (Zaremba, Burkov and Stuntz 1998; 

Kim, et al. 1998).  Moreover, the ILC control learns (estimates or adapts) the control signal 

from the past iteration to optimize a repetitive task, rather than estimating the controller 

parameters as in the case of adaptive control, for more general information about ILC refer, 

for example, to (Bristow, Tharayil and Alleyne 2006; Ahn, Chen and Moore 2007). 

Furthermore, the disturbance can be cancelled, if it is available, by using a feed-forward 

controller.  However, in practice, the disturbance is not always directly available (measure-

able).  Alternatively, it can be computed by using a disturbance observer.  But, the imple-

mentation of a disturbance observer in estimation and cancellation of the disturbance simul-

taneously, makes the method to function as a pure feedback control technique, particularly 

when the disturbance observer uses the output signal in estimation of the disturbance signal.  

The disturbance observer can be constructed, for example, as transfer function based distur-

bance observer (Ellis 2002; Du, et al. 2010; Ohishi 1987; Ohishi 2010), or as state space 
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based disturbance observers extended from state space observers (Kalman and Bucy 1961; 

Luenberger 1964).  Moreover, these methods are realized, for example, by designing a set of 

linear time-invariant observers for a set of disturbance frequencies in some operating regions, 

so the resulted design is a gain scheduled control (see, for example, Bohn, et al 2004).  

Additionally, the controller design can also be carried out by using robust control Linear 

Parameter Varying (LPV) techniques, for example, Du and Shi (2002), Du, et al. (2003) and 

Kinney and Callafon (2006) have developed H∞ and LPV methods respectively for active 

vibration control application; or Ballesteros and Bohn (2011) have developed and applied the 

algorithms in discrete-time format. 

Alternatively, the Adaptive Feed-Forward Control (AFFC) algorithms can also be used to 

estimate and compensate the unavailable periodic disturbance signal in a form of its finite 

Fourier series.  But, most of the AFFC strategies, for example, Least Mean Squares (LMS) 

family methods (Widrow and Stearns 1985; Hansen 2001), are originally developed for pure 

active noise and vibration control applications to suppress the vibrations generated in flexible 

structures, which are globally stable in nature.  Moreover, these methods are usually imple-

mented by actuators that are acting locally on the system without constant set point tracking 

and constant disturbance rejection objectives.  Therefore on the contrary, these strategies do 

not suit in particular this work control problem because of (global) stability issue, parameter 

convergence and the online direct adaptation (tuning) problems (Elliott 2001; Bodson 2005).  

This means that as long as the algorithm does not converge, the system operates with very 

poor performance and that will be until and only if the parameters converge.   

Generally, most of AFFC algorithms incorporate the output signal in the estimation of the 

periodic disturbance which makes them also function as a pure feedback control algorithm.  

However, exception could be made as the direct adaptation is deactivated, when the 

parameters converge.  Notwithstanding this, for a rapid variation of disturbance frequencies 

case like in the current work main problem (the velocity servo control of rotational machines 

with angle dependent load elements), the AFFC algorithms are more attractive and suitable 

for this case, since their theory and applications do not depend on the assumption that the 

disturbance amplitude and frequency are constants, slowly varying or linear time-varying 

(Bodson 2004, Section 5).   

Moreover, for practical applications, Wit and Parly (2000) have developed an adaptive 

eccentricity compensation algorithm, which is an AFFC, also Maier, Bals and Bodson (2011) 

have developed an AFFC to cancel the ripples of a permanent magnet synchronous-motor, but 

both of them are with a direct controller parameter (tuning) optimization algorithm.  While in 

this work the problem of Feed-Forward Control (FFC) adaptation will be transferred into a 

system identification (parameter optimization) problem, where the identification model is 

constructed by two parts, dynamic part in terms of linear or nonlinear differential or diffe-

rence equations and a disturbance part in terms of sine cosine sum functions (Bodson 2005) 

that are related linearly or nonlinearly to external and internal system variables.  Utilizing the 

identification model, this will allow the identification to gather information online (offline as 

a priori) about the process and to pass the converged parameters to use in the FFC law, even 

when the FFC is deactivated, particularly at the starting phase when the dynamic and distur-

bance parameters are far from the optimal ones. 
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1.3 Main Distinctions of the Developed Algorithm 

First of all, it is a general strategy that can be interpreted to and implemented in many 

variations, as stated in section 4.4.  It classifies the disturbances as external and internal dis-

turbances and put them in a more general format, while most of the developed algorithms 

model the disturbance simply as external disturbances even if they are really correlated to the 

system variables or parameters.  Where in this work developed algorithm allows and intro-

duces this possibility to achieve more global modelling, which of course increases the system 

performance in a wider region about the operating point.   

Moreover, it (approximates) models and identifies the periodically disturbed system as input-

output dynamics, and input external and/or internal disturbances, which is presented as 

identification model. This makes the realization of both adaptive feedback control and 

adaptive feed-forward control strategies possible.  Besides, using the input disturbance format 

makes its implementation very easy in computation without extra transformations. 

Furthermore, It uses system identification algorithms to identify the identification model 

which makes it as an indirect adaptive algorithm, while most of the other algorithms use 

direct adaptive methods to tune the (disturbance) feed-forward controller parameters or use 

indirect adaptive method but by using (fixed) pre-identified process model.  For example, Wit 

and Parly (2000) have developed an adaptive eccentricity compensation algorithm, which is 

an adaptive feed-forward control, Maier, Bals and Bodson (2011) have also developed an 

adaptive feed-forward to cancel the ripples of a permanent magnet synchronous motor, but 

both of them are with a direct controller parameter (tuning) optimization algorithm.  

Moreover, Na and Park (1997) have developed an adaptive feed-forward control that works 

like the typical LMS-algorithm but in indirect way, by using pre-estimated process and closed 

loop transfer functions, also Wang and Ren (1994) have developed an indirect adaptive feed-

forward control for and to be applied exclusively in active noise and vibration control 

systems. 

1.4 Targets of this Work 

The main objective here is to develop an active control method to reject/compensate the 

continual oscillations that are generated in an angular velocity servo control of a rotary drive-

load system.  These oscillations are an undesirable (nonlinear) behavior and considered as an 

internal (self-excited) periodic disturbance generated mainly because of that the load machine 

has an angle (state) dependent (nonlinear) spring, damper or moment of inertia load element 

or their combinations.   

Moreover, the problem is also extended to oscillations that have no relation to the system 

dynamics and considered as an external periodic disturbance.  Using the developed strategy, a 

feed-forward controller will be designed mainly to identify and compensate the internal and 

the external periodic disturbances and it should work as an add-on feed-forward controller to 

an already existing set-point tracking feedback controller also with a minimum interference 

between them.  This has to be done without using extra drive.  The method will be applied 

and tested in simulation as well as in real-time control experiments.   
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Furthermore, a drive-load test platform machine will also be built up as an angular velocity 

servo control system, where the load machine is constructed to have a crankshaft mechanism 

that moves a mass in a translated reciprocating linear motion up and down against spring, 

damper and mass forces that generate the undesirable nonlinear angle (state) dependent 

oscillations.   Finally, the developed algorithm will be applied in real-time control on this test 

platform to identify and to cancel these unwanted oscillations. 

1.5 Contributions and Outline of this Work 

One of the main contributions of this work, presented in chapter 2, is the modeling, analysis 

and simulation of the angular velocity servo control drive-load system with angle (state) 

dependent (periodic) spring, damper and moment of inertia load elements.  Where, models for 

the angular velocity drive-load system are developed as rigid as well as flexible systems with 

external and internal (self) excited periodic disturbances.  First, the models are developed by 

using the physical parameters explicitly, then by using the mathematical parameters.  These 

models have state (angle) dependent (periodic) parameters. 

Moreover, since the state dependent (periodic) parameters are the main cause of the oscilla-

tions in the system, which is an undesirable (nonlinear) behavior that needs to be rejected or 

compensated.  Therefore, the cause of this behavior is separated and redefined in variables 

space as internal periodic disturbance acting on the load side.  This transformation of the state 

dependent periodic parameters to an (input) internal periodic disturbance and the extension to 

external periodic disturbance, are the main inspiration for developing the control strategy of 

periodic disturbances later in chapter  4.  

In chapter 3, a brief introduction and a brief literature review are presented in general to the 

methods of periodic disturbance rejection by using only feedback control techniques to 

achieve the demands of set point tracking and periodic disturbance rejection by implementing 

the internal model principle in the feedback controller, for example, by using the periodic 

disturbance rejection filter (“inverse” notch filter) for a single harmonic or a repetitive control 

for infinite harmonics of a periodic disturbance. 

Furthermore, the methods of feed-forward control are also briefly introduced in general when 

the disturbance is directly available.  Alternatively, the methods of (pseudo) feed-forward 

control when the disturbance is not directly available, and therefore, the disturbance is com-

puted (estimated) by observing its effect on the system output, for example, by using the 

transfer function based observer and the state space (Luenberger) observer by implementing 

the disturbance internal model.  Moreover, the adaptive direct feed-forward periodic distur-

bance estimation and compensation algorithm (for example, LMS family) that was originally 

developed for active control of noise and vibration applications is briefly introduced. 

In chapter 4, the main contribution of this work is the development and presentation of a new 

feed-forward control of periodic disturbances (Alsogkier and Bohn 2012), that is originally 

inspired and stemmed from the adaptive feed-forward active noise and vibration control appli-

cations, but the direct adaptation problem of disturbance parameters is solved by transforming 

it into system identification optimization problem in form of parametric identification algo-

rithms.  This algorithm has turned out to be an indirect adaptive method.  The feed-forward 
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controller is exclusively implemented to model, identify and to compensate the (external and 

the internal) periodic disturbances as an add-on to an already existing feedback controller. 

The general strategy, feedback control for set point tracking and feed-forward for periodic 

disturbance rejection, is achieved by constructing an identification model representing the 

input to output dynamics of the periodically disturbed process together with the external and 

internal input periodic disturbance. Therefore, by identifying the identification model, the 

adaptation can be practically done to both the feedback controller and the feed-forward 

controller.  Furthermore, the identification model is constructed in general for  a drive-load 

system with external and internal periodic disturbances for continuous and discrete nonlinear 

in parameters by using nonlinear least squares (Gauss-Newton method), also linear in 

parameter discrete identification model is developed to be used with linear least squares. 

Chapter 5 contribution, the drive-load system is simulated by using its rigid and flexible 

models with external and internal (self-excited) periodic disturbances that have been 

developed in chapter 2.  In these simulation examples, the system is constructed as an angular 

velocity servo control system to follow the given set point tracks.  And moreover, because of 

the external and/or internal periodic disturbances, oscillations appear on the system output, 

the methods introduced in chapters 3 and 4 are applied in order to reject these periodic distur-

bances or to compensate their effect on the system output.  Therefore, the problem of the set 

point tracking and periodic disturbance rejection is tried to be done first by using feedback 

control (Simulation Example 1.1) only and second by incorporating a periodic disturbance 

internal model according to IMP (Francis and Wonham 1976) (Simulation Example 1.2).   

Then, the problem is done by using the developed strategy of feedback control for set point 

tracking and an add-on feed-forward for periodic disturbance compensation introduced in 

chapter 4.  Where in simulation example 1.3, the feedback for set point tracking and feed-

forward for periodic disturbance compensation is done for single harmonic disturbance, while 

in simulation example 1.4, the multi-harmonic external periodic disturbance is considered.  

Simulation example 1.5 considers the externally and internally (self-excited oscillations) 

periodically disturbed system case. 

Moreover, the externally excited periodic disturbance compensation in flexible drive-load 

system is considered for rigid link case (simulation example 2.1), and simulation examples 

2.2-4 for the flexible link cases.  Simulation examples 2.5 and 2.6 present the internally exci-

ted periodic disturbance compensation for local and global identification models respectively.  

Furthermore, simulation examples 2.7 and 2.8 present the periodic disturbance compensation 

using discrete local and global identification models respectively, where the identification 

models are identified by using the method of recursive least squares.  

Chapter 6 contribution, the developed algorithms, modeling, identification and control of 

periodic disturbance compensation, after their successful implementation and evaluation in 

the simulation experiments, are implemented now in real-time controllers and tested on real 

mechanical plants. The torsional plant is presented in the first section, while the self-excited 

machine is presented in the second section.  Moreover, a brief description to the torsional test 

plat form is given first, then the external periodic disturbance rejection using periodic 

disturbance rejection filter is presented in experiment 1.1.  While, continuous and discrete 
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modeling, identification and feed-forward control as an add-on to a feedback controller 

mainly to compensate the external periodic disturbance are presented in examples 1.2 and 1.3 

respectively, and also in examples 1.4 and 1.5 correspondingly for the internal periodic 

disturbance.  Furthermore, experiment 1.6 is the same as in 1.5 but with a variable set point 

signal.   

Also in the second section  6.2, a short description to the self-excited machine test platform is 

given.  Then in subsection  6.2.2 the frequency spectrum analysis is done at different system 

output (angular velocity) levels under only PI feedback controller first without periodic distur-

bance compensation then with (4-harmonic) periodic disturbance compensation.  Then accor-

ding to the frequency spectrum analysis results, a first sub-harmonic component is also 

modeled, identified and controlled together with the principal and three super-harmonics (sub-

section  6.2.3), this is tested on constant, stepwise variable and linear time variable set point 

signals. 

Finally, chapter 7 will give some summary and conclusion as well as theoretical and practical 

future work suggestions as extensions to this work. 

Extra more, in Appendix A, simple eccentric mechanisms, Scotch yoke and crank mecha-

nisms, are introduced.  Where, in the first section, the kinematics and the dynamics are pre-

sented when the Scotch yoke mechanism has spring, damper and mass linear motion load 

elements.  Moreover, a dynamic model for this system is constructed.  Consequently, the fre-

quency spectrum analysis for the angular velocity oscillation is presented for different linear 

motion load parameters.  While, in the second section, the kinematic analysis of the crank 

mechanism is presented, as well as the frequency spectrum analysis of its transformed recip-

rocating linear motion, velocity and acceleration. 

Furthermore, in Appendix B, a brief introduction is given to the system identification in 

general and, in particular, to the parametric identification methods for continuous and discrete 

models with linear and nonlinear in parameters format.  The contribution of this appendix is 

that, these methods are represented in graphical block diagram format, so that they can be 

easily programmed in Simulink-Matlab from MathWorks Company, which is a graphical-

oriented programming environment.  This will make them easy to compile and to implement 

online and in real-time control by using, for example, the dSPACE Company real-time 

controller utilities. 
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2 MODELING AND SIMULATION 

  

Modeling is the art of describing an observed physical process either by analogy in terms of 

small sizing of a very large process or large sizing of a very small process, or by using the 

analogy between different fields of physical processes, for example, the analogy between 

mechanical and electrical fields.  This type of modeling is generally called analog computing, 

which it was and still is the ultimate way of modeling and simulation of physical processes in 

all engineering fields.  However, in the recent decades, the rapid development of digital 

computers in terms of their computing power, cost and availability has made the way open for 

digital simulation, where it computes the system behavior by using its mathematical model 

that was built based on the principles of physical laws.  Therefore in this chapter, the digital 

modeling and simulation are mainly presented for a drive-load system with angle dependent 

(spring, damper and moment of inertia) rotational load elements that actually cause the self-

excited oscillations in the system.   

2.1 Periodically Disturbed Drive-load Systems 

Oscillation is a special disturbance case that appears frequently in rotational machines, 

particularly when some of the load parameters are angle dependent, in other words, it can also 

be called state dependent (periodic) parameters.  This can be because of an eccentricity, non-

uniform machine parts or the internal design of the load machine, for example, camshaft or 

crankshaft mechanisms (piston compressor, textile machine, etc.) (Vinogradov 2000; Östman 

and Toivonen 2008; Holm, et al. 2012).  This type of effect can be modeled as internal 

periodic disturbance which is also called self-excited oscillation.  But, when the disturbance 

parameters (amplitude, frequency) are not dependent on the angular position or on any other 

internal variable or parameter of the machine in particular or the process in general, then this 

disturbance type is modeled as an external periodic disturbance. 

So the challenge here is whether to model these variations in parameter space, which is used 

normally for constant or at most slowly varying events, or in state variable space, which is 

usually used to model the relatively very fast changes. 

In this chapter, some different forms of the drive-load machines are presented, and correspon-

dingly modeled, starting with rigid body system, section 2.2 which matches the form of a 1 

Degree Of Freedom (1DOF) system and can be modeled, using the physical laws to relate the 

system physical variables mathematically, by Linear Time-Invariant Differential Equation 

(LTI-DE).  Where, LTI-DEs are particularly used to describe systems that are to some extent 

assumed to have linear dynamics with constant parameters.  Then in subsection 2.2.1, the 

system is considered to have some sort of forced oscillation classified as an external periodic 

disturbance.  Moreover, the angle dependent spring, damper and moment of inertia load 

elements are added to the drive-load system in subsection 2.2.2, where subsection 2.2.3 

discusses the disturbance format of the system.  Subsection 2.2.4 presents the effects of the 

angle dependent load elements separately on the rigid drive-load system. 
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Furthermore, in section 2.3, the flexible body is considered and in subsection 2.3.1 modeled 

as a 2 Degree Of Freedom (2DOF) system which described by two LTI-DEs.  Subsec-

tion 2.3.2 considers the nonlinear angle dependent spring, damper and moment of inertia load 

elements and their combinations correspondingly.  At the end, a general discussion is pre-

sented in section 2.4 about how many degrees of freedoms should be considered.  

The target of the constructed models is the analysis and the simulation of drive-load system 

and the impact of the external and the self-excited periodic disturbances on the system.  

Consequently, they will be used to analyze the angular velocity servo control of the drive-load 

system and to develop periodic disturbance rejection algorithms later on in chapters 3 and 4. 

2.2 Rigid Drive-load System 

This is a simple rotational mechanical system, which is simply a motor that drives an inertial 

load through a rigid mechanical link (shaft) against a damping torque plus a disturbance 

torque, see Figure 2.1.  Only the load side is considered and for simplicity the gear between 

the motor and the load is eliminated from the figure. 

 

Figure 2.1: Drive-load system. 

The linear differential equation that describes the drive-load system, in terms of angular 

position derivatives, is given as 

𝐽�̈�(𝑡) + 𝐷�̇�(𝑡) = 𝑇𝑖𝑛(𝑡), (2.1) 

𝑇𝑖𝑛(𝑡) = 𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝑡). (2.2) 

Now, if the angular velocity is defined as 𝜗(𝑡) = �̇�(𝑡), then the same differential equation 

(2.1) but in terms of angular velocity and its derivative can be rewritten as 

𝐽�̇�(𝑡) + 𝐷𝜗(𝑡) = 𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝑡), (2.3) 

�̇�(𝑡) = −
𝐷

𝐽
𝜗(𝑡) +

1

𝐽
[𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝑡)], (2.4) 

where 𝜑 is the angular position [rad], 𝜗 = �̇� is the angular velocity [rad/s], 𝐽 is the moment of 

inertia [kgm
2
], 𝐷 is the damping factor [Nms/rad], 𝑇𝑖𝑛 is the total torque acting on the load 

[Nm], 𝑇 is the drive (input) torque [Nm] and 𝑇𝑑𝑖𝑠 is the (external) disturbance torque [Nm].  

The system differential equation of the drive-load system can also be represented schema-

tically as in the following Figure 2.2. 

Drive Load 

𝜑 

𝑇𝑑𝑖𝑠 

𝑇 
𝐽,𝐷 Mechanical Link 
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Figure 2.2: Drive-load system using the physical parameters. 

Equation (2.4) has been written using the physical parameters of the plant, alternatively, it can 

also be rewritten using mathematical parameters, when 𝑎 = 𝐷
𝐽⁄  and 𝑏 = 1

𝐽⁄ , as following 

�̇�(𝑡) = −𝑎𝜗(𝑡) + 𝑏[𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝑡)]. (2.5) 

The system block diagram of equation (2.5) is presented in Figure 2.3.  Furthermore, the 

drive-load system transfer function can also be put in this form 

𝜗(𝑠) =
𝑏

𝑠 + 𝑎
[𝑇(𝑠) + 𝑇𝑑𝑖𝑠(𝑠)]. (2.6) 

 

Figure 2.3: Drive-load system using the mathematical parameters. 

2.2.1 Externally Excited Periodic Disturbances 

If the oscillation is not related to any of the system variables or parameters, or in other words, 

it is not generated because of internal system linear or nonlinear dynamics, then it is assumed 

to come from an external source (forced oscillation), and so it will be modeled and called as 

external periodic disturbance.  Since the external disturbance is a periodic signal, which is the 

case for the considered oscillation, then it can be represented by the sine cosine (Fourier) 

series 

𝑇𝑑𝑖𝑠(𝑡) = ∑𝛼𝑥𝑖 𝑠𝑖𝑛(𝑖𝜔𝑡) + 𝛽𝑥𝑖𝑐𝑜𝑠(𝑖𝜔𝑡)

𝑁𝑥

𝑖=1

, (2.7) 

1

𝐽
 ∫  

−𝐷 

�̈�(𝑡) �̇�(𝑡) 
𝑇(𝑡) 

Σ 

𝑇𝑑𝑖𝑠(𝑡) 

𝑇𝑖𝑛(𝑡) 

𝑏 

∫  

 

−𝑎 

�̈�(𝑡) �̇�(𝑡) 
𝑇(𝑡) 

Σ 

𝑇𝑑𝑖𝑠(𝑡) 

𝑇𝑖𝑛(𝑡) 
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where 𝜔 is the disturbance principal angular frequency [rad/s].  The system is also represen-

ted by using equation (2.6) as shown in Figure 2.4. 

 

Figure 2.4: Externally disturbed system. 

Figure 2.5 shows the frequency response of the linear dynamics for the mathematical 

parameters 𝑎 = 1 and 𝑏 = 1.  Figure 2.6 shows the step response when the external distur-

bance has 1, 10 or 100 [rad/s] frequency (𝜔) and defined by  

𝑇𝑑𝑖𝑠(𝑡) = 𝑠𝑖𝑛(𝜔𝑡). (2.8) 

It can be seen form the Figure 2.5 and Figure 2.6 that, although the disturbance frequencies 10 

and 100 [rad/s] are outside the system bandwidth and they have received a substantial 

rejection, nevertheless, their effect on the output is still obvious and it can never be small 

enough in some system applications, where they sometimes demand a complete cancellation.  

In other words, the external disturbance is only attenuated here, but its effect on the system 

output depends directly on the external disturbance amplitude.  Therefore, in some applica-

tions, it demands a perfect disturbance attenuation either through the system dynamics, or a 

disturbance cancelation by feeding forward an anti-disturbance signal to the system input. 

2.2.2 Internally (Self) Excited Periodic Disturbances 

In the following subsection  2.2.2.1, a model of stiff rotational drive-load system with angle 

dependent spring, damper and moment of inertia load elements is introduced, moreover in 

subsection  2.2.2.2 the physical parameters of the system representing the spring, damper and 

moment of inertia load elements are transferred into mathematical parameters, while in sub-

section  2.2.2.3 the angle dependent part parameters are separated from the linear part para-

meters and transferred as internally (self) excited input periodic disturbance.  In addition, the 

state space model is presented with state (angle) dependent parameters in subsection  2.2.2.4 

as well as the state space model of the separated internal input periodic disturbance torque 

model in subsection  2.2.2.5.  Furthermore, an approximation of the angle dependent moment 

of inertia load element is introduced in subsection  2.2.2.6. 

2.2.2.1 Angle dependent spring, damper and moment of inertia load elements 

Angle dependent spring (torque) 𝐾(𝜑) [Nm], damper 𝐷(𝜑) [Nms/rad] and moment of 

inertia 𝐽(𝜑) [kgm
2
] functions, which represent nonlinear load elements, are defined as 

following: 

The angle dependent spring (torque) function 

Input 
𝑏

𝑠 + 𝑎
 

Output 

External Disturbance 

𝑇𝑖𝑛 

𝑇𝑑𝑖𝑠 

𝜗 𝑇 
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Figure 2.5: Frequency response. 

 

Figure 2.6: Unit step response with different external periodic disturbance frequencies.  
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𝐾(𝜑) = ∑𝑘𝑖𝑠𝑖𝑛 (𝑖𝜑 + ∅𝐾𝑖)

𝑁𝐾

𝑖=1

, (2.9) 

the angle dependent damper function 

𝐷(𝜑) = 𝑑0 + ∑𝑑𝑖𝑠𝑖𝑛 (𝑖𝜑 + ∅𝐷𝑖)

𝑁𝐷

𝑖=1

, (2.10) 

the angle dependent moment of inertia function 

𝐽(𝜑) = 𝑗0 + ∑𝑗𝑖𝑠𝑖𝑛 (𝑖𝜑 + ∅𝐽𝑖)

𝑁𝐽

𝑖=1

, (2.11) 

and its derivative 

𝑑𝐽(𝜑)

𝑑𝑡
= ∑𝑖𝑗𝑖𝑐𝑜𝑠 (𝑖𝜑 + ∅𝐽𝑖)

𝑁𝐽

𝑖=1

�̇�(𝑡). (2.12) 

Therefore, the system differential equation is given by 

𝑑

𝑑𝑡
(𝐽(𝜑)�̇�(𝑡)) + 𝐷(𝜑)�̇�(𝑡) + 𝐾(𝜑) = 𝑇(𝑡), (2.13) 

or  

𝐽(𝜑)�̈�(𝑡) +
𝑑𝐽(𝜑)

𝑑𝑡
�̇�(𝑡) + 𝐷(𝜑)�̇�(𝑡) + 𝐾(𝜑) = 𝑇(𝑡). (2.14) 

Solving for the acceleration, equation (2.14) becomes 

�̈�(𝑡) = −

𝑑𝐽(𝜑)
𝑑𝑡

+ 𝐷(𝜑)

𝐽(𝜑)
�̇�(𝑡) −

𝐾(𝜑)

𝐽(𝜑)
+

1

𝐽(𝜑)
𝑇(𝑡). (2.15) 

 

Although, these angle dependent rotational load elements are only presented mathematically, 

they can be practically and simply generated by using a rotational mechanism with eccen-

tricity that translates the rotational motion into a reciprocating linear one connected to linear 

motion spring, damper and mass load elements, for example, Scotch yoke, cam or crank 

mechanism, see Figure 2.7.  In addition, the analysis and the modeling of a simple Scotch 

yoke mechanism with spring, damper and mass linear motion load elements are presented 

in Appendix A, as well as the kinematic analysis of a crank mechanism. 

2.2.2.2 Angle dependent mathematical parameter format 

The factors of the previous equation (2.15) are defined in terms of the physical parameters, 

therefore now, these factors are redefined as mathematical parameters (𝑎(𝜑), 𝛼(𝜑), 𝑏(𝜑) and 

𝑐(𝜑)) and approximated by finite Fourier series expansions as following 

𝑎(𝜑) =
𝐷(𝜑)

𝐽(𝜑)
= 𝑎0 + ∑a𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑎𝑖)

𝑁𝑎

𝑖=1

, (2.16) 
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𝛼(𝜑) =

𝑑𝐽(𝜑)
𝑑𝑡

𝐽(𝜑)�̇�(𝑡)
=

∑ 𝑖𝑗𝑖 𝑐𝑜𝑠(𝑖𝜑 + ∅𝐽𝑖)
𝑁𝐽

𝑖=1

𝐽(𝜑)
= ∑α𝑖𝑠𝑖𝑛 (𝑖𝜑 + ∅𝛼𝑖)

𝑁𝛼

𝑖=1

, (2.17) 

𝑏(𝜑) =
1

𝐽(𝜑)
= 𝑏0 + ∑b𝑖𝑠𝑖𝑛 (𝑖𝜑 + ∅𝑏𝑖)

𝑁𝑏

𝑖=1

, (2.18) 

and 

𝑐(𝜑) = −
𝐾(𝜑)

𝐽(𝜑)
= ∑𝑐𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑐𝑖)

𝑁𝑐

𝑖=1

. (2.19) 

So again, the system differential equation having angle dependent parameters, as presented in 

Figure 2.8, becomes 

�̈�(𝑡) = −𝑎(𝜑)�̇�(𝑡) − 𝛼(𝜑)�̇�2(𝑡) + 𝑐(𝜑) + 𝑏(𝜑)𝑇(𝑡). (2.20) 

2.2.2.3 Internal periodic disturbance format 

Now, the angle dependent torque variations can be separated and redefined as internal 

disturbances as following 

𝑇𝑑𝑖𝑠0(𝜑) =
1

𝑏0
[∑𝑐𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑐𝑖)

𝑁𝑐

𝑖=1

], (2.21) 

     𝑇𝑑𝑖𝑠1(𝜑, 𝑇) =
1

𝑏0
[∑b𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑏𝑖)

𝑁𝑏

𝑖=1

]  𝑇(𝑡), (2.22) 

   𝑇𝑑𝑖𝑠2(𝜑, �̇�) =
−1

𝑏0
[∑a𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑎𝑖)

𝑁𝑎

𝑖=1

] �̇�(𝑡), (2.23) 

and 

     𝑇𝑑𝑖𝑠3(𝜑, �̇�) =
−1

𝑏0
[∑α𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝛼𝑖)

𝑁𝛼

𝑖=1

] �̇�2(𝑡). (2.24) 

So, the system differential equation becomes 

�̈�(𝑡) = −𝑎0�̇�(𝑡) + 𝑏0𝑇(𝑡) + 𝑏0𝑇𝑑𝑖𝑠0(𝜑) + 𝑏0𝑇𝑑𝑖𝑠1(𝜑, 𝑇) + 𝑏0𝑇𝑑𝑖𝑠2(𝜑, �̇�)
+ 𝑏0𝑇𝑑𝑖𝑠3(𝜑, �̇�). 

(2.25) 

Also, the total internal periodic disturbance can be defined as 

𝑇𝑑𝑖𝑠(𝜑, �̇�, 𝑇) = 𝑇𝑑𝑖𝑠0(𝜑) + 𝑇𝑑𝑖𝑠1(𝜑, 𝑇) + 𝑇𝑑𝑖𝑠2(𝜑, �̇�) + 𝑇𝑑𝑖𝑠3(𝜑, �̇�), (2.26) 

and the system dynamics as 

�̈�(𝑡) = −𝑎0�̇�(𝑡) + 𝑏0𝑇(𝑡) + 𝑏0𝑇𝑑𝑖𝑠(𝜑, �̇�, 𝑇). (2.27) 

Moreover, using equations (2.21) to (2.24), new angular dependent mathematical parameters 

can be defined as following 
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�́�(𝜑) =
1

𝑏0
[∑𝑐𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑐𝑖)

𝑁𝑐

𝑖=1

], (2.28) 

�́�(𝜑) =
1

𝑏0
[∑b𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑏𝑖)

𝑁𝑏

𝑖=1

], 

(2.29) 

 

 

Figure 2.7: Eccentric mechanisms 

 

Figure 2.8: Drive-load system with angle dependent mathematical parameters. 
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�́�(𝜑) =
−1

𝑏0
[∑a𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑎𝑖)

𝑁𝑎

𝑖=1

], (2.30) 

�́�(𝜑) =
−1

𝑏0
[∑α𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝛼𝑖)

𝑁𝛼

𝑖=1

], (2.31) 

so that the separated system can be put in the following form 

�̈�(𝑡) = −𝑎0�̇�(𝑡) + 𝑏0 [𝑇(𝑡) + �́�(𝜑) + �́�(𝜑)𝑇(𝑡) + �́�(𝜑)�̇�(𝑡) + �́�(𝜑)�̇�2(𝑡)]. (2.32) 

The system of separated internal periodic disturbance and input-output dynamics, equation 

(2.32), is depicted in Figure 2.9. 

2.2.2.4 Angle dependent parameter format in state space 

Using the already defined differential equation (2.20) with mathematical parameters, the 

system state equations can be defined as following 

[
�̇�(𝑡)

�̈�(𝑡)
] = [

0 1
𝑐(𝜑)

𝜑
−[𝑎(𝜑) + 𝛼(𝜑)�̇�]] [

𝜑(𝑡)

�̇�(𝑡)
] + [

0
𝑏(𝜑)] 𝑇(𝑡); 

�̇�(𝑡) = 𝑨(𝒙)𝒙(𝑡) + 𝑩(𝒙)𝑇(𝑡), 

(2.33) 

𝑦(𝑡) = [0 1]𝒙(𝑡); 

𝑦(𝑡) = 𝑪 𝒙(𝑡). 
(2.34) 

The block diagram describing the system of equations (2.33) and (2.34) is presented in 

Figure 2.10. 

2.2.2.5 State space internal input periodic disturbance torque format 

The model of separated input-output dynamics with a state dependent periodic disturbance is 

defined by splitting the linear dynamics and putting them in the following state equations 

(2.35) and (2.36), and assuming that the unwanted nonlinear behavior of the state dependent 

load elements as an internal input disturbance source defined by equation (2.38), as following 

�̇�(𝑡) = [
0 1
0 −𝑎0

] 𝒙(𝑡) + [
0
𝑏0

] 𝑇𝑖𝑛(𝑡), (2.35) 

𝑦(𝑡) = [0 1]𝒙(𝑡), (2.36) 

where the total input torque is as defined in equation (2.2) by 

𝑇𝑖𝑛(𝑡) = 𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝜑, �̇�, 𝑇), (2.37) 

and the input format internal angle dependent periodic disturbance is defined by 

𝑇𝑑𝑖𝑠(𝜑, �̇�, 𝑇) = 𝑇𝑑𝑖𝑠0(𝜑) + 𝑇𝑑𝑖𝑠1(𝜑, 𝑇) + 𝑇𝑑𝑖𝑠2(𝜑, �̇�) + 𝑇𝑑𝑖𝑠3(𝜑, �̇�)

= �́�(𝜑) + �́�(𝜑)𝑇(𝑡) + �́�(𝜑)�̇�(𝑡) + �́�(𝜑)�̇�2(𝑡). 
(2.38) 

 

The system of equations (2.35), (2.36) and (2.38) is presented in Figure 2.11. 
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Figure 2.9: Drive-load system with internal periodic disturbances. 

 

Figure 2.10: Nonlinear state space representation of the drive-load system. 
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Figure 2.11: Separated linear nonlinear state space representation of the drive-load system. 

 

2.2.2.6 Approximation of the state dependent moment of inertia element 

Now, restarting again form equation (2.15) which can be reformed as 

�̈�(𝑡) =
1

𝐽(𝜑)
{− [

𝑑𝐽(𝜑)

𝑑𝑡
+ 𝐷(𝜑)] �̇�(𝑡) − 𝐾(𝜑) +𝑇(𝑡)}. (2.39) 

 

Since the factor (1/𝐽(𝜑) ) is common to all terms in equation (2.39), its variation, especially 

after the integration, will almost have no effect on the output, and it will happen only in the 

extreme case when moment of inertia function varies between extremely small minimum and 

extremely large maximum values, see subsection  2.2.4.3.  Therefore, the variation contri-

bution of this factor will be ignored and assumed to be constant as following 

1

𝐽(𝜑)
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1
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1

𝑗0
= 𝑏0, (2.40) 
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so that input periodic disturbance, equation (2.22), is neglected or put equal to zero 

𝑇𝑑𝑖𝑠1(𝜑, 𝑇) =
1

𝑏0
[∑b𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑏𝑖)

𝑁𝑏

𝑖=1

]  𝑇(𝑡) = 0, (2.41) 

while 

�́�(𝜑) =
1

𝑏0
[∑b𝑖 𝑠𝑖𝑛(𝑖𝜑 + ∅𝑏𝑖)

𝑁𝑏

𝑖=1

] = 0. (2.42) 

So, the system equation becomes 

�̈�(𝑡) = −𝑎0�̇�(𝑡) + 𝑏0 [𝑇(𝑡) + �́�(𝜑) + �́�(𝜑)�̇�(𝑡) + �́�(𝜑)�̇�(𝑡)], (2.43) 

or alternatively, as separated input angle dependent disturbance and input-output dynamics 

 𝑇𝑑𝑖𝑠(𝜑, �̇�) = 𝑇𝑑𝑖𝑠0(𝜑) + 𝑇𝑑𝑖𝑠2(𝜑, �̇�) + 𝑇𝑑𝑖𝑠3(𝜑, �̇�), (2.44) 

�̈�(𝑡) = −𝑎0�̇�(𝑡) + 𝑏0𝑇(𝑡) + 𝑏0𝑇𝑑𝑖𝑠(𝜑, �̇�). (2.45) 

The system of equation (2.43) is depicted in Figure 2.12. 

 

2.2.3 The Disturbance Format of the Rigid Drive-load System 

The stiff drive-load system represented by 1DOF system, as presented in previous subsections 

 2.2.1 and  2.2.2, can generally be put in the model structure form of external and internal input 

periodic disturbance format system as shown in Figure 2.13.  The drive-load input-output 

dynamics and disturbance equations are given as  

�̇�(𝑡) = −𝑎𝜗(𝑡) + 𝑏[𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝑡)], (2.46) 

𝑇𝑑𝑖𝑠(𝑡) = 𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑡) + 𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝜑). (2.47) 

 

Especially, if the approximated version of the inverse of moment of inertia is considered, the 

externally and internally periodically disturbed system will have the structure of the input 

disturbance format as shown in Figure 2.13.  This model structure, input external and internal 

periodic disturbance and input-output linear or nonlinear dynamics, is actually the main 

inspiration in building a model structure of the identification model that will be presented 

later on in chapter 4 as a general strategy of feedback control for set point tracking and feed-

forward control for periodic disturbance compensation. 
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Figure 2.12: Drive-load system with nonlinear spring, damper and approximate moment of 

inertia load elements. 

 

 

Figure 2.13: Externally and internally disturbed rigid drive-load system.  
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2.2.4 Simulation Examples 

In the following, some (digital) simulation examples are presented in order to demonstrate the 

oscillation effect on the system output for the case of angle dependent spring load element in 

subsection  2.2.4.1, for the case of angle dependent damper load element in subsection  2.2.4.2 

and for the case of angle dependent moment of inertia load element and its approximation in 

subsection  2.2.4.3, when the torque input is a stair case function. 

2.2.4.1 Angle dependent spring load element 

Figure 2.14 shows the system output response and the variable nonlinear angle dependent 

spring element torque to the stair case torque input, when the system physical parameters are 

given by 

𝐽 = 1 [kgm2];   𝐷 = 1 [Nms/rad]; 

𝐾(𝜑) = 0.5 𝑠𝑖𝑛(𝜑) [Nm]. 
(2.48) 

From Figure 2.14, it can be seen that, the higher the angular velocity is, the lower the effect of 

the self-excited periodic disturbance is, and this is because the system has low pass filter 

dynamics.  However, this is like the case of external periodic disturbance in subsection  2.2.1, 

where the oscillation receives a certain amount of rejection only, and therefore, its effect on 

the output also depends directly on its amplitude. 

2.2.4.2  Angle dependent damper load element 

The system stair case step response and the state dependent damper load element are plotted 

in Figure 2.15, when the system physical parameters are given by 

𝐽 = 1 [kgm2];   𝐾(𝜑) = 0 [Nm]; 

𝐷(𝜑) = 1 + 0.5 𝑠𝑖𝑛(𝜑) [Nms/rad]. 
(2.49) 

Here, the periodic disturbance effect will linearly increase as the angular velocity increases 

causing that the effect of the self-excited periodic disturbances to be present even at the higher 

frequencies outside the bandwidth of the system dynamics. 

2.2.4.3 Angle dependent moment of inertia load element and its approximation 

The system parameters and state dependent moment of inertia load element are given by 

𝐷 = 1 [Nms/rad];   𝐾(𝜑) = 0 [Nm]; 

𝐽(𝜑) = 1 + 0.2 𝑠𝑖𝑛(𝜑) [kgm2]. 
(2.50) 

The system stair case step response, the state dependent moment of inertia load element and 

its constant reciprocal approximation are plotted in Figure 2.16.  As already expected, there 

are almost no differences in oscillation amplitudes, except that there will be a phase difference 

between them, since the two systems are not synchronized. 

Moreover, the effect of the self-excited periodic disturbances, caused by state dependent 

moment of inertia load element at the higher frequencies outside the system dynamics 

bandwidth, is much higher than in the case of state dependent damper load element, since its 

amplitude is nonlinearly related to the squared angular velocity of the system. 
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Figure 2.14: Stair case step response and the variable nonlinear spring torque value. 

 

Figure 2.15: Stair case step response and the variable state dependent damper load element. 
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Figure 2.16: Stair case step response and the variable angle dependent moment of inertia for 

exact 1/J and constant approximation of 1/J cases. 
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2.3  Flexible Drive-load System 

In this section, the flexibly linked drive-load system is constructed from a drive motor linked 

to a load through a flexible mechanical link and a gear as shown in Figure 2.17, also there is 

some disturbance torque acting on the load side.  Therefore, the system has two inputs, one is 

the usual drive (motor) torque input TD acts upon the drive-side, and the other is the 

disturbance torque input TL acts upon the load-side.  The mechanical link is modeled by 

stiffness and damping factors (spring and damper elements).  Figure 2.18 shows the physical 

parameters and the mechanical structure of the rotational drive-load system. 

 

Figure 2.17: The drive-load system with gear. 

 

Figure 2.18: The physical parameters of the flexibly linked drive-load system with gear. 

Where 𝜑𝐷 & 𝜑𝐿 are the angular positions of the drive and the load sides respectively, 𝑇𝐷 is the 

motor torque acts on the drive-side, 𝑇𝐿 is the disturbance (load) torque acts on the load-side, 

𝐽𝐷 &  𝐽𝐿 are the moments of inertia of the drive and load sides respectively, 𝑑𝐷 & 𝑑𝐿 are the 

damping factors of the drive and the load sides respectively, 𝐾𝑅 & 𝐷𝑅  are the spring and the 

damping factors of the mechanical link between the drive and the load sides.  Finally, 𝑔 is the 

gear box ratio between the drive and load sides, which is defined by 
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𝑔 =
𝜑𝐷

𝜑𝐿
=

�̇�𝐷

�̇�𝐿
=

𝑇𝐿

𝑇𝐷
. (2.51) 

The differential equation of the drive-side can be written as 

𝐽𝐷 �̈�𝐷(𝑡) + 𝑑𝐷 �̇�𝐷(𝑡) + 𝐷𝑅( �̇�𝐷(𝑡) − 𝑔�̇�𝐿(𝑡)) + 𝐾𝑅( 𝜑𝐷(𝑡) − 𝑔𝜑𝐿(𝑡)) = 𝑇𝐷(𝑡), (2.52) 

or after rearrangement  

𝐽𝐷 �̈�𝐷(𝑡) + (𝑑𝐷 + 𝐷𝑅) �̇�𝐷(𝑡) + 𝐾𝑅 𝜑𝐷(𝑡) = 𝐷𝑅𝑔�̇�𝐿(𝑡) + 𝐾𝑅𝑔𝜑𝐿(𝑡) + 𝑇𝐷(𝑡). (2.53) 

Now, by taking the Laplace transform of the last equation (2.53), the transfer function, 

between 𝑇𝐷 and 𝜑𝐿 as inputs and 𝜑𝐷 as output, can be defined as  

𝜑𝐷(𝑠) =  
𝑔(𝐷𝑅𝑠 + 𝐾𝑅)𝜑𝐿(𝑠) + 𝑇𝐷(𝑠)

𝐽𝐷 𝑠2 + (𝑑𝐷 + 𝐷𝑅) 𝑠 + 𝐾𝑅
. (2.54) 

The differential equation of the load-side can also be written 

𝐽𝐿  �̈�𝐿(𝑡) + 𝑑𝐿 �̇�𝐿(𝑡) + 𝑔𝐷𝑅( 𝑔�̇�𝐿(𝑡) − �̇�𝐷(𝑡)) + 𝑔𝐾𝑅( 𝑔𝜑𝐿(𝑡) − 𝜑𝐷(𝑡)) = 𝑇𝐿(𝑡), (2.55) 

or after rearrangement 

𝐽𝐿 �̈�𝐿(𝑡) + 𝑑𝐿 �̇�𝐿(𝑡) + 𝑔2𝐷𝑅 �̇�𝐿(𝑡) + 𝑔2𝐾𝑅 𝜑𝐿(𝑡)
= 𝑔𝐷𝑅�̇�𝐷(𝑡) + 𝑔𝐾𝑅𝜑𝐷(𝑡) + 𝑇𝐿(𝑡). 

(2.56) 

Also, by taking the Laplace transform of equation (2.56), the transfer function, between 

𝑇𝐿 and 𝜑𝐷 as inputs and 𝜑𝐿 as output, can be defined as 

𝜑𝐿(𝑠) =  
𝑔(𝐷𝑅𝑠 + 𝐾𝑅)𝜑𝐷(𝑠) + 𝑇𝐿(𝑠)

𝐽𝐿 𝑠2 + (𝑑𝐿 + 𝑔2𝐷𝑅) 𝑠 + 𝑔2𝐾𝑅
. (2.57) 

The block diagram of the drive-load system, using equation (2.54) and (2.57), is constructed 

and presented in Figure 2.19 and in more compact format in Figure 2.20.  The overall transfer 

function between the inputs 𝑇𝐷 the drive motor torque and 𝑇𝐿 the disturbance torque and the 

output angular velocity of the load-side �̇�𝐿 is given by 

�̇�𝐿(𝑠) = (2.58) 

[𝑔(𝐷𝑅𝑠 + 𝐾𝑅)]𝑇𝐷(𝑠) + [𝐽𝐷 𝑠2 + (𝑑𝐷 + 𝐷𝑅) 𝑠 + 𝐾𝑅]𝑇𝐿(𝑠)

𝐽𝐷𝐽𝐿𝑠
3 + [𝐽𝐷(𝑑𝐿 + 𝑔2𝐷𝑅) + 𝐽𝐿(𝑑𝐷 + 𝐷𝑅)]𝑠2 + [(𝑔2𝐽𝐷 + 𝐽𝐿)𝐾𝑅 + 𝑑𝐷𝑑𝐿 + (𝑔2𝑑𝐷 + 𝑑𝐿)𝐷𝑅]𝑠 + [(𝑔2𝑑𝐷 + 𝑑𝐿)𝐾𝑅]

. 

 

Now, the system mathematical parameters are defined as following 

𝑎𝐷𝐿2  = 
[𝐽𝐷(𝑑𝐿+𝑔2𝐷𝑅)+𝐽𝐿(𝑑𝐷+𝐷𝑅)]

𝐽𝐷𝐽𝐿
;  𝑎𝐷𝐿1  = 

[(𝑔2𝐽𝐷+𝐽𝐿)𝐾𝑅+𝑑𝐷𝑑𝐿+(𝑔2𝑑𝐷+𝑑𝐿)𝐷𝑅]

𝐽𝐷𝐽𝐿
 ; 

 

 

 

( 2.59) 

𝑎𝐷𝐿0  = 
[(𝑔2𝑑𝐷+𝑑𝐿)𝐾𝑅]

𝐽𝐷𝐽𝐿
 ; 𝑏𝐷1    = 

𝑔𝐷𝑅

𝐽𝐷𝐽𝐿
 ; 

𝑏𝐷0    = 
𝑔𝐾𝑅

𝐽𝐷𝐽𝐿
 ; 𝑏𝐿2    =  

1

𝐽𝐿
 ; 

𝑏𝐿1    =  
(𝑑𝐷+𝐷𝑅)

𝐽𝐷𝐽𝐿
 ; 𝑏𝐿0    =  

𝐾𝑅

𝐽𝐷𝐽𝐿
 . 
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Figure 2.19: Block diagram of the flexibly linked drive-load system. 

 

 

Figure 2.20: Compact block diagram of the flexibly linked drive-load system. 
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Alternatively, by using the defined mathematical parameters in equation ( 2.59), the system of 

equation (2.58) becomes 

�̇�𝐿(𝑠) =
(𝑏𝐷1𝑠 + 𝑏𝐷0)𝑇𝐷 + (𝑏𝐿2 𝑠

2 + 𝑏𝐿1 𝑠 + 𝑏𝐿0)𝑇𝐿

𝑠3 + 𝑎𝐷𝐿2𝑠2 + 𝑎𝐷𝐿1𝑠 + 𝑎𝐷𝐿0
, (2.60) 

�̇�𝐿(𝑠) =
𝑏𝐷1𝑠 + 𝑏𝐷0

𝑠3 + 𝑎𝐷𝐿2𝑠2 + 𝑎𝐷𝐿1𝑠 + 𝑎𝐷𝐿0
 𝑇𝐷(𝑠) +

𝑏𝐿2 𝑠
2 + 𝑏𝐿1 𝑠 + 𝑏𝐿0

𝑠3 + 𝑎𝐷𝐿2𝑠2 + 𝑎𝐷𝐿1𝑠 + 𝑎𝐷𝐿0
 𝑇𝐿(𝑠), (2.61) 

�̇�𝐿(𝑠) =
𝑃𝑁𝐷(𝑠)

𝑃𝐷𝐿(𝑠)
 𝑇𝐷(𝑠) +

𝑃𝑁𝐿(𝑠)

𝑃𝐷𝐿(𝑠)
 𝑇𝐿(𝑠). (2.62) 

The system of equation (2.62) is depicted in Figure 2.21 by two variants A and B.  

 

Figure 2.21: Block diagram of the flexible drive-load system. 

 

Numerical Example: 

In this example, a comparison is made between the rigid and the flexible systems frequency 

response.  Assume that the flexible system has the physical parameters of the motor side 

𝐽𝐷 = 0.1 [kgm
2
] and 𝑑𝐷 = 0.1 [Nms/rad], the mechanical link 𝐾𝑅 = 105 [Nm/rad] and 

𝐷𝑅 = 1 [Nms/rad] with gear ration 𝑔 = 1 and the load side 𝐽𝐿 = 1 [kgm
2
] and 𝑑𝐿 = 1 

[Nms/rad].  So, the system transfer function is given by 

�̇�𝐿(𝑠)

 𝑇𝐷(𝑠)
=

10𝑠 + 106

𝑠3 + 13𝑠2 + 1.1 ∙ 106𝑠2 + 1.1 ∙ 106
 , (2.63) 

with poles at -6.0 +i1.05, -6.0 -i1.05 and -1.0. 

The system has one dominant pole at -1 and can be approximated by a rigid one which is 

represented by the physical parameters 𝐽 =  1 [kgm
2
] and 𝐷 =  1 [Nms/rad], so, its transfer 

function is given by 

�̇�2(𝑠)

 𝑇𝐷(𝑠)
=

1

𝑠 + 1
. (2.64) 

But this is only valid up to the frequency about 400 [rad/s].  Therefore, the system can be 

represented (approximated) by a rigid system as long as the targeted operational bandwidth is 

far below the resonance frequency of the corresponding flexible system.  
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2.3.1 State Space Model of the Linear Flexible Drive-load System 

Starting by defining the angular position difference between the drive and the load sides as  

𝜑∆(𝑡) = ( 𝜑𝐷(𝑡) − 𝑔𝜑𝐿(𝑡)), (2.65) 

the system of differential equations (2.52) and (2.55) can be rewritten as 

�̈�𝐷(𝑡) = −
𝐾𝑅

𝐽𝐷
𝜑∆(𝑡) −

𝑑𝐷 + 𝐷𝑅

𝐽𝐷
 �̇�𝐷(𝑡) +

𝑔𝐷𝑅

𝐽𝐷
�̇�𝐿(𝑡) +

1

𝐽𝐷
𝑇𝐷(𝑡), (2.66) 

�̈�𝐿(𝑡) =
𝑔𝐾𝑅

𝐽𝐿
𝜑∆(𝑡) −

𝑑𝐿 + 𝑔2𝐷𝑅

𝐽𝐿
 �̇�𝐿(𝑡) +

𝑔𝐷𝑅

𝐽𝐿
�̇�𝐷(𝑡) +

1

𝐽𝐿
𝑇𝐿(𝑡). (2.67) 

Now, by using the equations (2.66) and (2.67), the state space model of the linear flexible 

system can be defined, when 𝒙𝑇(𝑡) = [ 𝜑∆(𝑡)   �̇�𝐷(𝑡)   �̇�𝐿(𝑡)], as 

�̇�(𝑡) = [

0 1 −𝑔

−𝐾𝑅 𝐽𝐷⁄ − (𝑑𝐷 + 𝐷𝑅) 𝐽𝐷⁄ 𝑔𝐷𝑅 𝐽𝐷⁄

𝑔𝐾𝑅 𝐽𝐿⁄ 𝑔𝐷𝑅 𝐽𝐿⁄ − (𝑑𝐿 + 𝑔2𝐷𝑅) 𝐽𝐿⁄
] 𝒙(𝑡)

+ [
0 0

1/𝐽𝐷 0
0 1/𝐽𝐿

] [
𝑇𝐷(𝑡)
𝑇𝐿(𝑡)

] ; 

𝑦(𝑡) = [0 0 1]𝒙(𝑡). 

(2.68) 

2.3.2 Externally and Internally Disturbed Flexible Drive-load System 

In this subsection, the flexible drive-load system with angle dependent load elements spring, 

damper and moment of inertia is modeled in subsection 2.3.2.1 as 2DOF system with state 

dependent parameters.  While in subsection 2.3.2.2, it is also modeled as 2DOF system but 

with a separated external and internal periodic disturbance torque function. 

2.3.2.1 Angle dependent parameters format 

The modeling of the flexible drive-load system is considered for the simple case when the 

reciprocal of the angle dependent moment of inertia load element is assumed constant.  The 

angle dependent spring (torque)  𝐾𝐿(𝜑𝐿), the damper  𝐷𝐿(𝜑𝐿) and the moment of inertia 

 𝐽𝐿(𝜑𝐿) functions of the load-side are defined as following 

𝐾𝐿(𝜑𝐿) = ∑𝑘𝑖𝑠𝑖𝑛 (𝑖𝜑𝐿 + ∅𝐾𝑖)

𝑁𝐾

𝑖=1

, (2.69) 

the angle dependent damper function 

𝐷𝐿(𝜑𝐿) = 𝑑𝐿0 + ∑𝑑𝑖𝑠𝑖𝑛 (𝑖𝜑𝐿 + ∅𝐷𝑖)

𝑁𝐷

𝑖=1

, (2.70) 

the angle dependent moment of  inertia function 

𝐽𝐿(𝜑𝐿) = 𝐽𝐿0 + ∑𝑗𝑖𝑠𝑖𝑛 (𝑖𝜑𝐿 + ∅𝐽𝑖)

𝑁𝐽

𝑖=1

, (2.71) 



30 2  MODELING AND SIMULATION 

 

Modeling, Identification and Control of Periodic Disturbances   

and its time derivative 

𝐽�̇�(𝜑𝐿) =
𝑑𝐽𝐿(𝜑𝐿)

𝑑𝑡
= ∑𝑖𝑗𝑖 𝑐𝑜𝑠(𝑖𝜑𝐿 + ∅𝐽𝑖)

𝑁𝐽

𝑖=1

�̇�𝐿(𝑡). (2.72) 

The differential equation of the load side can be written as 

𝐽𝐿(𝜑𝐿) �̈�𝐿(𝑡) + 𝐽�̇�(𝜑𝐿) �̇�𝐿(𝑡) + 𝐷𝐿(𝜑𝐿) �̇�𝐿(𝑡) + 𝐾𝐿(𝜑𝐿) + 𝑔𝐷𝑅( 𝑔�̇�𝐿(𝑡) − �̇�𝐷(𝑡))

+ 𝑔𝐾𝑅( 𝑔𝜑𝐿(𝑡) − 𝜑𝐷(𝑡)) = 𝑇𝐿(𝑡), 
(2.73) 

or alternatively as  

�̈�𝐿(𝑡) =
1

𝐽𝐿(𝜑𝐿)
{[−𝐽�̇�(𝜑𝐿) + 𝐷𝐿(𝜑𝐿)]�̇�𝐿(𝑡) − 𝐾𝐿(𝜑𝐿) − 𝑔𝐷𝑅( 𝑔�̇�𝐿(𝑡) − �̇�𝐷(𝑡))

− 𝑔𝐾𝑅( 𝑔𝜑𝐿(𝑡) − 𝜑𝐷(𝑡)) + 𝑇𝐿(𝑡)}. 
(2.74) 

Now, substituting the inverse variable moment of inertia function with its average constant 

value, this will be true as long as the variation is not extreme, as shown in the rigid system 

case in subsection 2.2.2.6.  So equation (2.74) becomes 

�̈�𝐿(𝑡) =
1

𝐽𝐿0
{[−𝐽�̇�(𝜑𝐿) + 𝐷𝐿(𝜑𝐿)]�̇�𝐿(𝑡) − 𝐾𝐿(𝜑𝐿) − 𝑔𝐷𝑅( 𝑔�̇�𝐿(𝑡) − �̇�𝐷(𝑡))

− 𝑔𝐾𝑅( 𝑔𝜑𝐿(𝑡) − 𝜑𝐷(𝑡)) + 𝑇𝐿(𝑡)}. 
(2.75) 

So, Figure 2.22 shows the block diagram of flexible drive-load system presented using the 

physical parameters. 

Now, by using equations (2.65), (2.66) and (2.75), a state space model with state (angle) 

dependent parameters can be constructed, when 𝒙𝑇(𝑡) = [ 𝜑𝐷(𝑡)   �̇�𝐷(𝑡)   𝜑𝐿(𝑡)   �̇�𝐿(𝑡) ], as  

�̇�(𝑡) =

[
 
 
 
 
 

0 1 0 0
−𝐾𝑅

𝐽𝐷

−𝑑𝐷 − 𝐷𝑅

𝐽𝐷

𝑔𝐾𝑅

𝐽𝐷
 
𝑔𝐷𝑅

𝐽𝐷
0 0  0 1

𝑔𝐾𝑅

𝐽𝐿0
 
𝑔𝐷𝑅

𝐽𝐿0

−𝑔2𝐾𝑅

𝐽𝐿0
−

𝐾𝐿(𝜑𝐿)

𝐽𝐿0𝜑𝐿

−[𝑔2𝐷𝑅 + 𝐽�̇�(𝜑𝐿) + 𝐷𝐿(𝜑𝐿)]

𝐽𝐿0 ]
 
 
 
 
 

𝒙(𝑡)

+

[
 
 
 
 
 
0 0
1

𝐽𝐷
0

0 0

0
1

𝐽𝐿0]
 
 
 
 
 

[
𝑇𝐷(𝑡)

𝑇𝐿(𝑡)
] ; 

𝑦(𝑡) = [0 0 0 1]𝒙(𝑡), 

 

 

(2.76) 

which has the form of state dependent parameters, that can be generally presented, in 

corresponding to equation (2.77), as  

�̇�(𝑡) = 𝑨(𝒙)𝒙(𝑡) + 𝑩 𝑻(𝑡); 

𝑦(𝑡) = 𝑪 𝒙(𝑡). 
(2.77) 
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Figure 2.22: Block diagram of the flexibly linked drive-load system with angle dependent 

physical parameters. 

 

2.3.2.2 Separated periodic disturbance format 

In this subsection, the model of the flexible drive-load system is reconstructed in order that it 

will have a separate periodic disturbance part and the dynamical part.  Now, the external and 

internal periodic disturbance torque functions are introduced as following: 
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The external disturbance is defined by 

𝑇𝑑𝑖𝑠𝑥(𝑡) = ∑𝛽𝑥𝑖 𝑠𝑖𝑛(𝑖𝜔𝑡 + ∅𝑥𝑖)

𝑁𝑥

𝑖=1

, (2.78) 

and the internal disturbance 

𝑇𝑑𝑖𝑠2(𝜑𝐿 , �̇�𝐿) = 𝐽�̇�(𝜑𝐿)�̇�𝐿(𝑡) = − [∑𝑖𝑗𝑖 𝑠𝑖𝑛(𝑖𝜑𝐿 + ∅𝐽𝑖)

𝑁𝐽

𝑖=1

] �̇�𝐿
2(𝑡) = 𝛼(𝜑𝐿)�̇�𝐿

2(𝑡); 

where 

𝛼(𝜑𝐿) = − [∑𝛼𝑖 𝑠𝑖𝑛(𝑖𝜑𝐿 + ∅𝐽𝑖)

𝑁𝐽

𝑖=1

], 

(2.79) 

𝑇𝑑𝑖𝑠1(𝜑𝐿 , �̇�𝐿) = − [∑𝑑𝑖 𝑠𝑖𝑛(𝑖𝜑𝐿 + ∅𝐷𝑖)

𝑁𝐷

𝑖=1

] �̇�𝐿(𝑡) = 𝑑(𝜑𝐿)�̇�𝐿(𝑡); 

where 

𝑑(𝜑𝐿) = − [∑𝑑𝑖 𝑠𝑖𝑛(𝑖𝜑𝐿 + ∅𝐷𝑖)

𝑁𝐷

𝑖=1

], 

and 

(2.80) 

𝑇𝑑𝑖𝑠0(𝜑𝐿) = 𝑘(𝜑𝐿) = − [∑𝑘𝑖 𝑠𝑖𝑛(𝑖𝜑𝐿 + ∅𝐾𝑖)

𝑁𝐾

𝑖=1

]. (2.81) 

 

Now, using the defined external and internal periodic disturbance torques, the load side 

differential equation can be rewritten as  

𝐽𝐿0�̈�𝐿(𝑡) = −𝑔𝐷𝑅( 𝑔�̇�𝐿(𝑡) − �̇�𝐷(𝑡)) − 𝑔𝐾𝑅( 𝑔𝜑𝐿(𝑡) − 𝜑𝐷(𝑡)) − 𝑑𝐿0�̇�𝐿(𝑡) 

+𝑇𝑑𝑖𝑠𝑥(𝑡) + 𝑇𝑑𝑖𝑠0(𝜑𝐿) + 𝑇𝑑𝑖𝑠1(𝜑𝐿 , �̇�𝐿) + 𝑇𝑑𝑖𝑠2(𝜑𝐿, �̇�𝐿). 
(2.82) 

The detailed block diagram of the separated external and internal periodic disturbance drive-

load system is presented in Figure 2.23.  The system can also be put in a state space model, 

when 𝒙𝑇(𝑡) = [ 𝜑𝐷(𝑡)   �̇�𝐷(𝑡)   𝜑𝐿(𝑡)   �̇�𝐿(𝑡) ], as  

�̇�(𝑡) =

[
 
 
 
 
 

0 1 0 0
−𝐾𝑅

𝐽𝐷

−𝑑𝐷 − 𝐷𝑅

𝐽𝐷

𝑔𝐾𝑅

𝐽𝐷
 
𝑔𝐷𝑅

𝐽𝐷
0 0  0 1

𝑔𝐾𝑅

𝐽𝐿0
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𝐽𝐿0

−𝑔2𝐾𝑅

𝐽𝐿0

−𝑔2𝐷𝑅 − 𝑑𝐿0

𝐽𝐿0 ]
 
 
 
 
 

[

𝜑𝐷

�̇�𝐷
𝜑𝐿

�̇�𝐿

] +

[
 
 
 
 
 
0 0
1

𝐽𝐷
0

0 0

0
1

𝐽𝐿0]
 
 
 
 
 

[
𝑇𝐷

𝑇𝐿
] ; 

 

𝑦(𝑡) = [0 0 0 1]𝒙(𝑡), 

 

 

(2.83) 
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where the external and the internal periodic disturbance torque function is defined by 

𝑓(𝒙) = 𝑇𝐿(𝑡, 𝜑𝐿 , �̇�𝐿) = 𝑇𝑑𝑖𝑠𝑥(𝑡) + 𝑇𝑑𝑖𝑠0(𝜑𝐿) + 𝑇𝑑𝑖𝑠1(𝜑𝐿 , �̇�𝐿) + 𝑇𝑑𝑖𝑠2(𝜑𝐿 , �̇�𝐿). (2.84) 

 

The system compact transfer function block diagram and state space models are also 

presented in Figure 2.24 and Figure 2.25 respectively. 

However, in order to reject the internal and the external periodic disturbances acting up on the 

load side of the flexible drive-load system and without using extra drive acting directly on the 

load side, then these external and internal periodic disturbances are needed to be transferred 

from the load side to the drive side so that this transformed input periodic disturbance signal 

can be directly used to compensate those disturbances of the load side.  More details will be 

discussed in chapters  3 and  4. 

 

2.4 The Decision of How Many Degrees of Freedom 

Since real systems could have practically any number of degrees of freedom, the question 

arises, when and how many of these should be taken into account.  The first aspect is when 

the physical parameter distribution of a system looks exactly like the considered drive-load 

system where it has two mass concentrations represented by two inertial masses (lumped 

parameter system).  If the driving torque of the system is slow enough or alternatively the 

mechanical link between the drive and the load is stiff enough so that under the normal 

operation there will be almost no position difference between these masses ever, or consi-

dered unnoticeable.  Then, the system can be very well represented by one-mass system or in 

other words by one degree of freedom system.  On the other hand, either if the driving torque 

is quick enough or working at high frequency, or alternatively, the mechanical link is so 

flexible that there is always a noticeable difference between the two masses so that it cannot 

be ignored.  Then the system is represented by a flexibly linked two-mass system with two 

degrees of freedom. 

However, in real drive-load systems with explicit two-mass concentrations, practically, the 

system could pass over many resonances, according to the driving frequency, then the system 

is modeled mathematically between the input and the output, because the modeling analogy 

has been lost between the mathematical model and the physical one.  Therefore, the answer of 

this question is simply, it depends on the interested operating frequency range.  For example, 

if the interested frequency range is operating at low frequencies where there is no resonance 

region then a 1DOF is chosen, if the operating frequency goes near to the first resonance 

frequency then a 2DOF is chosen, and so on for higher number of DOF dynamics. 

Moreover, in general, for real physical systems even if there is no resonance, the dynamics 

sometimes are companied with large dead time, then the system will have or should be 

represented by higher order dynamics and not only with first order one.  Finally, the highest 

control performance level is directly limited by the characteristics of every component/device 

in the control loop, the real-time control computer (hardware-software) and the process with 

its sensors and actuators. 
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Figure 2.23: Flexible drive-load system with a separate external and internal periodic 

disturbance torque function. 
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Figure 2.24: Block diagram of externally and internally disturbed flexibel drive-load system. 

 

 

Figure 2.25: Externally and internally disturbed flexible drive-load system in state space 

representation. 
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3 PERIODIC DISTURBANCE REJECTION 

In this chapter, a brief introduction to the disturbance rejection methods is given in general 

and to the periodic disturbance rejection methods in particular.  Therefore in the following, 

methods of using only feedback technique to achieve both set point tracking and periodic 

disturbance rejection are presented.  Also, the interaction problem between the set point 

design demands and the periodic disturbance rejection is discussed.  Then, the interaction is 

minimized by using a separate feed-forward controller to reject the periodic disturbances as an 

add-on compensator to the pre-existing set point tracking feedback controller.  Furthermore, 

the idea of the disturbance observer is introduced in general.  Moreover, the analysis of a 

feed-forward periodic disturbance controller is presented to the rigid and flexible drive-load 

system. 

3.1 Feedback Disturbance Rejection 

Set point tracking and disturbance rejection are the main objectives of the classical and the 

modern control system engineering, where both feedback as well as feed-forward can be used 

to achieve the design objectives of the set point tracking and the disturbance rejection.  But, 

using feedback control only to achieve these objectives could lead in some circumstances to 

an interaction between the design demands, for example, the multi-objective design problem 

described in (Pipeleers, Demeulenaere and Swevers 2009, subsection 2.3.3), which results in 

a compromising solution between the set point tracking demands and disturbance rejection.  

Therefore, the problem must be separated or separate solutions should be made to this 

controversy.  However, in this section, the disturbance is tried to be rejected by using only the 

feedback control with set point tracking as a primary goal to achieve.  Now, the feedback 

control system structure, pictured in the following Figure 3.1, is assumed.  The disturbed 

process is put under feedback control. 

 

Figure 3.1: Feedback control of disturbed process. 

The closed loop frequency response of the set point and the disturbance, for the system shown 

in Figure 3.1, are given below respectively 

𝑦(𝑠)

𝑟(𝑠)
=

𝐺𝑃(𝑠)𝐺𝐶(𝑠)

1 + 𝐺𝑃(𝑠)𝐺𝐶(𝑠)
, (3.1) 

𝑦(𝑠)

𝑑𝑖(𝑠)
=

𝐺𝑃(𝑠)

1 + 𝐺𝑃(𝑠)𝐺𝐶(𝑠)
. (3.2) 

From the equations (3.1) and (3.2), it can be seen that the condition for good set point 

tracking, which is a primary design objective here, as 

𝑢(𝑠) 𝑟(𝑠) 𝑒(𝑠) 

𝑑𝑖(𝑠) 

𝑦(𝑠) 

- 
𝐺𝐶(𝑠) 𝐺𝑃(𝑠) 
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𝐺𝑃(𝑠)𝐺𝐶(𝑠) ≫ 1, (3.3) 

to be valid in the desired system bandwidth, which yields 

𝑦(𝑠)

𝑟(𝑠)
≈ 1 ;                

𝑦(𝑠)

𝑑𝑖(𝑠)
≈

1

𝐺𝐶(𝑠)
. (3.4) 

But for a perfect disturbance rejection, especially outside the systems desired bandwidth, 

anther more condition is needed, which is 

𝐺𝐶(𝑠) ≈ ∞, (3.5) 

so that the disturbance response becomes 

𝑦(𝑠)

𝑑𝑖(𝑠)
≈ 0. (3.6) 

However, for dynamic systems, these conditions can only be hold for specific frequency 

spectrum (bandwidth), so that from the disturbance rejection perspective, if the disturbance 

frequency still lies outside the bandwidth then it will get a poor rejection. 

3.1.1 Periodic Disturbance Rejection Filter 

Now, the best condition for a perfect disturbance rejection is checked in the frequency 

domain.  The second condition (of course after the validation of the first one) actually reveals 

how to be done.  For example, if the disturbance is just a constant in the time domain, which 

is represented in the frequency domain by a component at frequency zero.  This means that, 

an integral action (pole at frequency zero) must be added to the controller in order to 

guarantee the second condition to reject the effect of this disturbance on the system output.  

Therefore, for a periodic disturbance, complex conjugate poles at the disturbance frequency 

are needed to be added to the controller in order to keep the second condition valid for perfect 

disturbance rejection, which actually makes a notch in the closed loop frequency response at 

the disturbance frequency.  This Periodic Disturbance Rejection Filter (PDRF), also “inverse” 

notch filter, is according to the internal model principle (Francis and Wonham 1976; Bodson 

2005).  However, most of the use of the notch filters in control applications is to shape the 

system frequency response of the feedback loop.  They are usually implemented in a feedback 

control systems to suppress the resonance modes of flexible structure characteristics, which 

are actually the causes of the oscillations (see, for example, Schmidt and Rehm 1999; Yoo, et 

al. 2011).  But now, a PDRF is considered to reject the periodic disturbance that come from 

an external source.  The PDRF can simply be defined, for instance, by an under damped 

second order transfer function as 

𝐺𝑁(𝑠) =
𝐾𝑑𝜔𝑑

2

𝑠2 + 2𝜉𝑑𝜔𝑑𝑠 + 𝜔𝑑
2   . (3.7) 

This part is simply added to the original feedback controller as shown in Figure 3.2.  For 

example, if the controller originally has the proportional, integral and the derivative actions 

then this part is assumed to be as an extension to the integral part to counteract the corres-

ponding periodic disturbance.  Figure 3.3 shows the poles of the PDRF when disturbance 

frequency is at 𝛾 [rad/s] and its damping ratio 𝜉𝑑 is equal to zero.  Furthermore, Figure 3.2 
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shows two variations of adding the PDRF to a preexisting feedback controller.  The resulted 

closed loop transfer function will be for the variant A as 

𝑦𝐴(𝑠) =
[𝐺𝐶(𝑠) − 𝐺𝑁(𝑠)]𝐺𝑃(𝑠)

1 + [𝐺𝐶(𝑠) − 𝐺𝑁(𝑠)]𝐺𝑃(𝑠)
𝑟(𝑠) +

𝐺𝑃(𝑠)

1 + [𝐺𝐶(𝑠) − 𝐺𝑁(𝑠)]𝐺𝑃(𝑠)
𝑑𝑖(𝑠), (3.8) 

and for the variant B as 

𝑦𝐵(𝑠) =
𝐺𝐶(𝑠)𝐺𝑃(𝑠)

1 + [𝐺𝐶(𝑠) − 𝐺𝑁(𝑠)]𝐺𝑃(𝑠)
𝑟(𝑠) +

𝐺𝑃(𝑠)

1 + [𝐺𝐶(𝑠) − 𝐺𝑁(𝑠)]𝐺𝑃(𝑠)
𝑑𝑖(𝑠). (3.9) 

 

Obviously, there is no difference between the variants A and B in the disturbance rejection 

curves.  But there is a difference between the set point response curves.  Variant A tries to 

give a large open loop gain (or even infinite for perfect disturbance rejection) at the 

disturbance frequency which leads to that the controller amplifies this frequency in the 

frequency response of the set point.  This means, it gives very high open loop gain at this 

frequency for the set point.  Therefore, this variant will be the choice to reject a periodic 

disturbance when its frequency is inside the system bandwidth.  Alternatively, variant B 

suppresses both the set point and the periodic disturbance by creating a notch in the closed 

loop set point and the disturbance frequency responses at the periodic disturbance frequency.  

This is needed when the disturbance frequency is outside the (demanded) system bandwidth.  

Figure 3.4 shows the variant A closed loop frequency response for the set point and the 

disturbance, while Figure 3.5 shows the variant B closed loop frequency response. More 

simulation examples will be presented in chapter 5 and real-time implementation in chapter 6. 

Generally, for multi-harmonic disturbances, a number of PDRF can be designed and used to 

reject every single harmonic distinctively or one PDRF for a band of disturbance frequencies.  

For the case of infinite harmonics a repetitive controller (Kobayashi, Hara and Tanaka 1990; 

Steinbuch 2002; Quan and Cai 2010) can be used to reject them. 

In conclusion, the perfect condition for disturbance rejection will add some extra lag to the 

open loop path.  Regrettably, this will deteriorate the closed loop set point tracking characte-

ristics in terms of dynamics and stability.  It will be even worse if there are multi-harmonics.  

This will make the design more complex.  And at the end, there will be only a compromising 

solution between system (relative) stability and disturbance rejection design demands. 

The design of the PDRF, added to a closed loop negative feedback controller, can actually be 

carried out by all classical as well as modern control design techniques.  For example, if the 

PDRF is added to a PID controller, then the design could simply be done by tuning the PID as 

well as the PDRF parameters to get the desired set point tracking and periodic disturbance 

rejection demands.  But this is not going to be an easy task for complex systems.   

Alternatively, the design can be done using classical control design techniques, e.g. in 

frequency domain to get the corresponding phase and gain margins for a specific relative 

stability, or by using the pole placement technique, to get the desired stable closed loop poles.  

Moreover, the design can also be carried out by using modern control design techniques, e.g. 

using state feedback pole placement or optimal control, and furthermore alternatives are the 

design methods based on the robust control theory to achieve a robust controller. 
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Figure 3.2: Addition of PDRF in two variations A and B. 

 

 

Figure 3.3: The PDRF poles in 𝑠-plane for 𝜔𝑑 = 𝛾 and   𝜉𝑑 = 0. 
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Figure 3.4: Disturbance frequency inside the (demanded) system bandwidth. 
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Figure 3.5: Disturbance frequency outside (demanded) system bandwidth. 
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3.2 Feed-forward Disturbance Compensation 

3.2.1 Introduction to the Feed-forward Disturbance Compensation 

To achieve feed-forward compensation, both the disturbance signal and the model characte-

ristics of the system should be known, this can be explained by the following.  A system, as 

shown in Figure 3.6.A, is assumed, which is described by functional (operator) 

𝑦(𝑡) = 𝑓(𝑢(𝑡), 𝑑(𝑡)), (3.10) 

where 𝑦(𝑡) is the output, 𝑢(𝑡) is the (manipulated) input and 𝑑(𝑡) is the disturbance input of 

the system.  Furthermore, the disturbance is assumed to be measurable and its effect on the 

system output is needed to be cancelled by using the manipulated input.  A further assumption 

is to be made that the input signal and the disturbance signal have an independent action on 

the system output.  This means, that the output functional is separable, see Figure 3.6.B1, and 

can be separated into independent functionals as 

𝑦(𝑡) = 𝑓𝑢(𝑢(𝑡)) + 𝑓𝑑(𝑑(𝑡)). (3.11) 

Now, if the disturbance action is to be compensated by the input signal, this makes its effect 

on the output equal to zero, see Figure 3.6.B2.  From this, the input compensation signal 

(feed-forward control law) can be calculated by 

𝑢(𝑡) = −𝑓𝑢
−1(𝑓𝑑(𝑑(𝑡))), (3.12) 

where 𝑓𝑢
−1(𝑢(𝑡)) is the inverse of the input functional.  Now, if the disturbance action on the 

output is to be compensated by the input, then the disturbance signal must be available either 

by direct measurement, observation (if it is not directly measured), estimation (measurements 

are stochastic) or prediction (if the needed value is in future, especially for systems with large 

time delay).  In addition, the system input functional, its inverse and the disturbance function-

al should be also available (known).  Furthermore, if the input and the disturbance functionals 

can be represented by linear transfer functions, as shown in Figure 3.6.C1, then 

𝑦(𝑠) = 𝐺𝑢(𝑠)𝑢(𝑠) + 𝐺𝑑(𝑠)𝑑(𝑠). (3.13) 

So again, the condition for disturbance compensation by the input, as shown in Figure 3.6.B2, 

is given by 

𝑢(𝑠) = −
𝐺𝑑(𝑠)

𝐺𝑢(𝑠)
𝑑(𝑠). (3.14) 

Apart from the lately discussed conditions, the input transfer function has to have  minimum 

phase (stable) zeros and the ratio of the disturbance transfer function divided by the input 

transfer function should be causal (denominator degree is higher than the degree of the 

numerator).  Otherwise, the feed-forward control law is unrealizable.  Notwithstanding this, 

an exception can though be made, if the disturbance is a periodic signal, and the feed-forward 

law is non-causal.  Therefore, it will be a matter of finding the right amplitude and phase shift 

to compensate (cancel out) the respective periodic signal.  This will be discussed more in 

subsection 3.2.4 and chapter 4. 

Figure 3.6.D1 shows the output disturbance format and Figure 3.6.E1 shows the input 

disturbance format.  The transformation of the output disturbance into input disturbance is 

given by 
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𝑑𝑖(𝑠) =
1

𝐺𝑢(𝑠)
𝑑𝑜(𝑠) , (3.15) 

where 𝑑𝑜 is the output disturbance (𝑑𝑜(𝑠) = 𝐺𝑑(𝑠)𝑑(𝑠)), while the transformation of the 

input disturbance to output disturbance is given by 

𝑑𝑜(𝑠) = 𝐺𝑢(𝑠)𝑑𝑖(𝑠) , (3.16) 

It is clear from the transformation equations that the input to output disturbance transfor-

mation is causal, but the output to input disturbance is not, since the reciprocal of causal 

dynamics yields a non-causal system.   For real application, an exception can be made only 

for periodic disturbances, since the periodic signals are completely predictable in future when 

their amplitude, phase shift and frequency are constants. 

Now, assuming that the structures given in Figure 3.6.A, B1, C1 and D1 can be transformed 

into the form of the direct input disturbance, see Figure 3.6.E1, by having this signal as a 

direct measurement, observation, estimation or prediction, then it can be used directly without 

extra computation, or simply the feed-forward control law becomes as 

𝑢(𝑡) = −𝑑𝑖(𝑡) . (3.17) 

So at the end, it is better to get the input disturbance signal even when the real system has 

another disturbance signal, e.g. output disturbance signal, so that to get the simplest feed-

forward control law, as shown in Figure 3.6.E2. 

Regrettably, in practice, most of the cases are either the direct measurement, by using extra 

sensor(s), is impossible, or it is commercially too expensive to realize.  Therefore, indirect 

methods are used, for example, using a disturbance observer (estimator, predictor) to 

construct the disturbance signal by monitoring the system input and the disturbance effect on 

the output.  However, the implementation of this type of disturbance observer to estimate the 

disturbance and at the same time to cancel its effect on the output, transforms the principle 

idea of feed-forward control back into feedback control, but one exception could be made 

when the process model is perfect.  Therefore, this type of feed-forward control is sometimes 

alternatively called estimated feedback control, pseudo or virtual feed-forward control 

(Pipeleers, Demeulenaere and Swevers 2009). 

3.2.2 Introduction to Disturbance Observers 

In this subsection, some simple disturbance observers are briefly introduced and discussed, 

first using transfer function filter formats and then later in state space. 

3.2.2.1 Disturbance observer construction 

The problem here is to compute the output disturbance of a process from its input and output 

measurements, where the output measurements are also assumed to be corrupted with a 

measurement error (noise), as shown in Figure 3.7. 

𝑦𝑚(𝑡) = 𝑦𝑢(𝑡) + 𝑑𝑜(𝑡) + 𝑒𝑚(𝑡); 

𝑦𝑚(𝑠) = 𝐺𝑃(𝑠)𝑢(𝑠) + 𝑑𝑜(𝑠) + 𝑒𝑚(𝑠). 
(3.18) 

Now, if the disturbance estimate is needed and the process dynamics can be represented or 

approximated by some mathematical model, so that the response of the process dynamics to 
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Figure 3.6: Disturbances and their feed-forward control. 
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the input can be estimated by 

�̂�𝑢(𝑠) = �̂�𝑃(𝑠)𝑢(𝑠). (3.19) 

Consequently, the output disturbance can be computed (estimated) by 

�̂�𝑜(𝑡) = 𝑦𝑚(𝑡) − �̂�𝑢(𝑡). (3.20) 

Since the process dynamics cannot in reality be structured in a model without any error, or in 

other words, there is actually an error, because of a model structure that cannot take in 

consideration all modes or nonlinear characteristics of the process.  Therefore, this modeling 

error is defined as a disturbance added to the estimated output of the process dynamics 

𝑦𝑢(𝑡) = �̂�𝑢(𝑡) + 𝑑𝑀𝐸(𝑡). (3.21) 

So, the disturbance computation will be 

�̂�𝑜(𝑡) = 𝑦𝑢(𝑡) + 𝑑𝑜(𝑡) + 𝑒𝑚(𝑡) − (𝑦𝑢(𝑡) − 𝑑𝑀𝐸(𝑡)), (3.22) 

which gives 

�̂�𝑜(𝑡) = 𝑑𝑜(𝑡) + 𝑒𝑚(𝑡) + 𝑑𝑀𝐸(𝑡). (3.23) 

Thus at the end, the computation of the disturbance is corrupted with the measurement and the 

modeling error of the system.  Moreover, the last disturbance observer computes the estimate 

of the output disturbance, which is not directly applicable if its effect on the output is wanted 

to be compensated.  Since it must be first converted to an input disturbance and that needs the 

inverse of the estimated process dynamics, as in equation (3.24) and Figure 3.7 show. 

�̂�𝑖(𝑠) = (�̂�𝑃(𝑠))
−1

�̂�𝑜(𝑠), (3.24) 

 

Figure 3.7: Output-input disturbance observer. 
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provided that the (estimated) process has no non-minimum phase (unstable) zeros and its 

inverse is a causal system.  This way of computing the input disturbance is indirect and sus-

ceptible to a lot of computation errors, since the estimated process dynamics and their inverse 

are needed in the computation.  For a better performance, an input disturbance observer is 

introduced that uses only the estimate of the process dynamics, plus a feedback correction is 

applied by amplifying the observer error between the real (measured) and the estimated output 

as shown in the Figure 3.8.  So, the estimated input disturbance is given as 

�̂�𝑖(𝑠) =  
𝐺𝑐(𝑠)𝐺𝑃(𝑠)

1 + 𝐺𝑐(𝑠)�̂�𝑃(𝑠)
𝑑𝑖(𝑠). (3.25) 

For the case that 𝐺𝑐(𝑠)�̂�𝑃(𝑠) ≫ 1, the estimated disturbance becomes 

�̂�𝑖(𝑠) =  
𝐺𝑃(𝑠)

�̂�𝑃(𝑠)
𝑑𝑖(𝑠), (3.26) 

and here, the input disturbance is estimated without the need to compute the inverse of the 

estimated dynamics with the condition that �̂�𝑃(𝑠) = 𝐺𝑃(𝑠).  The estimated input disturbance 

will be exactly equal to the real input disturbance.  Of course, the condition will hold only for 

a specific bandwidth determined by the closed loop poles. 

Moreover, the design of the 𝐺𝑐 depends on the type of the disturbance either be a real external 

independent disturbance acting on the system or an internal disturbances coming from unk-

nown or un-modeled dynamics.  For more practical information refer to Ellis (2002), and for 

the disturbance observer Q-Filter type refer to Du, et al. (2010); Ohishi 1987; Ohishi (2010).  

So generally, when the disturbance is simply a constant bias or its time or frequency behavior 

is unknown.  Then, it can be generally modeled as (variable) constant when the observer 

bandwidth or their poles are (as a rule of thumb) at least ten times faster than the disturbance 

bandwidth.  This leads of course to high gain design that its application could be limited by 

 

 

Figure 3.8: Computing the input disturbance without using the inverse of estimated dynamics. 
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the noise ratio in the system.  Otherwise, it would be better to be modeled within 𝐺𝑐 according 

to the IMP, this could achieve better observation with relatively low observer gain. The idea 

is also presented using state space models in subsection 3.2.3.  

3.2.2.2 Model following as disturbance canceller 

Now, instead of observing the (input) disturbance acting on a process and then using its 

estimated signal to compensate the disturbance effect on the output, alternatively, the process 

can be forced to follow specified dynamics given as a (linear/nonlinear) model.  By doing so, 

the output response becomes as a projection of the specified dynamics, even when the process 

has external disturbances, as long as these disturbances and model mismatches are in the 

working bandwidth of the closed loop system. This can be done, for example, by considering 

the (inexact) model following case, particularly when the process inverse dynamics are not 

available or unknown, therefore from Figure 3.9, when the block (�̂�𝑃(𝑠) 𝐺𝑃(𝑠)⁄ ) is substituted 

by or put equal to one, then the system output becomes 

𝑦𝑚(𝑠) =  
𝐺𝑃(𝑠) (1 + 𝐺𝑐(𝑠)�̂�𝑃(𝑠))

1 + 𝐺𝑐(𝑠)𝐺𝑃(𝑠)
𝑟(𝑠) +

𝑑𝑜(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑃(𝑠)
+

𝑒𝑚(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑃(𝑠)
. (3.27) 

From equation (3.27), if �̂�𝑃(𝑠) = 𝐺𝑃(𝑠) then the closed loop response to the new input 𝑟(𝑠) 

becomes  𝐺𝐶𝐿(𝑠) = 𝐺𝑃(𝑠), and for the case, when  �̂�𝑃(𝑠) ≠ 𝐺𝑃(𝑠), 𝐺𝑐(𝑠)𝐺𝑃(𝑠) ≫ 1 and 

 𝐺𝑐(𝑠)�̂�𝑃(𝑠) ≫ 1 the closed loop response becomes 𝐺𝐶𝐿(𝑠) ≈ �̂�𝑃(𝑠). 

This means that the closed loop system follows the desired dynamics �̂�𝑃(𝑠) in perspective of 

the new input  𝑟(𝑠).  This concept is a complementary concept of the disturbance observer, 

where the disturbance cancelling is done by using the estimated dynamics and the disturban-

ces, while (inexact) model following is done by giving the desired system dynamics. 

Moreover, the system suppresses the effect of the disturbance and the measurement error in 

the specified system bandwidth where the condition (𝐺𝑐(𝑠)𝐺𝑃(𝑠) ≫ 1) holds, for more details 

about model following control refer, for example, to Skoczowski, Domek and Pietrusewicz 

(2003). 

 

Figure 3.9: Model following control concept. 
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3.2.3 State and Disturbance Observer in State Space 

The modern state observers can be traced back to 1960, where the idea of the stochastic state 

observer (Kalman 1960) was introduced and in 1961 developed as Kalman-Bucy-Filter 

(Kalman and Bucy 1961).   Later in 1964, the deterministic version was reintroduced by 

Luenberger (Luenberger 1964). For more information about the state and disturbance 

observers refer, for example, to Radke and Gao (2006). 

3.2.3.1 Extended state space observer 

Now, the normal state observer, which is usually used to estimate the system states, is 

extended by adding an extra state to represent the input disturbance to the system.   Therefore, 

if the system dynamics are represented by the following state space equations  

�̇�(𝑡) = 𝑨 𝒙(𝑡) + 𝑩 𝑢(𝑡);  𝑦(𝑡) = 𝑪 𝒙(𝑡), (3.28) 

then the new extended system equations become 

[
�̇�(𝑡)

�̇�𝑑(𝑡)
] = [

𝑨 𝑩
0 0

] [
𝒙(𝑡)

𝑥𝑑(𝑡)
] + [

𝑩
0
] 𝑢(𝑡); 

𝑦(𝑡) = [𝑪 0] [
𝒙(𝑡)
𝑥𝑑(𝑡)

], 

(3.29) 

where the extended state (disturbance) is assumed to be constant 

𝑥𝑑(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; �̇�𝑑(𝑡) = 0, (3.30) 

in continuous time, or in discrete-time format 

𝑥𝑑(𝑡 + 1) = 𝑥𝑑(𝑡). (3.31) 

The extended state observer can be designed, for example, by using pole placement design 

methods to find the observer gain vector.  For this case, if the disturbances are not constant 

the observer will catch the change (as a rule of thumb) as long as it is at least ten times slower 

than the slowest observer pole.  But for more specific disturbances, e.g. periodic disturbances, 

to get an exact estimation of these disturbance signals, an internal model should be used to 

represent these signal dynamics as shown briefly in the following subsection. 

3.2.3.2 Extended sinusoidal disturbance observer 

The extended disturbance can be generated by using a sinusoidal signal generator in state 

space format with a constant angular frequency (see, e.g., Kinney and Callafon 2006) as  

𝑥𝑑1(𝑡) = 𝑠𝑖𝑛(𝜔𝑡), (3.32) 

𝑥𝑑2(𝑡) = �̇�𝑑1(𝑡) = 𝜔 𝑐𝑜𝑠(𝜔𝑡), (3.33) 

�̇�𝑑2(𝑡) = −𝜔2 𝑠𝑖𝑛(𝜔𝑡) = −𝜔2𝑥𝑑1(𝑡). (3.34) 

The sinusoidal generator system can be put in a state space model as  

[
�̇�𝑑1(𝑡)

�̇�𝑑2(𝑡)
] = [

0 1
−𝜔2 0

] [
𝑥𝑑1(𝑡)
𝑥𝑑2(𝑡)

] ; 

𝑦𝑑(𝑡) = [1 0] [
𝑥𝑑1(𝑡)
𝑥𝑑2(𝑡)

]. 

(3.35) 
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Alternatively, the states can also be defined as 

𝑥𝑑1(𝑡) = 𝑠𝑖𝑛(𝜔𝑡); 𝑥𝑑2(𝑡) = 𝑐𝑜𝑠(𝜔𝑡), (3.36) 

�̇�𝑑1(𝑡) = 𝜔 𝑐𝑜𝑠(𝜔𝑡) = 𝜔𝑥𝑑2(𝑡), (3.37) 

�̇�𝑑2(𝑡) = −𝜔 𝑠𝑖𝑛(𝜔𝑡) = −𝜔𝑥𝑑1(𝑡). (3.38) 

Then, the state space sinusoidal generator system can alternatively be put in the form 

[
�̇�𝑑1(𝑡)

�̇�𝑑2(𝑡)
] = [

0 𝜔
−𝜔 0

] [
𝑥𝑑1(𝑡)
𝑥𝑑2(𝑡)

] ; 

𝑦𝑑(𝑡) = [1 0] [
𝑥𝑑1(𝑡)
𝑥𝑑2(𝑡)

], 

(3.39) 

or generally as variable frequency derived from a time variant angular position 𝜑(𝑡) 

𝑥𝑑1(𝑡) = 𝑠𝑖𝑛(𝜑(𝑡)) ;   𝑥𝑑2(𝑡) = 𝑐𝑜𝑠(𝜑(𝑡)), (3.40) 

�̇�𝑑1(𝑡) = �̇�(𝑡) 𝑐𝑜𝑠(𝜑(𝑡)) = �̇�(𝑡)𝑥𝑑2(𝑡), (3.41) 

�̇�𝑑2(𝑡) = −�̇�(𝑡) 𝑠𝑖𝑛(𝜑(𝑡)) = −�̇�(𝑡)𝑥𝑑1(𝑡). (3.42) 

Therefore, the state space model becomes as 

[
�̇�𝑑1(𝑡)

�̇�𝑑2(𝑡)
] = [

0 �̇�(𝑡)
−�̇�(𝑡) 0

] [
𝑥𝑑1(𝑡)
𝑥𝑑2(𝑡)

] ; 

𝑦𝑑(𝑡) = [1 0] [
𝑥𝑑1(𝑡)
𝑥𝑑2(𝑡)

]. 

(3.43) 

There are a lot of periodic disturbance compensation methods based on disturbance observers, 

for example, by designing a set of linear time-invariant observers for a set of disturbance freq-

uencies in some operating regions, that results in gain scheduled control, for example, Bohn et 

al. (2004) have suggested that the observer design can be done by using pole placement 

techniques or by designing an optimal stationary Kalman filter.  Moreover, robust control 

LPV-techniques can also be used to design the observer and controller vectors, for example, 

Du and Shi (2002), Du, et al. (2003) and Kinney and Callafon (2006) have developed H∞ and 

LPV methods respectively for active vibration control applications.  Furthermore, Ballesteros 

and Bohn (2011) have developed and applied the robust control LPV design algorithms in the 

discrete-time format.  In addition, Kinney and Callafon (2011) have developed a study of 

rapidly varying frequencies regulation guarantee.  For extra discussion about the so called 

“waterbed effect” or “spillover” that accompanies these algorithms, see for example, (Bohn, 

et al. 2004; Hong and Bernstein 1998).    

3.2.3.3 State and disturbance observer as model follower 

The state observer can also be interpreted to work as a model follower, for instance, if the 

desired system dynamics are given in the state observer model, then the disturbance state can 

be used to cancel the external disturbances and internal disturbances in terms of dynamic 

difference between the desired model and the real one.  But these again need high loop gain, 

or it will only work in the observer bandwidth represented by the observer poles, which have 

been set by the observer gain vector. 
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3.2.4 Adaptive Periodic Disturbance Cancelation 

Another way of cancelling the periodic disturbance effect on the system output is by using a 

direct estimation and cancelation methods of the input periodic disturbance.  These methods 

have been mostly developed by the signal processing community for active noise (sound) and 

vibration cancelation (control) applications.  For example, consider the system presented in 

Figure 3.10 below, where the process is disturbed by a harmonic input disturbance with a 

known frequency (𝜔𝑑).  Therefore, a simple solution is to generate a harmonic (sinusoidal) 

signal as following equation  

𝑢(𝑡) = −�̂�𝑖(𝑡) = 𝛼 𝑠𝑖𝑛(𝜔𝑑𝑡) + 𝛽 𝑐𝑜𝑠(𝜔𝑑𝑡), (3.44) 

or alternatively as 

𝑢(𝑡) = −�̂�𝑖(𝑡) = 𝑎𝑑 𝑠𝑖𝑛(𝜔𝑑𝑡 + ∅𝑑),              (3.45) 

where 

𝑎𝑑 = √𝛼2 + 𝛽2  ;      ∅𝑑 = 𝑡𝑎𝑛−1 (
𝛽

𝛼
), (3.46) 

and to tune its parameters, the amplitudes 𝛼 and 𝛽, or magnitude 𝑎𝑑 and phase shift ∅𝑑, until 

the effect of the harmonic disturbance is completely (vanished) canceled out (Lueg 1936).  

The parameter adaptation could be practically done manually as Conover (1956) 

demonstrated an active noise cancellation system for transformer noise, or by using adaptive 

algorithms, for example, the least mean squares algorithm and its variants (Morgan 1980; Kuo 

and Morgan 1996; Widrow and Stearns 1985; Hansen 2001; Elliott 2001).  These algorithms 

are usually known as adaptive feed-forward in signal processing literature, although they are 

“truly and purely a feedback control law” (Bodson 2005).  Moreover, Bodson (2004) has   

 

Figure 3.10: The adaptive periodic disturbance canceler 

𝑑𝑖 

𝑦 
𝐺𝑃 

𝑦𝑚 

𝑒𝑚 

Parameter 

Adaptation 

Algorithm 

−�̂�𝑖 

The process 

𝑢 

× 
𝑠𝑖𝑛(𝜔𝑑𝑡) 𝑐𝑜𝑠(𝜔𝑑𝑡) 

𝛼 𝛽 

× 

The adaptive periodic disturbance canceler 



3.3  Feed-forward Disturbance Compensation of the Drive-load System 51 

 

In Drive-Load Angular Velocity Servo Control Systems with Self-Excited Oscillations 

shown that these adaptive feed-forward controllers can be equivalent under certain conditions 

to the internal model principle linear controllers. 

However, the advantage of using the LTI-IMP periodic disturbance observer is that the closed 

loop stability can be computed and proven, provided that an accurate mathematical model for 

the targeted process is available at least in the operating bandwidth.  But, on the other hand, 

for this adaptive feed-forward controller, the closed loop stability analysis depends on the 

adaptation algorithm used to tune its parameters which has usually a time-varying nonlinear 

characteristics, this makes the stability analysis difficult to prove in general. 

Nevertheless, an advantage of this adaptive feed-forward control, when the adaptive algorithm 

is deactivated after the convergence of its parameters to the optimal ones, especially when the 

disturbance parameters are not time varying, so that the estimated disturbance signal compen-

sates or cancels out the periodic disturbance effect on the system output.  Then, at this situa-

tion the pseudo feed-forward controller becomes a true feed-forward controller, and therefore 

it will not affect the system closed loop dynamics anymore, where they can then be freely 

designed to fulfil the stability and set point design demands separately.  

3.3 Feed-forward Disturbance Compensation of the Drive-

load System 

3.3.1 Rigid Drive-load System 

The model of the rigid drive-load system as presented in chapter 2 and shown in Figure 3.11, 

it has an input disturbance format.  This format has the simplest feed-forward control law, 

which is a static and not dynamic, since the disturbance and the drive torques are acting sim-

ultaneously (in phase) at the same inertia.  Therefore, the feed-forward control law is simply 

given by 

𝐺𝐹𝐹 = −1, (3.47) 

since 

𝑇 = −𝑇𝑑𝑖𝑠. (3.48) 

To achieve this design the disturbance signal must be available in form of measurement, 

observation, estimation or prediction.  

Although, the feed-forward control law for this model structure is very simple, still the 

problem is not trivial.  Since as already stated, the disturbance signal should be directly 

available in the first place.  Therefore, the methods based on periodic disturbance observers 

can be used to estimate the input periodic disturbance to cancel the effect of the internal and 

the external disturbances on the system output.  Moreover, the adaptive periodic disturbance 

canceler (the adaptive feed-forward control) can also be used to cancel the external and the 

internal periodic disturbances of the drive-load system.  But, applying this technique at the 

same time with a set point tracking negative feedback controller is not preferable generally for 

reasons that were already discussed in introduction (section 1.2) and will be discussed more in 

chapter 4 again.  Instead, the modeling and the identification of the internal periodic 

disturbance function will be considered and explained in chapter 4. 
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Figure 3.11: Feed-forward control of internally and externally disturbed system. 

 

3.3.2 Flexible Drive-load System 

The feed-forward control law for the flexible drive-load system is not only dynamic, it is also 

non causal system, since the degree of the numerator polynomial is higher than the denomi-

nator polynomial degree as can be seen from the modeling of the system, see Figure 3.13.  

The feed-forward control law is given by 

𝐺𝐹𝐹 = −
𝑃𝑁𝐿

𝑃𝑁𝐷
= −

𝑏𝐿2 𝑠
2 + 𝑏𝐿1 𝑠 + 𝑏𝐿0

𝑏𝐷1𝑠 + 𝑏𝐷0
  . (3.49) 

 

In other words, if a non-causal system is to be realized, then it needs to have the future value 

of the input to compute the current output.  Fortunately, oscillations are periodic signals, their 

future value can easily be predicted (determined) provided that their parameters (frequency, 

amplitude and phase-shift) are known.  Therefore, the causality for the case of periodic distur-

bance or oscillations makes no problem as long as the Fourier series expansion is used to 

represent the disturbance signal, where it can be shifted backward or forward until the right 

phase is achieved.  For example, if there is a sine wave disturbance with phase of +45º and 

unity magnitude, then this can also be done by making phase shift of -135º with magnitude of 

minus unity, as shown in the Figure 3.12 below.  Now, if the model structure of the flexible 

drive-load system of Figure 3.13 is transformed into input disturbance format, as the rigid 

case, but the system dynamics can have higher order.  Then the feed-forward control law will 

also have the simplest format as in rigid case, see Figure 3.14.  So by doing this, instead of 

measuring (observing, estimation or prediction) the real disturbance, the input disturbance is 

directly measured and used.  Therefore, as Figure 3.14 shows, if a local or a global model can 

in particular be built for the internal periodic disturbance path, and consequently identified, 

then it can be used to compensate this internal disturbance locally or globally respectively.  

Finally, the algorithm of modeling, identification and control of periodic disturbances will be 

introduced in chapter 4. 
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Figure 3.12: Phasor diagram. 

 

Figure 3.13: Load-side disturbance feed-forward control of the flexible drive-load system. 

 

Figure 3.14: Input disturbance feed-forward control of the flexible drive-load system. 
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4 MODELING, IDENTIFICATION AND CONTROL 

In this chapter, the general strategy of the feedback control for set point tracking and feed-

forward control for periodic disturbance compensation is introduced.  Thereby, the building 

up of the identification model and its parameterization as continuous or discrete time are pre-

sented.  Moreover, the implementation of the nonlinear least squares recursive Gauss-Newton 

and the linear recursive least squares methods are presented to identify the identification 

model parameters. 

4.1 Introduction 

Most of the adaptive feed-forward control strategies, e.g. Least Mean Squares (LMS) family 

methods (Widrow and Stearns 1985), developed for pure active noise and vibration control 

applications do not suit in particular this control problem because of stability issue, parameter 

convergence and the direct online adaptation (tuning) problems (Elliott 2001; Bodson 2005).  

This means that as long as the algorithm does not converge, the system operates with very 

poor performance and that will be until and only if the parameters converge. 

Wit and Parly (2000) have developed an adaptive eccentricity compensation algorithm, which 

is an adaptive feed-forward control, Maier, Bals and Bodson (2011) have also developed an 

adaptive feed-forward to cancel the ripples of a permanent magnet synchronous motor, but 

both of them are with a direct controller parameter (tuning) optimization algorithm.  Na and 

Park (1997) have developed an adaptive feed-forward control that works like the typical 

LMS-algorithm but in indirect way, by using pre-estimated process and closed loop transfer 

functions, so that the controller works as an add-on controller to reject the periodic distur-

bances without affecting the original feedback closed loop system characteristics; also, Wang 

and Ren (1994) have developed an indirect adaptive feed-forward control for and to be 

applied exclusively in active noise and vibration control systems.  While in this work, the 

problem of feed-forward control adaptation will be transferred into identification (parameter 

optimization) problem.  Where, the identification model is constructed by two parts.  The 

dynamic part represents the input to output dynamics and made in terms of linear, nonlinear 

differential or difference equation.  And the disturbance part, which made in terms of sine 

cosine sum functions representing the input periodic disturbances (Bodson 2005).  This will 

allow the identification to gather information online (offline as a priori) about the process, and 

to pass the converged parameters to use in the feed-forward control law, even when the feed-

forward controller is deactivated,  particularly at the starting phase, as the dynamic and distur-

bance parameters are far from the optimal ones. 

So in the next, a new method is presented for feed-forward control of periodic disturbances 

(Alsogkier and Bohn 2012), that is originally stemmed from the adaptive feed-forward active 

noise and vibration control applications, for example, LMS method families (Elliott 2001).  

Nevertheless, it will be changed so that, it will suit the usual control applications.  The main 

problem of the adaptive feed-forward control, used in active vibration control applications, is 

that the online (direct) tuning (adaptation) of the controller parameters, which will of course 

deteriorate the system performance in the tuning phase, when the parameters are far from the 
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optimal ones.  The new method is to shift this online direct adaptation of the controller para-

meters into an identification problem. This yields an indirect adaptive control strategy 

(Aström and Wittenmark 1995; Landau, Lozano and M'Saad 1998). 

The disturbed process is modeled by a dynamic model plus a disturbance model.  By this type 

of modeling and identification, the adaptation can practically be done for both controllers.  

Since, the identified dynamic parameters can be used to compute the feedback control law, 

and the identified disturbance parameters are used to construct the feed-forward controller.  

This strategy, adaptive feedback control for set point tracking and adaptive feed-forward 

control for disturbance compensation, is schematically presented in Figure 4.1.  Nevertheless, 

the rest of the chapter is only concerned with main target of this work the add-on adaptive 

feed-forward control to the preexisting set point tracking feedback controller, therefore, the 

feedback controller is kept as simple as possible in the rest of this work.  The identification 

model structure can be parameterized and identified by any parametric nonlinear identi-

fication technique (Aström and Eykhoff 1971; Ljung and Söderström 1983; Söderström and  

 

Figure 4.1: General control strategy of the adaptive set point feedback controller and periodic 

disturbance feed-forward controller. 
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Stoica 1989; Ljung 1999; Verhaegen and Verdult 2007; Mikles and Fikar 2007; Garnier and 

Wang 2008), for example, output error, prediction error or even with the method of linear 

simple recursive least squares, provided that the model structure has linear in parameter form.  

The choice of the identification procedure depends on many conditions, some of them are 

model structure, measurement noise, type of model based or state based control strategy, 

conditions for identification in closed loop, identification for control, etc.  If the parameters 

converge, this means the parameters of the system dynamics and the disturbance model.  

Then, the parameters of disturbance model can be used to generate an anti-disturbance signal 

that can be fed forward to the system input to compensate the disturbance action on the 

system output.  In general, the successfulness of the procedure is directly dependent on the 

identification algorithm. So, if the identification algorithms converge to parameters, and these 

parameters represent the real dynamics and disturbance of the real system at the interested 

frequencies (bandwidth), then these parameters can be used to compensate the disturbance. 

Otherwise, the parameters are useless, since they do not represent the real process.   

In the next, an identification model is built up especially for the externally internally 

periodically disturbed drive-load system already presented in chapter 2.  The system is mainly 

constructed as angular velocity servo control system, so that its input is the drive torque and 

its output is the load angular velocity. 

4.2 Externally and Internally Disturbed Identification Modell  

Now, an identification model is developed for an externally and internally periodically 

disturbed drive-load process that was already introduced in chapter 2. The identification 

model structure and its parameterization should take into consideration all of the available 

priory knowledge about the real (physical) plant as much as possible.  Moreover, the distur-

bance model is constructed to have all its disturbances added to its input, i.e. input disturbance 

format, see Figure 4.2.  This makes the use of identified disturbance model and its application 

very direct and without extra computations, even if the real system has another format, e.g. 

output disturbance format, as long as these disturbances are periodic.  Moreover, it is assumed 

that the external periodic disturbance frequency (𝜔 [rad/s]) is known either by direct measure-

ments or by estimation.  Furthermore, the synchronization signal (𝜑𝑚 [rad]), in this case the 

angular position of the load side, is also available either by direct measurements or indirectly 

as observation, estimation or prediction. 

 

Figure 4.2: Externally and internally disturbed identification model. 
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4.2.1 Building up the Identification Model 

The identification model is constructed by two parts, the dynamic part and the disturbance 

part.  The dynamic part represents the effect of the total input on the output, in other words, 

the input-output dynamics.  While the disturbance part represents the external and the internal 

periodic disturbance of the process which are mainly to be compensated.  Therefore, the 

system dynamics are represented by an order 𝑛 linear transfer function as 

𝐺𝐼𝑀(𝑠) =
𝑦(𝑠)

𝑢𝑖𝑛(𝑠)
=

𝑏𝑛−1𝑠
𝑛−1 + ⋯+ 𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯+ 𝑎1𝑠 + 𝑎0
  . (4.1) 

The identification model input-output dynamics can also be extended to some nonlinear 

dynamics or time delay if necessary.  The input of the system dynamics are the sum of the 

manipulated (control) input variable and the input periodic disturbance as 

𝑢𝑖𝑛(𝑡) = 𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡). (4.2) 

The input periodic disturbance is in turn also the sum of the external and the internal input 

disturbance as  

𝑢𝑑𝑖𝑠(𝑡) = 𝑢𝑒𝑥𝑡(𝑡) + 𝑢𝑖𝑛𝑡(𝑡). (4.3) 

Moreover, the periodic external and internal input disturbances are approximated by their 

Fourier series expansion as 

𝑢𝑑𝑖𝑠(𝑡) = ∑[𝛼0,𝑖 𝑠𝑖𝑛(𝑖𝜔𝑡) + 𝛽0,𝑖𝑐𝑜𝑠(𝑖𝜔𝑡)]

𝑁0

𝑖=1

 

                     +∑[𝛼1,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽1,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁1

𝑖=1

   

                             +∑[𝛼2,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽2,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁2

𝑖=1

𝑦(𝑡) 

                              +∑[𝛼3,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽3,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁3

𝑖=1

𝑦2(𝑡). 

(4.4) 

The first sum is for the external disturbance, the second, the third and fourth are for the state 

dependent internal disturbances built to represent the angle dependent load elements spring, 

damper and moment of inertia as introduced in chapter 2.  The approximation of the periodic 

disturbances by their finite Fourier series is valid as long as the input-output system dynamics 

have a low pass filter behavior.  Moreover, the disturbance series format (4.4) can be trans-

formed into vector format as 

𝑢𝑑𝑖𝑠(𝑡) = [𝜶0
𝑇 𝒔𝒊𝒏(𝜔𝑡) + 𝜷0

𝑇 𝒄𝒐𝒔(𝜔𝑡)] 

                +[𝜶1
𝑇 𝒔𝒊𝒏(𝜑𝑚) + 𝜷1

𝑇 𝒄𝒐𝒔(𝜑𝑚)] 

                        +[𝜶2
𝑇 𝒔𝒊𝒏(𝜑𝑚) + 𝜷2

𝑇 𝒄𝒐𝒔(𝜑𝑚)]𝑦(𝑡) 

                          +[𝜶3
𝑇 𝒔𝒊𝒏(𝜑𝑚) + 𝜷3

𝑇 𝒄𝒐𝒔(𝜑𝑚)]𝑦2(𝑡), 

(4.5) 

 



58 4  MODELING, IDENTIFICATION AND CONTROL 

 

Modeling, Identification and Control of Periodic Disturbances   

where 

𝜶𝑖 = [

𝛼𝑖,1

𝛼𝑖,2

⋮
𝛼𝑖,𝑁𝑖

] ; 𝜷𝑖 =

[
 
 
 
𝛽𝑖,1

𝛽𝑖,2

⋮
𝛽𝑖,𝑁𝑖]

 
 
 

, (4.6) 

and 

  𝒔𝒊𝒏(𝜔𝑡) = [

𝑠𝑖𝑛(𝜔𝑡)

𝑠𝑖𝑛(2𝜔𝑡)
⋮

𝑠𝑖𝑛(𝑁0𝜔𝑡)

] ;  𝒄𝒐𝒔(𝜔𝑡) = [

𝑐𝑜𝑠(𝜔𝑡)

𝑐𝑜𝑠(2𝜔𝑡)
⋮

𝑐𝑜𝑠(𝑁0𝜔𝑡)

] ; 

𝒔𝒊𝒏(𝜑𝑚) = [

𝑠𝑖𝑛(𝜑𝑚)

𝑠𝑖𝑛(2𝜑𝑚)
⋮

𝑠𝑖𝑛(𝑁𝑖𝜑𝑚)

] ; 𝒄𝒐𝒔(𝜑𝑚) = [

𝑐𝑜𝑠(𝜑𝑚)

𝑐𝑜𝑠(2𝜑𝑚)
⋮

𝑐𝑜𝑠(𝑁𝑖𝜑𝑚)

]. 

(4.7) 

 

Moreover, the vector of since cosine disturbance components can be defined as 

𝒖𝑺𝑪(𝑡)
𝑇 = [𝒔𝒊𝒏(𝜔𝑡)𝑇   𝒄𝒐𝒔(𝜔𝑡)𝑇   𝒔𝒊𝒏(𝜑𝑚)𝑇   𝒄𝒐𝒔(𝜑𝑚)𝑇                                         

                           𝑦(𝑡) 𝒔𝒊𝒏(𝜑𝑚)𝑇    𝑦(𝑡) 𝒄𝒐𝒔(𝜑𝑚)𝑇    𝑦2(𝑡) 𝒔𝒊𝒏(𝜑𝑚)𝑇    𝑦2(𝑡)𝒄𝒐𝒔(𝜑𝑚)𝑇].  
(4.8) 

 

Therefore, the total disturbance, defined in equation (4.4), can also be computed by 

𝑢𝑑𝑖𝑠(𝑡) = [𝜶0
𝑇 𝜷0

𝑇 𝜶1
𝑇 𝜷1

𝑇 𝜶2
𝑇 𝜷2

𝑇 𝜶3
𝑇 𝜷3

𝑇]𝒖𝑺𝑪(𝑡). (4.9) 

 

Now, the state model of an externally and internally periodically disturbed drive-load process 

with linear input-output dynamics is presented in the following equations  

 

 

 

+[

0 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
1 𝜶0

𝑇 𝜷0
𝑇 𝜶1

𝑇 𝜷1
𝑇 𝜶2

𝑇 𝜷2
𝑇 𝜶3

𝑇 𝜷3
𝑇

]

[
 
 
 
 
 
 
 
 
 

𝑢(𝑡)

𝒔𝒊𝒏(𝜔𝑡)

𝒄𝒐𝒔(𝜔𝑡)

𝒔𝒊𝒏(𝜑𝑚)

𝒄𝒐𝒔(𝜑𝑚)

𝒔𝒊𝒏(𝜑𝑚) 𝑦

𝒄𝒐𝒔(𝜑𝑚) 𝑦

𝒔𝒊𝒏(𝜑𝑚) 𝑦2

𝒄𝒐𝒔(𝜑𝑚) 𝑦2]
 
 
 
 
 
 
 
 
 

; 

 

 

(4.10) 

 

�̇�(𝑡) = [

0
⋮
0

−𝑎0

1
⋱
⋯

−𝑎1

⋯
⋱
0
⋯

0
0
1

−𝑎𝑛−1

] 𝒙(𝑡) 

𝑦(𝑡) = [𝑏0 𝑏1 ⋯ 𝑏𝑛−1]𝒙(𝑡). 
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So, the identification model can generally be defined by 

 

 

 

 

 

        + [

0 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
1 𝜶0

𝑇 𝜷0
𝑇 𝜶1

𝑇 𝜷1
𝑇 𝜶2

𝑇 𝜷2
𝑇 𝜶3

𝑇 𝜷3
𝑇

]

[
 
 
 
 
 
 
 
 
 

𝑢(𝑡)

𝒔𝒊𝒏(𝜔𝑡)

𝒄𝒐𝒔(𝜔𝑡)

𝒔𝒊𝒏(𝑥𝑚)

𝒄𝒐𝒔(𝑥𝑚)

𝒔𝒊𝒏(𝑥𝑚) 𝑪𝒙(𝑡)

𝒄𝒐𝒔(𝑥𝑚) 𝑪𝒙(𝑡)

𝒔𝒊𝒏(𝑥𝑚) [𝑪𝒙]2(𝑡)

𝒄𝒐𝒔(𝑥𝑚) [𝑪𝒙]2(𝑡)]
 
 
 
 
 
 
 
 
 

; 

 

 

 

 

(4.11) 

where 𝑥𝑚 is the measured synchronization state signal, which in this case is the measured 

angular position 𝜑𝑚.  The parameter vector of the state space identification model, defined by 

equations (4.11), is given as 

  

𝜽𝑇 = [−𝑎0 −𝑎1 ⋯ −𝑎𝑛−1 ⋮ 𝑏0 𝑏1 ⋯ 𝑏𝑛−1 

             𝛼0,1 𝛼0,2 ⋯ 𝛼0,𝑁0 ⋮ 𝛽0,1 𝛽0,2 ⋯ 𝛽0,𝑁0 

             𝛼1,1 𝛼1,2 ⋯ 𝛼1,𝑁1 ⋮ 𝛽1,1 𝛽1,2 ⋯ 𝛽1,𝑁1 

             𝛼2,1 𝛼2,2 ⋯ 𝛼2,𝑁2 ⋮ 𝛽2,1 𝛽2,2 ⋯ 𝛽2,𝑁2 

               𝛼3,1 𝛼3,2 ⋯ 𝛼3,𝑁3 ⋮ 𝛽3,1 𝛽3,2 ⋯ 𝛽3,𝑁3]. 

(4.12) 

 

Now, since the developed identification model is in the form of nonlinear in parameters, their 

parameters can be identified by any nonlinear in parameter identification algorithm, for 

example, Gauss-Newton output error, prediction error or even with dual (extended) Kalman 

filter to predict the system states and its parameters in a stochastic environment.  For more 

details about system identification in general, see Appendix B.   

Then, the identified disturbance parameters can be used in the design of the disturbance feed-

forward controller, as well as the system dynamic parameters can also be used in the design of 

the feedback controller.  Actually, this formulation fits the general idea of (adaptive) model 

based control design, for example, state feedback control strategies.  

�̇�(𝑡) = [

0
⋮
0

−𝑎0

1
⋱
⋯

−𝑎1

⋯
⋱
0
⋯

0
0
1

−𝑎𝑛−1

] 𝒙(𝑡) 

𝑦(𝑡) = [𝑏0 𝑏1 ⋯ 𝑏𝑛−1]𝒙(𝑡), 

�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡, 𝒙); 

𝑦(𝑡) = 𝑪𝒙(𝑡); 
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4.2.2 Parameter Identification of the Identification Model 

In the following, the Gauss-Newton output error method, presented in Appendix B.3, is used 

to identify the parameters of the identification model.  First, the partial derivatives of the 

model matrices 𝑨, 𝑩 and 𝑪 as defined in equation (4.11) are taken with respect to every 

corresponding parameter of the parameter vector given in equation (4.12) in order to compute 

the gradients as following: 

For the parameters of (𝑖 =  1 𝑡𝑜 𝑛) 

𝜕𝑨(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽) = [0 ⋯ 0 1]𝑇𝑥𝑖(𝑡, 𝜽);                           

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽) = 𝟎;                                                                     

𝜕𝑩(𝜽)

𝜕𝜃𝑖
𝒖(𝑡, 𝜽) = 𝟎;                                                                     

𝜕𝒖(𝑡, 𝜽)

𝜕𝜃𝑖
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0
𝟎
𝟎
𝟎
𝟎

𝒔𝒊𝒏(𝑥𝑚) 𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖

𝒄𝒐𝒔(𝑥𝑚) 𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖

𝒔𝒊𝒏(𝑥𝑚) 2𝑪𝒙(𝑡, 𝜽)𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖

𝒄𝒐𝒔(𝑥𝑚) 2𝑪𝒙(𝑡, 𝜽)𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

(4.13) 

 

and their gradients are computed by simulating the systems 

          
𝜕�̇�(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑨(𝜽)

𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+ 𝑩(𝜽)

𝜕𝒖(𝑡, 𝜽)

𝜕𝜃𝑖
+ [0 ⋯ 0 1]𝑇𝑥𝑖(𝑡, 𝜽); 

𝜕𝑦(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑪(𝜽) 

𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
.                                                                 

(4.14) 

 

For the parameters of (𝑖 =  𝑛 + 1 𝑡𝑜 2𝑛) 

𝜕𝑨(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽) = 𝟎;                                                         

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽) = 𝑥𝑖−𝑛(𝑡, 𝜽);                                        

𝜕𝑩(𝜽)

𝜕𝜃𝑖
𝒖(𝑡, 𝜽) = 𝟎;                                                        

 

 

 

 

(4.15) 
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𝜕𝒖(𝑡, 𝜽)

𝜕𝜃𝑖
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
𝟎
𝟎
𝟎
𝟎

𝒔𝒊𝒏(𝑥𝑚) [𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽)]

𝒄𝒐𝒔(𝑥𝑚) [𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽)]

𝒔𝒊𝒏(𝑥𝑚) 2𝑪𝒙(𝑡, 𝜽) [𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽)]

𝒄𝒐𝒔(𝑥𝑚) 2𝑪𝒙(𝑡, 𝜽) [𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽)]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

 

and their gradients are computed by simulating the systems 

𝜕�̇�(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑨(𝜽)

𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+ 𝑩(𝜽)

𝜕𝒖(𝑡, 𝜽)

𝜕𝜃𝑖
; 

                           
𝜕𝑦(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑪(𝜽) 

𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+ 𝑥𝑖−𝑛(𝑡, 𝜽).                              

(4.16) 

 

And for (𝑖 =  2𝑛 + 1 𝑡𝑜 2𝑛 + 2𝑁0 + 2𝑁1 + 2𝑁2 + 2𝑁3) parameters, their gradients are 

𝜕𝑨(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽) = 𝟎;                                                                    

𝜕𝑪(𝜽)

𝜕𝜃𝑖
𝒙(𝑡, 𝜽) = 𝟎;                                                                   

𝜕𝑩(𝜽)

𝜕𝜃𝑖
𝒖(𝑡, 𝜽) = [0 ⋯ 0 1]𝑇𝑢𝑆𝐶(𝑖−2𝑛)

(𝑡);               

𝜕𝒖(𝑡, 𝜽)

𝜕𝜃𝑖
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0
𝟎
𝟎
𝟎
𝟎

𝒔𝒊𝒏(𝑥𝑚) 𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖

𝒄𝒐𝒔(𝑥𝑚) 𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖

𝒔𝒊𝒏(𝑥𝑚) 2𝑪𝒙(𝑡, 𝜽)𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖

𝒄𝒐𝒔(𝑥𝑚) 2𝑪𝒙(𝑡, 𝜽)𝑪
𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

(4.17) 

 

and their corresponding gradients are computed from 
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𝜕�̇�(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑨(𝜽)

𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
+ 𝑩(𝜽)

𝜕𝒖(𝑡, 𝜽)

𝜕𝜃𝑖
+ [0 ⋯ 0 1]𝑇𝑢𝑆𝐶(𝑖−2𝑛)

(𝑡); 

𝜕𝑦(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑪(𝜽) 

𝜕𝒙(𝑡, 𝜽)

𝜕𝜃𝑖
.                                                                          

(4.18) 

 

The previous continuous models can also be developed in discrete-time, this is straight 

forward.  For more details refer to the system identification Appendix B.  The presented 

algorithm will be tested in simulation as well as on real-time control experiments in chapter 5 

and chapter 6 respectively. 

 

4.3 Discrete Periodic Disturbance Compensation Using RLS 

Method 

The identification model, as it is shown in following Figure 4.3, has state dependent nonlinear 

oscillations because of its periodic parameters.  This model structure is going to be modeled 

as linear in parameter discrete model.  So that, the recursive least squares identification 

algorithm is used to identify the linear discrete dynamics and the disturbance model in the 

form of nonlinear sine cosine function parameters representing the external and the internal 

periodic disturbances, where  the identified sine cosine function parameters are used in a feed-

forward controller to compensate the system oscillations. 

 

Figure 4.3: Identification model for externally and internally disturbed system. 

The system input-output dynamics, shown in Figure 4.3, is defined as a discrete ARX, where 

it can be described by a discrete linear difference equation as 

𝑦(𝑘𝑇) =   𝑎1𝑦(𝑇𝑠(𝑘 − 1)) + 𝑎2𝑦(𝑇𝑠(𝑘 − 2)) + ⋯+ 𝑎𝑛𝑦(𝑇𝑠(𝑘 − 𝑛))        

                  +  𝑏1𝑢𝑖𝑛(𝑇𝑠(𝑘 − 1)) + 𝑏2𝑢𝑖𝑛(𝑇𝑠(𝑘 − 2)) + ⋯+ 𝑏𝑛𝑢𝑖𝑛(𝑇𝑠(𝑘 − 𝑛)), 
(4.19) 

where 𝑢𝑖𝑛(𝑘𝑇𝑠) is the total input of the system dynamics,  𝑦(𝑘𝑇𝑠) is the system output, 𝑛 is 

order of the system dynamics, 𝑇𝑠  is the sampling time and 𝑘 is the sampling time sequence 

index (integer, 𝑘 =  0, 1, 2,⋯).  Therefore, the discrete-time is given by 

𝐺𝐼𝑀(𝑧) 

 

𝑦 
𝑢𝑑𝑖𝑠 

𝑢 

Sine Cosine 

Function 

𝜔𝑡 

𝜑𝑚 

States 

𝑢𝑖𝑛 
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𝑡 = 𝑘𝑇𝑠. (4.20) 

 

In the following, the discrete-time will be represented only by the index 𝑘, but the sampling 

period 𝑇𝑠 will appear only when it is needed in the computation. 

The input of the dynamics is the manipulated variable plus the periodic disturbance as already 

defined in equation (4.2).  And the input disturbance is the sum of the external and the 

internal disturbances as defined in equation (4.3), where the synchronization signal of the 

external and the internal disturbances (𝜔𝑡, 𝜑𝑚) are assumed to be known (measured, 

observed, estimated or predicted).  The external and the internal disturbances are defined by 

their Fourier series expansions also as defined in equation (4.4).  The internal disturbance is 

modeled to take into consideration all of spring, damper and moment of inertia angle 

dependent load elements as given in chapter 2. 

Now, the shifted in sampling time sine and cosine vectors, that are representing the external 

and the internal periodic disturbance components, are defined as 

𝒔𝒊𝒏 (𝜔𝑇𝑠(𝑘 − 𝑖)) = [𝑠𝑖𝑛(𝜔𝑇𝑠(𝑘 − 𝑖)) 𝑠𝑖𝑛(2𝜔𝑇𝑠(𝑘 − 𝑖)) ⋯ 𝑠𝑖𝑛(𝑁0𝜔𝑇𝑠(𝑘 − 𝑖))]; 

𝒄𝒐𝒔 (𝜔𝑇𝑠(𝑘 − 𝑖)) = [𝑐𝑜𝑠(𝜔𝑇𝑠(𝑘 − 𝑖)) 𝑐𝑜𝑠(2𝜔𝑇𝑠(𝑘 − 𝑖)) ⋯ 𝑐𝑜𝑠(𝑁0𝜔𝑇𝑠(𝑘 − 𝑖))]; 
(4.21) 

 

𝒔𝒊𝒏(𝜑𝑚(𝑘 − 𝑖)) = [𝑠𝑖𝑛(𝜑𝑚(𝑘 − 𝑖)) 𝑠𝑖𝑛(2𝜑𝑚(𝑘 − 𝑖)) ⋯ 𝑠𝑖𝑛(𝑁1𝜑𝑚(𝑘 − 𝑖))]; 

𝒄𝒐𝒔(𝜑𝑚(𝑘 − 𝑖)) = [cos (𝜑𝑚(𝑘 − 𝑖)) cos(2𝜑𝑚(𝑘 − 𝑖)) ⋯ 𝑐𝑜𝑠(𝑁1𝜑𝑚(𝑘 − 𝑖))], 
(4.22) 

 

𝒔𝒊𝒏(𝜑𝑚(𝑘 − 𝑖)) 𝑦(𝑘 − 𝑖) = [𝑠𝑖𝑛(𝜑𝑚(𝑘 − 𝑖))𝑦(𝑘 − 𝑖) 𝑠𝑖𝑛(2𝜑𝑚(𝑘 − 𝑖))𝑦(𝑘 − 𝑖) 

                                                                                       ⋯ 𝑠𝑖𝑛(𝑁2𝜑𝑚(𝑘 − 𝑖))𝑦(𝑘 − 𝑖)]; 

𝒄𝒐𝒔(𝜑𝑚(𝑘 − 𝑖)) 𝑦(𝑘 − 𝑖) = [𝑐𝑜𝑠(𝜑𝑚(𝑘 − 𝑖))𝑦(𝑘 − 𝑖) 𝑐𝑜𝑠(2𝜑𝑚(𝑘 − 𝑖))𝑦(𝑘 − 𝑖) 

                                                                                         ⋯ 𝑐𝑜𝑠(𝑁2𝜑𝑚(𝑘 − 𝑖))𝑦(𝑘 − 𝑖)], 

(4.23) 

and 

𝒔𝒊𝒏(𝜑𝑚(𝑘 − 𝑖)) 𝑦2(𝑘 − 𝑖) = [𝑠𝑖𝑛(𝜑𝑚(𝑘 − 𝑖))𝑦2(𝑘 − 𝑖) 𝑠𝑖𝑛(2𝜑𝑚(𝑘 − 𝑖))𝑦2(𝑘 − 𝑖) 

                                                                                            ⋯ 𝑠𝑖𝑛(𝑁3𝜑𝑚(𝑘 − 𝑖))𝑦2(𝑘 − 𝑖)]; 

𝒄𝒐𝒔(𝜑𝑚(𝑘 − 𝑖)) 𝑦2(𝑘 − 𝑖) = [𝑐𝑜𝑠(𝜑𝑚(𝑘 − 𝑖))𝑦2(𝑘 − 𝑖) 𝑐𝑜𝑠(2𝜑𝑚(𝑘 − 𝑖))𝑦2(𝑘 − 𝑖) 

                                                                                            ⋯ cos(𝑁3𝜑𝑚(𝑘 − 𝑖))𝑦2(𝑘 − 𝑖)]. 

(4.24) 

Moreover, the multiplication vectors of the numerator polynomial parameters (𝑏𝑖) of the 

system dynamics and sine and cosine factors (𝑏𝑖αj,N𝑗
 ) and (𝑏𝑖βj,N𝑗

) respectively are defined 

as 

𝒃𝒊𝛂𝐣 =

[
 
 
 
 
𝑏𝑖αj,1

𝑏𝑖𝛼j,2

⋮
𝑏𝑖αj,N𝑗]

 
 
 
 
𝑇

 ;  𝒃𝒊𝛃𝐣 =

[
 
 
 
 
𝑏𝑖βj,1

𝑏𝑖𝛽j,2

⋮
𝑏𝑖βj,N𝑗]

 
 
 
 
𝑇

. (4.25) 

 

Therefore, the data vector is defined as 
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𝒁(𝑘) = [𝑦(𝑘 − 1) 𝑦(𝑘 − 2) ⋯ 𝑦(𝑘 − 𝑛) 

                𝑢(𝑘 − 1) 𝑢(𝑘 − 2) ⋯ 𝑢(𝑘 − 𝑛) 

⋮ 𝒔𝒊𝒏 (𝜔𝑇𝑠(𝑘 − 1)) 𝒔𝒊𝒏 (𝜔𝑇𝑠(𝑘 − 2)) ⋯ 𝒔𝒊𝒏 (𝜔𝑇𝑠(𝑘 − 𝑛)) 

⋮ 𝒄𝒐𝒔 (𝜔𝑇𝑠(𝑘 − 1)) 𝒄𝒐𝒔 (𝜔𝑇𝑠(𝑘 − 2)) ⋯ 𝒄𝒐𝒔 (𝜔𝑇𝑠(𝑘 − 𝑛)) 

⋮ 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 1)) 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 2)) ⋯ 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 𝑛)) 

⋮ 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 1)) 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 2)) ⋯ 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 𝑛)) 

⋮ 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 1))𝑦(𝑘 − 1) 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 2))𝑦(𝑘 − 2) ⋯ 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 𝑛))𝑦(𝑘 − 𝑛) 

⋮ 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 1))𝑦(𝑘 − 1) 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 2))𝑦(𝑘 − 2) ⋯ 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 𝑛))𝑦(𝑘 − 𝑛) 

⋮ 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 1))𝑦2(𝑘 − 1) 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 2))𝑦2(𝑘 − 2) ⋯ 𝒔𝒊𝒏(𝜑𝑚(𝑘 − 𝑛))𝑦2(𝑘 − 𝑛) 

    ⋮ 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 1))𝑦2(𝑘 − 1) 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 2))𝑦2(𝑘 − 2) ⋯ 𝒄𝒐𝒔(𝜑𝑚(𝑘 − 𝑛))𝑦2(𝑘 − 𝑛)], 

(4.26) 

and the parameter vector 

𝜽𝑇           =     [      𝑎1    𝑎2   ⋯ 𝑎𝑛    ⋮  𝑏1    𝑏2     ⋯ 𝑏𝑛       ⋮                            

𝒃𝟏𝜶𝟎 𝒃𝟐𝜶𝟎 ⋯ 𝒃𝒏𝜶𝟎 ⋮ 𝒃𝟏𝜷𝟎 𝒃𝟐𝜷𝟎 ⋯ 𝒃𝒏𝜷𝟎 ⋮ 

𝒃𝟏𝜶𝟏 𝒃𝟐𝜶𝟏 ⋯ 𝒃𝒏𝜶𝟏 ⋮ 𝒃𝟏𝜷𝟏 𝒃𝟐𝜷𝟏 ⋯ 𝒃𝒏𝜷𝟏 ⋮ 

𝒃𝟏𝜶𝟐 𝒃𝟐𝜶𝟐 ⋯ 𝒃𝒏𝜶𝟐 ⋮ 𝒃𝟏𝜷𝟐 𝒃𝟐𝜷𝟐 ⋯ 𝒃𝒏𝜷𝟐 ⋮ 

𝒃𝟏𝜶𝟑 𝒃𝟐𝜶𝟑 ⋯ 𝒃𝒏𝜶𝟑 ⋮ 𝒃𝟏𝜷𝟑 𝒃𝟐𝜷𝟑 ⋯ 𝒃𝒏𝜷𝟑 ]. 

(4.27) 

So, the identification model output is computed by 

𝑦(𝑘) = 𝒁(𝑘)𝜽. (4.28) 

Now, instead of the model output, the measured (process) output is used in the data vector  𝒁, 

the discrete model, equation (4.28), becomes in form of linear in parameters, so that the RLS 

algorithm can be used to estimate the parameter vector.  The disturbance parameters are 

calculated by averaging all of the available redundant parameters as  

𝛼𝑗,𝑖 =
1

𝑛
∑

𝑏𝑘𝛼𝑗,𝑖

𝑏𝑘

𝑛

𝑘=1

;            𝛽𝑗,𝑖 =
1

𝑛
∑

𝑏𝑘𝛽𝑗,𝑖

𝑏𝑘

𝑛

𝑘=1

. (4.29) 

In the following subsections 4.3.1 and 4.3.2, simple cases of identification models are 

presented for the first order discrete dynamics with single harmonic external periodic 

disturbance, as well as the case for second order discrete dynamics with single harmonic 

internal periodic disturbance. 

4.3.1 Discrete First Order Identification Model 

Now, the case of first order (𝑛 = 1) identification model and external disturbance with one 

harmonic is assumed (𝑁0 = 1, 𝑁1 = 𝑁2 = 𝑁3 = 0).  So, the input signal is defined as  

𝑢𝑖𝑛(𝑡) =  𝑢(𝑡) + 𝛼0,1 𝑠𝑖𝑛(𝜔𝑡) + 𝛽0,1 𝑐𝑜𝑠(𝜔𝑡), (4.30) 

This models an external disturbance of a sinusoidal signal or a mono frequency.  Moreover 

the difference equation of the system is given by 

𝑦(𝑇𝑠𝑘) =   𝑎1𝑦(𝑇𝑠(𝑘 − 1)) 

+𝑏1[𝑢(𝑇𝑠(𝑘 − 1)) + 𝛼0,1𝑠𝑖𝑛(𝑇𝑠𝜔(𝑘 − 1)) + 𝛽0,1𝑐𝑜𝑠(𝑇𝑠𝜔(𝑘 − 1))], 
(4.31) 

where this can be rewritten as 
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𝑦(𝑇𝑠𝑘) =   𝑎1𝑦(𝑇𝑠(𝑘 − 1)) + 𝑏1𝑢(𝑇𝑠(𝑘 − 1))                  

                             + 𝑏1𝛼0,1 𝑠𝑖𝑛(𝑇𝑠𝜔(𝑘 − 1)) + 𝑏1𝛽0,1 𝑐𝑜𝑠(𝑇𝑠𝜔(𝑘 − 1)), 
(4.32) 

or in the vector format 

𝑦(𝑇𝑠𝑘) =                                                                                                                                                 

      [𝑦(𝑇𝑠(𝑘 − 1)) 𝑢(𝑇𝑠(𝑘 − 1)) 𝑠𝑖𝑛 (𝑇𝑠𝜔(𝑘 − 1)) 𝑐𝑜𝑠 (𝑇𝑠𝜔(𝑘 − 1))] [

𝑎1

𝑏1

𝑏1𝛼0,1

𝑏1𝛽0,1

], 
(4.33) 

where 

𝜽 = [𝑎1 𝑏1 𝑏1𝛼0,1 𝑏1𝛽0,1]𝑇 , (4.34) 

The disturbance model parameter can be calculated as 

𝛼0,1 =
𝜃(3)

𝜃(2)
;    𝛽0,1 =

𝜃(4)

𝜃(2)
. (4.35) 

4.3.2 Discrete Second Order Identification Model 

Alternatively, for the second order case (𝑛 = 2), the system is described by the following 

discrete transfer function 

𝑦(𝑧) =
𝑏1𝑧 + 𝑏2

𝑧2 − 𝑎1𝑧 − 𝑎2

[𝑢(𝑧) + 𝑢𝑑𝑖𝑠(𝑧)], (4.36) 

and the external disturbance has one harmonic (𝑁0 = 0, 𝑁1 = 1, 𝑁2 = 𝑁3 = 0), so 

𝑦(𝑘) = 𝑎1𝑦(𝑘 − 1) + 𝑎2𝑦(𝑘 − 2) + 𝑏1𝑢(𝑘 − 1) + 𝑏2𝑢(𝑘 − 2)  

   +𝑏1𝛼1,1  𝑠𝑖𝑛(𝜑𝑚(𝑘 − 1)) + 𝑏2𝛼1,1 𝑠𝑖𝑛(𝜑𝑚(𝑘 − 2)) 

  +𝑏1𝛽1,1 𝑐𝑜𝑠(𝜑𝑚(𝑘 − 1)) + 𝑏2𝛽1,1𝑐𝑜𝑠(𝜑𝑚(𝑘 − 2)), 

(4.37) 

or in vector format 

    𝑠𝑖𝑛(𝜑𝑚(𝑘 − 1))   𝑠𝑖𝑛(𝜑𝑚(𝑘 − 2))  𝑐𝑜𝑠(𝜑𝑚(𝑘 − 1))   𝑐𝑜𝑠 (𝜑𝑚(𝑘 − 2))]

[
 
 
 
 
 
 
 
 

𝑎1

𝑎2

𝑏1

𝑏2

𝑏1𝛼1,1

𝑏2𝛼1,1

𝑏1𝛽1,1

𝑏2𝛽1,1]
 
 
 
 
 
 
 
 

 (4.38) 

So, the disturbance model parameters are calculated by 

𝛼1,1 =
1

2
[
𝜃(5)

𝜃(3)
+

𝜃(6)

𝜃(4)
] =

1

2
[
𝑏1𝛼1,1

𝑏1
+

𝑏2𝛼1,1

𝑏2
] ; 

𝛽1,1 =
1

2
[
𝜃(5)

𝜃(3)
+

𝜃(6)

𝜃(4)
] =

1

2
[
𝑏1𝛽1,1

𝑏1
+

𝑏2𝛽1,1

𝑏2
]. 

(4.39) 

  

𝑦(k) = [ 𝑦(𝑘 − 1)  𝑦(𝑘 − 2)  𝑢(𝑘 − 1)  𝑢(𝑘 − 2)  
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4.4 Identification and Control Strategies 

There are a lot of strategy variations and combinations of setting up the identification and the 

control procedure together.  The simplest one, for example, is to make an offline open loop 

process parameter identification in order to get the disturbance model parameters and then use 

them to compensate the disturbance through the feed-forward control either with or without 

closing the loop, which is a true feed-forward control that causes no interaction to the closed 

loop (relative) stability or set point tracking design characteristics.  This is good only if the 

disturbance parameters do not change with time at all.  But if the parameters change from 

phase to phase or in certain operating regions or conditions, then the system parameters can 

be identified in these regions/conditions offline and make a correspondent controller design 

for each and use them as scheduled control strategy.  This can be done provided that some 

offline data are available in advance. 

For the case, the process is under closed loop control and it is not allowed to open the loop,   

the parameter identification can also be set up online while the process under the closed loop 

control.  If the parameters converge, then the online parameter identification is set off and the 

converged parameters are used to compute the control law.  This strategy would face the 

problem of identifyability in the closed loop since the input signal is directly correlated with 

the output signal, unless an external signal or the set point is used to provide enough 

excitation to the plant modes (Van den Hof 1998; Forssell and Ljung 1999).   One alternative 

solution though is to use closed loop identification methods, e.g., indirect process 

identification by identifying the total closed loop system and then computing the process 

parameters from the identified closed loop system and known feedback controller, this 

method is computationally more extensive. 

The second alternative is to use the adaptive mode in form of online identification and control 

by using certainty equivalence principle (Harris and Billings 1981).  Under this condition the 

identifyability and identification conditions are more improved.  Particularly, for the method 

of recursive least squares according to Aström and Wittenmark (1995), the problem of linear 

parameter dependence is solvable provided that the controller is a complex high order or time-

varying, see also Appendix B.4.  But caution should be taken at the initialization phase, where 

the initial parameters are to be carefully chosen to get a safe start by using good initial 

parameter guess.  This could lead to use the adaptive dual control strategy (Filatov and 

Unbehauen 2000; Filatov and Unbehauen 2004), where the algorithm uses the identified 

controller parameters according to their parameter certainty and make sure to excite the plant 

in order to accelerate and to guarantee a correct and consistent parameter estimation. 

However, as long as the algorithms of online identification and control are active, the true 

feed-forward conditions are not met, this means that the algorithms are working as a feedback 

controller that interacts with the pre-existing set-point tracking feedback controller.  Never-

theless, if the parameters converge and the direct parameter adaptation is set off, then the 

algorithm becomes back again working as a true feed-forward controller. 

In general, the stability analysis of the adaptive control strategies, which can be done for 

example, by using the direct method of Lyapunov (Aström and Wittenmark 1995), is directly 

linked to the parameter adaptation (identification) algorithms that are used to identify the 
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identification model parameters and their interaction with the controller, which are usually a 

non-trivial analytic problems, because they are time varying and nonlinear systems (Landau, 

Lozano and M'Saad 1998).  Therefore, in this work instead, the developed control strategies 

will be intensively tested and validated in simulation, where they will be presented in the next 

chapter 5, as well as in real-time control with real hardware in the loop, where they will be 

presented in chapter 6. 
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5 SIMULATION EXAMPLES 

In this chapter, the drive-load system is simulated by using its rigid and flexible models with 

external and internal (self-excited) periodic disturbances that have been developed in chap-

ter 2.  In these simulation examples, the system is constructed as an angular velocity servo 

control system to follow the given set point tracks.  And because of the external and/or 

internal periodic disturbances, oscillations appear on the system output, therefore, the me-

thods introduced in chapters 3 and 4 are applied in order to reject these periodic disturbances.   

First, the problem of the set point tracking and periodic disturbance rejection is tried to be 

done by using feedback control only and as well as by incorporating a periodic disturbance 

internal model according to IMP (Francis and Wonham 1976).  Then, the problem is done by 

using the developed strategy of feedback control for set point tracking and an add-on feed-

forward for periodic disturbance compensation introduced in chapter 4.  The strategy is tested 

on rigid and flexible drive-load system, and external as well as on internal disturbance, where 

according to the identification model discrete or continuous linear or nonlinear in parameters, 

the corresponding identification method is used as introduced in Appendix B. 

5.1 Rigid Drive-load System 

In this section, some simulation examples are presented on periodic disturbance rejection by 

using feedback and feed-forward control techniques.  The source of periodic disturbances is 

external, internal or a combination of them.  Furthermore, the following examples use the 

drive-load process given by the following differential equation, as already defined in subsec-

tion 2.2, 

𝐽�̇�(𝑡) + 𝐷𝜗(𝑡) = 𝑇(𝑡) + 𝑇𝑑𝑖𝑠(𝑡), (5.1) 

where the physical parameters are given by  

𝐽 = 1 [kgm2];  𝐷 = 1 [Nms/rad];  (5.2) 

5.1.1 Feedback Control 

In this subsection, only a feedback control technique is used to guarantee the set point 

tracking demands and to reject the periodic disturbances.  First, only a PI (Proportional-

Integral) feedback controller is used, then a periodic disturbance rejection filter, by 

incorporating an internal model of the periodic disturbance, is used as an add-on to the PI 

feedback controller to reject the external periodic disturbance. 

5.1.1.1 Simulation Example 1.1: Set point tracking and periodic disturbance 

rejection using only feedback control 

The process of drive-load system, equations (5.1) and (5.2), is put under closed loop feedback 

control.  Now, if it is required that the system has to be more slowly than it is, but keeping at 

the same time the steady state error to step input equal to zero.  This can be achieved by 

changing the dynamics of the system by using a feedback controller (dynamic compensator), 

as already presented in chapter 3 Figure 3.1. 
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Now, the feedback controller is a PI controller with the parameter set A (𝐾𝑃 = 0.1, 𝐾𝐼 = 0.1).  

This parameter set will yield set point and disturbance frequency responses shown in 

Figure 5.1.  From the figure, it can be seen that the goal is achieved, since the system is now 

ten times slower and the step input steady state error is zero.  But now, if the disturbance 

frequency response is carefully inspected, it shows a bad disturbance rejection in the region 

between 0.1 to 1 [rad/s].  So, this case has contradictory demands between slow response and 

good disturbance rejection which demands that the system has to have faster response or 

wider bandwidth instead.  On the other hand, for more disturbance rejection the system should 

be made faster (wider bandwidth), for example, the following PI controller parameter set B 

(𝐾𝑃 = 10.0, 𝐾𝐼 = 0.1) is considered.  Figure 5.1 plots the frequency response of closed loop 

system for both parameter sets A and B, while Figure 5.2 plots the unit step response, when 

the external periodic torque disturbance is defined by (𝑇𝑑𝑖𝑠(𝑡) = sin(𝑡) [Nm]), where it can 

be seen that the case of parameter set B is much better than the case of parameter set A in 

terms of periodic disturbance rejection.  But even in the better case B, the system output is 

still affected by the external periodic disturbance.   

For perfect rejection, an infinite loop gain is needed at the frequency disturbance.  This could 

be done by introducing an internal disturbance model to the feedback controller in form of 

“inverse” notch filter (periodic disturbance rejection filter) for one harmonic or repetitive 

control for infinite harmonics case.  Therefore, in case A, an extra method of compensation 

should be used to cancel any undesirable disturbances especially outside the bandwidth of the 

working feedback controller.  This could be done by using an internal model principle by 

adding an “inverse” notch filter, as in example 1.2, or feed-forward controller to the already 

existing set point tracking feedback controller, as in examples 1.3 and 1.4 respectively. 

5.1.1.2 Simulation Example 1.2: Feedback with IMP to reject the periodic 

disturbances 

The system is the same as in example 1.1 and the feedback controller is a PI with the 

parameter set A.  Now, the Periodic Disturbance Rejection Filter (PDRF) is defined by 

𝐺𝑁(𝑠) =
𝐾𝑑𝜔𝑑

2

𝑠2 + 2 𝜉𝑑𝜔𝑑𝑠 + 𝜔𝑑
2   , (5.3) 

where 𝐾𝑑 = 0.5 ,  𝜉𝑑 = 0 and 𝜔𝑑 = 1 [rad/s].  The PDRF is implemented by using variant A 

and B, as previously explained in subsection 3.1.1 and shown in Figure 3.2.  Figure 5.3 and 

Figure 5.4 show the frequency and the step responses for only PI feedback controller with 

parameter set A, PI with PDRF of variant A and PI with PDRF of variant B cases. 

Actually, both of the variants have the same disturbance rejection characteristics.  The 

difference is only in the set point response characteristics.  Variant A amplifies the set point at 

the designed rejection frequency, which makes this variant the choice when the disturbance 

frequency is inside the demanded closed loop system bandwidth.  While variant B suppresses 

the set point at the designed rejection frequency, this in turn, makes this variant the choice 

when the disturbance frequency is outside the demanded closed loop system bandwidth, 

which is the case in this example.  But, both of the variants A and B affect the closed loop 

transient characteristics. 
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Figure 5.1: Example 1.1: Closed loop frequency response to the set point and the disturbance 

for the parameter sets A and B of the PI feedback controller. 

 

Figure 5.2: Example 1.1: Closed loop set point step response for parameter sets A and B of 

the PI feedback controller. 
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Figure 5.3: Example 1.2: Set point and disturbance frequency response of closed loop system 

for only PI controller (parameter set A), with PDRF variant A and with PDRF variant B.   

 

Figure 5.4: Example 1.2: Set point step response of closed loop system for only PI         

(parameter set A), with PDRF variant A and with PDRF variant B. 
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5.1.2 Feedback Feed-forward Control 

Now in this subsection, the strategy of feedback control for set point tracking and (adaptive) 

feed-forward control for periodic disturbance rejection, introduced in section 4.2, is used to 

compensate the external single and multi-harmonic disturbances as well as the internal 

periodic disturbances induced from nonlinear angle dependent load elements.   

5.1.2.1 Simulation Example 1.3: Feedback for set point tracking and feed-forward 

for periodic disturbance compensation 

In this example, the drive-load model is as already defined by equations (5.1) and (5.2) with 

external periodic torque disturbance as already defined in example 1.1. 

Now, the identification model structure as presented in subsection 4.2.1, the dynamic and the 

disturbance parts, is defined by 

�̇�(𝑡) = 𝑎𝑦(𝑡) + 𝑏[𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡)]; 

𝑢𝑑𝑖𝑠(𝑡) = 𝛼0,1 𝑠𝑖𝑛(𝑡) + 𝛽0,1 cos(𝑡), 
(5.4) 

with the parameter vector 

𝜽 = [𝑎 𝑏 𝛼0,1 𝛽0,1]
𝑇. (5.5) 

 

The parameter vector is identified by using the parametric output error method, since the 

identification model is in the form of nonlinear in parameters, as introduced in details in 

Appendix B.3.  The identification procedure is started with initial parameter vector of [-2, 2, 

0, 0]
T
, initial covariance matrix of 1000I, forgetting factor of 0.999 and sampling time of 1 

[s].  The open loop identification session is shown in the Figure 5.5, and the yielded final 

parameter vector [-1, 1, 1, 0]
T
 which it has converged to the true process parameters.  The 

system is identified in open loop and then the identified disturbance parameters are used in 

the feed-forward controller to compute the anti-disturbance signal to compensate the external 

periodic disturbance.  Figure 5.6 shows the feed-forward disturbance compensation in open 

loop, while Figure 5.7 in closed loop under the PI feedback controller with parameter set A 

given in example 1.1.  The online identification and control of the process in closed loop, the 

adaptive session, is also done and presented in Figure 5.8.  As can be seen from the figures, 

the algorithm was capable of identifying and compensating the external periodic disturbances 

both in open loop as an (offline/online) identification and indirect adaptation algorithm to 

compensate the periodic disturbance in open/closed loop, as well as in closed loop as an 

online identification and direct adaptation algorithm. 

An advantage of this algorithm is that it becomes a pure feed-forward control when the 

parameter identification is done and so the direct adaptation is set off.  In this situation, the 

algorithm does not affect the closed loop dynamics anymore, where they can then be freely 

designed to fulfil the set point tracking design demands separately. 
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Figure 5.5: Example1.3: Open-loop identification run. 
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Figure 5.6: Example 1.3: Compensation in open loop. 

 

Figure 5.7: Example 1.3: Compensation in closed loop under PI controller. 
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Figure 5.8: Example 1.3: Closed loop adaptive run. 
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5.1.2.2 Simulation Example 1.4: Multi-harmonic external periodic disturbance 

In this simulation example, the process physical parameters and the closed loop controller 

parameters are the same as given in the previous examples, except that the external periodic 

torque disturbance is defined as 

𝑇𝑑𝑖𝑠(𝑡) = 𝑠𝑖𝑛(𝑡) + 0.5 𝑠𝑖𝑛(2𝑡) + 0.2 𝑐𝑜𝑠(2𝑡) 

                          +0.2 𝑠𝑖𝑛(3𝑡) + 0.1 𝑐𝑜𝑠(3𝑡) + 0.1 𝑠𝑖𝑛(4𝑡) 

                                        +0.4 𝑐𝑜𝑠(4𝑡) + 0.01 𝑠𝑖𝑛(5𝑡) + 0.5 𝑐𝑜𝑠(5𝑡) [Nm]. 

(5.6) 

Therefore, the identification model is accordingly defined as 

�̇�(𝑡) = 𝑎𝑦(𝑡) + 𝑏[ 𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡)]; 

𝑢𝑑𝑖𝑠(𝑡) = ∑ 𝛼0,𝑖 𝑠𝑖𝑛(𝑖𝑡) + 𝛽0,𝑖𝑐𝑜𝑠(𝑖𝑡)

𝑁0=5

𝑖=1

, 
(5.7) 

with the parameter vector 

𝜽 = [𝑎   𝑏  𝛼0,1   𝛼0,2  𝛼0,3  𝛼0,4  𝛼0,5   𝛽0,1   𝛽0,2   𝛽0,3   𝛽0,4   𝛽0,5 ]
𝑇. (5.8) 

 

Now, the parameter vector is identified by using the output error method with initial 

parameter vector [-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
T
, covariance matrix = 100000I, forgetting 

factor 0.99 and sampling time of 1 [s].  The number of considered harmonics are 5 and the 

principal disturbance frequency is 1[rad/s].  The system is identified in open loop, see 

Figure 5.9, which ended with the final parameter vector [-1.0002, 1.0002, 1.0002, 0.4990, 

0.1985, 0.0983, 0.0112, -0.0009, 0.1993, 0.1002, 0.4015, 0.5024]
T
.  Then, the identified 

disturbance parameters are used in the feed-forward controller to compute the anti-disturbance 

signal to compensate the disturbance.  Figure 5.10 shows the feed-forward disturbance 

compensation in open loop, while Figure 5.11 in closed loop by using the PI feedback 

controller with parameter set A given in example 1.1. Figure 5.12 presents the adaptive 

session, where the online direct identification of the process in the closed loop and direct 

adaptation of the feed-forward controller algorithm are implemented.  Also in this experiment, 

the algorithm was capable of identifying and compensating the external multi-harmonic 

disturbances successfully. 
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Figure 5.9: Example 1.4: 5-harmonics open loop identification run. 
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Figure 5.10: Example 1.4: 5-Harmonics open loop compensation. 

 

Figure 5.11: Example 1.4: 5-Harmonics closed loop compensation. 
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Figure 5.12: Example 1.4: Adaptive run.  
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5.1.2.3 Simulation Example 1.5: Externally and internally (self-excited 

oscillations) periodically disturbed system 

Now the drive-load system is externally as well as internally disturbed.  The external periodic 

torque disturbance source is defined by   

𝑇𝑑𝑖𝑠(𝑡) = 0.5 𝑠𝑖𝑛(𝑡) [Nm]. (5.9) 

While the internal periodic disturbance is caused by the angle dependent spring, damper and 

moment of inertia load elements defined as 

𝐾(𝜑) = 0.5 𝑠𝑖𝑛(𝜑) [Nm]; 

                   𝐷(𝜑) = 1 + 0.5 𝑠𝑖𝑛(𝜑) [Nms/rad]; 

              𝐽(𝜑) = 1 + 0.05 𝑠𝑖𝑛(𝜑) [kgm2]. 

(5.10) 

 

The identification model dynamic part is a first order continuous and the disturbance part has 

external periodic disturbance and angle dependent internal disturbance of zero, first and 

second degree dependence of identification model angular velocity, plus first degree 

dependence of input signal.  Therefore, the identification model is accordingly constructed by 

�̇�(𝑡) = 𝑎𝑦(𝑡) + 𝑏[𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡)], (5.11) 

where the input disturbance is defined by 

𝑢𝑑𝑖𝑠(𝑡) = ∑[𝛼0,𝑖 𝑠𝑖𝑛(𝑖𝜔𝑡) + 𝛽0,𝑖𝑐𝑜𝑠(𝑖𝜔𝑡)]

𝑁0

𝑖=1

 

                     +∑[𝛼1,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽1,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁1

𝑖=1

 

                              +∑[𝛼2,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽2,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁2

𝑖=1

𝑦(𝑡) 

                              +∑[𝛼3,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽3,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁3

𝑖=1

𝑦2(𝑡) 

                                +∑[𝛼4,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽4,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]𝑢

𝑁4

𝑖=1

(𝑡). 

(5.12) 

 

Since the identification model has a form of nonlinear in parameters, therefore, the parameters 

of the identification model are identified by using the parametric output error method with the 

initial dynamic part parameters [-2, 2]
T
 and the disturbance part started with zeros as an initial 

guess.  The identification routine run with a sampling time of 1[s], the considered numbers of 

harmonics are (𝑁0 = 2, 𝑁1 = 2,  𝑁2 = 2,  𝑁3 = 2 and 𝑁4 = 2), the covariance matrix is 

started by 10I and the forgetting factor by 0.99. 
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At the beginning, an open loop identification run is done as shown in Figure 5.13.  Then, the 

identified disturbance parameters are used in a feed-forward controller to compensate the 

periodic disturbances in the open loop operation; this run is plotted in Figure 5.14.  Moreover, 

the feed-forward controller with the identified parameters is also applied to compensate the 

periodic disturbances in the closed loop operation under the PI controller with parameter set 

A, as given in example 1.1, this run is presented in Figure 5.15.  Furthermore, an adaptive run, 

online and direct identification of the process model in closed loop and direct parameter 

adaptation of the feed-forward controller, is also done and presented in Figure 5.16. 

 

5.1.3 Comments on the Rigid Drive-load System 

So, the implementation of the algorithm can be done offline by doing offline identification 

with some previously recorded input-output data or online identification with an operating 

process.  Consequently, as the parameters converge, the identified periodic disturbance para-

meters can be used to construct a “true” feed-forward controller to compensate the unwanted 

periodic disturbance in open as well as in closed loop.  This is reasonable when the process 

and the disturbance parameters do not change with time.  Otherwise, if the parameters are 

time-varying or the identification model is modeled locally while the process operates 

globally, then the online (adaptive) identification and control is the better way, but this makes 

the feed-forward controller a pure feedback controller again. 

Also for the adaptive mode, a single adaptive run can be done at the system start-up to 

optimize the parameters and then the adaptation set off when the parameters converge.  

Moreover, the adaptation can be reassumed again when the performance deteriorates as the 

process behavior changes.  Furthermore, a consistent adaptation can be used to track the 

parameter change, especially, when a local identification model is used and the operating 

point changes continuously.  However, the activation of the adaptation is very important in 

order to achieve good identifyability conditions in closed loop operation, see Appendix B.4. 
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Figure 5.13: Example 1.5: Open loop identification. 
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Figure 5.14: Example 1.5: Periodic disturbance compensation in open loop. 

 

Figure 5.15: Example 1.5: Periodic disturbance compensation in closed loop. 
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Figure 5.16: Example 1.5: Adaptive run. 
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5.2 Flexible Drive-load System 

In this section, the drive-load system is modeled and simulated as flexible system.  The 

flexible 2DOF model is already given in section 2.3 by equations (2.51)-(2.62). 

5.2.1 Externally Excited Periodic Disturbance Compensation 

In this subsection, the drive-load system is driven to its physical and operational limits, by 

reducing the mechanical link material relative to the load inertia, which is done either by 

reducing the stiffness and the damping factors of the mechanical link or by increasing the load 

inertia.  The operational limit is when the drive-load system is driven to and beyond its 

resonance region. 

In the following, the first example operates the flexible drive-load system with external 

periodic disturbance in the region far before its resonance frequency, where its behavior is the 

same as a rigid body one which can be described by 1DOF system.  In the second example, 

the drive-load system is more flexible than in the first one but still operating in the rigid 

region.  The third and fourth examples are operating at the flexible regions at their resonance 

frequencies.  

5.2.1.1 Simulation Example 2.1: Rigid link case  

In this example, the principle idea of the algorithm is presented to demonstrate that the 

algorithm will identify and approximate the system dynamics and the disturbance model even 

if the real system has a different dynamics and structure.  The system has a rigid link between 

the drive and the load sides.  The system physical parameters are given as following: 

Drive side:  𝐽𝐷 = 0.1 [kgm2];  

𝑑𝐷 = 0.1 [Nms/rad];  

 

 

(5.13) Mechanical link: 𝐾𝑅 = 100000.0 [Nm/rad];  

𝐷𝑅 = 1.0 [Nms/rad];  

  𝑔 = 1;  

Load side:  𝐽𝐿 = 1.0 [kgm2];  

𝑑𝐿 = 1.0 [Nms/rad].  

This gives the following transfer function of the drive-side  𝑇𝐷 and the load-side  𝑇𝐿 torques to 

the load-side angular velocity �̇�𝐿 as 

�̇�𝐿(𝑠) =   
10(𝑠 + 100000)

𝑠3 + 13𝑠2 + 1.1 ∙ 106𝑠 + 1.1 ∙ 106
 𝑇𝐷(𝑠) 

                +
 𝑠2 + 11 𝑠 + 106

𝑠3 + 13𝑠2 + 1.1 ∙ 106𝑠 + 1.1 ∙ 106
 𝑇𝐿(𝑠). 

(5.14) 

The external periodic disturbance torque acting on the load side defined by 

 𝑇𝐿(𝑡) = 5 ∙ 𝑠𝑖𝑛(10𝑡) [Nm]. (5.15) 
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The system dynamics have two complex conjugate poles at (-6.0 + i1050, -6.0 - i1050) and 

one real pole at (-1).  Figure 5.17 shows the frequency response of the load-side angular 

velocity output to the drive torque and the load torque inputs.  It is clear from the poles and 

the frequency response that, there is only one dominant pole at (-1), and so the behavior of the 

system can be very good approximated by a first order system as 

�̇�𝐿(𝑠) =
0.9091

𝑠 + 1
[ 𝑇𝐷(𝑠) +  𝑇𝐿(𝑠)]. (5.16) 

Moreover, this can also be seen from the frequency response shown in Figure 5.17. 

Therefore, the identification model is constructed as first order dynamic part and one 

harmonic external disturbance part as following 

�̇�(𝑡) = 𝑎𝑦(𝑡) + 𝑏[𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡)]; 

𝑢𝑑𝑖𝑠(𝑡) = 𝛼0,1 𝑠𝑖𝑛(𝜔𝑡) + 𝛽0,1 cos(𝜔𝑡), 
(5.17) 

with the parameter vector 

𝜽 = [𝑎 𝑏 𝛼0,1 𝛽0,1]
𝑇. (5.18) 

 

The identification model parameter vector is identified by using the parametric output error 

method, because the identification model has a form of nonlinear in parameters, with initial 

parameter vector [-2, 2, 0, 0]
T
, initial covariance matrix of 100I, forgetting factor of 0.99, 

sampling time of 1 [s] and external disturbance frequency 10 [rad/s].  An open loop 

identification session is done as shown in Figure 5.19 that yields the final parameter vector [-

1.0000, 0.9091, 4.9998, 0.0000]
T
, which shows that the parameters are perfectly converged to 

the disturbed first order dynamics, this can be seen in Figure 5.18, which plots the bode 

diagram of both the real and the identified dynamics.  Figure 5.20 shows the open loop 

disturbance compensation using the disturbance parameters identified in the open loop 

session.  Figure 5.21 shows the application of the feed-forward compensation using the 

disturbance model while the disturbed system is operating under negative feedback PI 

controller with (𝐾𝑃 = 0.1, 𝐾𝐼 = 0.1).   Figure 5.22 presents the adaptive run, where it demon-

strates clearly, as the identification model parameters converge, the applicability of the 

algorithm to identify and to compensate the periodic disturbances in the closed loop. 

 

 

  



5.2  Flexible Drive-load System 87 

 

In Drive-Load Angular Velocity Servo Control Systems with Self-Excited Oscillations 

 

Figure 5.17: Example 2.1: Frequency response of the drive and disturbance load torques. 

 

Figure 5.18: Example 2.1: Comparison between real and identified dynamics. 
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Figure 5.19: Example 2.1: Open loop identification run. 
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Figure 5.20: Example 2.1: Periodic disturbance compensation in open loop. 

 

Figure 5.21: Example 2.1: Periodic disturbance compensation in closed loop. 
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Figure 5.22: Example 2.1: Adaptive run. 
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5.2.1.2 Simulation Example 2.2: Flexible link case  

The system has a flexible link between the drive and the load sides.  The system physical 

parameters are given as following: 

Drive side:  𝐽𝐷 = 0.1 [kgm2];  

𝑑𝐷 = 0.1 [Nms/rad];  

 

(5.19) 

Mechanical link: 𝐾𝑅 = 100.0 [Nm/rad];  

𝐷𝑅 = 0.1 [Nms/rad];  

  𝑔 = 1;  

Load side:  𝐽𝐿 = 1.0 [kgm2];  

𝑑𝐿 = 1.0 [Nms/rad].  

As given in equations (5.19) the mechanical link stiffness and damping factors are thousand 

and hundred times less than the factors of the previous example 2.1 respectively.  These para-

meters yield the following transfer function 

�̇�𝐿(𝑠) =    
𝑠 + 1000

𝑠3 + 3.1𝑠2 + 1102𝑠 + 1100
 𝑇𝐷(𝑠) 

                 +
 𝑠2 + 2 𝑠 + 1000

𝑠3 + 3.1𝑠2 + 1102𝑠 + 1100
 𝑇𝐿(𝑠). 

(5.20) 

The system poles are at (-1.05 +33.1496i, -1.05 -33.1496i, -1).  The system is definitely a 

third order system but from the frequency response in Figure 5.23, it can be seen for 

frequencies lower that 30 [rad/s], that the system can still be approximated by a first order 

system as in previous example. 

The identification model is chosen to be the same as given in previous example represented 

by equations (5.17).  The process is also run with the same external disturbance as in previous 

example. The real and identified input-output transfer functions are plotted in Figure 5.24, 

where it can be seen that the first order dynamics give a perfect representation to the flexible 

dynamics up to 20 [rad/s].  Figure 5.25 shows the adaptive run of system identification and 

compensation, where the algorithm has succeeded in identification and compensation of the 

external periodic disturbance, since the targeted external disturbance, in this case, has fre-

quency of 10 [rad/s]. 

5.2.1.3 Simulation Example 2.3: Flexible link case  

This is the same as in example 2.2, where the identification model dynamics are represented 

by a first order linear transfer function.  But in this example, the frequency of the external 

disturbance is 40 [rad/s].  This means, the external periodic disturbance signal is defined by 

 𝑇𝐿(𝑡) = 5 ∙ 𝑠𝑖𝑛(40𝑡) [Nm]. (5.21) 

With the same initial parameters as given in example 2.1, an adaptive session is done and 

plotted in Figure 5.26, where it shows that the parameters diverge, and the identification 

algorithm could not have found a local minimum.  The main reason is that the identification 

model could not represent the flexible region by just a first order identification model.  
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Figure 5.23: Example 2.2: Frequency response of the flexible drive-load system. 

 

Figure 5.24: Example 2.2: The frequency response of the real flexible and the identified first 

order system dynamics. 
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Figure 5.25: Example 2.2: Closed loop adaptive run. 
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Figure 5.26: Example 2.3: Closed loop adaptive run. 
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5.2.1.4 Simulation Example 2.4: Flexible link case  

In this simulation example, the identification model dynamics are chosen to be a third order as  

𝑦(𝑠) =
𝑏1𝑠 + 𝑏0

𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0

[𝑢(𝑠) + 𝑢𝑑𝑖𝑠(𝑠)]; 

𝑢𝑑𝑖𝑠(𝑡) = 𝛼0,1 𝑠𝑖𝑛(𝜔𝑡) + 𝛽0,1 cos(𝜔𝑡), 

(5.22) 

with the parameter vector 

𝜽 = [−𝑎0 −𝑎1 −𝑎2 𝑏0 𝑏1 𝛼0,1 𝛽0,1]𝑇 , (5.23) 

and the initial parameter vector [-1150, -1100, -3, 1000, 1, 0, 0]
T
. 

An adaptive session is started with the same initialization parameters as in example 2.1 and 

plotted in Figure 5.28, which ended with the final parameter vector [-1128.8,  -1100.4,  -2.9,  

1023.1,  0.4,  -3.0,  0.5]
T
.  Figure 5.27 plots the frequency response of the real and the 

identified system dynamics. 

As the case of first order identification model, the identification model has failed to represent 

the dynamics of the real flexible system especially at the resonance region, as demonstrated in 

the previous example 2.4.  This example, on the other hand, showed that an identification 

model of third order could represent the real system dynamics, and therefore, the 

identification algorithm has managed to find good parameters of both the dynamic and 

disturbance parts.  Consequently, the identified parameters of the identification model can be 

used to compensate the system disturbances as well as its dynamics. 

 

 

Figure 5.27: Example 2.4: Frequency response of the real and the identified system dynamics. 
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Figure 5.28: Example 2.4: Closed loop adaptive run. 
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5.2.2 Internally Excited Periodic Disturbance Compensation 

In this subsection, the drive-load system is defined by the following physical parameters: 

Drive side: 𝐽𝐷   = 0.1 [kgm2];  

𝑑𝐷  = 0.1 [Nms/rad];  

(5.24) 

Mechanical link: 𝐾𝑅 = 100.0 [Nm/rad];  

𝐷𝑅 = 0.1 [Nms/rad];  

  𝑔 = 1;  

Load side: 𝐽𝐿  = 1 + 0.1 𝑠𝑖𝑛(𝜑𝐿) [kgm2];  

𝐷𝐿 = 1 + 0.1 𝑠𝑖𝑛(𝜑𝐿) [Nms/rad];  

𝐾𝐿 = 0.1 𝑠𝑖𝑛(𝜑𝐿) [Nm].  

The load side has angle dependent spring, damper and moment of inertia load elements that 

cause the self-excited nonlinear oscillations.  In the following, two examples are presented, 

where the drive-load system is constructed as velocity servo control system using a PI 

controller with the parameters (𝐾𝑃 = 0.1, 𝐾𝐼 = 0.1) that presumably satisfy the set point 

tracking demands.  Furthermore, an add-on feed-forward controller, as developed in chap-

ter 4, is used to identify and to compensate the self-excited periodic disturbances appear on 

the system output, which is the angular velocity of the load side.  In the first example, the 

internal periodic disturbance is represented locally, while in the second example the 

disturbance part of the identification model is represented globally. 

5.2.2.1 Simulation Example 2.5: Local identification model 

The identification model has a first order continuous dynamics model and the disturbance 

model is angle dependent and of zero degree dependence on the output angular velocity as 

following 

�̇�(𝑡) = 𝑎𝑦(𝑡) + 𝑏[ 𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡)]; 

𝑢𝑑𝑖𝑠(𝑡) = ∑𝛼1,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽1,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)

𝑁1

𝑖=1

, 
(5.25) 

with the parameter vector 

𝜽 = [𝑎   𝑏   𝛼1,1   𝛼1,2   ⋯  𝛼1,𝑁1
   𝛽1,1   𝛽1,2    ⋯   𝛽1,𝑁1

 ]𝑇 . (5.26) 

The parameter vector is identified using the parametric recursive output error method, because 

the identification model is in the form of nonlinear in parameters, as introduced in Appendix 

B.  The identification procedure has started with initial parameter vector  [-2, 2, 0, 0, 0, 0, 0, 

0]
T
, initial covariance matrix of 10I, forgetting factor of 0.98, sampling time of 1 [s] and 

number of harmonics considered (𝑁1 = 3). 

As can be seen from Figure 5.29, the system starts under feedback PI controller with only 

identification to track 2 [rad/s] step set point, then at about time 250 [s], the feed-forward 

controller is activated, so that it uses the last identified disturbance parameters in its control 

law in order to compensate the identified self-excited periodic disturbances. 
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As expected, at the activation time of 250 [s], see Figure 5.29, the identifyability and the 

identification conditions (as discussed in subsection B.4.1) of direct process identification in 

closed loop become better, therefore, the identification model parameters in this phase 

converge asymptotically quickly to the optimal ones. 

It can be seen that, the local model can work very well when the output follows a constant set 

point; otherwise, disturbance model will never reach a steady state, particularly since the 

identification needs some time to gather information about the process change in order to take 

it in the identified model. 

5.2.2.2 Simulation Example 2.6: Global identification model  

This example is the same as the previous example 2.5 except that the disturbance model is 

angle dependent and has zero first and second degree dependence on the output angular 

velocity.  In general, the disturbance part can now globally describe the internal input periodic 

disturbance of the given drive-load process.  The identification model is constructed as 

following 

 

�̇�(𝑡) = 𝑎𝑦(𝑡) + 𝑏[𝑢(𝑡) + 𝑢𝑑𝑖𝑠(𝑡)]; 

𝑢𝑑𝑖𝑠(𝑡) = ∑[𝛼1,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽1,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁1

𝑖=1

 

                         +∑[𝛼2,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽2,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁2

𝑖=1

𝑦(𝑡) 

                           +∑[𝛼3,𝑖 𝑠𝑖𝑛(𝑖𝜑𝑚) + 𝛽3,𝑖𝑐𝑜𝑠(𝑖𝜑𝑚)]

𝑁3

𝑖=1

𝑦2(𝑡). 

(5.27) 

 

The initial dynamic parameters are the same as given in previous example, all disturbance 

parameters are initialized by zeros, with numbers of harmonics considered (𝑁1 =  1, 𝑁2 =

 𝑁3  =  5).  The system is also run with the given PI feedback velocity servo controller as 

given in previous example.  The system is to follow a square wave set point and to reject the 

self-excited periodic disturbance by using the adaptive feed-forward controller.  The session 

is plotted in Figure 5.30, where at the beginning of the session, only identification is done 

without feed-forward periodic disturbance compensation, later at time about 375 [s], the feed-

forward control is activated with a direct adaptation mode by using directly the last identified 

disturbance parameters in its control law.  Moreover, after the adaptive identification run is 

finished, the final parameters are used to compensate the system Figure 5.31 in open loop and 

Figure 5.32 in closed loop with the PI controller.  Both cases use stair case input signals in 

order to show the global validation of the identified identification model dynamic and 

disturbance parameters. 
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Figure 5.29: Example 2.5: Closed loop adaptive run. 
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Figure 5.30: Example 2.6: Closed loop adaptive run. 
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Figure 5.31: Example 2.6: Periodic disturbance compensation in open loop. 

 

Figure 5.32: Example 2.6: Periodic disturbance compensation in closed loop. 
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5.2.3 Discrete Periodic Disturbance Compensation 

In this subsection, the method of Recursive Least Squares (RLS) is used to identify the linear 

in parameters identification model as constructed in section 4.3, in other words, the RLS is 

chosen to identify the identification model because it has a linear in parameters format.  In the 

next, two simulation examples are presented, the first one has simple local internal 

disturbance model while the second one has more global internal disturbance model to work 

better in a wider operating region.  

5.2.3.1 Simulation Example 2.7: Local model 

First of all, the drive-load system physical parameters are the same as in example 2.5, with 

feedback PI controller.  Moreover, in this example, a discrete identification model, as defined 

in section 4.3, is used to identify the system dynamics and the periodic disturbance in order to 

compensate it.  Furthermore, the identification model dynamics are of the first order and the 

internal disturbance is angle dependent of zero degree dependence on the identification model 

angular velocity output (𝑛 = 1, 𝑁0 = 0, 𝑁1 =  1, 𝑁2 = 𝑁3  =  0). 

Now, since the identification model is linear in parameters, the RLS algorithm, as introduced 

in Appendix B.2.3, is used to identify the drive-load system online with the initial parameters: 

sampling time 0.1 [s], number of harmonics 5, initial dynamic parameters are all set to ones 

and all initial disturbance parameters are set to zeroes, initial covariance matrix is 100I and 

forgetting factor of 0.998. 

The experiment starts from the very beginning with an active periodic disturbance adaptive 

feed-forward controller.  After about 725 [s], the feed-forward periodic disturbance compen-

sator is deactivated in order to show the impact of the self-excited periodic disturbance on the 

system output, as it can be seen in the Figure 5.33. 

5.2.3.2 Simulation Example 2.8: Global model 

In this example, the system and the initial identification model parameters are the same as in 

the previous one, except that the internal disturbance part is angle dependent and of zero, first 

and second degree dependence on the output angular velocity, with only 3-harmonics are 

considered  𝑛 =  1,   𝑁0 =  0,   𝑁1 = 𝑁2 = 𝑁3  =  3.  This means, this identification model 

disturbance part is more global than the one in the previous example.  This explains the better 

performance of the periodic disturbance feed-forward compensator as shown in the 

Figure 5.34.  Particularly, it can be seen from the output error graph, the first one from the 

top, in comparison with the previous simulation example 2.7.  
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Figure 5.33: Example 2.7: Closed loop adaptive with 5-harmonics. 

 

  

0 100 200 300 400 500 600 700 800 900 1000
-0.06

-0.04

-0.02

0

0.02

0.04

Time [s]

O
u

tp
u
t 
E

rr
o

r 
[r

a
d

/s
]

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

O
u

tp
u
ts

 [
ra

d
/s

]

Time [s]

 

 

Real

Identified

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

Time [s]

In
p
u

ts
 [
N

m
]

0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

Id
e
n

ti
fi
e
d

 P
a

ra
m

e
te

rs

Time [s]



104 5  SIMULATION EXAMPLES 

 

Modeling, Identification and Control of Periodic Disturbances   

 

Figure 5.34: Example 2.8: Closed loop adaptive with 3-harmonics. 
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5.2.4 Comments on the Flexible Drive-load System 

The algorithm is applied to compensate the periodic disturbances of a flexible drive-load 

system in both regions, the rigid and the flexible one, successfully, provided that the identi-

fication model is capable of approximating the system input-output dynamics in the operating 

region either locally or globally.  Also, the algorithm of periodic disturbance identification 

and control using the method of RLS to identify the discrete (linear in parameters) identi-

fication model has been tested successfully in compensating the internal and external periodic 

disturbances.  

The flexible drive-load system dynamics can be modeled by an identification model with first 

order dynamics, when the operating bandwidth of the system is below its resonance 

frequency.  In other words, it works like a rigid body and can be represented with 1DOF 

system as shown in the simulation examples 2.1 and 2.2.  On the other hand, when the 

flexible drive-load system is operating around the resonance frequency, its behavior is 

dominated by the third order dynamics, and it can only be modeled by an identification model 

with a third order dynamics.  Otherwise, the identified dynamic parameters will never 

represent the drive-load system dynamics and consequently the identified periodic disturbance 

parameters will also be useless as already shown in the simulation examples 2.3 and 2.4.     

Modeling of the internal periodic disturbance locally leads also to its compensation locally.  

But if the local modeling is used to target a wider operating region, then the algorithm must 

adapt the identification model parameters consistently to cope with the system nonlinear 

behavior.  Alternatively, modeling the identification model globally will allow a wider opera-

tional implementation of the identification model parameters.  This has been demonstrated in 

the simulation examples 2.5 and 2.6 respectively using continuous time identification model 

and in the simulation examples 2.7 and 2.8 respectively using discrete-time identification 

model.  Moreover, modeling and identification globally makes it possible to do one shot 

adaptation and then the identified internal periodic disturbance parameters can be used to 

construct a compensation function to compensate this undesirable nonlinear behavior of the 

drive-load system that caused by the state dependent (periodic) parameters.      

The identification model parameters converge in closed loop identification quickly when the 

certainty equivalence adaptive mode, when the identified parameters are directly used in 

control law without questioning their credibility, is active, as it is expected in Appendix  B.4.  

This can be seen in example 2.5, where the parameters have rapidly converged to the optimal 

parameters as soon as the adaptive mode is activated, or in example 2.7, where the parameters 

have diverged from the optimal parameters as soon as the adaptive mode is deactivated.  

Finally, the introduced algorithms of modeling, identification and control of periodic 

disturbances have been applied and verified in a series of simulation tests.  Where the 

algorithm has showed a good behavior in compensation of the external and the internal 

periodic disturbances as long as the identification model is capable of approximating the real 

system input dynamics and the disturbance either locally or globally according to its targeted 

operating region.  These good results gained from the extensive simulation tests are the 

prompt for the next step of applying the algorithm on a real-time control experiment with a 

real mechanical plant in the loop.  This will be presented in the next chapter  6.     
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6 REAL-TIME EXPERIMENTS 

In this chapter, the developed algorithms of periodic disturbance compensation, after their 

successful implementation in the simulation experiments, are implemented now in real-time 

controllers and tested on real mechanical plants.  The torsional plant is presented in the first 

section, while the self-excited machine is presented in the second section.  The torsional test 

platform is ready to buy commercially.  It was also ready to use, therefore, it has been used 

from the very beginning to emulate the drive-load system with external and or internal 

periodic disturbances and to evaluate the control algorithms on it.  Furthermore, as next step 

to the successful simulation and emulation implementations of the algorithms, an experi-

mental drive-load system with crankshaft mechanism is built up as a self-excited machine 

together with a powerful real-time controller in order to test the developed algorithms 

ultimately.  Final comments are given at the end of each section correspondingly. 

6.1 Torsional Test Platform 

In this section, the drive-load system with external and internal periodic disturbance is 

emulated and the developed algorithms of periodic disturbance rejection/compensation are 

implemented and tested on it. 

6.1.1 Test Platform Description 

The torsional plant model 205 is from the Educational Control Products Company, as 

illustrated in Figure 6.1, the system is constructed by a controller/data board and firmware 

plugged in a host PC through its PCI bus, the I/O electronics unit and the electromechanical 

torsional plant.  The controller board runs the control algorithms compiled from the Matlab-

Simulink program using Real-Time Windows Target (RTWT) software.  The controller board 

receives angular incremental position signal from the angular position encoders installed on 

the electromechanical plant via I/O electronics unit.  Moreover, the board sends the control 

signals to the main drive-motor and the secondary (disturbance) motor.  I/O electronics unit 

also contains the power stage (servo-amplifiers) to control the two motors, for more details, 

see the manual (Parks 1999).  The electromechanical plant is used to construct rigid or flexi-

ble mechanical plants driven by the main motor with external and or internal (self-excited or 

state dependent) disturbances generated by the secondary motor.  

6.1.2 External Periodic Disturbance 

The test platform is set up to have only disc No. 1 installed without extra weights.  The 

secondary motor is installed in order to work as an external periodic disturbance source 

applied on disc No. 1, where disc No. 1 is at the bottom, disc No. 2 at the middle and disc No. 

3 is at the top of the flexible transmission rod (the mechanical link).  There is also an 

incremental position sensor at every disc, see Figure 6.1.  The system is constructed as 

velocity servo control system, where the angular velocity is derived from the angular position 

sensor at disc No. 1 and compared with the set point, making a closed loop negative feedback 

under a PI controller. 
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The system design objectives are to ensure the set point tracking as primary goal as well as 

periodic disturbance rejection as a secondary goal to achieve. 

 

 

Figure 6.1: Overview of the torsional plant real-time control system from Educational Control 

Products Company. 

 

6.1.2.1 Experiment 1.1: External periodic disturbance rejection using periodic 

disturbance rejection filter 

To ensure the secondary objective, a periodic disturbance rejection filter is introduced as an 

add-on to the already existing PI feedback controller already designed to ensure the set point 

tracking objectives, see Figure 6.2.  The discrete filter is the z-transform of the continuous 

under damped second order system given by 

𝐺𝑁(𝑠) =
𝐾𝑑𝜔𝑑

2

𝑠2 + 2 𝜉𝑑𝜔𝑑𝑠 + 𝜔𝑑
2 , (6.1) 

where the disturbance frequency is defined by 𝜔𝑑 = 10 [rad/s] and the damping ratio by 

 𝜉𝑑 = 0.001.  By using the z-transformation table (Phillips and Nagle 1995), the continuous 

transfer function with zero order hold is transformed into discrete transfer function, with a 

sampling time equal to 0.01 [s], this yields 

𝐺𝑁(𝑧) = 𝐾𝑑

4.996 ∙ 10−3 𝑧 + 4.995 ∙ 10−3

𝑧2 − 1.99 𝑧 + 0.9998
. (6.2) 

 

With 𝐾𝑑 as tuning parameter, this will be tuned until a satisfactory performance in terms of 

disturbance rejection and set point tracking performance.  In this experiment, 𝐾𝑑 was tuned to 

the value of (17.33).  Now as shown in Figure 6.3, the experiment was started with only the PI 
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controller with the parameters of (𝐾𝑃 = 100.0, 𝐾𝐼 = 50.0) and without the external distur-

bance, at time about 30 seconds, the external periodic disturbance source (1000𝑠𝑖𝑛(10𝑡)) 

was switched on by manual switch2, at time equal to 50 seconds, the manual switch1 was 

turned on to activate the discrete periodic disturbance rejection filter to reject the external 

periodic disturbance that comes from the secondary motor.  As it can be seen from Figure 6.3, 

the filter has managed to reject the external periodic disturbance asymptotically. 

 

 

Figure 6.2: Matlab-Simulink diagram of experiment 1.1. 

 

 

Figure 6.3: The system time response of experiment 1.1. 
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6.1.2.2 Experiment 1.2: Continuous modeling, identification and feed-forward 

control 

Now, the developed periodic disturbance feed-forward controller in section 4.2, the identi-

fication and compensation block, as shown in the Matlab-Simulink diagram Figure 6.4, is 

added on to the existing set point tracking PI feedback controller.  The algorithm was started 

with the following initial parameters:  Sampling period equal to 0.0177 second, first order 

continuous input-output identification model dynamics, the  number of external disturbances 

harmonics (𝑁0 = 2), and without any internal periodic disturbances (𝑁1 =  𝑁2 = 𝑁3 = 0), 

initial parameter vector [-1.94, 0.0146, 0, 0, 0, 0]
T
, initial covariance matrix of 1000I and 

forgetting factor of 0.998. 

Then, the algorithm was compiled and ran in the real-time mode, at the beginning only the PI 

controller and the identification were active, then at the time about 33 seconds the feed-

forward controller was activated (put in certainty equivalence adaptive mode) by using the 

identified disturbance parameters directly to generate an anti-disturbance (compensation) 

signal added to the system input.  The experiment run is presented in Figure 6.5.  As stated in 

subsection B.4.1, the parameters converge better in the closed loop as the identifyability and 

the identification conditions are becoming better when the direct parameter adaptation is on.  

Moreover, it can also be seen from the figure the perfect disturbance compensation is an 

indication of good parameter identification. 

 

 

 

 

 Figure 6.4: The Matlab-Simulink diagram of experiment 1.2. 
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Figure 6.5: Experiment 1.2 run. 
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6.1.2.3 Experiment 1.3: Discrete modeling, identification and feed-forward 

control 

The identification model used in this experiment is a linear in parameter discrete model.  

Therefore, the method of recursive least squares is used to identify the identification model as 

presented in section 4.3.  The Matlab-Simulink diagram of the experiment is generally looks 

like the diagram of the previous experiment shown in Figure 6.4.  The algorithm was started 

with the following initial parameters: Sampling period 0.0177 second, first order discrete 

input-output identification model dynamics, number of external periodic disturbance 

harmonics (𝑁0 = 2) and without any internal periodic disturbances (𝑁1 = 𝑁2 = 𝑁3 = 0), 

initial parameter vector [1, 1, 0, 0, 0, 0,]
T
, covariance matrix of 100I and forgetting factor of 

0.999.  Then, the algorithm was compiled and ran in the real-time mode, at the beginning, 

only the PI controller and the identification were active, then at the time about 30 seconds, the 

feed-forward controller was activated by using the identified disturbance parameters directly 

to generate an anti-disturbance (compensation) signal added to the system input.  The 

experiment run is presented in Figure 6.6. 

 

6.1.2.4 Comments on external disturbance experiments 

The first experiment 1.1 demonstrates the extension of the feedback PI controller to compen-

sate the periodic disturbance by adding an internal disturbance model in form of an under 

damped second order linear system representing the periodic disturbance rejection filter as 

introduced in chapter 3.  The advantage of the filter is its simplicity, its disadvantage though, 

it changes the closed loop feedback system characteristics in terms of relative stability this 

leads into a compromising solution between perfect periodic disturbance rejection and the 

closed loop feedback system relative stability. 

The second experiment 1.2 uses the PI feedback controller mainly to set up the set point 

response characteristics and uses a feed-forward controller as an add-on only to compensate 

the rest of the external periodic disturbances with a minimum interaction with feedback 

controller objectives.  This is the advantage of the algorithm, the pseudo feed-forward 

controller becomes a true feed-forward controller, especially, when the identification model 

parameters converge and the adaptation is set off or pre-identified disturbance parameters are 

used in the feed-forward controller. 

The disadvantage though is the complexity of the algorithm by using a complex and 

computational extensive nonlinear least squares of output error algorithm to identify the 

continuous system dynamics and the disturbance parameters.  The algorithm of the third 

experiment 1.3 is like the second one except by using discrete linear in parameter model 

identified by the recursive least squares method, makes this approach less computational 

extensive than the case in the second experiment. 

However, the objective of these experiments is to demonstrate the capability of these methods 

to reject or to model, identify and to compensate the external periodic disturbances as an add-

on to an existing feedback controller designed primarily for set point tracking demands. 
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Figure 6.6: Experiment 1.3 run. 
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6.1.3 Internal Periodic Disturbance 

The test platform has the same set up as in subsection 6.1.2.  But in the next subsections, the 

drive-load velocity servo control system has an internal (self-excited) periodic disturbance.  

The internal periodic disturbance is also a state dependent, which in this case is the 

(measured) angular position; therefore, it is defined as 

𝑑(𝑡) = 1000 𝑠𝑖𝑛(𝜑𝑚(𝑡)). (6.3) 

This is used as an input to the secondary disturbance motor.  The system is constructed as PI 

feedback controller to ensure set point tracking demands; moreover, a feed-forward controller 

is used as an add-on to compensate the (emulated) self-excited periodic disturbance. 

In the following, experiments are presented to demonstrate the use of continuous as well as 

discrete identification models to identify and compensate these emulated internal state 

dependent disturbances. 

 

6.1.3.1 Experiment 1.4: Continuous modeling, identification and control 

The periodic disturbance feed-forward controller is used to identify and compensate the 

internal periodic disturbances.  The experiment Matlab-Simulink diagram is shown in 

Figure 6.7.  The identification algorithm was started with following parameters: Sampling 

period 0.0177 second, first order continuous input-output identification model dynamics, 

number of harmonics (𝑁0 = 0, 𝑁1 = 2, 𝑁2 = 𝑁3 = 0), initial parameter vector [-1.94, 

0.0146, 0, 0, 0, 0]
T
, initial covariance matrix 1000I and forgetting Factor 0.998. 

The experiment run is presented in Figure 6.9, where at the beginning only the PI controller 

for set point tracking objective and system identification were active, afterwards, at about  the 

time 27 seconds, the feed-forward disturbance compensation was activated.  This had yielded 

the final parameter vector [-1.0674, 0.0110, -405.1971, 23.1688, 24.5031, -4.0879]
T
.  The 

disturbance parameters have taken almost 13 seconds to get to the optimal ones. 

 

6.1.3.2 Experiment 1.5: Discrete modeling, identification and control 

In this experiment, the system structure and their parameters are the same as given in previous 

experiment, except that the identification model is discrete linear in parameters, therefore, the 

method of recursive least squares is used to identify the parameters of the identification 

model.  Moreover, a discrete first order filter with pole at 0.9 is used to smooth the measured 

position signal as shown in Figure 6.8. 

The algorithm was started with the following parameters: Sampling period 0.0177 second, 

first order discrete input-output identification model dynamics, number of harmonics (𝑁0 = 0,

𝑁1 = 1, 𝑁2 = 𝑁3 = 0), the identification model initial parameter vector [1, 1, 0, 0,]
T
, which 

is first order discrete difference equation with time delay of two sampling periods, initial 

covariance matrix 100I and forgetting factor 0.999. 

Then, the algorithm was compiled and ran in the real-time mode, at the beginning only the PI 

controller and the identification were active, then at the time about 17 seconds the feed-
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forward controller was activated using directly the identified disturbance parameters to 

generate an anti-disturbance (compensation) signal added to the system input.  The experi-

ment run is presented in Figure 6.10, which yielded the final parameter vector [0.9916, 

0.0001, -0.0357, 0.0007]
T
. 

 

6.1.3.3 Experiment 1.6: Discrete modeling, identification and control with 

variable set point 

This is the same as in experiment 1.5, except that, the set point is defined as two levels, 7 and 

10 [rad/s], and linear time-varying from 7 to 10 and vice versa, see Figure 6.11, where it 

shows that the algorithm has succeeded in tracking and compensation of variable internal 

periodic disturbances. 

 

6.1.3.4 Comments on internal disturbances experiments 

In the last three experiments, the algorithm of modeling and identification of internal periodic 

disturbances has been implemented on the drive-load test platform.  Where, the experiment 

1.4 has used a continuous identification model, therefore, the continuous parameter identi-

fication output error method has been used to identify the identification model parameters. 

On the other hand, experiment 1.5 has used a discrete identification model so that its 

parameters have been identified by using RLS method.  Both methods of continuous and 

discrete modeling and identification have been used to reject the internal periodic distur-

bances successfully as shown in Figure 6.9 and Figure 6.10. 

Moreover in experiment 1.6, a variable set point has been given to the system to test the 

algorithm behavior when the internal periodic disturbance consistently changes with the time 

as shown in Figure 6.11. 

It is also to remark again that a quick parameter convergence happens usually when the 

adaptive feed-forward controller is activated as direct adaptive controller (experiment 1.4 is at 

time 27 seconds and experiment 1.5 is at time 17 seconds, see Figure 6.9 and Figure 6.10 

respectively), which enhances the identifiyability and the identification conditions in closed 

loop.  



6.1  Torsional Test Platform 115 

 

In Drive-Load Angular Velocity Servo Control Systems with Self-Excited Oscillations 

 

Figure 6.7: MatLab-Simulink diagram of experiment 1.4.  

 

Figure 6.8: MatLab-Simulink diagram of experiment 1.5.  
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Figure 6.9: Experiment 1.4 run. 
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Figure 6.10: Experiment 1.5 run. 
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Figure 6.11: Experiment 1.6 run. 
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6.1.4 Comments on the Torsional Platform Experiments 

As it can be seen, the experiments have demonstrated that the developed algorithms in 

chapter 4, for continuous and discrete linear or nonlinear in parameters identification models, 

were very successful in real-time applications where they showed that as the identification 

model parameters converged, the dynamics as well as the disturbance parts, the disturbance 

parameters could be used to generate an anti-disturbance compensation signal that cancels the 

periodic disturbance effect on the output.  This means, the direct process identification in 

closed loop, by using open loop identification methods, was also successful, particularly when 

the algorithm is switched from the passive to the adaptive mode.  One problem that accom-

panies this approach is that the inactive adaptation will not get quickly to the optimal 

parameters, particularly, when the set point is not consistently exciting, e.g. step function, 

until the adaptive mode is activated.   

One solution is to use closed loop process identification methods. For example, indirect 

closed loop identification methods, where the closed loop system is identified then by 

considering the controllers in the closed loop, the process model is computed.  This approach 

will guarantee the identifyability of the process in the closed loop provided that the set point 

is persistently exciting.  The drawback of this approach is the intensive and complex online 

computation of the identification model from the identified closed loop model and the 

feedback controller. 

Furthermore improvement can be done by the extension of the simple certainty equivalence 

adaptation strategies to implement the adaptive dual control methods, which they care about 

both the control and the parameter estimation certainty to generate a cautious control signal 

accordingly, and to guarantee optimum conditions for the parameter estimation (Filatov and 

Unbehauen 2000; Filatov and Unbehauen 2004). 

The nonlinear in parameter identification models employed in this algorithm are explicit and 

direct in terms of model structure, especially the continuous ones, but their identification 

computations are rather complex and extensive.  On the other hand, the linear in parameter 

identification models are complex and have many redundant parameters especially when the 

system has second order dynamics or higher, but their parameter identification computations 

are relatively simpler than those of nonlinear in parameter ones. 

Finally, the developed algorithms of modeling, identification and control of periodic 

disturbances have been applied and tested successfully on the torsional test platform, where 

the algorithms have shown its capability to compensate both the external and the internal 

periodic disturbances in real-time control. 
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6.2 Self-excited Machine Test Platform 

In this section, the developed algorithm of identification and control of periodic disturbances 

is tested in real-time control on a drive-load system with crankshaft load mechanism. The 

system is first described in general, then frequency spectrum analysis, set point tracking and 

internal periodic disturbance compensation experiments are presented. 

6.2.1 Test Platform Description 

The test platform, as shown in Figure 6.12 and Figure 6.13, consists of a drive-load machine. 

The drive part is a synchronous-motor (type: MDD1-33-3G6-CFA), which is driven by 

Variable-Frequency-Drive unit (VFD) (type: CDD32.008.C1.1), both are from the SERVAX 

DRIVERS Company.  The load part is simply a crank mechanism connected to a spring, 

which due to its eccentric structure it generates the self-excited periodic disturbances that are 

dependent on the crankshaft angular position.  The drive-load machine is mechanically con-

nected by a rubber timing belt. 

The VFD unit is powered from the AC mains 230 volts through a circuit breaker equipped 

with emergency stop button and enable/disable automation functions.  Moreover, the unit is 

set up as torque control unit that can be controlled by an analogue external signal, where in 

this case it comes from the real-time controller board.  Also, the motor has an embedded 

angular position incremental encoder, where its signal is sent to VFD unit, which also in turn 

resends this signal to the real-time control board.  For more details about the setup, start-up or 

more information, please refer to the manufacturer manual (Servax Drives 2003a, b and c). 

The Real-Time Controller Board (RTCB) is the (DS1104 R&D) board from dSPACE 

Company.  The board is installed within a host PC, using one of its PCI extension slots.  The 

Matlab-Simulink software from Mathworks Company and Control Desk from dSPACE 

Company are installed in the host PC and used as a working environment to develop a rapid 

prototyping real-time control applications (dSPACE 2005a).  So, having Matlab-Simulink 

developed control algorithm , this can be compiled and send to the RTCB to be implemented 

in real-time, and the Control Desk helps to interface and control this implemented algorithm 

online and also in real-time control (dSPACE 2005b), for more information about rapid 

control prototyping in general refer to, for example, Abel and Bollig (2006). 

The load side, as presented schematically in Figure 6.14, is a crank mechanism with crank 

radius (r = 0.03 [m]) and link rod (l = 0.07 [m]).  The crankshaft mechanism translates the 

rotational motion 𝜑 into linear motion 𝑥, or in other words, the crankshaft moves the mass 𝑚𝑐 

that linked to a spring up and down against the friction force, where the spring and friction 

elements are represented by a stiffness factor 𝑘𝑐 and a damping constant 𝑑𝑐  respectively. 

Eventually, the drive-load machine together with hardware and software accessories is set up 

to construct an angular velocity servo control system, where a feedback PI controller is used 

to guarantee the set-point tracking characteristics.  Moreover, the designed periodic distur-

bance feed-forward controller is implemented to compensate the rest of the self-excited osci-

llations in the angular velocity. 

In the next, the developed algorithm of periodic disturbance feed-forward controller is applied 

on the test platform.  Where first, the frequency spectrum estimates for different angular 
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velocities are computed and analyzed for the cases without and with periodic disturbance 

compensation of four harmonics, the principal frequency and three super-harmonics, as well 

as for the case of five harmonics, the principal frequency plus one sub-harmonic and three 

super-harmonics.  Moreover, the periodic disturbance compensation algorithm is tested when 

the set point is a stepwise variable and linear time variable. The feedback PI controller para-

meters remain the same for all next experiments. 

 

Figure 6.12: The schematic diagram of the drive-load self-excited machine. 

6.2.2 Frequency Spectrum Analysis 

First of all, the oscillations of angular velocity at different constant values are analyzed by 

computing their finite Discrete Fourier Transform (DFT) by using the Fast Fourier Transfor-

mation (FFT) algorithm to estimate their frequency spectrums (Smith 1997).  This will help in 

deciding how many harmonics are important that should be considered in the identification 

model in order to be compensated. 

6.2.2.1 Frequency spectrum without periodic disturbance compensation 

In this experiment, the self-excited machine is under the PI feedback velocity servo controller 

with the parameters (𝐾𝑃 = 0.02, 𝐾𝐼 = 0.02).  The system is run and recorded at different 

angular velocities of 10, 15, 20 and 25 [rad/s] without any periodic disturbance compensation.  

These runs, their time response and frequency spectrums, are presented in Figure 6.15, where 

the time responses are from the top to the bottom on the left side and then their corresponding 

finite DFT frequency spectrum estimates are computed and presented at the right side.  From 

the plots in Figure 6.15, it can be seen that the system has a principal frequency equal to its 

rotational velocity as well as super-harmonics equal to the multiple of rotational (velocity) 

frequency.  Therefore, in the next experiment the same as in this experiment is done but with 

the compensation of the principal and three super-harmonics of the periodic disturbance freq-

uencies. 
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Figure 6.13: The drive-load self-excited rotational machine. 

 

Figure 6.14: The crankshaft mechanism moving a mass, spring and damper load. 
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6.2.2.2 Frequency spectrum with periodic disturbance compensation 

This experiment is the same as the previous one but the periodic disturbance feed-forward 

controller is run with 4-harmonics periodic disturbance compensation, which are at rotation 

rates of 10, 15, 20 and 25 [rad/s].  The uncompensated and compensated outputs are presented 

on the left side of Figure 6.16, while their uncompensated and compensated output finite DFT 

frequency spectrum estimates are presented on the right side.  By a careful investigation of the 

signals on the left and their spectrum on the right, it can be seen that there is actually still 

some rest oscillations due to sub-harmonics; the first sub-harmonic is about 80% of the 

principal frequency.  So in the next experiments, the principal frequency plus one sub-harmo-

nic and three super-harmonics are considered in the periodic disturbance model and conse-

quently compensated. 

 

6.2.3 Identification and Control of Periodic Disturbances 

In the following experiments, the identification model is a discrete first order linear in para-

meters as defined in section 4.3 with the following parameters (𝑁0 = 0, 𝑁1 = 5, 𝑁2 = 𝑁3 =

0) with the internal periodic disturbance frequency vector is chosen to be, according to the 

last subsection spectral analysis, as 

[0.8 1 2 3 4]𝜔, (6.4) 

where 𝜔 is the system rate of rotation (angular velocity [rad/s]). So, the frequencies 

considered in the periodic disturbance model are the principal frequency plus one sub-

harmonic and three super-harmonics.  These frequencies are going to be modeled, identified 

and used to compensate the system periodic disturbances in the following experimental 

examples. 

 

6.2.3.1 Identification and control of 5-harmonics 

In this experiment, the set point input is a step from zero to 15 [rad/s] at time about 14 

seconds.  The experiment run graphs are presented in Figure 6.17, where the first graph from 

the top shows the real system (measured) output, the identified output and the set point at 15 

[rad/s].  The operation was made so, at the beginning only identification is done then at time 

about 48 seconds the feed-forward periodic disturbance compensation is activated to compen-

sate the identified 5-harmonics periodic disturbance.  Moreover, the second graph presents the 

output error while the third graph plots the control signal, the fourth graph shows the 

estimated dynamic parameters 𝑎1 and 𝑏1, while the fifth and the sixth graphs show the 

periodic disturbance model parameters 𝛼1,𝑖 and 𝛽1,𝑖 respectively.  Figure 6.18 reveals a com-

parison between the system output of uncompensated case, compensated with four harmonics 

case and the case of one principal-harmonic, one sub-harmonic and three super-harmonics, 

while Figure 6.19 compares their correspondent finite DFT frequency spectrum estimates. 
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6.2.3.2 Variable set point tracking and periodic disturbance rejection 

This experiment has been done to show that the algorithm is able to cope with the set point 

sudden change.  The set point changes stepwise from 10 to 15, 20, 25 and 30 [rad/s].  The 

experiment run is presented in Figure 6.20.  Also, another run is done when the set point is 

saw-tooth signal.  So in this run, the algorithm was tested under constantly varying set point.  

This run is presented in Figure 6.21.  As the figures show, the algorithm could cope with the 

set point change and compensate the targeted periodic disturbance. 

 

6.2.4 Comments on the Self-excited Machine Experiments 

The algorithm of modeling, identification and control of periodic disturbances has been 

applied and tested experimentally in real-time control on a real mechanical process success-

fully.  Where, first the frequency spectrum analysis is done for the self-excited drive-load 

machine output oscillations, and upon that the dominant oscillation harmonics are considered 

in the internal periodic disturbance part of the identification model. 

Therefore, the algorithm is applied by using the identified internal periodic disturbance part 

parameters of the identification model to generate the anti-disturbance signal to cancel the 

internal periodic disturbances that generated by the angle dependent load.  The algorithm has 

been applied with constant, staircase variable and linear time variable set point cases to 

demonstrate the applicability of the algorithm locally and globally.   

Moreover, as expected and said in subsection 6.1.4 and subsection B.4.1, that although 

identifyability and identification conditions in the closed loop are very poor in general.  But 

exception could be made, if the controller changes or it is a complex one as in this case, when 

it is adaptive, then the plant identifyablitiy and identification conditions became better in the 

closed loop.  This can be seen from the estimated parameter plot as the feed-forward 

controller is activated and becomes online adaptive by using the certainty equivalence 

principle, the parameters converge more quickly to the optimal one, so that the disturbance 

parameters could be successfully used to compensate the periodic disturbances. 
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Figure 6.15: Time and finite DFT frequency spectrum estimate without compensation. 
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Figure 6.16: Time and finite DFT frequency spectrum estimate without compensation (gray 

line) and with 4-harmonics compensation (black line). 
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Figure 6.17: Identification and compensation of 5-harmonics. 
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Figure 6.18: System output of uncompensated; compensated with 4-harmonics and 

compensated with 5-harmonics. 

 

Figure 6.19: The finite DFT frequency spectrum estimates of uncompensated; compensated 

with 4-harmonics and compensated with 5-harmonics. 
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Figure 6.20: Stepwise variable set point and periodic disturbance compensation. 
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Figure 6.21: Consistently varying set point tracking and periodic disturbance compensation. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The control problem, addressed in this work, is based on that the system has a set-point 

tracking objective, which is set as main target to achieve.  Moreover, there are oscillations 

interpreted as periodic disturbances that also needed to be rejected in order to obtain higher 

performance level. However, this has to be done with minimum interaction with the already 

existing feedback controller preserved mainly to guarantee the set point tracking objective. 

The problem is very well solvable by using a Linear Time-Invariant Internal Model Principle 

(LTI-IMP) based feedback control, for example, realized either as periodic disturbance 

rejection filter, periodic disturbance observer/compensator or generally as a repetitive cont-

roller.  But, there will be an inevitable interaction between the set point tracking and the 

periodic disturbance rejection design demands, where it could at least happen in the system 

transient behavior or affects the closed loop relative stability, particularly, when the distur-

bance frequency is outside the set point tracking demanded bandwidth.  Since adding extra 

filter at this high frequency, will consequently add extra lag and will obviously affect the set 

point tracking design transient characteristics. 

For a minimum interaction between these two design objectives, a new feed-forward periodic 

disturbance compensation method was introduced in this work.  It was actually inspired from 

the active noise and vibration control society applications.  For example, the filtered X-LMS 

methods are mainly direct adaptive feed-forward algorithm, which in return makes them as a 

pure feedback control. These are particularly not suitable for this control problem.  Since, 

they need to be tuned online and this will affect the performance of the set point tracking 

objective as well as the disturbance rejection, particularly at the initial tuning phase when the 

parameters are far from the optimal ones. 

The problem of the direct adaptive feed-forward control has been solved in this work by 

transferring the direct adaptation problem into system identification (optimization) problem.  

By doing this, it is now possible to make both direct and indirect identification and adaptation 

schemes.  Direct is when the identification and controller parameter adaptation are active, 

while indirect is when the identification is active but the controller parameter adaptation is 

passive.  Indirect with offline identification is needed especially when the open loop process 

input-output data is available, then the parameters can be identified offline in advance and 

used in the feed-forward control law.  In this case, the feed-forward controller is a true feed-

forward controller, which yields a minimum interaction to the closed loop designed characte-

ristics. 

Also, indirect identification can be made online, especially, when there is no pre-recorded 

data available from the process or the initial parameters are uncertain.  With this mode, the 

algorithms can be started as a cautious procedure until the parameters converge, then the 

parameter identification can be set off and the converged parameters can be used to construct 

a “true” feed-forward controller to compensate the periodic disturbances. 
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However, in real applications, the process usually works under a closed loop feedback 

controller, and the operating conditions do not allow interrupting the operation, for example, 

opening the loop and recording input-output data for an identification experiment.  Therefore, 

the parameter identification of the process is done in the closed loop which leads to the 

problem of the identifyability condition in the closed loop is no longer more valid, 

particularly, when the applied identification algorithm is originally designed for open loop 

identification.  A solution to this problem is to use closed loop identification methods, e.g., 

indirect process identification methods in closed loop by identifying the closed loop system 

model and computing the process model indirectly by using the known controller model.  

This is a computationally intensive method, especially when applied as an online parameter 

identification algorithm in an adaptive control system. 

Fortunately, the direct algorithm of direct online process parameter identification and directly 

using them in the controller, according to the certainty equivalence principle, solves the 

problem of the identifyability and the identification conditions in the closed loop (Appen-

dix B.4.1).  But this makes the feed-forward controller to work as a feedback controller and 

will make an interaction with the closed loop characteristics when the parameters are far from 

the optimal one.  But this sacrifice will end when the parameters converge and the adaptation 

is switched off, making the pseudo feed-forward controller back to a true one, which is the 

advantage of this algorithm over methods based on the LTI-IMP. 

The system identification of the periodically disturbed process is done by constructing an 

identification model to represent this periodically disturbed process.  The identification model 

is made by two parts, a dynamic part and a disturbance part.  The dynamic part describes the 

system input-output behavior and can be represented by (linear/nonlinear) differential or 

difference equations, while the disturbance part is made to represent the external disturbance 

and or the internal disturbance in the input disturbance format.  The input disturbance format 

is chosen in order to make the later use of disturbance parameters in the feed-forward control 

law easy and straightforward without any extra transformations.  The disturbance model is 

constructed by sine cosine sums that are function of the external disturbance frequency and or 

the internal disturbance synchronization signal (e.g., angular position in case of rotational 

systems). 

Additionally, the internal disturbance function could have a linear or nonlinear dependence to 

system states in order to make a local or a global identification model.  By modeling 

(globally) the nonlinear behavior of the process, that actually causes the problem of self-

excited oscillations in the first place, makes it also possible to cancel (globally) this disturbing 

behavior.  This is the main advantage of the method introduced in this work, the strategy of 

modeling, identification and control of periodic disturbances, over the classical methods 

based on LTI-IMP, for example, the periodic disturbance rejection filter. 

Now, the choice of the parameter identification method, which is used to identify the identi-

fication model, is made according to the problem environment.  For example, whether the 

model is discrete or (quasi) continuous, linear or nonlinear in parameters, or whether the 

process is directly measureable or needs some observations, deterministic or stochastic.  For 

instance, if the process were a stochastic, then the Kalman filter or the dual extended Kalman 

filter could be used to estimate the states and the parameters of a nonlinear system.  Besides, 
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the process could be stochastic and have large dead time which leads to a prediction and 

estimation problem. 

Furthermore, by modeling the identification model as dynamic and disturbance parts, the 

adaptive algorithm can be theoretically and practically applied for both the feedback and the 

feed-forward controller, and by developing the states, the modern control design methods can 

be used to design a state feedback controller, for example, pole placement method.  In 

general, one way of utilizing adaptive algorithms is to use them as automatic tuning algo-

rithms that carry out the design quickly and find the optimal parameters.  Therefore, when the 

parameters converge then the parameter adaptation can be frozen, hence the system characte-

ristics can also be analyzed around these parameters. 

The successfulness of the algorithm depends significantly on the capability of the implemen-

ted identification algorithm to identify the identification model and the capability of the 

identification model to represent (approximate) the process input to output and disturbance 

dynamics around the targeted operating region either locally or globally.  Where only on the 

condition that: If the identification model parameters converge, and so the identification 

model makes a good representation of the process.  Then, the disturbance parameters can be 

used to compensate the disturbance of the process.  Otherwise, the parameters are useless, 

since they do not or cannot represent the real process.   

The algorithm was applied and verified in simulation as well as in emulation of drive-load 

velocity servo control of rotational machines that have an external periodic disturbance (osci-

llation) source or and self-excited oscillation source caused by nonlinear angle dependent 

spring, damper or moment of inertia load elements and their combinations.  The cases of rigid 

and flexible drive-load system were considered by using both continuous and discrete identifi-

cation model dynamics.  The algorithm was very successful to reject the targeted periodic dis-

turbances both in simulation and in real-time drive-load system emulation.  Furthermore, the 

algorithm has been applied and tested in real-time control on self-excited drive-load machine 

test platform where the algorithm was also very successful to reject the targeted self-excited 

oscillations generated due to the crankshaft load mechanism.   

Advantage and disadvantage between the LTI-IMP based periodic disturbance rejection 

techniques, see table 7.1, either implemented as feedback controller or disturbance obser-

ver/compensator, over the algorithm developed in this work are almost the same.  Since the 

modeling of the periodic disturbance in this work is also considered to be according to the 

IMP (Bodson 2004).  However, the algorithm developed in this work needs adaptation, which 

is done as (online) identification and control, actually, this is an indirect adaptive scheme 

(Landau, Lozano and M'Saad 1998).  On the other hand, the IMP disturbance rejection filter 

algorithm needs to know in advance the (accurate) system dynamics in order to make a design 

done in terms of closed loop relative stability, demanded set point response and disturbance 

rejection.  This is usually an extensive and complex computation commonly done by using 

robust control theory techniques.  Nevertheless, the advantage of this work algorithm is the 

explicit modeling and identification of the unwanted behavior that generates the periodic 

disturbances as a compensation function that can be directly embedded in a control system to 

compensate the disturbances in a specific operating region locally or globally. 
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Table 7.1: Advantages and disadvantages of feedback and (adaptive) feedforward techniques.  

Technique Description Advantage/Disadvantage 

 

Feedback control only 

For both set point tracking and 

periodic disturbance rejection. 

By using IMP, for example, “inverse” 

notch filter for harmonic disturbances 

in particular or repetitive control for 

periodic disturbances in general. 

- There will be an interaction between 

the closed loop set point design speci-

fications and periodic disturbance rejec-

tion. 

+ Only the disturbance frequencies need 

to be known. 

 

Feed-forward 

As an add-on to a pre-existing set 

point tracking feedback controller. 

+ It does not interact with the set point 

closed loop design characteristics. 

- The disturbance signal should be 

(directly) available. 

 

 

Feed-forward 

disturbance observer 

based 

The disturbance signal is estimated 

by using a disturbance observer either 

transfer function or state space based, 

also here by implementing IMP. 

- It works as a true feed-forward only 

when the observer model is exactly as 

the process model. 

- Otherwise, it is a feedback controller, 

particularly when it uses the process 

output to observe the disturbance, and it 

does interact with set point closed loop 

design characteristics. 

+ Only the disturbance frequencies need 

to be known, as in the case of feedback 

control only.  

 

 

 

 

 

 

Adaptive 

feed-forward 

methods 

 

 

 

 

Direct 

adaptive 

methods 

 

By estimating the controller para-

meters directly usually in a form of 

(anti-) disturbance parameters 

(amplitude, phase and the frequency 

if necessary) by using adaptation 

(optimization) algorithms. 

- It has to be directly tuned online. 

- This will affect the system perfor-

mance, when the algorithm starts with 

very poor initial parameters. 

- It works as feedback method, when it 

uses the process output in the parameter 

adaptation, which does interact with the 

set point closed loop design characte-

ristics. 

+ It will work as true feed-forward when 

the parameters converge and the para-

meter adaptation algorithm is set off.  

 

 

Indirect 

adaptive 

methods 

 

By estimating the identification 

model parameters to represent the 

process input-output dynamics and 

the (external and internal) periodic 

disturbance parameters, and then the 

identified disturbance parameters are 

used to construct the feed-forward 

controller parameters, as presented in 

this work.  Also, the identified input-

output dynamic parameters can be 

used to compute the feedback 

controller parameters. 

+ It can be started and tuned offline by 

using prerecorded input-output data of 

the process, this is important when the 

initial parameters are far from the opti-

mal ones. 

- In certainty equivalence mode, it works 

as feedback method, which does interact 

with the set point closed loop design 

characteristics. 

+ It will work as true feed-forward when 

the parameters converge and the para-

meter adaptation is set off. 
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7.2 Future Work 

7.2.1 Theoretical  

The certainty equivalence principle adaptive control strategies, presented in this work, can be 

and have been started and operated safely with the recommended precautions (for example, 

starting with very good initial conditions by using all available and proper pre-knowledge 

about the system).  Nevertheless, the extension of the strategies to implement the closed loop 

identification methods (Landau, Lozano and M'Saad 1998), as well as, the extension of the 

simple algorithm that uses the certainty equivalence principle to adaptive dual control 

algorithm is therefore recommended to be explored, where both the control and the 

identification problems are considered in the analysis and the solution of the adaptive problem 

(Filatov and Unbehauen 2004).   

Moreover, the developed algorithms in this work need to know the synchronization signals, 

the angular position for angular dependent periodic disturbance and the principal frequency 

for external disturbance.  But, for the cases when the continuous angular position is not 

available, for example, because of the implemented sensor that develops only one or more 

than pulse per revolution.  Then an observer can be designed to reconstruct the continuous 

angular position signal.  Also, for the case of unknown external disturbance frequency, it can 

be measured or estimated by using frequency estimation algorithms (Bodson 2005).  

7.2.2 Practical 

Although the presented algorithms have been implemented in particular on an angular 

velocity servo control drive-load systems with periodic disturbances, the development and the 

design of the algorithms have been done in general format and they are easily extendable to 

almost any practical control problems with periodic disturbances.  This makes the implemen-

tation spectrum of the algorithms in industrial applications very wide. 

However, as an example is the extension to drive-load angular position servo control systems 

with self-excited oscillations (vibrations) due to flexible structure and angle dependent 

parameters.  This extends the problem from single-input-single-output system into multi-

input-multi-output system particularly when more than one drive is allowed to be used and 

more than one targeted control variable is needed to be controlled.  This can be encountered, 

for example, in control systems of machine tools in general, and robot control systems in 

particular with flexible arms and with external or internal oscillation or vibration sources due 

to the robot drives (joint actuators/motors), or they come from the machine tool mounted in its 

tool center. 

Furthermore, as another example is the implementation of the algorithm in an Active Noise 

and Vibration Control (ANVC) applications in general and the ANVC in automobile in par-

ticular.  For example, the developed methods can be applied to reduce the engine oscillations 

and to reject their effect, the noise and the vibrations, on the passenger compartment, as well 

as on the exhaust system actively instead of traditional passive isolation methods.  This will 

help in reducing the automobile weight and eventually its energy consumption which will 

favorably lead to increase the comfort and the dynamic performance of the automobile in 

general.  
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Appendix A Eccentric Mechanisms 

In this appendix, simple eccentric mechanisms, Scotch yoke and crank mechanisms, are 

introduced.   Where, in the first section, the kinematics and the dynamics are presented when 

the Scotch yoke mechanism has spring, damper and mass linear motion load elements.  

Moreover, a simple dynamic model for this system is constructed.  Consequently, a frequency 

spectrum analysis for the angular velocity oscillation is presented for different linear motion 

load parameters.  While, in the second section, the kinematics of crank mechanism is 

presented, as well as the frequency spectrum analysis of its transformed reciprocating linear 

motion, velocity and acceleration. 

 

 Scotch Yoke Mechanism A.1

The Scotch yoke (slotted link) mechanism converts the rotational motion into a reciprocating 

linear motion or vice versa.  Historically, the Scotch yoke mechanism was used in motors or 

machines that generate or translate high torques, for example, in steam and combustion 

engines, but with very low revolution rates (Wikipedia 2012). 

 

A.1.1 Scotch Yoke Kinematics 

The Scotch yoke mechanism, as shown in Figure A.1, translates the rotational motion into a 

pure sinusoidal (reciprocating) linear motion as 

𝑥 = 𝑟𝑠𝑖𝑛(𝜑), (A.1) 

where 𝜑 is the rotational motion, angle of rotation in [rad], with a radius of 𝑟 [m] and 𝑥 is the 

translated linear motion in [m].  Now, the velocity of the linear motion can be derived from 

equation (A.1) as 

�̇� = 𝑟𝑐𝑜𝑠(𝜑)�̇�. (A.2) 

Also, the acceleration of the linear motion is derived from equation (A.2) as 

�̈� = 𝑟[�̈�𝑐𝑜𝑠(𝜑) − �̇�2𝑠𝑖𝑛(𝜑)]. (A.3) 

If the rotational motion rate of change is constant, then equation (A.3) becomes 

�̈� = −𝑟�̇�2𝑠𝑖𝑛(𝜑) (A.4) 

A.1.2 Scotch Yoke Dynamics 

As can be seen from the Figure A.1 the mechanism translates the rotational motion, generated 

by a torque source (drive) 𝑇𝐷 in [Nm], into linear motion.  Therefore, the rotational torque 

source faces the reaction torques caused by the linear forces, which are generated by the linear 

motion spring, damper and mass load elements as presented in the following subsections. 
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Figure A.1: Scotch yoke mechanism 

 

A.1.2.1 Spring load element 

The force generated by the linear motion spring element, using equation (A.1), is computed 

by 

𝐹𝑘 = 𝑘𝑥 = 𝑘 𝑟𝑠𝑖𝑛(𝜑), (A.5) 

where 𝑘 is the stiffness constant [N/m] of the linear motion spring load element.  Moreover, 

the spring force can be converted into a reaction torque acting on the rotational system as 

𝑇𝑘 = 𝑟𝐹𝑘 = 𝑟𝑘𝑥 = 𝑟2𝑘 𝑠𝑖𝑛(𝜑). (A.6) 

Therefore, the resulted rotational (angle dependent) spring (torque) function can be defined as 

𝐾(𝜑) = 𝐾𝑟 𝑠𝑖𝑛(𝜑), (A.7) 

where 

𝐾𝑟 = 𝑟2𝑘 [Nm]. (A.8) 

This can also be done to the damper and the mass forces as in the following. 

A.1.2.2 Damper load element 

The damping force generated by the linear motion damper load element is computed by 

𝐹𝑑 = 𝑑�̇� = 𝑑𝑟𝑐𝑜𝑠(𝜑)�̇�, (A.9) 

where 𝑑 is the damping coefficient [Ns/m] of the linear motion damper.  Therefore, its 

reaction torque at the rotational (motion) system is computed by 

𝑇𝑑 = 𝑟𝐹𝑑 = 𝑟2𝑑𝑐𝑜𝑠(𝜑)�̇�. (A.10) 
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Therefore, from equation (A.10), the converted rotational (angle dependent) damper function 

can be defined as 

𝐷(𝜑) = 𝑟2𝑑𝑐𝑜𝑠(𝜑) = 𝐷𝑟𝑐𝑜𝑠(𝜑), (A.11) 

where 

𝐷𝑟 = 𝑟2𝑑 [Nms] (A.12) 

is the converted rotational damper constant.  Moreover, the total rotational damping function 

of the rotational system is given by the sum of rotational damping coefficient 𝐷0 and the 

retranslated (converted) rotational (angle dependent) damping function 𝐷(𝜑) as following 

𝐷𝑡𝑜𝑡𝑎𝑙(𝜑) = 𝐷0 + 𝐷(𝜑). (A.13) 

A.1.2.3 Mass load element 

Furthermore, the force generated due to acceleration of the mass is computed by 

𝐹𝑚 =
𝑑

𝑑𝑡
(𝑚�̇�) =

𝑑

𝑑𝑡
[𝑚𝑟𝑐𝑜𝑠(𝜑)�̇�], (A.14) 

where 𝑚 is the mass in [kg]. Note that the constant force due to gravity is neglected.  Also, 

the mass force can be converted into load torque acting on the rotational system as 

𝑇𝑚 = 𝑟𝐹𝑚 =
𝑑

𝑑𝑡
[𝑚𝑟2𝑐𝑜𝑠(𝜑)�̇�]. (A.15) 

Moreover, the torque in equation (A.15) can be redefined to fit the form 

𝑇𝑚 = 𝑟𝐹𝑚 =
𝑑

𝑑𝑡
[𝐽(𝜑)�̇�], (A.16) 

where 

𝐽(𝜑) = 𝑚𝑟2𝑐𝑜𝑠(𝜑) = 𝐽𝑟𝑐𝑜𝑠(𝜑) (A.17) 

is the converted angle dependent rotational moment of inertia load element function and 

𝐽𝑟 = 𝑚𝑟2 [Kgm2] (A.18) 

is its constant.   

Moreover, by reconsidering the derivation of the converted mass torque of equation (A.15), 

this yields 

𝑇𝑚 = 𝑟𝐹𝑚 =
𝑑

𝑑𝑡
[𝑚𝑟2𝑐𝑜𝑠(𝜑)�̇�] = 𝑚𝑟2[�̈�𝑐𝑜𝑠(𝜑) − �̇�2𝑠𝑖𝑛(𝜑)]. (A.19) 

Therefore, when the Scotch yoke is rotating with constant rotational speed then the first factor 

of equation (A.19) is zero, which yields 

𝑇𝑚 = −𝑚𝑟2�̇�2𝑠𝑖𝑛(𝜑). (A.20) 

Moreover, the total moment of inertia of the rotational system is given by the sum of 

rotational mass (moment of inertia 𝐽0) and the retranslated (converted) rotational mass (angle 

dependent moment of inertia 𝐽(𝜑)) as following 

𝐽𝑡𝑜𝑡𝑎𝑙(𝜑) = 𝐽0 + 𝐽(𝜑). (A.21) 
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A.1.3 Scotch Yoke Dynamic Model 

Now, the driving torque is applied against the torque generated by total moment of inertia, the 

total rotational damping and the reflected angle dependent spring functions. Therefore, the 

system differential equation can be written as  

𝑑

𝑑𝑡
([𝐽0 + 𝐽(𝜑)]�̇�) + 𝐷𝑡𝑜𝑡𝑎𝑙(𝜑)�̇� + 𝐾(𝜑) = 𝑇𝐷 . (A.22) 

Or alternatively, equation (A.22) can be also rewritten as 

𝐽0�̈� +
𝑑

𝑑𝑡
[𝐽(𝜑)�̇�] + 𝐷𝑡𝑜𝑡𝑎𝑙(𝜑)�̇� + 𝐾(𝜑) = 𝑇𝐷 . (A.23) 

Now, substituting the rotational spring, damper and moment of inertia load elements defined 

in equations (A.7), (A.11), (A.13) and (A.17) into equation (A.23) yields 

𝐽0�̈� +
𝑑

𝑑𝑡
(𝐽𝑟𝑐𝑜𝑠(𝜑)�̇�) + [𝐷0 + 𝐷𝑟 𝑐𝑜𝑠(𝜑)]�̇� + 𝐾𝑟 𝑠𝑖𝑛(𝜑) = 𝑇𝐷 . (A.24) 

After derivation and reorganization of equation (A.24), it becomes 

[𝐽0 + 𝐽𝑟𝑐𝑜𝑠(𝜑)]�̈� − 𝐽𝑟𝑠𝑖𝑛(𝜑)�̇�2 + [𝐷0 + 𝐷𝑟 𝑐𝑜𝑠(𝜑)]�̇� + 𝐾𝑟 𝑠𝑖𝑛(𝜑) = 𝑇𝐷 . (A.25) 

Moreover, after substituting of the constants of equation (A.25) with their values defined in 

equations (A.8), (A.12) and (A.18), it becomes 

[𝐽0 + 𝑚𝑟2𝑐𝑜𝑠(𝜑)]�̈� − 𝑚𝑟2𝑠𝑖𝑛(𝜑)�̇�2 + [𝐷0 + 𝑟2𝑑 𝑐𝑜𝑠(𝜑)]�̇� + 𝑟2𝑘  𝑠𝑖𝑛(𝜑) = 𝑇𝐷 . (A.26) 

Now, solving for the angular acceleration, the highest derivative in equation (A.26), yields 

�̈� =
[𝑚𝑟2𝑠𝑖𝑛(𝜑)�̇�2 − [𝐷0 + 𝑟2𝑑 𝑐𝑜𝑠(𝜑)]�̇� − 𝑟2𝑘  𝑠𝑖𝑛(𝜑) + 𝑇𝐷]

[𝐽0 + 𝑚𝑟2𝑐𝑜𝑠(𝜑)]
. (A.27) 

Alternatively, equation (A.27) can be put back in a compact form as 

�̈� =
1

𝐽𝑡𝑜𝑡𝑎𝑙(𝜑)
[𝛼(𝜑)�̇�2 − 𝐷𝑡𝑜𝑡𝑎𝑙(𝜑)�̇� − 𝐾(𝜑) + 𝑇𝐷], (A.28) 

where 

𝛼(𝜑) = 𝑚𝑟2𝑠𝑖𝑛(𝜑). (A.29) 

Now, the block diagram of the Scotch yoke mechanism dynamic model with spring, damper 

and mass linear motion load elements, by using equation (A.28), is presented in Figure A.2. 

A.1.4  Frequency Spectrum Analysis 

In this subsection, the frequency spectrum analysis of the angular velocity is done for 

different parameter settings of the Scotch yoke mechanism dynamic model developed in 

previous subsection A.1.3 equation (A.28).  The Scotch yoke mechanism is set up as angular 

velocity servo control system under a PI-controller with proportional and integral parameters 

(𝐾𝑃 = 0.01,  𝐾𝐼 = 0.1).  And the input set point is set to a constant at 100 [rad/s].  After the 

output reaches the steady state, the frequency spectrum analysis is done to the output angular 

velocity by computing the finite Discrete Fourier Transform (DFT) estimate by using the Fast 

Fourier Transform (FFT) algorithm and plotted for each parameter set in the respective figure.  
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Figure A.2: Block diagram of the Scotch yoke dynamic model. 

 

A.1.4.1 Linear motion spring and damper load elements 

First, the frequency spectrum analysis is done, when Scotch yoke dynamic model has the 

following physical parameters: 

𝐽0  =  1.0  [kgm
2
] 

𝐷0 =  0.01  [Nms/rad] 

𝑟   =  0.05  [m] 

𝑚 =  0.0  [kg] 

𝑑  =  1.0  [Ns/m] 

𝑘  =  1.0  [N/m] 

This means that, the mechanism drives a load with only damper and spring linear motion 

elements without a mass.  The finite DFT frequency spectrum estimate of the steady state 

angular velocity output is computed and presented in Figure A.3.  Where, it shows that, the 

output angular velocity oscillation has only one principal harmonic. 

A.1.4.2 Linear motion mass load element 

In this case, the Scotch yoke mechanism model has the following physical parameters: 

𝐽0  =  1.0  [kgm
2
] 

𝐷0 =  0.01  [Nms/rad] 

𝑟   =  0.05  [m] 

𝑚 =  1.0  [kg] 

𝑑  =  0.0  [Ns/m] 

𝑘  =  0.0  [N/m] 

Therefore, in this case, the Scotch yoke mechanism drives a load with only a linear motion 

mass element, or in other words, without spring and damper linear motion load elements.  The 

DFT frequency spectrum estimate of the steady state angular velocity output is computed and 

presented in Figure A.4.  Where, it shows that, output angular velocity oscillation has two 

harmonics, the principal one and the relatively very small first super-harmonic. 
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Figure A.3: Angular velocity finite DFT frequency spectrum estimate of Scotch yoke 

mechanism with linear motion damper and spring load elements. 

 

Figure A.4: Angular velocity finite DFT frequency spectrum estimate of Scotch yoke 

mechanism with linear motion mass load element. 
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 Crank Mechanism A.2

The crank mechanism is another example of eccentric mechanisms, that also transforms the 

rotational motion 𝜑 into a reciprocating linear motion 𝑥, which is connected to linear motion 

spring damper and mass load elements, as shown in the following Figure A.5. 

 

 

Figure A.5: Crank mechanism moving a mass, spring and damper load elements. 

 

A.2.1 Crank Mechanism Kinematics 

Now, the rotational motion 𝜑 of the crank mechanism, shown in Figure A.5, is transformed 

into the linear motion 𝑥, this can be done by starting by the relation between the rotational 

motion 𝜑 and the angle of the linking rod  𝛼, which is  

𝑟𝑠𝑖𝑛(𝜑) = 𝑦 = 𝑙𝑠𝑖𝑛(𝛼), (A.30) 

where 𝑟 and 𝑙 are the lengths [m] of the rotational rod and its link to the linear moving part.  

Now, by squaring both sides of equation (A.30), it becomes 

𝑟2𝑠𝑖𝑛2(𝜑) = 𝑙2𝑠𝑖𝑛2(𝛼). (A.31) 

And by using the trigonometric identity 

𝑠𝑖𝑛2(𝛼) + 𝑐𝑜𝑠2(𝛼) = 1, (A.32) 

equation (A.31) becomes 

𝑟2𝑠𝑖𝑛2(𝜑) = 𝑙2[1 − 𝑐𝑜𝑠2(𝛼)]. (A.33) 

Solving equation (A.33) for cos (𝛼) results 
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𝑐𝑜𝑠2(𝛼) = 1 −
𝑟2

𝑙2
𝑠𝑖𝑛2(𝜑) (A.34) 

or 

𝑐𝑜𝑠(𝛼) = √1 −
𝑠𝑖𝑛2(𝜑)

𝑛2
 (A.35) 

where 

𝑛 =
𝑙

𝑟
 (A.36) 

is the ratio between the lengths of linking rod and the rotational rod. 

Now, the translation between the rotational motion to the linear motion can be computed by  

�́� = 𝑟𝑐𝑜𝑠(𝜑) + 𝑙𝑐𝑜𝑠(𝛼). (A.37) 

Moreover, substituting equation (A.35) in equation (A.37) yields 

�́� = 𝑟𝑐𝑜𝑠(𝜑) + 𝑙√1 −
𝑠𝑖𝑛2(𝜑)

𝑛2
; 

       = 𝑟 [𝑐𝑜𝑠(𝜑) + 𝑛√1 −
𝑠𝑖𝑛2(𝜑)

𝑛2
], 

(A.38) 

or 

�́� = 𝑟 [𝑐𝑜𝑠(𝜑) + √𝑛2 − 𝑠𝑖𝑛2(𝜑)]. (A.39) 

Now, the linear motion is computed by 

𝑥 = 𝑟 + 𝑙 − �́�. (A.40) 

Therefore, the computation of the linear motion from the rotational motion can be done by 

𝑥 = 𝑟 + 𝑙 − 𝑟 [𝑐𝑜𝑠(𝜑) + √𝑛2 − 𝑠𝑖𝑛2(𝜑)]. (A.41) 

Moreover, the derivation of equation (A.41) yields the velocity of the linear motion, which is 

given by  

�̇� = 𝑟 [𝑠𝑖𝑛(𝜑)�̇� +
2𝑠𝑖𝑛(𝜑)cos (𝜑)�̇�

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
]. (A.42) 

Using the double angle formula 

2𝑠𝑖𝑛(𝜑) cos(𝜑) = sin (2𝜑) (A.43) 

in equation (A.42), it becomes 

�̇� = 𝑟 [𝑠𝑖𝑛(𝜑)�̇� +
𝑠𝑖𝑛(2𝜑)�̇�

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
], (A.44) 

or 
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�̇� = 𝑟�̇� [𝑠𝑖𝑛(𝜑) +
𝑠𝑖𝑛(2𝜑)

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
]. (A.45) 

 

Furthermore, the derivation of equation (A.45) results the linear motion acceleration computa-

tion by 

�̈� = 𝑟�̈� [𝑠𝑖𝑛(𝜑) +
𝑠𝑖𝑛(2𝜑)

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
] 

+𝑟�̇�

[
 
 
 
 

𝑐𝑜𝑠(𝜑)�̇� +
1

2

[√𝑛2 − 𝑠𝑖𝑛2(𝜑)] cos(2𝜑) 2�̇� − sin (2𝜑)
−2sin (𝜑)cos (𝜑)�̇�

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)

√𝑛2 − 𝑠𝑖𝑛2(𝜑)
2

]
 
 
 
 

. 

(A.46) 

Also here, by using the double angle formula equation (A.43) in equation (A.46) results 

�̈� = 𝑟�̈� [𝑠𝑖𝑛(𝜑) +
𝑠𝑖𝑛(2𝜑)

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
] 

+𝑟�̇�2

[
 
 
 
 

𝑐𝑜𝑠(𝜑) +
1

2

[√𝑛2 − 𝑠𝑖𝑛2(𝜑)] cos(2𝜑) 2 +
sin2 (2𝜑)

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)

√𝑛2 − 𝑠𝑖𝑛2(𝜑)
2

]
 
 
 
 

, 

(A.47) 

or 

�̈� = 𝑟�̈� [𝑠𝑖𝑛(𝜑) +
𝑠𝑖𝑛(2𝜑)

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
]

+ 𝑟�̇�2 [𝑐𝑜𝑠(𝜑) +
cos(2𝜑)

√𝑛2 − 𝑠𝑖𝑛2(𝜑)
+

sin2 (2𝜑)

4√𝑛2 − 𝑠𝑖𝑛2(𝜑)
3]. 

(A.48) 

In the next subsection, the frequency spectrum analysis is done to only the angle dependent 

parts of the linear motion and to its derived linear velocity and acceleration, when the crank 

mechanism rotational angular velocity is constant. 

 

A.2.2 Frequency Spectrum Analysis 

In this subsection, the frequency spectrum of the angle dependent linear motion part in 

equation (A.39), which is expressed by 

[𝑐𝑜𝑠(𝜑) + √𝑛2 − 𝑠𝑖𝑛2(𝜑)], (A.49) 

is computed at constant angular velocity of 50 [rad/s] (with 𝑛 =  1) by using the FFT algo-

rithm and plotted in Figure A.6.   This angle dependent linear motion part generates or can be 

converted as angle dependent spring torque that affects back the rotational system.  Figure 

A.6 shows that this part of angle dependent linear motion expressed by (A.49), where the first 

term of the angle dependent linear motion part (A.49) generates the first harmonic with fre-
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quency at the rate of angular rotation (50 [rad/s]), while the second term of the expression 

generates the second harmonic with twice the frequency of the first term component as well 

as super-harmonics. Moreover, the angle dependent linear motion part has a constant level 

component. 

Also with the same conditions in this subsection, the frequency spectrum of the angle 

dependent linear velocity part, equation (A.45), which is expressed by 

[𝑠𝑖𝑛(𝜑) +
𝑠𝑖𝑛(2𝜑)

2√𝑛2 − 𝑠𝑖𝑛2(𝜑)
], (A.50) 

is done and presented in Figure A.7, which reveals that, this component has also, apart from 

the principal one, some super-harmonics. 

Furthermore, the frequency spectrum of the angle dependent linear motion acceleration part, 

the second term of equation (A.48), which is expressed by 

[𝑐𝑜𝑠(𝜑) +
cos(2𝜑)

√𝑛2 − 𝑠𝑖𝑛2(𝜑)
+

sin2 (2𝜑)

4√𝑛2 − 𝑠𝑖𝑛2(𝜑)
3], (A.51) 

is also computed and plotted, with the same conditions, in Figure A.8, which also reveals that, 

this component has also, apart from the principal one, some super-harmonics as well as a 

constant level. 

  

 

Figure A.6: Time plot (top) and frequency spectrum plot (bottom) of the angle dependent 

linear motion part at 50 [rad/s] rotational velocity. 
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Figure A.7: Time plot (top) and frequency spectrum plot (bottom) of angle dependent linear 

motion velocity part at 50 [rad/s] rotational velocity. 

 

Figure A.8: Time plot (top) and frequency spectrum plot (bottom) of angle dependent linear 

motion acceleration part at 50 [rad/s] rotational velocity.  
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Appendix B System Identification 

In this appendix, only a concise literature review is presented to system identification in 

general.  Then, a short definition to the system identification main task is given.  Furthermore, 

some system identification issues and aspects, which are related to this work, are very briefly 

discussed. 

On the other hand, parametric identification algorithms, for continuous and discrete models 

with linear or nonlinear in parameter model structures are presented, and reintroduced in 

graphical block diagram format, so that they can be easily programmed in Simulink-Matlab 

from MathWorks Company, which is a graphical-oriented programming environment.  This 

will make them easy to compile and to implement online and in real-time control by using, for 

example, the dSPACE Company real-time controller utilities. 

 Introduction B.1

The modern system identification history can be traced back to time of Gauss (1809), where 

he had used the method of least squares to determine the orbits of celestial bodies from their 

observations (Gevers 2006).  But the new era of the system identification, which was deve-

loped mainly for control applications, stemmed from the work of Ho and Kalman (1965) and 

Aström and Bohlin (1965), which have marked the development of system identification until 

these days.  Ho and Kalman (1965) have dealt with the minimal realization problem of the 

state space, which has led to the development of subspace identification techniques.  While, 

Aström and Bohlin (1965) have introduced the maximum likelihood framework, which has 

led in turn to the parametric prediction error methods.  More details of this history are in the 

reference (Gevers 2006).  The work of Aström and Eykhoff (1971) stands since 1971 as a 

survey for system identification in general.  For system identification references, the system 

identification tutorials (Fasol and Jörgl 1980; Rake 1980; Godfrey 1980; Strejc 1980; Aström 

1980; Isermann 1980) given in the special issue of Automatica volume 16 number 5, are 

suggested, as well as the text books (Norton 1986; Söderström and Stoica 1989; Ljung 1999; 

Isermann and Münchhof 2011) for system identification in general, and (Haber and Keviczky 

1999; Nelles 2001) for nonlinear system identification in particular.  Furthermore, more 

specific references will be given in the context accordingly. 

System identification is the art of finding a mathematical model that gives the best description 

of a system using its input-output history.  But there are actually two assumptions in the defi-

nition.  The first one is that the model structure and its parameterization are known from the 

physical principles, for example, a first order time-invariant linear system.  Therefore, the job 

here is to find its differential equation, transfer function or impulse response parameters, and 

that is of course by using the system input-output data collected in an experiment.  This aspect 

can be called light gray model identification.  The second one, the system behavior (input-

output data) is to be fit in some model, with the fact that the model structure is not known.  By 

using the input-output data, the model structure and its parameters are to be calculated or 

estimated.  This type of identification is called approximation, which also called dark gray 

model identification. 
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In the following, some modeling and identification aspects are discussed, distinguished and 

explained why they are chosen to work within this context. 

 Parametric and Nonparametric System Identification 

Theoretically, nonparametric models have an infinite number of parameters (data), for 

example, the time (impulse, step or ramp) response or frequency (correlation or spectral 

function) response, and practically, nonparametric models can be approximated by a relatively 

large finite number of parameters (data), for example, time or frequency response table 

records with a large number of data.  The advantage of the nonparametric models is that they 

can be directly measured and recorded without extensive pre-knowledge about the system; 

therefore, they are always used as a quick way to start acquainting the knowledge about the 

process under the analysis.  On the other hand, their disadvantage though, they need a 

relatively large memory to be stored in a digital computer. 

For the parametric models, it is almost the contrary to the nonparametric ones, where a pre-

knowledge is very essential to choose a candidate function that can perfectly fit the response 

(behavior) of the system with as small number of parameters as possible, for example, the 

candidate function of the system step response differs according to the number and the 

position of the poles of the linear time-invariant system.  So, the crucial issue for parametric 

models is the candidate function or the model structure that must be previously selected 

before the phase of parameter computation.  The positive issue though, the number of parame-

ters is very small in comparison with an approximated nonparametric one.  In this context, 

mainly the parametric identification methods are considered for later use in control law design 

phase. 

 Linear or Nonlinear Models 

Linear models are very well established and have a general structure with its algorithms.  On 

the contrary, the nonlinear models are very difficult to handle because they are very 

challenging to put in a general form, and even though, it will be done with very huge and 

tremendous efforts.  Although dealing with the linear models is easier than the nonlinear one 

for some cases, there are some other cases, where a more global behavior is interested, that 

make the use of the nonlinear models inevitable to increase the performance of a system. 

 Deterministic or Stochastic Environment 

Deterministic is always when the input-output data is well measured (with high fidelity), this 

means there is almost no noise or error by measurements or the signal to noise ratio is very 

high.  Vice versa, in the stochastic case, the data is corrupted with errors (noise) or the plant is 

disturbed by stochastic variable or parameter.  Therefore, by using methods designed accor-

dingly, a better performance can be achieved than using only deterministic cases.  Some of 

these methods are instrumental variables, extended and generalized least squares, maximum 

likelihood, prediction error method and dual (extended) Kalman filter.  In this work, the 

process assumed to have no stochastic variables or parameters and the input-output measure-

ments are available with very good signal to noise ratio. 

 Continuous or Discrete Models 
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Now days, the most recent control applications are applied using digital computers.  This 

means that the applications are discrete in nature, and therefore, discrete models comply with 

them.  Nevertheless, continuous models have more appeal to the physical nature of the 

process than the discrete ones.  The discrete models have rather more mathematical appeal 

than the physical ones.  This means, for a continuous model, its parameters are directly linked 

to its physical parameters, while on the other hand, the discrete model parameters are rather 

more directly linked to the sampling rate.   Furthermore, if nonlinear models are interested, 

then only continuous modeling makes sense to observe and represent the process, even if it is 

applied by a digital computer.  The quasi-continuous mode should be considered, by sampling 

the system variables with a very high sampling rate, or simulating the system with a very 

small numerical integration step size with respect to the targeted system bandwidth. 

 Linear or Nonlinear in Parameters 

System identification problem, in general, is an optimization problem, where a performance 

measure or index has to be defined which usually incorporates, for example, a sum of squared 

errors between the outputs of the process to be identified and the outputs of the mathematical 

model that will represent or approximate the real physical process.  The sum of the squared 

errors index is usually chosen because of its analytical simplicity.  For the case, when the 

error used in the performance index is linear in parameters, this will result in a simple least 

squares problem with a direct solution.  On the other hand, the case of nonlinear in parameters 

problem is more complex than the linear in parameter one, where it leads to the nonlinear 

least squares problem, which has no direct (trivial) mathematical solution.  Therefore, only 

numerical iterative (successive) approximation solutions are available.  Some of these me-

thods are gradient based algorithms (line search, finite difference techniques, steepest descent, 

Newton’s method, quasi-Newton methods, Gauss-Newton method, conjugate gradient 

methods, etc.).  And some other methods depend on direct search algorithms (simplex search 

method, Hooke-Jeeves method).  For more detail, for example, see the references (Ljung 

1999; Nelles 2001). 

 Offline or Online 

Most of the system identification algorithms were derived in a form suitable for batch 

processing in which the amount of data storage and computations increase with the number of 

collected input and output data pairs.  Therefore, these algorithms are usually used in offline 

system identification.  On the other hand, these batch algorithms are obviously undesirable for 

online identification as required, for example, in adaptive control schemes.  Therefore, recur-

sive identification algorithms have been developed directly from the original batch processing 

identification algorithms by processing the every newly collected input-output data pair im-

mediately as a recursion to the old processed data, so that their computational requirements 

are kept at minimum and do not increase as time progresses, which makes them eligible to 

online implementations (Ljung and Söderström 1983). 

 Identification for control 

Sometimes, although the process can have a complex behavior (high order, nonlinear, time-

variant) that needs a complex model to describe it.  Nevertheless, in many control applica-

tions, it needs only a part of its behavior to be known (identified) in order to achieve the 
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control design goals.  For example, considering such a complex system that only needs to be 

controlled in the steady state region, therefore, for this design demand, only its gain factor is 

needed to be identified around the operating point.  Moreover, trying to make the design more 

dynamic, this could lead the system to operate in an unknown (unidentified) region that could 

make the design, for example, unstable.  This leads to the case where a more complex dyna-

mic model should be used.  Another example is when a larger operating region is considered, 

that could lead to more nonlinear characteristics to appear at the system behavior, which they 

need of course to be considered in order to get a better performance. 

In the next section B.2, the least squares algorithm is used to minimize the sum of squared 

prediction and output errors for the case when the model parameters are or assumed linear in 

parameter with respect to their modeling error, particularly for ARX (AutoRegressive model 

with eXogenous input) discrete models.  Also, in section B.3, the general case is considered, 

when the model parameters are nonlinear in parameters, where the Gauss-Newton method is 

introduced and formulated as recursive identification algorithm. At the end, some practical 

aspects of system identification for control are discussed in section B.4. 

 Linear Least Squares Parametric Identification Methods B.2

In this section, the least squares optimization algorithm is used to identify processes that are 

modeled with linear in parameters discrete models, see e.g. (Söderström and Stoica 1989).  

Therefore, the algorithm is used to minimize the sum of squared prediction errors, resulting in 

prediction error method.  Moreover, an explanation is given why it cannot be directly applied 

to minimize the sum of squared output errors.  Also, the recursive least squares algorithm is 

introduced. 

Now, a general parametric dynamic process is defined to have linear time-invariant dynamics 

that are stimulated by the control input (𝑢(𝑡)) and disturbed by an unmeasurable as well as an 

uncontrollable input (𝑑𝑜(𝑡)) called the disturbance.  Moreover, the output of the process is 

measured with a measurement error (𝑒𝑚(𝑡)), which is also a kind of disturbance.  But in this 

context, the disturbance represents here a real physical action on the process while the mea-

surement error is a falsifying value added to the real output value induced in the measurement 

phase.  So, the process is represented by following equation (B.1), and presented in Figure 

B.1, 

𝑦𝑚(𝑡) = 𝑦𝑢(𝑡) + 𝑑𝑜(𝑡) + 𝑒𝑚(𝑡). (B.1) 

 

 

Figure B.1: Disturbed process with output measurement error. 
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In the following, the process dynamics are defined as continuous and discrete strictly causal, 

which means that the current output depends only on the past input-output data, as given in 

the following equations in continuous 𝑠- and discrete 𝑧-domain transfer functions, as well as 

in discrete-time domain series and vector format.  The continuous transfer function 

𝑦𝑢(𝑠)

𝑢(𝑠)
= 𝐺𝑃(𝑠) =

𝐵(𝑠)

𝐴(𝑠)
=

𝛽𝑛−1𝑠
𝑛−1 + ⋯+ 𝛽0

𝑠𝑛 + 𝛼𝑛−1𝑠𝑛−1 + ⋯+ 𝛼0
     , (B.2) 

and the discrete transfer function 

𝑦𝑢(𝑧)

𝑢(𝑧)
= 𝐺𝑃(𝑧) =

𝐵(𝑧)

𝐴(𝑧)
=

𝑏1𝑧
𝑛−1 + ⋯+ 𝑏𝑛

𝑧𝑛 + 𝑎1𝑧𝑛−1 + ⋯+ 𝑎𝑛
   , (B.3) 

in past inputs and outputs series 

𝑦𝑢(𝑡) = −∑𝑎𝑖𝑦𝑢(𝑡 − 𝑖)

𝑛

𝑖=1

+ ∑𝑏𝑖𝑢(𝑡 − 𝑖)

𝑛

𝑖=1

 , (B.4) 

where (𝑡 = 0, 1, 2,⋯) is sampling time sequence index,  also in compact vector format 

𝑦𝑢(𝑡) = 𝝓𝑢
𝑇(𝑡)𝜽, (B.5) 

where the past input-output data vector is constructed as following 

𝝓𝑢
𝑇(𝑡) = [−𝑦𝑢(𝑡 − 1) ⋯ −𝑦𝑢(𝑡 − 𝑛) 𝑢(𝑡 − 1) ⋯ 𝑢(𝑡 − 𝑛)], (B.6) 

and the parameter vector 

𝜽 = [𝑎1 ⋯ 𝑎𝑛 𝑏1 ⋯ 𝑏𝑛]𝑇 . (B.7) 

B.2.1 Simple Least Squares of Prediction Error 

First, the process, as defined in equation (B.1), is assumed to be without disturbance, so the 

process output becomes 

𝑦𝑚(𝑡) = 𝑦𝑢(𝑡) + 𝑒𝑚(𝑡), (B.8) 

also, the sampled measured output of the process is the sum of the process input-output 

dynamics and the measurement error, as following 

𝑦𝑚(𝑡) = 𝝓𝑢
𝑇(𝑡)𝜽 + 𝑒𝑚(𝑡). (B.9) 

Since the input-output data vector in equation (B.9) contains the past outputs of the process 

dynamics which is not available as measurements, therefore, equation (B.9) is reformed to 

have the measured outputs instead as  

  𝑦𝑚(𝑡) = 𝝓𝑚
𝑇 (𝑡)𝜽 + 𝑒𝐸𝐸(𝑡), (B.10) 

where the data vector and the equation error are defined by  

𝝓𝑚
𝑇 (𝑡) = [−𝑦𝑚(𝑡 − 1) ⋯ −𝑦𝑚(𝑡 − 𝑛) 𝑢(𝑡 − 1) ⋯ 𝑢(𝑡 − 𝑛)], (B.11) 

  𝑒𝐸𝐸(𝑡) = 𝑒𝑚(𝑡) + 𝑎1𝑒𝑚(𝑡 − 1) + ⋯+ 𝑎𝑛𝑒𝑚(𝑡 − 𝑛). (B.12) 

Now, an identification experiment is done by injecting a proper (persistently exciting) input 

signal to the process and recording a number (N) of input-output pairs.  The prediction of the 

process measured output is (estimated) computed by using the past input and the past 

measured output data as following 
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�̂�𝑚(𝑡) = 𝝓𝑚
𝑇 (𝑡)�̂�, (B.13) 

where the estimated parameter vector is defined by 

�̂� = [�̂�1 ⋯ �̂�𝑛 �̂�1 ⋯ �̂�𝑛]𝑇 , (B.14) 

Now, the output prediction error is defined as a modeling error, which is the difference 

between the measured output and the computed output, see Figure B.2, as following 

𝑒𝑃𝐸(𝑡) = 𝑦𝑚(𝑡) − �̂�𝑚(𝑡), (B.15) 

𝑒𝑃𝐸(𝑡, �̂�) = 𝑦𝑚(𝑡) − 𝝓𝑚
𝑇 (𝑡)�̂�. (B.16) 

Now, the method of Simple Least Squares (SLS) is used as an optimization method to 

estimate the process parameters by minimizing a performance index, which is defined by the 

sum of the squared prediction errors as given by 

𝐽𝑁 =
1

2
∑[𝑒𝑃𝐸(𝑡, �̂�)]2
𝑁

𝑡=𝑛

. (B.17) 

For N input-output data pairs, the data can be batched in vectors and matrices and that is by 

starting up from the system order n.  So, the data matrix and the measured output array are 

constructed as following 

𝚽m = [
𝝓𝑚

𝑇 (𝑛)
⋮

𝝓𝑚
𝑇 (𝑁)

] = [
−𝑦𝑚(𝑛 − 1) ⋯ −𝑦𝑚(0)

⋮ ⋮ ⋮
−𝑦𝑚(𝑁 − 1) ⋯ −𝑦𝑚(𝑁 − 𝑛)

𝑢(𝑛 − 1) ⋯ 𝑢(0)
⋮ ⋮ ⋮

𝑢(𝑁 − 1) ⋯ 𝑢(𝑁 − 𝑛)
], (B.18) 

𝐘𝑚 = [𝑦𝑚(𝑛) ⋯ 𝑦𝑚(𝑁)]𝑇 , (B.19) 

and the modeling (prediction) error vector as 

𝑬𝑃𝐸 = 𝐘𝑚 − 𝚽m�̂�, (B.20) 

as well as the sum of squared prediction error performance index 

𝐽𝑁 =
1

2
∑[𝑒𝑃𝐸(𝑡)]2
𝑁

𝑡=𝑛

=
1

2
𝑬𝑃𝐸

𝑇 𝑬𝑃𝐸 . (B.21) 

Now, minimizing (B.21) will give the optimal least squares solution of the prediction error, 

see e.g. (Norton 1986), as  

�̂� = [𝚽m
T 𝚽m]−1𝚽m

T 𝐘𝑚. (B.22) 

To check the parameter consistency, the expected value of the estimated parameters is 

computed as following 

ℰ{�̂�} = ℰ{[𝚽m
T 𝚽m]−1𝚽m

T 𝐘𝑚}, (B.23) 

since the measured output vector, generated from equation (B.10), is given by 

𝒀𝑚 = 𝚽m𝜽 + 𝑬𝐸𝐸 .  (B.24) 

Now, the substitution of the measured output vector equation (B.24) into (B.23) yields 

ℰ{�̂�} = ℰ{[𝚽m
T 𝚽m]−1𝚽m

T [𝚽m𝜽 + 𝑬𝐸𝐸]}; 

= 𝜽 + ℰ{[𝚽m
T 𝚽m]−1𝚽m

T 𝑬𝐸𝐸}. 
(B.25) 
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Figure B.2: Prediction error system identification. 

Now, if the measurement error is zero, then the equation error is also zero, the second term of 

equation is equal to zero, and therefore, the parameter vector estimate is equal to the process 

(true) parameter vector 

ℰ{�̂�} = 𝜽. (B.26) 

Moreover, for the case, when the equation error is a white noise with zero mean and 

uncorrelated with the input, then the second term of equation (B.25) goes to zero as the 

number of sampled input-output data goes to infinity, which leads to a consistent parameter 

vector estimate (Isermann and Münchhof 2011).  However, the last condition is only realiz-

able when the measurement error is a filtered white noise through the true process dynamics  

𝑒𝑚(𝑡) = −𝑎1𝑒𝑚(𝑡 − 1) − ⋯− 𝑎𝑛𝑒𝑚(𝑡 − 𝑛) + 𝜁(𝑡), (B.27) 

where 𝜁(𝑡) is a white noise with zero mean signal. 

This condition is seldom to happen in real processes.  In other words, the parameter esti-

mation will bias even when the measurement error is a white noise with zero mean.  

Therefore, there are modified least squares methods to deal with this problem, for example, 

generalized least squares and extended least squares methods (Isermann and Münchhof 2011).  

Nevertheless, the estimated model will give a good prediction to the measured and disturbed 

output of the process. 

 

B.2.2 Least Squares of Output Error 

In order to identify the true parameters of the process input-output dynamics, given in 

equation (B.1), in spite of the presence of the measurement error or the disturbance affecting 

the measured output.  The data vector should be changed so that it has no more components 

from these measurements. Therefore, the algorithm will correlate the relation between the 

input and the measured disturbed output and exclusively builds up the relation just between 

the input and its contribution to the output.  This can be done as following: The output 

estimation of the process dynamics stimulated from the input is computed by 

The Process 

𝝓𝑚(𝑡)�̂� 
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𝑦𝑚(𝑡) 
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𝑢(𝑡) 

𝑒𝑃𝐸(𝑡, �̂�) 

Prediction Error 
− 
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�̂�𝑢(𝑡) = �̂�𝑢
𝑇(𝑡)�̂�, (B.28) 

where the parameter vector is defined as in equation (B.14), the data vector and matrix are 

constructed using the computed outputs instead of the measured outputs respectively as  

�̂�𝑢
𝑇(𝑡) = [−�̂�𝑢(𝑡 − 1) ⋯ −�̂�𝑢(𝑡 − 𝑛) 𝑢(𝑡 − 1) ⋯ 𝑢(𝑡 − 𝑛)], (B.29) 

�̂�𝑢 = [
�̂�𝑢

𝑇(𝑛)
⋮

�̂�𝑢
𝑇(𝑁)

] = [
−�̂�𝑢(𝑛 − 1) ⋯ −�̂�𝑢(0)

⋮ ⋮ ⋮
−�̂�𝑢(𝑁 − 1) ⋯ −�̂�𝑢(𝑁 − 𝑛)

𝑢(𝑛 − 1) ⋯ 𝑢(0)
⋮ ⋮ ⋮

𝑢(𝑁 − 1) ⋯ 𝑢(𝑁 − 𝑛)
]. (B.30) 

And so here, the output (estimation) error is defined by the difference between the measured 

output and the output of the estimated dynamics, see Figure B.3, as 

𝑒𝑂𝐸(𝑡) = 𝑦𝑚(𝑡) − �̂�𝑢
𝑇(𝑡)�̂�; 

         = 𝑦𝑚(𝑡) − �̂�𝑢(𝑡), 
(B.31) 

or in array format 

𝑬𝑂𝐸 = 𝐘𝑚 − �̂�𝑢�̂�. (B.32) 

This modeling error is defined as the output error, since it uses the past input and past 

estimated output data to compute the current output estimate.  Now, the least squares criterion 

index is applied on the output error as  

𝐽𝑁 =
1

2
∑[𝑒𝑂𝐸(𝑡)]2
𝑁

𝑡=𝑛

=
1

2
𝑬𝑂𝐸

𝑇 𝑬𝑂𝐸 . (B.33) 

Unfortunately, the output error is nonlinearly related to the parameters, since the data vector 

has estimated output values instead of the measured output values, where the estimated output 

values depend on the estimated parameter vector (Nelles 2001, subsection 16.5.4).  Therefore, 

the solution for an optimal parameter vector is a nontrivial one and usually a numerical and 

iterative approximation, e.g. the solutions of nonlinear in parameter problem presented in 

subsection B.3.1, and the pseudo linear regression for model reference techniques presented 

in (Ljung and Söderström 1983, subsection 2.5.2; Landau 1976). 

  

 

Figure B.3: Output error system identification. 
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B.2.3 The Recursive Least Squares Algorithm with Forgetting Factor 

The simple least squares as introduced in equation (B.22) processes a batch of input-output 

data at time. This is not perfect for online identification.  Hence, a Recursive Least Squares 

(RLS) algorithm is introduced from the simple one, which only requires the new data sample 

to compute the new parameter estimate recursively (see, e.g., Söderström and Stoica 1989).  

Moreover, in the case, where the process is (slowly) time-varying, and in order to get the 

actual parameter estimate, the least squares algorithm has to forget the old input-output data 

information and to pay more attention to the recent input-output data.  This is done by 

introducing a weighting (forgetting) factor to the sum of squared prediction error index as 

𝐽 =
1

2
∑𝜆𝑁−𝑡[𝑒𝑃𝐸(𝑡)

𝑁

𝑡=𝑛

]2, (B.34) 

 where 𝜆 is the forgetting factor.  Now define the covariance matrix as 

𝑷(𝑡 − 1) = [𝚽𝑚
𝑇 𝚽𝑚]−1. (B.35) 

The minimization of the performance index of equation (B.34) leads to the recursive 

algorithm with the initial conditions �̂�(0) and 𝑷(0).  After defining all initial conditions and 

parameters the RLS algorithm, equations (B.36), (B.37) and (B.38), is run repetitively at 

every sample hit. 

 

𝑲(𝑡) =
𝑷(𝑡 − 1)𝝓𝑚(𝑡)

𝜆 + 𝝓𝑚
𝑇 (𝑡)𝑷(𝑡 − 1)𝝓𝑚(𝑡)

, (B.36) 

�̂�(𝑡) = �̂�(𝑡 − 1) + 𝑲(𝑡)[𝑦𝑚(𝑡) − 𝝓𝑚
𝑇 (𝑡)�̂�(𝑡 − 1)], (B.37) 

𝑷(𝑡) =
1

𝜆
[𝑷(𝑡 − 1) −

𝑷(𝑡 − 1)𝝓𝑚(𝑡)𝝓𝑚
𝑇 (𝑡)𝑷(𝑡 − 1)

𝜆 + 𝝓𝑚
𝑇 (𝑡)𝑷(𝑡 − 1)𝝓𝑚(𝑡)

]. (B.38) 

 

B.2.4 Starting the RLS for Online Identification 

The algorithm is normally initialized by setting the covariance matrix to a diagonal matrix 

whose elements reflect how much confidence is in the initial vector of parameter estimates.  

In other words, the initial covariance matrix can be set as 

𝑷(0) = 𝛾𝐈, (B.39) 

where 𝐈 is the identity matrix, 𝛾 is a scalar and chosen such that 𝛾 is high when the initial 

estimates are poor (i.e. little confidence).  On the other hand, 𝛼 is chosen low when there are 

reasonable initial estimates (i.e. reasonable confidence). 

The initial vector of parameter estimates is usually set to a “good guess” based on prior 

knowledge about the system to be identified.  In this way, 𝛾 is set to a small to medium value 

depending on the relative quality of the “good guess”.  Alternatively, it can be waited until 

sufficient data is available to perform one matrix inversion i.e. that of [�̂�T�̂�] to get �̂�(0).  

The RLS would, of course, then require a small 𝛾-value. 
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Therefore, if a priori-knowledge about the process is available then it should be used to guess 

the initial value of the parameter vector with its initial covariance matrix.  If there is no 

enough prior knowledge, then a simple way is to make the parameters equal to one with very 

high covariance matrix. 

B.2.5 Extra Applications of Linear Least Squares Algorithm 

The extension of using least squares algorithm to identify nonlinear discrete models, provided 

that these models are still in linear in parameter format, is a straightforward.  Moreover, the 

least squares algorithm can also be applied to estimate the parameters of linear time-invariant 

continuous system in form of differential equation or transfer function. This is by making the 

higher derivatives equal to the rest of other derivatives of the output and the input.  This form 

is linear in parameter and therefore the least squares algorithm can be used to estimate the 

parameters (Mikles and Fikar 2007).  Also, an extension to some nonlinear terms is possible 

here, as long as the formulation stays in the form of linear in parameters.  But, the need of 

calculating the derivatives of the input and the output signals and the need of relatively high 

sampling rates makes this numerically unattractive in online practical applications. 

 

 Nonlinear Least Squares Parametric Methods B.3

In this section, an algorithm of ‘Gauss-Newton’ for minimizing the functional nonlinear least 

squares performance index is introduced.  This can be applied on output error or prediction 

error parametric identification methods.  The algorithm is first developed as an offline and 

iterative algorithm, and then transformed into a recursive algorithm to be used as an online 

identification algorithm especially in real-time control applications.  Moreover, this algorithm 

can be applied to identify the parameters of continuous as well as discrete models. 

B.3.1 Output Error Method 

The method is a parametric method that searches for optimal model parameters that minimize 

the performance index the sum of squared errors, which are the difference between the 

process outputs and the estimated model outputs that are or were generated in an 

identification experiment by using consistently exciting inputs, as shown in the following 

Figure B.4.  The difference between the process and the model output is called the output 

error and calculated by 

𝑒𝑂𝐸(𝑡, 𝜽) = 𝑦𝑚(𝑡) − �̂�𝑢(𝑡, 𝜽), (B.40) 

where 𝑦𝑚(𝑡) is the measured output of the process that meant to be identified, and �̂�𝑢(𝑡) is the 

calculated output of the model. The model output �̂�𝑢(𝑡) is calculated using the model 

parameters and the input signal as 

�̂�𝑢(𝑡) =  ℳ(𝜽, 𝑢), (B.41) 

where ℳ is a mathematical model, which it can be linear or nonlinear differential or differ-

rence equation, continuous or discrete transfer function or in state space format, the variable 𝜽 

is the parameter vector of the model ℳ, and 𝑢 is the input signal.  The sum of squared errors 

performance index, for N samples, is defined as 
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Figure B.4: Output error parameter identification strategy. 

𝐽𝑁(𝜽) =
1

𝑁
∑𝑒𝑂𝐸

2 (𝑡, 𝜽)

𝑁

𝑡=1

. (B.42) 

If the output error is a nonlinear function of the model parameters, for example, continuous 

transfer function, continuous and discrete state space models, then the optimization solution 

can only be found numerically by successive approximation methods (Verhaegen and Verdult 

2007).  For example, the solution can be searched for by approximating or expanding the 

performance index functional (B.42) in Taylor series around an initial estimate of the 

parameter vector 𝜽(𝑘) 

𝐽𝑁(𝜃) = 𝐽𝑁(𝜽(𝑘)) + [𝐽𝑁
′ (𝜽(𝑘))]𝑇[𝜽(𝑘 + 1) − 𝜽(𝑘)] 

                                            +
1

2
[𝜽(𝑘 + 1) − 𝜽(𝑘)]𝑇𝐽𝑁

′′(𝜽(𝑘))[𝜽(𝑘 + 1) − 𝜽(𝑘)] 

                                            + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠, 

(B.43) 

where 𝐽𝑁
′ (𝜽(𝑘)) is the Jacobian of the functional 𝐽𝑁(𝜽) at 𝜽(𝑘) and defined  as 

𝐽𝑁
′ (𝜽(𝑘)) =

𝜕𝐽𝑁(𝜽)

𝜕𝜽
=

[
 
 
 
 
 
 
 
𝜕𝐽𝑁(𝜽)

𝜕𝜃1

𝜕𝐽𝑁(𝜽)

𝜕𝜃2

⋮
𝜕𝐽𝑁(𝜽)

𝜕𝜃𝑁𝑝 ]
 
 
 
 
 
 
 

, (B.44) 

where 𝑁𝑝 is the number of the parameters, and 𝐽𝑁
′′(𝜽(𝑘)) is the Hessian of the functional 

𝐽𝑁(𝜽) at 𝜽(𝑘) and defined as 

Input Output 
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𝐽𝑁
′′(𝜽) =

𝜕

𝜕𝜽

𝜕

𝜕𝜽𝑇
𝐽𝑁(𝜽) =

[
 
 
 
 
 
 
 
 𝜕2𝐽𝑁(𝜽)

𝜕𝜃1𝜕𝜃1

𝜕2𝐽𝑁(𝜽)

𝜕𝜃1𝜕𝜃2

𝜕2𝐽𝑁(𝜽)

𝜕𝜃2𝜕𝜃1

𝜕2𝐽𝑁(𝜽)

𝜕𝜃2𝜕𝜃2

⋯
𝜕2𝐽𝑁(𝜽)

𝜕𝜃1𝜕𝜃𝑁𝑝

⋯
𝜕2𝐽𝑁(𝜽)

𝜕𝜃2𝜕𝜃𝑁𝑝

⋮ ⋮
𝜕2𝐽𝑁(𝜽)

𝜕𝜃𝑁𝑝
𝜕𝜃1

𝜕2𝐽𝑁(𝜽)

𝜕𝜃𝑁𝑝
𝜕𝜃2

⋱ ⋮

⋯
𝜕2𝐽𝑁(𝜽)

𝜕𝜃𝑁𝑝
𝜕𝜃𝑁𝑝]

 
 
 
 
 
 
 
 

. (B.45) 

Generally, the computational solution of the functional 𝐽𝑁(𝜽) in equation (B.43) and its 

Jacobian and Hessian are very burdensome for nonlinear in parameters model structures.  

Therefore, in order to reduce the computational effort and complexity, some approximation 

procedures are introduced in the next subsections B.3.1.1 and B.3.1.2.  

B.3.1.1 The Newton method 

The Newton method approximates the cost functional 𝐽𝑁(𝜽) by ignoring all of its higher order 

terms in Taylor series expansion equation (B.43) as following 

𝐽𝑁(𝜽) = 𝐽𝑁(𝜽(𝑘)) + [𝐽𝑁
′ (𝜽(𝑘))]𝑇[𝜽(𝑘 + 1) − 𝜽(𝑘)] 

                                            +
1

2
[𝜽(𝑘 + 1) − 𝜽(𝑘)]𝑇𝐽𝑁

′′(𝜽(𝑘))[𝜽(𝑘 + 1) − 𝜽(𝑘)]. 
(B.46) 

Now, the minimum of the functional 𝐽𝑁(𝜽) is found by deriving its derivative with respect to 

𝜽 and made equal to zero 

𝐽𝑁
′ (𝜽) = 0 = 𝐽𝑁

′ (𝜽(𝑘)) + 𝐽𝑁
′ (𝜽(𝑘)) + [𝐽𝑁

′′(𝜽(𝑘))]𝑇[𝜽(𝑘 + 1) − 𝜽(𝑘)] 

+[𝐽𝑁
′′(𝜽(𝑘))][𝜽(𝑘 + 1) − 𝜽(𝑘)] 

                                        +
1

2
[𝜽(𝑘 + 1) − 𝜽(𝑘)]𝑇𝐽𝑁

′′′(𝜽(𝑘))[𝜽(𝑘 + 1) − 𝜽(𝑘)], 

(B.47) 

and by ignoring the third order derivative term of equation (B.47) 

1

2
[𝜽(𝑘 + 1) − 𝜽(𝑘)]𝑇𝐽𝑁

′′′(𝜽(𝑘))[𝜽(𝑘 + 1) − 𝜽(𝑘)] = 0, (B.48) 

then equation (B.47) can be approximated by 

𝐽𝑁
′ (𝜽) = 0 = 𝐽𝑁

′ (𝜽(𝑘)) + [𝐽𝑁
′′(𝜽(𝑘))][𝜽(𝑘 + 1) − 𝜽(𝑘)], (B.49) 

and therefore, the next parameter update is calculated by 

𝜽(𝑘 + 1) = 𝜽(𝑘) − 𝐽𝑁
′′(𝜽(𝑘))−1  𝐽𝑁

′ (𝜽(𝑘)). (B.50) 

This type of parameter update, equation (B.50), is called Newton method, where it needs an 

initial guess of the parameter vector and the values of the Jacobian and Hessian at the initial 

guess to compute the next parameter estimate.  Now, the output error vector is defined by 

𝑬𝑁(𝜃) = [𝑒𝑂𝐸(0, 𝜽) 𝑒𝑂𝐸(1, 𝜽) ⋯ 𝑒𝑂𝐸(𝑁 − 1, 𝜽)]𝑇 , (B.51) 

so that the cost functional can be rewritten as 

𝐽𝑁(𝜽) =
1

𝑁
∑𝑒𝑂𝐸

2 (𝑡, 𝜽)

𝑁

𝑡=1

=
1

𝑁
𝑬𝑁

𝑇 (𝜽)𝑬𝑁(𝜽). (B.52) 
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Also, the gradient matrix of the error vector with respect to the parameters is defined by 

𝚿N(𝛉) =
∂𝑬𝑁(𝜽)

∂𝛉T
=

[
 
 
 
 
 
 
 𝜕𝑒𝑂𝐸(0, 𝜽)

𝜕𝜃1
       

𝜕𝑒𝑂𝐸(0, 𝜽)

𝜕𝜃2

𝜕𝑒𝑂𝐸(1, 𝜽)

𝜕𝜃1
        

𝜕𝑒𝑂𝐸(1, 𝜽)

𝜕𝜃2

⋯
𝜕𝑒𝑂𝐸(0, 𝜽)

𝜕𝜃𝑁𝑝

⋯
𝜕𝑒𝑂𝐸(1, 𝜽)

𝜕𝜃𝑁𝑝

⋮ ⋮
𝜕𝑒𝑂𝐸(𝑁 − 1, 𝜽)

𝜕𝜃1

𝜕𝑒𝑂𝐸(𝑁 − 1, 𝜽)

𝜕𝜃2

         ⋱ ⋮

     ⋯
𝜕𝑒𝑂𝐸(𝑁 − 1, 𝜽)

𝜕𝜃𝑁𝑝 ]
 
 
 
 
 
 
 

. (B.53) 

By using the calculus of functional differentiation (Brewer 1978), the Jacobian and Hessian of 

𝐽𝑁(𝜽) can be expressed as 

𝐽𝑁
′ (𝜽) =

2

𝑁
(
∂𝑬𝑁(𝜽)

∂𝛉T
)

T

𝐸𝑁(𝜽); 

 =
2

𝑁
𝚿N

T(𝜽)𝑬𝑁(𝜽), 

(B.54) 

and 

𝐽𝑁
′′(𝜽) =

2

𝑁

𝜕2𝑬𝑁
𝑇 (𝜽)

𝜕𝜽𝑇𝜕𝜽
(𝐈𝑃 ⊗ 𝑬𝑁(𝜽)) +

2

𝑁
(
𝜕𝑬𝑁(𝜽)

𝜕𝜽𝑇
)

𝑇
𝜕𝑬𝑁(𝜽)

𝜕𝜽𝑇
; 

 =
2

𝑁

𝜕2𝑬𝑁
𝑇 (𝜽)

𝜕𝜽𝑇𝜕𝜽
(𝐈𝑃 ⊗ 𝑬𝑁(𝜽)) +

2

𝑁
𝚿N

T(𝜽)𝚿N(𝜽), 

(B.55) 

which are still extensive to compute, therefore, it needs more simplifications as presented in 

the next subsection. 

B.3.1.2 The Gauss-Newton method 

Moreover, the Gauss-Newton method will approximate the Hessian 𝐽𝑁
′′(𝜽) by the matrix  

𝑯𝑁(𝜽) =
2

𝑁
𝚿N

T(𝜽)𝚿N(𝜽). (B.56) 

This approximation is valid around the optimal parameters as long as the correlation between 

the error and its second derivative is weak, so that the first term of equation (B.55) is omitted.  

Doing so will make the computation much easier.  If the matrix 𝑯𝑁(𝜽) is invertible, then the 

Gauss-Newton method parameter update formula can be written as 

𝜽(𝑘 + 1) = 𝜽(𝑘) − 𝑯𝑁(𝜽(𝑘))−1  𝐽𝑁
′ (𝜽(𝑘)). (B.57) 

From last equation (B.57), the Jacobean and the Hessian approximate are needed to be 

calculated at every iteration.  Therefore, equations (B.53) and (B.54) lead to the fact that only 

𝑬𝑁(𝜽) and 𝚿N(𝜽) are needed to be calculated.  Furthermore, 𝑬𝑁(𝜽) is found by computing 

the output estimate �̂�𝑢(𝑡, 𝜽) for (t = 1, 2, ..., N), which is done by simulating the following 

discrete state space system equation (B.58), or alternatively continuous, if the identification 

model is continuous. 

�̂�(𝑡 + 1, 𝜽) = 𝑨(𝜽)�̂�(𝑡, 𝜽) + 𝑩(𝜽)𝑢(𝑡); 

�̂�𝑢(𝑡, 𝜽) = 𝑪(𝜽)�̂�(𝑡, 𝜽). 
(B.58) 



160 Appendix B  System Identification 

 

Modeling, Identification and Control of Periodic Disturbances   

This will also give the signal 𝒙(𝑡, 𝜽), which is needed in computing 𝚿N(𝜽), as shown in the 

following 

𝚿N(𝜽) =

[
 
 
 
 
 
 

∂𝑒𝑂𝐸(0, 𝜽)

∂𝜽T

∂𝑒𝑂𝐸(1, 𝜽)

∂𝜽T

⋮
∂𝑒𝑂𝐸(𝑁 − 1, 𝜽)

∂𝜽T ]
 
 
 
 
 
 

= −

[
 
 
 
 
 
 

∂�̂�𝑢(0, 𝜽)

∂𝜽T

∂�̂�𝑢(1, 𝜽)

∂𝜽T

⋮
∂�̂�𝑢(𝑁 − 1, 𝜽)

∂𝜽T ]
 
 
 
 
 
 

, (B.59) 

and that 

∂�̂�𝑢(𝑡, 𝜽)

∂𝜽T
= [

𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃1

𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃2

⋯
𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃𝑁𝑝

], (B.60) 

where 𝜃𝑖 is the ith entry of the vector 𝜽, and for every parameter 𝜃𝑖 there will be 

𝜕𝒙(𝑡 + 1, 𝜽)

𝜕𝜃𝑖
= 𝑨(𝜽)

𝜕�̂�(𝑡, 𝜽)

𝜕𝜃𝑖
+

𝜕𝑨(𝜽)

𝜕𝜃𝑖
�̂�(𝑡, 𝜽) +

𝜕𝑩(𝜽)

𝜕𝜃𝑖
𝑢(𝑡); 

𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑪(𝜽) 

𝜕�̂�(𝑡, 𝜽)

𝜕𝜃𝑖
+

𝜕𝑪(𝜽)

𝜕𝜃𝑖
�̂�(𝑡, 𝜽). 

(B.61) 

By defining 𝚾𝑖(𝑡, 𝜽) =
𝜕�̂�(𝑡,𝜽)

𝜕𝜃𝑖
, equations (B.61) can be rewritten as 

𝚾𝑖(𝑡 + 1, 𝜽) = 𝑨(𝜽)𝚾𝑖(𝑡, 𝜽) +
𝜕𝑨(𝜽)

𝜕𝜃𝑖
�̂�(𝑡, 𝜽) +

𝜕𝑩(𝜽)

𝜕𝜃𝑖
𝑢(𝑡); 

𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑪(𝜽) 𝚾𝑖(𝑡, 𝜽) +

𝜕𝑪(𝜽)

𝜕𝜃𝑖
�̂�(𝑡, 𝜽). 

(B.62) 

This means that the derivative of �̂�𝑢(𝑡, 𝜽) with respect to 𝜃𝑖 is obtained by simulating a linear 

system with state vector 𝚾𝑖(𝑡, 𝜽) and inputs �̂�(𝑡, 𝜽) and 𝑢(𝑡).  The partial derivatives of 

model matrices with respect to the parameters, equation (B.63), are normally constant. 

𝜕𝑨(𝜽)

𝜕𝜃𝑖
,
𝜕𝑩(𝜽)

𝜕𝜃𝑖
,
𝜕𝑪(𝜽)

𝜕𝜃𝑖
. (B.63) 

Therefore, the calculation of 𝚿N(𝜽) is simply done by simulating a linear system for every 

parameter.  This means at the end, 𝑁𝑃 + 1 linear systems are needed to be simulated for 𝑁𝑃 

parameters.  Figure B.5 shows the schematic diagram of the method, where starting from an 

initial parameter vector, a simulation run is made to accumulate the necessary vectors and 

matrices, after accumulating N samples, a new update of the parameter vector is made.  This 

calculation method is iterative, therefore, in order to get close enough to the optimal 

parameters, the algorithm needs to be repeated many times until the performance index 

reaches the desired minimum.  The method is a batch (offline) algorithm, since it needs to 

collect the whole data over the simulation period to make up the necessary vectors and 

matrices in order to compute the new estimate of the parameter vector. 

Moreover, as can be seen from the derivation of the Gauss-Newton method, it is an approxi-

mate and iterative (successive) solution when the initial parameter guess is around or near the 

optimal one.  But, when the initial guess is far from the optimal one, it takes a lot more 
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iterations to get near to the optimal one (provided that all convergence conditions are 

available).  Therefore, for a better global behavior, the Gauss-Newton method needs to be 

conditioned, for example, by extending it to the Levenberg-Marquardt method, see , for 

example,  Verhaegen and Verdult (2007) or Nelles (2001).  Where it works as steepest decent 

method when the estimate is far from the optimal one, which in this case makes a better 

approach behavior to the optimal region than Gauss-Newton method, in other words, it needs 

less iterations to go towards the optimal region.  And it works as Gauss-Newton method, 

when the estimate is around the optimal region, and in this case, it has a better approach 

behavior to the optimal estimate than the steepest decent method. 

 

 

Figure B.5: Batch (offline) iterative (successive) Gauss-Newton output error method.  
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B.3.2 Recursive Gauss-Newton Method 

The so far presented way of calculation is good for batch computations, but the problem is 

that it needs to memorize and compute large vectors and matrices.  For online identification 

and control, it is better to use recursive calculation methods, where a new parameter vector 

update is calculated in every simulation update or sample hit, and thereby, only the last 

sample hit data is needed.  The new parameters update can be computed recursively (Ljung 

and Söderström 1983) as 

�̂�(𝑡) = �̂�(𝑡 − 1) +
1

𝑡
𝑯−1(𝑡)𝛙(𝑡)𝑒𝑂𝐸(𝑡), (B.64) 

Where variable  𝛙(𝑡) is the gradient vector.  The Hessian matrix is calculated by 

𝑯(𝑡) = 𝑯(𝑡 − 1) +
1

𝑡
[𝛙(𝑡)𝛙T(𝑡) − 𝑯(𝑡 − 1)]. (B.65) 

Alternatively, to avoid the Hessian matrix inversion at every parameter update, the covariance 

matrix can be defined as 

𝑷(𝑡) =
1

𝑡
𝑯−1(𝑡), (B.66) 

with its recursive computation formula 

𝑷(𝑡) = 𝑷(𝑡 − 1) −
𝑷(𝑡 − 1)𝛙(𝑡)𝛙T(𝑡)𝑷(𝑡 − 1)

1 + 𝛙T𝑷(𝑡 − 1)𝛙(𝑡)
. (B.67) 

So, the recursive (online) algorithm with the forgetting factor (𝜆) becomes as following: 

Starting with these initial conditions: �̂�(0) and 𝑷(0). 

Get the input and the output samples 𝑢(𝑡), 𝑦𝑚(𝑡). 

Run the system model 

�̂�(𝑡 + 1, 𝜽) = 𝑨(𝜽)�̂�(𝑡, 𝜽) + 𝑩(𝜽)𝑢(𝑡); 

�̂�𝑢(𝑡, 𝜽) = 𝑪(𝜽)�̂�(𝑡, 𝜽). 
(B.68) 

Calculate the output error 

𝑒𝑂𝐸(𝑡, 𝜽) = 𝑦𝑚(𝑡) − �̂�𝑢(𝑡, 𝜽). (B.69) 

Run the systems, for  𝑖 = 1 𝑡𝑜 𝑁𝑃 of parameters 

𝚾𝑖(𝑡 + 1, 𝜽) = 𝑨(𝜽)𝚾𝑖(𝑡, 𝜽) +
𝜕𝑨(𝜽)

𝜕𝜃𝑖
�̂�(𝑡, 𝜽) +

𝜕𝑩(𝜽)

𝜕𝜃𝑖
𝑢(𝑡); 

𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃𝑖
= 𝑪(𝜽) 𝚾𝑖(𝑡, 𝜽) +

𝜕𝑪(𝜽)

𝜕𝜃𝑖
�̂�(𝑡, 𝜽). 

(B.70) 

And let 

𝛙(𝑡) = [
𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃1
⋯

𝜕�̂�𝑢(𝑡, 𝜽)

𝜕𝜃𝑁𝑃

]

𝑇

. (B.71) 

Update the covariance matrix 



B.3  Nonlinear Least Squares Parametric Methods 163 

 

In Drive-Load Angular Velocity Servo Control Systems with Self-Excited Oscillations 

𝑷(𝑡) = 𝑷(𝑡 − 1) −
1

𝜆

𝑷(𝑡 − 1)𝛙(𝑡)𝛙T(𝑡)𝑷(𝑡 − 1)

𝜆 + 𝛙T𝑷(𝑡 − 1)𝛙(𝑡)
. (B.72) 

Update the parameters 

𝜽(𝑡) = 𝜽(𝑡 − 1) + 𝑷(𝑡)𝛙(𝑡)𝑒𝑂𝐸(𝑡). (B.73) 

Loop 

The algorithm is also presented schematically in the following Figure B.6. 

 

 

Figure B.6: Online recursive Gauss-Newton output error method. 
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B.3.3 Prediction Error Method 

The prediction error method is made by optimizing the parameters of a predictor in order that 

a cost functional of prediction error least squares sum is minimal (Verhaegen and Verdult 

2007).  The prediction error is the difference between the measured output and the prediction 

model output, see Figure B.7, as  

𝑒𝑃𝐸(𝑡, 𝜽) = 𝑦𝑚(𝑡) − �̂�𝑚(𝑡, 𝜽). (B.74) 

 And the cost functional, the sum of squared prediction errors, is defined as 

𝐽𝑁(𝜽) =
1

𝑁
∑𝑒𝑃𝐸

2 (𝑡, 𝜽)

𝑁

𝑡=1

. (B.75) 

The predictor can be constructed, especially in state space, by an observer.  The observer uses 

both the input and the measured output signals to estimate the output prediction as following 

�̂�(𝑡 + 1, 𝜽) = 𝑨(𝜽)𝒙(𝑡, 𝜽) + 𝑩(𝜽)𝑢(𝑡) + 𝑲𝑂(𝜽)𝑒𝑃𝐸(𝑡); 

�̂�𝑚(𝑡, 𝜽) = 𝑪(𝜽)�̂�(𝑡, 𝜽), 
(B.76) 

or 

�̂�(𝑡 + 1, 𝜽) = [𝑨(𝜽) − 𝑲𝑂(𝜽)𝐶(𝜽)]�̂�(𝑡, 𝜽) + 𝑩(𝜽)𝑢(𝑡) + 𝑲𝑂(𝜽)𝑦𝑚(𝑡); 

�̂�𝑚(𝑡, 𝜽) = 𝑪(𝜽)�̂�(𝑡, 𝜽). 
(B.77) 

So, the already developed Gauss-Newton method can be used to search for the parameters of 

the innovation model {𝑨(𝜽), 𝑩(𝜽), 𝑪(𝜽), 𝑲𝑂(𝜽)} that will minimize the performance in-

dex (B.75).  Although the method is developed in discrete linear state space the reformulation 

to the continuous state space is straightforward. 

 

Figure B.7: Prediction error parameter identification strategy. 
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 Practical Aspects of Parametric System Identification B.4

For a process, which is operating locally around an operating point, its identification input 

signal should have frequency spectrum rich enough to consistently excite its dynamics that 

are needed to be identified.  Moreover, the input signal amplitude should also be small 

enough to keep the operation around the targeted operating point as well as large enough to 

get a good signal to noise ratio.  On the other hand, if the process is operating more globally 

around the operating point, which gives more emphasize to some of its nonlinear charac-

teristics so that a nonlinear identification model is needed.  Therefore, for this case, the input 

signal should have the proper frequency spectrum and the amplitude should have all level 

variations in order to identify the global nonlinear behavior of the process in the specified 

operating region. 

B.4.1 Identification in Closed Loop 

The most of system identification methods, like the previously presented in this chapter, are 

originally designed to work with data sets recorded in open loop experiments.  Therefore, 

applying these methods by using data sets gathered in closed loop operation will make one of 

their main design assumptions; the input is uncorrelated with the output measurement error, 

no longer more valid (Van den Hof 1998; Forssell and Ljung 1999).  This makes the process 

unidentifiable directly in closed loop.  This is why alternative indirect methods are developed 

to identify processes operating in the closed loop by using external signals, for example, by 

using the set point as an input to identify the closed loop with a known controller, therefore, 

the process model is computed by using the identified closed loop model and the known 

controller model indirectly.  However, there are some restricted experimental conditions that 

lead to a consistent direct parameter identification in closed loop operation (Nelles 2001), 

especially when the system is sufficiently excited either by the set point or by an external 

disturbance, and the controller must be complex enough.  Particularly for recursive least 

squares method, it is to remove the linear correlation between the input and the output signals 

in order to identify the process parameters uniquely.  This can be solved by letting the 

controller, for example, to have a higher order, switching or different settings during the 

identification phase, a nonlinear behavior or time-varying parameters. 

Fortunately, these conditions confirm with the application of the adaptive controller (Aström 

and Wittenmark 1995), especially when the adaptive controller is at the tuning phase, where 

the controller parameters are time-varying and switch between different values.  This is 

generally a nonlinear behavior (see also Söderström and Stoica 1989, section 10.3).  These 

controller parameter variations could lead to un-correlation between the input and the output 

measurement error.  This has been already seen in the experimental results, where the 

estimated parameter quick convergence always happens in closed loop operation particularly 

in the direct adaptive phases.  Also, this assumption could lead to the fact that after the 

convergence phase, especially for identification with small forgetting factor, the parameters 

will possibly diverge again if the mentioned conditions disappear.  So, it is wise to deactivate 

the adaption phase, when the parameters have converged, especially, when the process is 

clearly time-invariant for a period of time, and to reactivate it, when the process parameters 

vary or the operational conditions change again. 
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