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Abstract 

 

Ultrasound as an additional source of energy was used to support the chemical and electrochemical 

preparation of different types of materials, especially materials with potential application in fuel cells. 

First a fundamental study on sonoelectrochemistry is presented, which was performed in water and 

different copper electrolytes. In this study the applicability of the EQCM technique in an ultrasound 

field was demonstrated. The influence of ultrasound on the resonance spectra, the frequency and the 

damping of the quartz as well as on the noise of the admittance curve was studied in water through 

variation of the ultrasonic intensity and the distance between the electrode and the ultrasonic horn. 

Deposition and dissolution processes, in Cu-based electrolytes, were followed during cyclic 

voltammetry and the influence of ultrasound on the current efficiency was studied. The morphology of 

potentiostatically deposited Cu layers under the impact of ultrasound was characterized. In order to 

understand better what is the major influence of ultrasound on the electrochemical reactions a rotating 

disc electrode study was performed as well. Acoustic streaming, caused by ultrasound, was found to 

enhance the mass transport significantly and surface cavitation led to the development of corrosion 

and erosion. Further, ultrasound in combination with EQCM was used for the electrodeposition of 

metal/ceramic composites. Ni/CeO2 and Co/CeO2 composites were synthesized from Watts and 

sulfamate based electrolytes containing dispersed ceria using ultrasonic irradiation for the 

deagglomeration of oxide particles and their better distribution in the metal matrix. The composition 

of the obtained composites was characterized and the influence of the ultrasound on the particle 

incorporation was investigated. Moreover, using the planar circular end of the ultrasonic horn-tip itself 

as the electrode, during short electric pulses, metal nanoparticles were deposited. The electric pulses 

were followed by successive ultrasound pulses, by which the formed particles were removed from the 

electrode and their further growth in the next electric pulse was prevented. Under the action of 

surfactants added to the solution, the agglomeration of the particles produced was prevented and 

nanoparticles were successfully stabilized. Finally, the sonochemical preparation of molybdenum 

oxides by decomposition of molybdenum hexacarbonyl was performed in two different solvents, 

decane and hexadecane, with oleic acid as the stabilizer. Sonication lasted up to ten minutes and stable 

colloidal solutions were obtained. The particles were spherical or tubular in shape and most of them 

showed an amorphous structure. 

  



  



Zusammenfassung 

 

Ultraschall ist als zusätzliche Energiequelle verwendet worden, um die chemische und 

elektrochemische Herstellung von verschiedenartigen Materialien zu unterstützen, insbesondere für 

Materialien, die eine potenzielle Anwendung in Brennstoffzellen finden. Zunächst wird eine 

grundlegende Studie über Sonoelektrochemie vorgestellt, die in Wasser als Medium und in 

verschiedenen Kupferelektrolyten durchgeführt wurde. In dieser wurde die Anwendbarkeit der 

EQCM-Technik in Gegenwart von Ultraschall erprobt. Der Einfluss des Ultraschalls auf das 

Resonanzspektrum, die Frequenz und die Dämpfung des Quarzes als auch auf das Rauschen der 

Admittanz-Kurve ist durch Variation der Ultraschallintensität und des Abstands zwischen Elektrode 

und Sonotrode in Wasser untersucht worden. Anschließend Untersuchungen mittels zyklischer 

Voltammetrie zu Abscheidungs- und Auflösungsprozessen in Cu-basierten Elektrolyten vorgestellt, 

wodurch u.a. der Einfluss des Ultraschalls auf die tatsächliche Stromausbeute ermittelt wurde. Der 

Einfluss des Ultraschalls auf die Morphologie der potentiostatisch abgeschiedenen Kupferschichten 

wird diskutiert. Um besser zu verstehen, was der Haupteinfluss von Ultraschall auf die 

elektrochemischen Reaktionen ist, ist zum Vergleich eine Studie mit einer rotierenden Scheiben-

Elektrode durchgeführt worden. Es wurde festgestellt, dass das durch den Ultraschall hervorgerufene 

akustische Strömen deutlich den Stofftransport verbessert und die Oberflächen-Kavitationen zu der 

Entwicklung von Korrosion und Erosion führen. Weiterhin wurde Ultraschall in Kombination mit 

EQCM für die galvanische Abscheidung von Metall-Keramik-Kompositen verwendet. Ni/CeO2- und 

Co/CeO2-Verbindungen wurden aus Watts-Elektrolyten und sulfamatbasierten Elektrolyten, die 

dispergiertes Ceroxid enthielten, synthetisiert. Ultraschall wurde für die Desagglomeration der 

Oxidpartikel und ihre bessere Verteilung in der Metallmatrix benutzt. Die Zusammensetzung der 

entstandenen Verbindungen wurde bestimmt und der Einfluss von Ultraschall auf die Einlagerung der 

Partikel wurde untersucht. Schließlich wird die sonoelektrochemische Herstellung von Nanopartikeln 

diskutiert. Dazu wurde das flache kreisförmige Ende der Sonotrode selbst als Elektrode verwendet. 

Durch kurze elektrische Impulse wurden Metallnanopartikel abgeschieden. Den elektrischen Impulsen 

folgten Ultraschallimpulse, bei denen die gebildeten Partikel von der Elektrode mechanisch abgelöst 

wurden und somit ihr weiteres Wachstum bei den nächsten elektrischen Impulsen verhindert wurde. 

Unter der Einwirkung von Tensiden, welcher der Lösung hinzugefügt wurden, ist die Agglomeration 

der produzierten Partikeln verhindert worden und die Nanopartikel wurden erfolgreich stabilisiert. 

Zum Abschluss wird die sonochemische Herstellung von Molybdänoxiden durch die Zersetzung von 

Molybdänhexacarbonyl in zwei verschiedenen Lösungsmitteln, Decan und Hexadecan, und mit 

Ölsäure als Stabilisator erläutert. Die Beschallung dauerte bis zu 10 Minuten und es wurden stabile 

kolloidale Lösungen erhalten. Die Partikel waren kugel- oder röhrenförmig und die meisten von ihnen 

zeigten eine amorphe Struktur. 
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Aim of the work 

 

Due to the importance of nanomaterials and the constant demand for developing new synthetic routes 

comprising low cost materials and improved, environmentally friendly techniques, the present study as 

one small contribution to the expanding field was carried out. 

Materials with particle sizes from a few nanometers to less than 100 nanometers, in at least one 

dimension, are recognized as nanomaterials [1, 2]. Nanotubes, nanowires and nanocrystals are some of 

the known particular nanostructures whose collections can give arrays, assemblies and superlattices of 

these nanostructures. The physical and chemical properties of nanomaterials usually greatly differ 

from the bulk materials of the same composition and it is possible by reducing the particle size of the 

old and recognized materials to obtain new properties [3]. They exhibit unique structure, energetics, 

response, dynamics and chemistry. Appropriately tailored characteristics and response of the 

nanostructures could be the base for future advanced devices and technologies [4]. Over the past 

decade, the synthesis of nano-sized materials has become the focus of intensive research. A variety of 

synthetic methods are nowadays available, as well as the tools for the characterization and 

manipulation. Increased interest in nanoparticles arises from their numerous applications in diverse 

fields such as the production of catalysts [5, 6], semi-conductors [7], magnetic devices [8], 

supermagnets [9] and photo-electronic devices [10]. Properties of nanoparticles and their size strongly 

depend on the used preparation methods and the applied experimental conditions. Up to now, a variety 

of methods has been used for the synthesis of nano-materials, among them chemical vapor deposition 

[11, 12] sol-gel processes [13], hydrothermal reactions [14, 15], thermal decomposition [16, 17], 

physical evaporation [18], laser ablation [19, 20] and thermal evaporation [20]. 

T.J. Mason [21] distinguished a few main advantages which the use of power ultrasound in synthesis 

of nanomaterials gives. Under ultrasound irradiation it is possible to obtain nanomaterials in 

amorphous state which is important in catalysis, magnetism, coatings, etc. Generally, reaction times 

are much shorter. For the synthesis of mesoporous materials, instead days needed for the sol-gel 

preparation, several hours are sufficient when the sonochemical method is employed. Further, when 

nanomaterials are inserted in the mesoporous materials, their pores are not blocked. For the synthesis 

of some materials such as inorganic fullerenes, there is no need for high temperatures as with other 

methods. A. Gedanken [22] underlined some more advantages of sonochemistry as the tool in 

nanomaterials production. One of them is the deposition of nanoparticles on ceramic and polymeric 

surfaces. Metals, metal oxides and semiconductors have been deposited on ceramic surfaces [23, 24]. 

The sonochemical method is reported to be superior to all other techniques in the formation of 

proteinaceous micro- and nanospheres [25-27]. In general, sonochemically produced materials are 

nanosized, amorphous or crystalline in the structure, depending on the nature of the precursors, and 

they can also vary in the morphology. Nanospheres, nanotubes, nanowires, nanorods, nested 



2 
 

fullerenes, hollow spheres are just some of the shapes which sonochemically obtained materials can 

have. 

In recent years, the sonoelectrochemical technique has been widely used, a combination of the 

technique of electrodeposition [28, 29], known to be generally cheaper than other conventional 

techniques for nanoparticles synthesis, and ultrasound irradiation. Furthermore, a relatively new cost-

effective production technology has been developed for nanopowders where the ultrasound probe is 

used itself as the cathode (then known as the sonotrode), onto which by short electrical pulses metal 

nanoparticles are deposited and afterwards removed from the electrode by successive ultrasonic pulses 

[30]. The presence of an appropriate surfactant could further prevent agglomeration of the produced 

particles and thus the loss of the precious surface area of the nanoparticles. 

The present study was carried out with the aim to apply the method for the electroplating of metals, 

alloys and composites, a particularly important technique which may show a significant potential for 

the synthesis of electrocatalysts for the proton exchange membrane fuel cells (PEMFC) as well as 

modified materials for solid oxide fuel cells (SOFC) and the molten carbon fuel cell (MCFC) [31]. It is 

possible to deposit films or particles of metals, alloys and composites employing this technique and 

the amount of produced electrocatalyst could be monitored as well. Further, the codeposition of metals 

and ceramic particles has been applied extensively to modify metal properties like hardness, corrosion 

resistance, and high temperature oxidation resistance. The electrochemical quartz crystal microbalance 

technique (EQCM) was shown to be of great importance in the study of the deposition processes and 

several reviews on the technique are available [32, 33]. Additional information about mass changes 

during electrochemical experiments complement the purely electric parameters and enables the 

determination of current efficiencies and a better understanding of the overall process mechanism. 

EQCM has been widely used under silent conditions [34-36]. However, the EQCM technique had not 

been used before in an ultrasound field. The main idea for this study was therefore to check for the 

possibility to apply the EQCM technique in a strong ultrasonic field. If successful, the limits of use of 

the EQCM technique coupled with ultrasound irradiation were to be explored for the study of 

sonoelectrochemical reactions [37] and the fundamentals of the methods combination were to be 

investigated using as model systems Cu-chloride and Cu-sulfate-based electrolytes [38]. Further, if the 

method combination would be found convenient, this combination should be applied for the synthesis 

of materials with practical applications such as composites like Ni/CeO2 and Co/CeO2 [39, 40]. Since 

nanoparticles can be obtained applying pulsed electrodeposition [41] and their shape, size and size 

distribution can be tailored by optimization of the experimental conditions, the combination with 

pulsed ultrasound irradiation could be beneficial. Therefore, against the background of possible 

applications in fuel cells sonochemical and sonoelectrochemical methods should be employed for 

preparation of nano-scaled materials. 
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Chapter 1-Background 

1.1 Ultrasound 

 

Acoustic waves, with frequencies higher than the level on which the human ear can respond, are called 

ultrasound. Since the limit of the hearing of one young, healthy adult is approximately 20 kHz, this 

value serves as the lower limit of the ultrasound frequency [42, 43]. Ultrasound, being a travelling 

wave, is a mechanical wave and thus needs a medium, with elastic properties, through which it is 

transmitted causing vibrational motions of the medium molecules. In liquids and gases particular 

motions are in the direction of the wave inducing longitudinal waves. In solids, possessing shear 

elasticity, particular motions can be also perpendicular to the direction of the waves and transverse 

waves can be induced, thus sound transmits as both, longitudinal and transverse waves.  

The displacement x of a medium particle, at any time t, from its rest position can be described as a 

function of the passing ultrasound wave frequency: 

 

         (1.1) 

where x0 is the maximal displacement, the amplitude and f is the sound frequency.  

 

The longitudinal motion of the medium particles produces regions where the particles are compressed 

and a high pressure is developed and they are called compression regions. On the other hand low 

pressure regions, so called rarefaction regions are developed too and in them the particles are further 

spread apart than in a silent medium [44]. A repeating pattern of high pressure and low pressure 

regions moving through the medium determines sound as a pressure wave (Fig. 1.1). The frequency of 

the wave is the number of compressions or rarefactions which pass a given point per unit of time. In 

other words it is also the number of complete back-and-forth vibrations of a particle of the medium per 

unit of time [45]. A commonly used unit for frequency is Hertz (abbreviated Hz), where1 Hertz = 1 

vibration/second. The wavelength of the sound wave, λ, is the length of one complete wave cycle, 

whereas the amplitude is the maximum displacement of the medium particle from its rest position. 

 

Figure 1.1 Sound shown as a pressure wave, with noted areas of compression and rarefaction, amplitude and 
wavelength. 
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The induced pressure variation Pa, at any time t, can be also described as a function of the sound 

frequency f [45]: 

 

         (1.2) 

where PA is the pressure amplitude. 

 

The displacement and pressure are out of phase, when particles are farther separated than normal and a 

bigger displacement is formed, the pressure is decreased, corresponding to rarefaction.  

The intensity of the sound Ia is a measure of the sound wave energy and is proportional to the square 

of the pressure amplitude [45]: 

 

           (1.3) 

where ρ is the liquid density and c the sound velocity. 

 

Under the influence of the sound wave the molecules of the medium vibrate, experiencing viscous 

interactions and degrading part of the acoustic energy into heat.  

The period of the sound wave T, can be defined as the time for a particle of a medium to make one 

complete vibrational cycle or it is the time of one compression and one rarefaction cycle. The period is 

measured in units of time such as seconds in a repeating event, so the period is the reciprocal of the 

frequency, T=1/f. 

 

1.1.1 Application of ultrasound 

 

Dependent on the frequency range ultrasound found a wide range of applications in a variety of fields. 

In medicine, high frequency ultrasound found application in diagnostics as a non invasive technique 

[46]. The high frequency ultrasound waves transmit and as a response the reflection from the soft 

tissue structures is detected. The most often it is used in obstetrics to follow the pregnancy [47] but it 

is also frequently used in gynecology/urology, in abdominal, vascular system, brain, prostate, breasts, 

musculoskeletal and eyes. Ultrasound at lower frequencies and higher power is used in therapeutic 

medicine where interactions of ultrasound with biological tissues may be caused by either a thermal or 

a mechanical mechanism. Basically, anywhere where there is a need to promote blood circulation and 

reduce swelling and edema, ultrasound can help. Lately, ultrasound is also known to be used for 

cancer treatment [48]. In dentistry ultrasound is used for drilling and cleaning of teeth, in biology and 

biochemistry for homogenisation and cell disruption. There are many known applications of 

ultrasound in industry and engineering [49]. At first, ultrasound is widely used in processes of 

cleaning and degreasing of surfaces. It is used to help in cutting, drilling, grinding, metal casting as 

well as in welding of plastics and metals. Applications in mixing and emulsification, extraction, 
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impregnation, filtration, crystallization are also very well established. Ultrasonic energy is also used 

for environmental applications, to remove contaminants from air and to break down toxic compounds 

in water and soil [50]. 

Finally, ultrasound with lower frequencies and high power can be used in the field of chemistry to 

cause or enhance chemical reactivity. Power ultrasound can be used as a form of energy in chemical 

systems [51, 52]. 

 

1.2 Ultrasound in chemistry - Sonochemistry 

 

The field of chemistry where ultrasound is applied as an energy source to provoke chemical activity is 

called sonochemistry. The range of conventional power ultrasound is 20-100 kHz with an extended 

range for use in sonochemistry up to 2 MHz. Ultrasound is different from all other sources of energy 

in terms of duration, pressure and energy per molecule. Sonochemistry gives a range of energy, 

combination of time and pressure not available from any other source of energy. 

Since the frequency of the ultrasound is higher than 20 kHz and consequently the wave length between 

10-10-3cm, it can be concluded that chemical activity cannot be the result of a direct interaction 

between the ultrasound and molecular species. The physical phenomenon responsible for the chemical 

activity caused by the ultrasound is known as acoustic cavitation [53]. 

 

1.2.1 Acoustic cavitation 

 

Acoustic cavitation is developed during transition of the ultrasound through a liquid medium [54]. 

Cavitation occurs through three steps, forming of micro bubbles, growth and finally their violent 

collapse. Since sound is a pressure wave, it causes alternating compression and rarefaction cycles 

within a medium. During the rarefaction cycle, particles in a medium are farther away one from 

another. If the negative pressure exceeds the tensile strength of the liquid, the average distance 

between molecules reaches the critical molecular distance necessary to keep the liquid intact, the 

liquid will tear apart and a micro bubble can be formed. If just one bubble is formed this phenomenon 

is known as a single bubble cavitation and when a bubble cloud is formed we speak of multi bubble 

cavitation (mostly present in sonochemical reactions). The presence of so called weak spots in the 

liquid, such as gas molecules can facilitate this process and lower the negative pressure necessary for 

cavitation to be initialized. Particulate matter with possible trapped gas nuclei in the crevices and 

recesses may also help. Once formed, bubbles can grow in size in a way depending on the type of 

cavitation. One distinguishes stable and transient cavitation [55]. “Stable cavitation” refers to the 

formation of stable bubbles, existing over several acoustic cycles and their growth during rarefaction 

is equal to their shrinkage during compression cycle. Therefore they oscillate around a mean radius in 

a sound field before collapsing or they do nott collapse at all. On the contrary, “transient cavities” 



6 
 

exist only during a few acoustic cycles and grow via a process known as rectifying diffusion [56, 57]. 

Each time the bubble is growing during the rarefaction cycle stronger than it is shrinking during the 

compression cycle due to the unequal diffusion of gases and vapour from the bulk liquid into the 

bubble. In the case of multi bubble cavitation, it is also possible for bubbles to grow by coalescence 

[58]. After reaching a critical size, several times larger than its initial size, the cavity cannot grow any 

longer and collapses violently [59]. The reached critical size of the bubble is related to the nature of 

the liquid medium and the frequency of the applied ultrasound. The overgrown bubble can no longer 

absorb energy and stand pressure and liquid strikes in [60, 61]. The process of acoustic cavitation is 

shown schematically in Figure 1.2. 

 

 

Figure 1.2 Acoustic cavitation development (made according to Ref. 45). 
 

Two known theories explain chemical effects due to cavitation: the hot spot theory and the electrical 

theory. According to the generally more accepted hot spot theory, the diffuse energy of the sound is 

concentrated in the chemically useful energy due to the caused localized “hot spots” upon bubble 

collapse, with temperatures up to 5000 °C, pressures up to 1000 atm, lifetime less than ms and heating 

and cooling rates more than 1010 °C/s [62]. This high temperature and pressure are enough to induce 

dissociation of water molecules (so-called sonolysis of water) into primary hydrogen (H·) and 

hydroxyl (OH·) radicals and production of H2O2 [63]. The extreme conditions developed upon bubble 

collapse are responsible for advantages in the chemical activity caused by the ultrasound. According to 

the electrical theory, on the surface of a cavitational bubble an electrical charge is formed, giving rise 

to huge electrical field gradients across the bubble and causing bond breakage upon bubble collapse 

[64]. Furthermore, the bubble collapse has a mechanical impact on the liquid medium via released 

pressure as shock waves and intense shear forces formed in a bulk liquid [21]. If cavitation occurs in a 

liquid near to a surface, due to the asymmetric collapse liquid microjets can be also formed leading to 

surface damage. 
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1.2.2 Active areas during sonication 

 

Electron paramagnetic resonance (EPR) and spin trapping studies done on the volatile and non-volatile 

solutes showed existence of three sonochemically active areas in a sonicated liquid [65,66]: 

 

· The bubble interior, containing permanent gas and vaporised reaction mixture, where the most 

extreme conditions are created with temperatures up to 5000 °C, pressures up to 1000 atm, and heating 

and cooling rates of more than 1010 °C/s. Here gas phase reactions take place. If the reaction takes 

place in this area (the case where volatile solutes are employed) amorphous nanoparticles will be 

obtained [67, 68]. 

· The surrounding of the bubble, actually the interfacial area between the bubble and the bulk 

solution, with an average thickness of 200 nm. In comparison with the bubble interior, conditions are 

less extreme with temperatures up to 1900 °C, but still enough to initiate sonochemical reactions. In 

this area, less volatile or non volatile compounds such as salts react and products can be either 

amorphous or crystalline [69]. When surfactants are present, they also participate in reactions taking 

place in this area. 

· The bulk solution, where liquid reactions take place and involve radicals which escaped the 

implosion (around 10 %) [70]. Still, in this area, the mechanical effect, as the consequence of the 

intense shear forces and shock waves formed upon violent bubble collapse, is more pronounced. 

Furthermore, if there is a solid surface like particles in a liquid due to the asymmetric bubble collapse 

liquid microjets toward the surface are also formed which can break the particles in pieces and/or 

activate their surface. It is possible to keep the temperature in this area to normal values, for example 

with a cooling water jacket around the sonication vessel for adjusting of the desired constant 

temperature. 

 

The estimations of the reached temperatures in the bubble interior as well as in the interfacial gas-

liquid area were found experimentally using comparative rate thermometry [69], a technique 

developed for use in shock tube chemistry [71]. Similar values were obtained by theoretical 

calculations using hydrodynamic models for cavitational collapse [72]. 

Recent works in Ken Suslick´s group give evidence of existence of a plasma core in the cavitation 

bubbles. This means even higher temperatures of up to 20000 K (depending on the gas involved) [73, 

74]. 
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1.2.3 Parameters influencing cavitation 

 

The ultrasound frequencies used in sonochemical reactions are in the range from 20 kHz up to 2 MHz. 

The critical size of the cavitational bubble is influeneced by the ultrasound frequency. If ultrasound 

waves have lower frequencies, the rarefaction cycle lasts longer and sufficient negative pressure can 

be developed for cavitation to be easily initiated. The formed bubbles have longer lifetime and can 

reach a bigger critical size. The compression cycle is also long enough for the bubbles to collapse 

extremely violent, generating an enormous temperature and pressure. In contrary, when the frequency 

is very high, it can happen that on the one hand the rarefaction cycle is not long enough, reducing 

intensity or duration of the negative pressure and making it difficult for cavitation to start and on the 

other hand compression cycle occurs faster and the lifetime of bubbles is shorter and the reached 

critical size is smaller. Although high frequency causes less violent cavitational collapse there can be 

more cavitational events and thus more free radicals produced, which can escape to the bulk liquid 

causing there chemical reactions. Depending on what is essential for a certain process, either intense 

temperature and pressure (enhanced by lower frequencies) or the rate of single electron transfer 

(enhanced by higher frequency) there is an optimal value of the frequency for each process. It is found 

for oxidation reactions that a higher frequency may lead to the higher reaction rates [49]. For example, 

the rate of sonochemical oxidation of iodide in the presence of air was found to be more than 30 times 

higher at 900 kHz than at 20 kHz [75]. Further, the degradation of carbon tetrachloride was enhanced 

using 500 kHz instead of 20 kHz ultrasonic waves [76]. In some reactions, like dissociation of carbon 

disulfide there was no such effect observed when ultrasound frequency was enhanced [77]. When the 

reaction is taking place in a gas phase, for example decomposition of volatile transition metal 

carbonyls, 20 kHz ultrasound frequency is normally used [78]. 

 

The ultrasound intensity Ia is the dissipated acoustic power in the system per area of the ultrasound 

waves source (normally tip of the horn), Ia = Pw/A, with unit Wcm-2. In many works it was found that 

with increase in acoustic power, the reaction rate increases up to a certain value and then starts to 

decrease [79]. A possible explanation could be that at increased power, a dense bubble cloud is formed 

near to the ultrasound probe blocking energy to be transmitted to a fluid [80]. It was also found for the 

optimal value of the power to be dependent on the ultrasound frequency [81]. 

 

The nature of the solvent influences cavitation through the surface tension, viscosity and the vapor 

pressure. Since for cavities to be formed it is necessary that the negative pressure exceeds the tensile 

strength and overcomes cohesive forces between molecules of the liquid, a lower values of surface 

tension and viscosity and a higher value of vapor pressure facilitate cavitation initiation. On the other 

hand, the intensity of the cavitational collapse (reached temperatures and pressures as well as intensity 
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of developed shear forces and shock waves) is found to be influenced inversely [49]. It has been 

reported for cavitation to be the most intensive in solvents with a higher viscosity [82]. Further, it was 

found for solvents with very high vapor pressure to reduce cavitation effect [83].  

 

The presence and the nature of the dissolved gases have a great impact on cavitation. Gas molecules 

can serve as nuclei for cavitational sites and thus facilitate cavitation to be initiated. On the other side, 

more gas content could lead to less violent collapse and lower intensity of the shock waves as well as 

to lower temperatures developed. Since it is assumed that cavitational collapse occurs adiabatically, 

more energy can be converted upon cavitation collapse by monoatomic gases due to the larger 

polytropic constant (ratio of the specific heats) as explained by Equation 1.4. 

 

         (1.4) 

where Tmax is maximal developed temperature upon cavitational collapse, T0 is the ambient 

temperature, γ is the polytropic constant of the present gas, Ptot is the pressure in the liquid in the 

moment of the collapse and Pbub is the pressure in the bubble at its maximal size. 

 

Still, there is always a certain, small amount of heat which is transferred to a bulk liquid during 

collapse causing reduced temperature developed upon collapse. When the gas present has a higher 

thermal conductivity more heat can be lost. Further, the solubility of the gas has also a certain role. 

When the gas is extremely soluble it can lead to dissolving of the bubble before the collapse, reducing 

the number of cavitational events and thus the overall effect of the cavitation. On the opposite, bubbles 

from insoluble gases can grow very large and lead to a floating of bubbles at the surface and 

eventually their collapse there without causing real cavitational effect. M. H. Entezari and co-workers 

[77] reported the higher rate of the carbon disulfide dissociation under He than under Ar (both 

monoatomic) due to the larger solubility of He and thus more nucleation sites and easier cavitation 

development. 

 

The temperature of the liquid medium has also an opposite effect on the cavitation threshold and 

cavitation intensity. A temperature increase, leads to easier cavitation initiation due to increased vapor 

pressure but has a negative impact on an overall cavitation effect as the formed bubbles contain more 

vapor. It was observed that lower temperatures lead to more effective cavitational events [49]. Still, 

there were some indications that an optimal temperature value exists for each process. S. V. Ley and 

C. M. R. Low [84] reported an increase in the reaction kinetics upon an increase in the temperature till 

the point where the effect of the reducing vapor content in the bubble starts to dominate the system. 

With a further temperature increase the rate of the reaction decreases. 
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An ambient pressure increase would lead to a vapor pressure decrease and thus more difficult 

cavitation threshold but also more effective cavitational collapse. J. Berlan et al [85] suggested the 

existence of an optimal value for each given system. 

 

With an appropriate choice of the conditions, sonochemical reactions can follow desired reaction 

pathways and lead to the desired final materials. For example, in the fields where materials with large 

specific surface areas are required, the preparation of amorphous materials with nano-sized particles 

would be a goal of the study [3, 53]. Since high cooling rates (more than 1010 °C/s) are reached during 

sonication when the reaction takes place in the bubble interior there is not enough time for the 

organizing and crystallizing of a product and amorphous materials are produced. Such materials are 

very important in many fields of science, for example in catalysis where they are found to be more 

active than crystalline particles of the same size due to their high surface area. The high surface area of 

the amorphous product increases both, the chemical as well as the catalytic activity [86]. Beside the 

absence of the crystalline order, the amorphous materials own unique electronic, magnetic and 

corrosion resistant properties. 

Since reactions of volatile precursors under ultrasound occur inside of the collapsing bubble and high 

cooling rates are reached, products are always amorphous. Reactions of non-volatile precursors such 

as salts occur in the surroundings of the bubbles and the products can be amorphous but also 

crystalline.  

The choice of non-volatile solvents (eg. decan, decalin, hexadecan) gives a higher probability that only 

vaporised solutes will be in the bubble and it follows that Pbub is in fact the vapour pressure of the 

solute. According to Equation 1.4 it can be concluded that a lower vapour pressure leads to higher 

bubble temperatures and consequently to higher reaction rates. One can conclude that reactions, 

including volatile precursors under ultrasound should be run at lower temperatures in order to avoid an 

increase in vapour pressure and thus more vapour in the bubble leading to reduction of the cavitation 

effect. A part of the energy generated during collapse would be used for the purpose of the vapour 

condensation and would be actually lost for sonochemical reaction. 

Varying the precursor concentration the desired size of particles can be obtained. With the intention to 

obtain smaller particles, the solution should be more diluted. A very important fact is that the particle 

size and the size distribution of the sonochemical product can be controlled by the monitoring of the 

sonochemical reactions conditions [87-89]. 

 

1.2.4 Reaction types 

 

The liquid medium has a great impact on the development of the acoustic cavitation and thus on the 

character of a sonochemical reaction. Based on the properties of the liquid medium, sonochemical 

reactions can be generally divided in two main areas: homogeneous and heterogeneous [45]. 
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Homogeneous reactions 

 

In a homogeneous liquid phase, the cavitation bubbles remain spherical during growth till the collapse. 

At first, when the liquid is not pre-degassed, bubbles will contain trapped gas or air, the origin of the 

nucleation sites. Further, depending on the properties of reactants and solvent (at first place volatility) 

bubbles will contain their vapours. During the collapse of the bubble its interior will be subjected to 

the extreme conditions of temperature and pressure and this will lead to molecular fragmentations and 

formation of active radicals. If the liquid phase is water there will be H· and OH· radicals as well as 

H2O2 generated. There will be three regions formed: the interior of the bubble with the most extreme 

conditions, the interface between bubble and surrounding bulk liquid phase with intermediate 

conditions and the bulk liquid where intensive shear forces, shock waves and liquid jets are created. 

 

Heterogeneous reactions 

 

Heterogeneous reactions can be further divided into three main types with respect to the acoustic 

cavitation development. 

 

In a liquid, near to a solid surface, the cavitational bubbles will not remain spherical due to a resistance 

provided by the nearby surface. As liquid from the opposite side of the bubble rushes in, powerful 

liquid jets targeting the surface are formed. In this way the potential energy of the expanded bubbles is 

converted into kinetic energy of a liquid jet. The effect, similar to high pressure jetting, is the reason 

that ultrasound can be used for the purpose of cleaning. This effect can also activate solid catalysts and 

increase mass and heat transfer to the surface by disruption of the boundary layers. 

 

In a liquid, which contains suspended particles, cavitation can produce dramatic effects on these 

particles. Surface imperfections or trapped gas can act as nuclei for cavitation bubble formation on the 

particle surface and the subsequent collapse can then lead to shock waves which break the particle 

apart. A cavitation bubble collapse in the liquid phase in the vicinity of a particle can force it into a 

rapid motion. Under these circumstances a general dispersive effect is accompanied by inter-particle 

collisions which can lead to an erosion effect, surface cleaning, wetting of the particles and particle 

size reduction. 

 

In a biphasic liquid system the cavitational collapse near the interface can disrupt the interface and 

overcome attractive forces in liquids which hold large droplets together. The droplets burst into 

smaller ones which are dispersed increasing in this way the active surface contact area and chemical 

reactions can be accelerated. 
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1.2.5 Sonoluminescence 

 

An accompanying phenomenon to the acoustic cavitation is sonoluminescence, the occurrence of very 

short light flashes during cavitational bubble collapse [90]. During the rarefaction cycle of the 

ultrasound propagation, gases dissolved in a liquid such as oxygen, nitrogen and argon, etc. can enter 

the bubble. Under the extremely high temperatures developed upon bubble collapse the gas becomes 

partly ionized and the recombination of electrons and ions leads to the emission of light [91]. These 

are actually short flashes of light which last about 100 ps. This phenomenon can be partially 

understood by the conservation of energy where potential energy of bubbles is converted to heat and 

light [91]. For example, nitrogen molecules dissociate into nitrogen radicals and then react to form 

gases such as NH and NO. These highly soluble gases re-dissolve in the surrounding water after 

bubble collapse. As the bubble expansion begins again, the next reaction cycle starts. Calculations of 

the energy budget of sonoluminescence show that the amount of energy going into endothermic 

chemical reactions inside the bubble is two orders of magnitude higher than that going into light 

emission [62]. 

 

 

  



13 
 

 

1.3. Sonochemistry in materials science 

 

In most sonochemical reactions with inorganic products nanomaterials are produced. The assumption 

is that in every collapsing bubble several nucleation sites are formed and their growth is limited due to 

the fast collapse. Depending on the area where reaction takes place, amorphous or crystalline products 

are obtained. They can differ in size, shape and structure but they are always nano-sized [3].  

With the great potential, sonochemistry is recognised as a new technique for obtaining amorphous 

nanostructured materials with large surface area. These materials find application in all fields where 

this material’s characteristic is essential. In catalysis of some reactions, amorphous nano-materials, 

probably due to their enhanced surface area, showed better catalytic activity in comparison with the 

same nano-materials with crystalline structure. For example, amorphous iron powder in the Fischer-

Tropsch process (hydrogenation of CO) was ten times and in the hydrogenolysis and dehydrogenation 

of saturated hydrocarbons more than thirty times more reactive than crystalline iron [92]. 

One of the frequently used synthetic routes for producing amorphous nanomaterials is the sonication 

of volatile transition metal carbonyls in low-volatile solvents such as alkanes (Fig. 1.4) [3, 62, 93]. 

Decomposition of the volatile precursor takes place inside of the collapsing bubble and the generated 

metal atoms agglomerate forming in that way nanostructured materials. Just with a change of the 

reaction medium different types of nanomaterials can be obtained. If a surface active agent is present 

in solution nanoparticles can be caught before they agglomerate and stable metal colloids are the final 

result. Also in the presence of a support nanoparticles are immobilized and in that way serve as very 

active heterogeneous catalysts. In the presence of oxygen nano-scaled metal oxides can be produced. 

Similar holds when a sulphur source is present in the reaction mixture leading to nano-scaled metal 

sulphides. 

 

Figure 1.4 General scheme of the nanostructured inorganic materials synthesis [62]. 
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1.3.1 Preparation of amorphous products – metals, alloys and metal oxides 

 

It is possible to obtain amorphous metals by cold quenching of bulk metals. When this method is 

extended to metal oxides, the required cooling rates cannot be easily reached and therefore addition of 

glass former is necessary [94, 95]. These additives can be avoided when the sonochemical technique is 

applied and in addition nano-sized materials are obtained [3]. 

 

Metals 

 

The sonochemical production of several transition metals is very well established in literature. 

Sonication of neat or volatile transition metal carbonyls solutions (e.g. Fe(CO)5, Ni(CO)4, 

Co(CO)3NO, Mo(CO)6 …) in low vapor pressure solvents under inert atmosphere leads to highly 

porous aggregates of nanometer-size clusters of amorphous metals [96, 97].  

In one of the first works, X. Cao and co-authors [87] studied the dependence of the metal particle size 

on the precursor concentration during sonication of different concentrations of Fe(CO)5 in decane as 

the solvent. They proved the ability to control the particle size of the product and concluded that a 

lower precursor concentration yields smaller particles. In a work published one year later, with 

addition of polymeric ligands to the initial solution, and in otherwise the same procedure, a stable 

nanophase metal colloid of Fe was obtained [98]. In this manner, work was extended to other 

transition metals and amorphous nano-sized nickel was produced both by sonication of pure Ni(CO)4 

and of a 2M solution in decane [99]. It showed much better catalytic activity than commercial 

palladium on activated carbon for the H2O2 decomposition reaction. By sonication of Fe(CO)5 and 

Mo(CO)6 in hexadecane, metallic Fe and molybdenum carbide Mo2C were produced, with a mean 

particle size of ~ 10 nm and ~3 nm, respectively [100]. The influence of temperature on decomposition 

kinetics change was studied in this work as well and a higher temperature generally led to higher 

reaction yields. Decomposition of Co(CO)3NO solution in decane in the presence of oleic acid as the 

stabilizing agent under ultrasound irradiation, yielded a magnetic colloidal solution of 5-10 nm sized 

spherical particles [101]. With time different states of aggregation were observed leading from the 

initially spherical to elliptical cobalt nanoparticles. 

Several years later, in similar work, W.J. Erasmus et al. obtained 5 nm sized cobalt particles by 

decomposition of Co(CO)3(NO) in n-decane under ultrasound irradiation [102]. With addition of silica 

or oleic acid, they reduced the particle size to 3 and 2 nm, respectively. They also claimed that 

parameters as sonication time, precursor concentration, ultrasound intensity and temperature do not 

have an influence on the particle size. By a combination of the sonochemical method and the polyol 

process (consists of the reduction of metallic compounds such as oxides, hydroxides and salts in liquid 

alcoholic medium), tin nanorods were produced [103], an interesting anode material for Li 
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rechargeable battery electrodes [104]. Sonication of SnCl2 in ethylene glycol gave crystallized metallic 

tin rods with 50-100 nm in diameter and up to 3 μm in length. 

 

Alloys 

 

Ultrasound irradiation of solutions which contain precursors of more than one metal leads to the 

production of nanostructured amorphous metal alloys. Following a similar pattern of synthesis as for 

metals, a variety of metal alloys was obtained. R. Bellissent et al. produced binary amorphous Fe1-xCox 

by sonication of Fe(CO)5 and Co(CO)3NO in dry decane and suggested ferromagnetic behavior of the 

obtained alloy [105]. They also proved that by changing the ratio of precursor concentrations the alloy 

composition can be controlled and adjusted to the one required by the future application of the 

resulting material. Different compositions of Fe-Ni alloys were prepared by ultrasonic irradiation of a 

solution of Fe(CO)5 and Ni(CO)4 in decalin [106]. Fe20Ni80, Fe40Ni60 and Fe60Ni40 were some of the 

obtained compositions. During the study, it was noticed that the sonochemical efficiency for the 

decomposition is less for Fe(CO)5 than for Ni(CO)4. Thus an initial excess of Fe(CO)5 was taken in 

order to obtain the final desired alloy composition. These alloys were found to be very efficient 

catalysts for the oxidation of cyclohexane, one of the least efficient industrial processes [107]. 

 

Metal oxides 

 

In the case of sonochemical reactions in the presence of air, metal oxides are obtained. Amorphous 

metal oxides find a number of very important applications due to their specific magnetic and electronic 

properties. Produced with amorphous structure and consequently high surface area they are widely 

used in catalysis. Following similar procedures with decomposition of metal carbonyls as described 

above just in the presence of air instead of inert atmosphere a variety of oxides were produced. 

Sonication of neat Fe(CO)5 or its solution in decaline gave amorphous Fe2O3 [108]. In order to 

optimize the sonochemical process, M. Sivakumar and A. Gedanken analyzed more in detail the 

sonication of Fe(CO)5 in decaline [109]. They studied the influence of two parameters, the precursor 

concentration and the power density, and realized that those play an important role for the yield of the 

amorphous Fe2O3 product. Finding optimal values for these parameters led to even 100 % precursor 

decomposition. Further, nanostructured CoFe2O4 particles were obtained by heat treatment of Co and 

Fe oxides obtained by the sonochemical decomposition of the corresponding carbonyls in decalin 

[110]. By the sonochemical decomposition of W(CO)6 in diphenylmethane (DPhM) in the presence of 

an argon-oxygen gaseous mixture amorphous tungsten oxide was prepared [111]. After heating of the 

as prepared material, a mixture of monoclinic and orthorhombic WO2 crystals, with snowflake-like 

dendritic particles, was obtained. Annealing of the as-prepared material at 1000 ºC under Ar gave a 

WO2-WO3 mixture consisting of nanorods (~50 nm in diameter) and their agglomerates. When the 
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material was heated in air for 3 hours triclinic WO3 crystals were formed (~50-70 nm size). N. A. 

Dhas and co-authors obtained amorphous Mn2O3 and Cr2O3 by the sonication of KMnO4, and 

(NH4)2Cr2O7 respectively, in aqueous solution at room temperature with a corresponding particle size 

of 50 and 200 nm [112]. 

 

1.3.2 Synthesis of mesoporous materials and insertion of nanomaterials into them  

 

Ultrasound irradiation enables producing of mesoporous materials. Employing sonochemistry as a 

technique in much shorter time a large surface area is obtained and in a time similar to the ones 

necessary in more conventional methods much more stable products [113] are formed, probably due to 

the thicker walls of the sonochemical products [114]. Sonochemical synthesis of mesoporous silica 

[115], titania [116] and YSZ [117] have been reported in literature. A common scheme for obtaining 

porous metal oxides is shown in Figure 1.5. 

 

 

Figure 1.5 General scheme of the porous metal oxides synthesis [113]. 
 

According to the presented scheme (Fig 1.5), with an appropriate choice of precursors, surfactants, and 

pH of the medium, mesoporous Fe [118] and Sn [119] oxides with large surface area were 

synthesized. Mesoporous oxides of Ni and Co were at first produced from the corresponding alkoxides 

[120] and afterwards from the corresponding simple inorganic precursors [121] for the application as a 

catalyst in the oxidation of hydrocarbons. 

In addition, ultrasound was applied for insertion of synthesized amorphous nanomaterials into the 

pores of mesoporous materials. There are two possible ways for insertion, either precursors of the 

catalyst and mesoporous material are mixed together and during sonication the catalyst is embedded in 

the mesoporous body or in previously prepared pores, catalyst material is subsequently incorporated. 
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Detailed examinations showed that with this method pores are not blocked but just smooth layers are 

formed in inner mesoporous walls [122]. Mo and Co-Mo oxides were deposited into the MCM-41 type 

of silica as well as into the pores of Al-MCM-41 silica [123]. Furthermore, Fe2O3 was successfully 

anchored into the mesoporous titania [124] and WS2 and MoS2 slabs inserted inside SBA-15 silica 

[125, 126]. I. Grigoriants et al. used the sonochemical method for insertion of tin nanoparticles into 

mesoporous carbon to be used as a building block for the anode in rechargeable Li batteries [127]. 

 

1.3.3 Synthesis of noble metal nanoparticles 

 

Metallic nanoparticles, showing specific physicochemical properties and among them catalytic 

activity, optic, magnetic and electronic properties [128], constantly attract a lot of attention in recent 

years. Noble metal particles due to their high catalytic activity are particularly interesting [129, 130]. 

Under ultrasound irradiation from appropriate solutions of noble metal salts with presence of proper 

stabilizers fine and stable nanoparticles can be obtained. Due to the great importance of the noble 

metal nanoparticles, a lot of effort for synthesizing these materials was reported in recent period. Some 

of the first works were published at the end of 1980’s and beginning of 1990’s. K. Okitsu and co-

authors reported the synthesis of noble metal nanoparticles, such as Ag, Au, Pt, Pd, and Rh with a 

fairly narrow particle size distribution [131]. They studied optimal experimental conditions for each 

metal and proposed three main reaction pathways: reduction by H atoms, reduction by secondary 

reducing radicals formed by hydrogen abstraction from organic additives with OH· radicals and H 

atoms, and reduction by radicals formed from the pyrolysis of the additives at the interfacial region 

between cavitation bubbles and the bulk solution. The same group of authors studied synthesis of Au 

nanoparticles in more details comparing results obtained in different reaction pathways, in different 

atmospheres and also the influence of different additives [132]. They obtained an average particle size 

of 10 nm and with certain additives Au particles were stable for several months in the colloidal state. 

The synthesis of Pt nanoparticles by sonochemical reduction of Pt(II) ions was explored by Mizukoshi 

et al. [133]. They obtained, in the presence of sodium dodecyl sulfate (SDS) as additive, a stable 

colloid of homogeneously spherical and relatively monodispersed particles with an average diameter 

of 2.6 nm. Later on, the production of Pt nanoparticles with a diameter of 1 and 3 nm by reduction of 

Pt(IV) ions was also reported and in addition the influence of different additives was studied [134]. R. 

A. Salkar and co-authors synthesized amorphous Ag nanoparticles with ~ 20 nm size by the 

sonochemical reduction of an aqueous silver nitrate solution in an argon–hydrogen atmosphere [135]. 

Several years later, J. Park et al. reported the synthesis of Au nanoparticles with multiple shapes and 

sizes and claimed the possibility to control these two characteristics by adjusting an optimal ratio of 

noble metal precursor and surfactant concentration as well as the ultrasonic power [136]. 

Beside the interest in synthesis of noble metal nanoparticles, a pathway for producing bimetallic noble 

nanoparticles attracted also a lot of attention. Two main pathways were reported, a simultaneous and a 
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successive one. In the simultaneous pathway, precursors of both noble metals are mixed and 

introduced to the ultrasound irradiation. In the successive pathway, first a precursor of one noble metal 

is irradiated and then the precursor of the second noble metal is successively added. Depending on the 

chosen pathway, different structures of bimetallic noble nanomaterials were obtained. C. Kan et al. 

compared the effectiveness of proposed pathways in producing core-shell structures of Au/Pd 

bimetallic nanoparticles in ethylene glycol and proved that the successive method is more efficient for 

producing an Au-core/Pd-shell structure [137]. In the same year H. Takatani et al. studied the 

synthesis of Au/Pd and Au/Pt by the simultaneous method in the presence of different additives [138]. 

In addition, the influence of the precursor concentration, the additive concentration and the irradiation 

time were studied. By changing the experimental conditions the particle size varied between ~7 and 

~11.7 nm. 

 

1.3.4 Immobilization of sonochemically synthesized noble metal nanoparticles on 

different types of substrates 

 

The microstructure of metallic nanomaterial catalysts with oxide supports are of great interest for a 

variety of applications in heterogeneous catalysis. Due to high price and limited availability of 

precious metals which are known as best catalytic materials a lot of research work is done to develop 

materials with lower content of expensive material but with satisfying properties. It has been shown 

that with the sonochemical technique immobilization of noble metal nanoparticles on different types 

of substrates can be done and their properties, especially catalytic ones, are well examined and 

established [139, 140]. Y. Mizukoshi and co-authors did a lot of work in the field of synthesizing 

noble metal nanoparticles and their immobilization on different substrates using the sonochemical 

method [141]. They investigated the mechanism of Au nanoparticles immobilization on the surface of 

γ-Fe2O3 in order to control their morphology and evaluate their adsorption selectivity for several kinds 

of amino acids [142]. By changing the type of noble metal precursor and the amount of co-existing 

alumina, they reported the possible control of the Pd particle size immobilized on alumina by 

ultrasound irradiation [143]. With prolonged sonication, Pt, Au and Pd nanoparticles, sonochemically 

prepared, were immobilized onto TiO2. Prepared catalysts were used as the photocatalysts in H2 

production from ethanol. The activity of the prepared catalysts was dependent on the dimensions of 

supported nanoparticles and they were in general more efficient than catalysts synthesized by 

conventional methods [144]. After extended work where metallic amorphous nanoparticles such as 

Ag, Au, Pd and Pt were coated on various substrates as silica spheres, carbon spherules, titania and 

alumina [145-148], V. Pol et al. synthesized nanocrystalline Ag, Au, Pd and Pt via ultrasound 

irradiation and deposited them on polystyrene spheres [149]. Pt nanoparticles were greatly dispersed 

and embedded into CeO2 nanopowders by an ultrasound assisted reduction process and used as 

catalysts for the ethyl acetate combustion, reaching complete conversion at low temperature. It was 
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further concluded that the performance of the synthesized catalyst was dependent on the dispersion of 

Pt in the ceria support and due to the homogeneous incorporation of 2-4 nm Pt particles these catalysts 

demonstrated much better activity than those ones obtained by the traditional incipient wetness 

impregnation method [150]. 

 

1.3.5 Synthesis of different transition metal compounds 

 

As already explained (Fig. 1.4), it is possible, with a simple variation of the additives present in the 

initial precursor solution, to obtain different metal compounds dependent on the final desired 

application of a certain material. Showing similarity in activity with Pt group metals, Mo and W 

carbides were studied as possible heterogeneous catalysts [151-153]. Sonochemically prepared Mo2C 

and WC were often compared, in selectivity they demonstrate for dehydrogenation of alkanes, to Ru 

and Pt [93]. MoS2 is the best known as the standard automotive lubricant [93] and is also the 

predominant hydrodesulfurization catalyst heavily used by the petroleum industry to remove sulfur 

from fossil fuels before combustion [154]. Sonochemical synthesis of amorphous MoS2 from a 

solution of molybdenum hexacarbonyl and sulfur in 1,2,3,5-tetramethylbenzene with unusual 

morphology was reported [155]. It was also demonstrated that the sonochemically prepared MoS2 

catalyzes the hydrodesulfurization (HDS) of thiophene with activities roughly five-fold better than 

conventional MoS2 and comparable to those observed with RuS2, one of the best commercial catalysts. 

S. Nikitenko et al. [156] obtained amorphous WS2 by ultrasound assisted decomposition of W(CO)6 in 

diphenylmethane (DPhM) and in the presence of sulfur. From the amorphous material after heating at 

800 ºC in Ar inert atmosphere nanorods and their agglomerates of WS2 were obtained. They were 3-10 

nm in thickness and 1-5 mm in length. Further, J. Lu and co-authors used ultrasonic irradiation to 

synthesize in a safe way transition metals (Fe, Co and Ni) monoarsenides, from the reaction of 

transition metal chlorides, arsenic (which is the least toxic arsenic feedstock) and zinc in ethanol [157]. 

They could, due to their unusual physical properties, be used as semiconductors. 

 

Some of the important areas where the sonochemical method can be used have been presented. In 

some of them this technique dominates above all other known methods. It is very important to 

emphasize that sonochemical reactions and consequently the obtained products as well as their 

structure and properties can be controlled depending on their future application.  

The main characteristic of materials obtained under sonication is that they are mainly nano-sized and 

with appropriately chosen precursors amorphous. This leads to materials with large surface area and 

improved catalytic properties. It has been proven that some of sonochemically obtained catalysts are 

much more efficient comparing with those prepared with other techniques. In this way lowering of the 

content of expensive materials such as noble metals is possible without loosing of catalytic efficiency. 
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1.4 Ultrasound in electrochemistry-Sonoelectrochemistry 

 

Electrochemistry is a field of physical chemistry studying chemical properties, reactions and 

equilibrium states in ionic conductors (electrolytes) and at the interface between electrolytes and 

electronic conductors (electrodes). In an electrode process conversion between electrical and chemical 

energy occurs and the main carriers are charged species, electrons or ions. The flow of these charged 

species, electrons in an electrode or ions in an electrolyte, produces electric current I, given as a 

function of charge Q and time t [158]: 

 

           (1.4.1) 

 

The electrode processes take place at the interface between electrolyte and electrode where the double 

layer is formed and due to an unbalance in electric charge a potential difference is established. These 

potential differences are further correlated with thermodynamics and kinetics of electrode reactions. 

Basically, manipulation of potential differences at the interface allows an external control of an 

electrode reaction. According to Faraday’s law, the mass of the substance m altered in one electrode 

process can be quantitatively presented as: 

 

          (1.4.2) 

where F is the Faraday constant (96485 Cmol-1), M is the molar mass and z is the number of the 

transferred electrons.  

 

In an electrochemical experiment on typically uses the three electrode setup consisting of the working 

electrode WE, the electrode of interest, where the electrode process occurs, the reference electrode RE 

with a constant potential and the counter electrode CE, whose electrochemical properties do not 

influence the working electrode. The potential is measured between WE and RE and the current 

between WE and CE. Since the potential of the RE is constant, any change in a cell potential is due to 

the changes in the WE potential. 

A redox reaction occurring at the working electrode can be generally written as: 

 

        (1.4.3) 

where O is the oxidant, R is the reductant and νiO and νiR are the stoichiometric coefficients. 

 

A correlation between the activities (concentrations) of the electroactive species and the electrode 

potential in equilibrium is given by the Nernst equation [159]: 
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         (1.4.4) 

where E0 is the standard electrode potential, R is the gas constant, T is the temperature, ǡO and ǡR are 

the activities of the oxidant O and reductant R and νO and νR the stoichiometric coefficients.  

 

Neglecting activity coefficients, the Nernst equation is expressed as: 

 

         (1.4.5) 

where cO and cR are concentrations of the oxidant (O) and reductant (R) at the electrode surface, 

respectively. 

 

The potential of the electrode is connected with energy of electrons. Driving the electrode to a more 

negative potential leads to the raising of electron energy and flowing of the current from the electrode 

to the electrolyte – a so called cathodic current. In contrary, a more positive potential leads to the 

current flow from the electrolyte to the electrode and therefore to an anodic current. The critical 

potentials where these processes occur are connected with standard electrode potentials E0 [159]. 

In dynamic equilibrium state, the rate of the reduction reaction is equal to the rate of the anodic 

reaction. The net current is 0 and the potential is the equilibrium potential given by the Nernst 

equation. When the potential is different from the equilibrium one, the rates of the reduction and 

oxidation reactions are not the same and there is a net current flowing. Several possible steps lead to 

an electrode reaction: 

 

1. Electroactive species have to be brought to the electrode-mass transfer process 

2. Charge transfer at the electrode/electrolyte interface 

3. Homogeneous or heterogeneous chemical reaction following the charge transfer  

4. Surface reactions-adsorption, desorption… 

 

There are three forms of mass transfer: migration (movement of the charged body under electrical field 

influence), diffusion (movement of a species due to a concentration gradient, or, more accurately, a 

gradient in chemical potential) and convection (can be natural-caused by density gradient and forced).  

The rate of the electrode reaction is determined by the rates of processes included. The magnitude of 

the current is generally limited by the slowest process-rate determining step. 

One simple electrode reaction consists of mass transfer of the electroactive species to the electrode, 

charge transfer at the electrode/electrolyte interface and mass transfer of the formed species to the bulk 

solution. 



22 
 

When the transfer of the charge carriers through the electrical double layer is the only factor 

influencing reaction rates, the net current flow is given in a function of the potential by the Butler-

Volmer equation: 

 

    (1.4.6) 

where j is the current density (current per area of the electrode) given as the sum of the anodic and 

cathodic current densities ja and jc, j0 is the exchange current density (measure of the anodic and 

cathodic partial reaction rates in equilibrium), c* concentrations of the reductant R and oxidant O in 

bulk solution, α is the transfer coefficient or barrier symmetry factor and ηD=E(i)-E(i=0) is the 

activation overpotential. 

 

For high overpotentials one part of the Butler-Volmer equation can be neglected (depending on which 

overpotential is high-anodic or cathodic) and the equation can be simplified and a logarithmic 

dependency between current and overpotential is obtained and given as Tafel equation: 

 

         (1.4.7) 

where a = logj0·RT/αF and b = RT/αF. 

 

When the charge transfer reaction is fast, a concentration gradient is formed and mass transfer starts to 

play an important role. With adding the supporting electrolyte in concentrations much higher than the 

concentration of the electroactive species, one can usually neglect migration as a mode of mass transfe 

r and the net current is given via law of diffusion as: 

 

        (1.4.8) 

where J is the charge flux given by the Fick’s first law of diffusion: , D is the 

diffusion coefficient and x is the distance from the electrode.  

 

At moderate overpotentials, a relation between the electrode potential and the concentration of the 

electroactive species is given by the Butler-Volmer equation for a small exchange current density and 

by the Nernst equation for a large exchange current density. 

At high overpotentials due to the very fast charge transfer kinetics, the concentration of the 

electroactive species at the electrode can be assumed to be 0 and current is given as follows: 

 

          (1.4.9) 

where δ is the diffusion layer thickness. 
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Furthermore, in the cases when the dependence of the diffusion layer thickness on the time has to be 

taken in account and there is no natural convection, the current for the diffusion limiting conditions for 

a planar electrode is expressed by the Cottrel equation: 

 

         (1.4.10) 

 

For the study of one electrochemical system one usually starts with cyclic voltammetry (CV). This 

electrochemical method allows observing the basic characteristics of a studied system giving first 

informations about the mechanism of the electrode reactions and kinetic parameters in a relatively 

short period of time. The method is based on the variation of the working electrode potential with a 

fixed rate (scan rate) between an upper and a lower potential limit. The starting potential is usually 

chosen with respect to an open circuit potential, where no net reaction takes place, thus no current 

flows. The recorded cyclic voltammogram shows the current response of the system as a function of 

the electrode potential. The potential of the electrode and the electrode kinetics determine the shape of 

the cyclic voltammogram. When the potential is sufficiently below the equilibrium one for a certain 

reaction, current starts to flow and it increases with change in potential. With time electroactive 

species at the electrode are consumed and it comes to their depletion near to the electrode and the 

current starts to decrease due to the lower concentration gradient. The layer where the concentration 

gradient in the vicinity of the electrode changes is called the diffusion or Nernst layer and it is growing 

with the time at stationary electrodes without forced convection. In praxis, it is found for the diffusion 

layer to have an upper limit due to the natural convection developed at the electrode stimulated by the 

developed density gradient. 

For the study of the reaction mechanism of the redox reactions where mass transfer has a significant 

influence, one of the hydrodynamic techniques commonly used in electrochemistry is the rotating disc 

electrode (RDE) setup. Due to the forced convection generated by the rotation of the working 

electrode and the laminar flow of species toward the electrode, the mass transfer is faster and has less 

influence on the electron transfer kinetics. The diffusion layer thickness is constant with time and 

dependent on the rate of the electrode rotation. The current increases in the beginning when lowering 

the potential (for a reduction reaction) but steady state conditions are reached relatively fast and the 

current reaches a maximal value and becomes constant not depending on potential any more. This 

maximal value for the current is known as the limiting current and is dependent on the rotation rate. 

The correlation between the limiting current and the rotation rate is given by the Levich equation for 

the totally mass-transfer limited conditions. The limiting current or Levich current is proportional to c0 

and ω1/2 and described as follows: 

 

        (1.4.11) 
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where ν is the kinematic viscosity, ω is the angular rotation rate (ω = 2πf), and c0 the bulk 

concentration of the electroactive species.  

 

From a so-called Levich study (a series of rotating disc voltammograms for different rotation rates) 

one can plot the measured jl versus ω1/2 and obtain the Levich plot. One could expect a straight line 

when limiting behavior is reached for all applied ω and from the slope the calculate diffusion 

coefficient.  

The diffusion layer thickness δ could be calculated as well: 
 

        (1.4.12) 

 

When there is a mixed kinetic and mass transport control at the RDE, the Koutecký-Levich equation 

can be used and it is given as: 

 

                                                                    (1.4.13) 

where jk would be the current in the absence of any mass transport effects, when the concentration at 

the electrode would be equal to the bulk concentration and the current would flow under the kinetic 

limitation. Similar as with the Levich plot, a plot 1/j versus 1/ω1/2 gives the Koutecký-Levich plot, 

which also allows determination of the kinetic parameters. 

 

Electrochemical methods can be employed for the synthesis of a broad spectrum of materials. By 

varying the conditions during electroplating of metals, alloys and metal ceramic composites, it is 

possible to control the microstructure dependent on the future application. When ceramic particles are 

present in the metal electrolyte, the co-deposition of metal-ceramic composites can be done. Further, 

synthesis of materials applied in electrochemical devices, such as electrolytes and electrodes for fuel 

cells and batteries, is possible. 

Due to the number of complex phenomena caused by power ultrasound introduced in a liquid media 

such as active radical species generation, turbulent flow [160], bubble oscilation and cavitation [161], 

microjets and shock waves generation and especially effects caused at the solid–liquid interface due to 

the asymmetric bubble collapse[162], ultrasound found the place in electrochemistry as well. Specific 

areas of application include electroplating [163, 164], the deposition of polymer films [165, 166] and 

electrosynthesis [167, 168]. In turn, electrochemical experiments with microelectrodes are exploited 

for the study of the acoustic cavitation and other phenomena occuring in an ultrasound field [169, 

170]. Besides a possible insertion of the electrochemical cell in an ultrasonic bath [171-173], 

ultrasound can be more directly introduced to a cell using a so-called horn probe. The electrochemical 

cell can be divided in a part where the electrochemical setup is placed and is separated from the horn 

by a glass separator [174] or a polymer coating [175]. Still, the largest effect is gained when the horn 
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probe is directly immersed in the solution where an electrochemical reaction is taking place. Aside 

from the so-called “side on geometry” [176], usually the “face on” geometry, where the ultrasonic 

probe is face to face to the working electrode, is used. Distances between horn and electrode vary in a 

range of 1-80 mm, found to be the best for the purpose of the deposition of different materials, metals, 

alloys, and composite coatings.  

Similar to equation 1.4.11, a correlation between limiting current jlim and ultrasound intensity Ia has 

been reported and verified in literature [170, 177, 178]: 

 

        (1.4.14) 

where K is a constant depending on ν, A is the tip (planar circular are on the bottom of the horn) area 

and Ia the ultrasonic intensity. 

 

Local mass transport at the electrode is often recognized as the critical parameter for the 

electrochemical deposition of metals and alloys. Depletion of the electroactive species and growing of 

the diffusion layer thickness can lead to enhanced side reactions and possible deposition of metal 

hydroxides [179]. During propagation of the ultrasound waves through a viscous liquid, due to the 

formed sound pressure field and repeated cavitational bubble collapse, turbulent convection is formed. 

Momentum being absorbed by the liquid media and manifested as turbulent flow in the direction of the 

sound field is described as acoustic streaming [180, 181] and is reported to cause local flow rates of 

more than 10 m/s [182]. In electrochemical systems, ultrasound causes enhanced mass transport 

regime and it is presumed that the diffusion layer at the electrode is thinned. Mass transport to an 

electrode in the presence of the ultrasound can be described by equation 1.4.14 [181]. Ultrasound, 

causing a decrease of the diffusion layer thickness formed near the electrode and diminishing of the 

electroactive species depletion provides the possibility to control electrochemical deposition 

mechanism at the electrode [179]. This has more significance in the low concentrated solutions which 

run easier into diffusion limitation regime. In the presence of the ultrasound it is found that obtained 

deposits have changed and mainly improved properties [173,182].  

Furthermore, ultrasound is responsible for surface cleaning and thus electrode surface activation but 

also for roughening end erosion of the electrode [173,183], caused by acoustic cavitation close to the 

electrode surface and then also microjets in the vicinity and/or at the electrode surface. Presence of the 

ultrasound and caused phenomena are responsible for the change in local temperatures, which can 

further influence processes of nucleation and growth and speed up electrode reactions. In more 

concentrated solutions, with charge transfer control, ultrasound influence is reported to be less 

pronounced [182]. For the studied systems, no obvious direct influence of the ultrasound on the simple 

electron transfer was reported and that the rather dominant effect of ultrasound is enhanced mass 

transport [184].  
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More advanced in the sonoelectrochemical setup is the use of the horn tip, normally a planar circular 

surface at the bottom, as an electrode after it has been electrically insulated from the rest of the horn 

(sonotrode) [185]. This setup is frequently employed in many research works [186]. In addition, the 

applied pulsed mode permits production of nanomaterials [187]. The principle of the method lies in 

the interplay between short successive electrical and ultrasonic pulses. First an electric pulse is applied 

causing the formation of many small nuclei on the horn tip, the growth of which can be controlled by 

the pulse length, and then an ultrasonic pulse, which bursts the formed deposit into the solution. With 

the addition of appropriate surfactant to the solution it is possible to obtain a stable colloidal 

suspension of nanosized particles [188]. 

 

1.4.1 EQCM 

 

The quartz crystal microbalance (QCM) is a well-known technique which has been used for a long 

time to monitor thin film deposition in gas or vacuum [189, 190].With the extended use of QCM in 

liquid systems the number of applications significantly increased [191-193]. A quartz crystal is an 

acoustic based sensor device capable of detection mass changes in ng range by monitoring changes in 

oscillation frequency [194].The method is based on the piezoelectric behavior of the quartz crystal.  

Piezoelectricity is the ability of certain crystals to respond to an applied mechanical stress by 

generating an electrical potential difference across the crystal with a quantity proportional to the 

applied mechanical stress. This phenomenon was discovered in 1880 by Jacques and Pierre Curie. 

Soon after the initial discovery the converse piezoelectric effect was experimentally proved. When a 

voltage is applied across piezoelectric crystals their mechanical deformation is caused and this effect is 

employed in the QCM technique [195]. Typical piezoelectric crystals are quartz, lithium niobate [196], 

langasite [197] and gallium orthophosphate [198]. A precondition for the piezoelectricity is that the 

space groups in the crystals show no inversion symmetry. Due to the crystal symmetry an applied 

potential of one polarity will induce strain and shear motions of the crystal in one direction and of the 

opposite polarity in the opposite direction. The magnitude of the strain in the crystal is proportional to 

the applied potential and its direction is determined by the polarity. The application of an AC voltage 

induces in the case of a properly cut quartz transverse acoustic waves (shear waves). These shear 

waves can be reflected at the crystal surface back into the quartz [199]. A quartz crystal disc is 

sandwiched between two electrodes, usually gold electrodes and for a given thickness dq (quartz with 

electrodes) a standing wave can be created for a specific frequency, the resonance frequency f0.  

The condition for the formation of a standing wave is that the thickness of the quartz including the 

electrodes equals half of the wavelength. The resonance frequency then depends on the shear modulus 

μq and the density ρq of the resonator, and is given by equation 1.4.15. 
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        (1.4.15) 

where vtr is the transverse velocity of the sound in AT-cut quartz (3.34×10-4 m/s). 

 

The QCM is widely used in electrochemical systems for the study of electrochemical interfaces and it 

is then called EQCM (electrochemical quartz crystal microbalance) [37-40]. In electrochemical 

experiments one of the electrodes on the quartz is used as the working electrode, whereas the electrode 

on the other side needs to be isolated from the electrolyte. By applying an alternating potential, 

oscillation of the quartz at the applied frequency is generated. An oscillator circuit is often used to 

cause mechanical oscillations of the quartz at its resonance frequency f0 and a frequency counter for 

measuring f0. The resonance frequency of the quartz is sensitive to mass changes of the quartz and its 

electrodes [32]. During an electrochemical experiment the change in the mass per unit area (Δm) can 

be calculated from the observed change in the resonance frequency (Δf) of the quartz. An important 

equation which connects these two parameters is known as Sauerbrey equation: 

      (1.4.16) 

where Δf is the frequency change, f0 is the resonance frequency of the quartz before the measurement, 

Δm is the mass change and ZQ is the mechanical impedance of the quartz (8.849·10
5 gcm-2s-1) 

determined by the density and shear modulus of the quartz. 

 

This equation shows that an increase in mass leads to a decrease in the frequency and that these values 

are directly proportional. The Sauerbrey equation enables quantitative determination of mass changes 

during EQCM measurements [200]. The Sauerbrey equation is derived under certain assumptions and 

has some limitations. It is valid only for acoustically thin, rigid films, and assumes no slip conditions, 

i.e that particle displacement and shear stress are continuous across the interface to the deposited layer. 

Since the mechanical properties of the quartz resonator can be expressed in electrical equivalents, 

characterization can be done by network analysis. By the measurement of the electrical admittance 

(impedance) between the gold electrodes in a small frequency range around the resonance frequency 

the characteristics of the quartz as well as the interaction between the quartz and the contacting 

medium can be evaluated. The shape of the real part of the admittance (Re(Y)) as a function of the 

frequency f is a Lorentz type curve (Fig. 1.6) and is characterized by the position of the peak 

maximum, its resonance frequency fr, and the full width of the peak at half maximum, which is a 

measure for energy losses of the quartz crystal due to viscoelastic behavior or roughness called 

damping, w [201, 202]. If one deposits a layer, and roughness does not contribute significantly to the 

frequency shift (pure mass response) then peak height and damping will stay the same, and the entire 

curve is simply shifted to lower frequencies. If the damping increases, it can be detected by 

broadening of the curve, and if Δw is more than 10% of Δf then the application of Sauerbrey equation 
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is no longer accurate [203]. Then one characterizes the resonance behavior of the quartz more 

accurately by definition of a complex frequency shift [204]. 
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Figure 1.6 Real part of the quartz resonator admittance in the vicinity of the resonance frequency f0 before any 
deposition (right curve) and after deposition (left curve), with marked damping w (width of the peak at a half 
peak height). 
 

EQCM gives the advantage to obtain mechanistic information about film deposition and dissolution, 

surface morphology changes, and mass changes in thin films caused by redox or other chemical 

processes in addition to electrochemical data [32, 201]. When one assumes that simple metal 

electrodeposition without side reactions is taking place on the electrode, thus that the current 

efficiency is 100%, the ratio of mass density (mass per area) and charge density can be calculated from 

Faraday’s law: 

 

          (1.4.17) 

where Δm is the measured mass change and ΔQ the charge flux, M is the molar mass. 

 
On the other hand, EQCM data provide both the mass change and the total charge flux obtained in the 

electrochemical measurement, thus also their ratio. When the value of this ratio, obtained from the 

experimental data, is compared to the calculated ratio, the current efficiency can be calculated. 

From these mass/charge ratios it is possible also to conclude about the nature of the species deposited, 

ion exchange processes (e.g. in polymers), and mechanisms of electrochemical reactions. Further at 

known molar mass the number of transferred electrons per deposited metal atom can be determined. 

Due to the dependence of the measured parameters on the potential and time, integral values can be 

replaced with differential values and in that way the obtained parameters can be determined time or 

potential dependent [205]. 

 

         (1.4.18) 
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If further the mass charge ratio obtained in experiments is compared to the theoretically calculated 

one, an (apparent) current efficiency ε can be obtained. 

 

       (1.4.19) 

Finally, from the mass change and assuming 100 % current efficiency, a corresponding electrical 

current can be calculated as: 

 

          (1.4.20) 

 
Going back to the initial assumption about having a single reaction taking place on the electrode, one 

can already presume that for more complicated cases this analysis would not work anymore without 

considering individual reactions. Then, each reaction would have a certain contribution to the mass 

and charge. Further, when the current is crossing zero (dQ=0, change from net reduction to net 

oxidation or vice versa), a mathematic discontinuity appears in Equation 1.4.19 and ε tends to infinity. 
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Chapter 2-Experimental 

 

2.1 Experimental setup 

 

In the present study, most experiments were performed using a three electrode setup consisting of a 

working electrode (WE), a counter electrode (CE) and a reference electrode (RE). The experimental 

setup for most sonoelectrochemical experiments (fundamental study and synthesis of the composites) 

is shown schematically in Figure 2.1 and is similar to one used in [173]. A home-made Teflon cell, 

inserted in a steel cooling jacket, connected with a thermostat, served as electrochemical cell. 

Additional temperature regulation was provided via a glass cooling coil inserted directly into the cell. 

Usually the volume of the electrolyte used in experiments was 125 ml. Except for the experiments 

with nickel, done at 50 ºC, all other experiments were done at room temperature of 25 ºC. The quartz 

resonators (KVG Quartz Crystal Technology) used are AT cut (obtained by slicing of the quartz rod 

with an angle of ~ 35º with respect to the crystallographic x axis), 169 µm thick and have a resonance 

frequency of about 10 MHz. They have keyhole shaped Au electrodes (with a Cr adhesion layer 

underneath) on each side that are used in establishing alternating potential differences across the 

quartz [206]. Only in the circular part, in the middle of the quartz, there is an electrode on both sides, 

and only that part of the quartz is piezoelectrically active. The quartz was placed in the bottom of the 

cell and one of its Au electrodes was exposed upwards to the electrolyte and served as the working 

electrode (WE). Fluoropolymer (Simriz™) O-rings with dimensions of 10 x 2 mm were employed for 

the isolation of the backside of the quartz resonators from the electrolyte. All potentials measured in 

this study are given with respect to an Ag/AgCl (E0 = 0.197V vs. NHE) reference electrode (RE) 

saturated with KCl. The counter electrode (CE) was either a high purity copper sheet (Alfa) for 

measurements in Cu containing electrolytes without deaeration, or a Pt-plated Ti wire (Intrepid 

Industries) for measurements in Ar atmosphere and for measurements in Cu-free electrolytes. 
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Figure 2.1 Electrochemical quartz crystal microbalance setup for sonoelectrochemical experiments: (1) 
homemade Teflon cell, (2) contact unit, made from teflon body, and two BNC connectors with soldered Pt foil to 
provide contact to electrodes on quartz, (3) 10 MHz EQCM quartz and sealing O-ring. Working electrode 
contact from backside through use of conductive silver paint, (4) glass cooling coil, (5) lower end of ultrasonic 
horn with tip facing quartz (6) stainless steel cooling jacket serving at the same time as holder for the EQCM cell 
[38]. 
 

A picture of the used sonoelectrochemical setup is shown in Figure 2.2 with an enlarged part where 

the position of the horn, RE and CE electrode can be closely seen. The reference electrode was placed 

in a way that there was no shielding from the working electrode through the ultrasonic horn and the 

counter electrode was placed in a way not to be between the horn and WE. 

 

 

Figure 2.2 Photo of the sonoelectrochemical setup with cobalt solution (left) together with an enlarged part of the 
setup in Teflon cell without solution (right). 
 

An ultrasonic horn probe, Ti-6Al-4V alloy (full wavelength probe, 20 kHz) with a planar 

exchangeable tip (area 1.2 cm2 or 1.09 cm2) was placed above the WE in the face-on geometry. The 

distance between horn and WE was varying between 8, 10, 15 and 22 mm. A part of the experiments 

was performed in inert gas atmosphere with the entire setup placed in an Ar-filled glove bag. Some of 
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the experiments, under silent conditions, were done in the Teflon cell closed with a Teflon lid, with 

openings for reference and counter electrode as well as for argon inlet and outlet and without cooling 

coil and ultrasonic horn. The cell was continuously purged with Ar before, during and in between 

experiments. Ar purging was stopped for the duration of the experiment during measurements without 

ultrasound. The resonance frequency of the quartz fR and its damping w were determined after the 

experiments from the spectra by fitting the real part of the admittance to a Lorentz function. 

 

Experiments with a rotating disc electrode setup were done in a five neck glass cell with a water 

cooling jacket (Pine Research Instrumentation, AFCELL3) under air and under Ar. In these 

experiments a commercial Pt-disc served as the working electrode, a Pt/Ti-wire as counter electrode 

and Ag/AgCl as reference electrode. The same cell was also used for the preliminary experiments on 

the sonoelectrochemical production of colloidal nanoparticles. A planar circular area on the bottom of 

the ultrasonic horn served as the working electrode and the same reference and counter electrode as in 

other sonoelectrochemical experiments were used. 

 

A five-neck glass reaction vessel with cooling jacket was used for the sonochemical decomposition of 

Mo-carbonyl in hexadecane for 3 hours lasting experiment. The sonication probe with a teflon adapter 

was placed in the central neck. In order to track the temperature change, one of four side-necks was 

closed with a septum lid through which the temperature sensor was immersed. The sensor was 

connected to the control unit of the ultrasonic processor and the temperature was directly read from its 

display. The other side-necks were closed in order to prevent the loss of solvent due to possible 

evaporation under sonication conditions. In order to provide cooling of the reaction system, the 

cooling jacket of the vessel was connected to a thermostat adjusted at 22°C. For all other experiments 

a cylindrical vessel open to air was used. The ultrasonic probe was mounted to be on the half height of 

the solution (~2 cm from the bottom of the vessel) and there was no temperature regulation of the 

reaction vessel applied. To prevent the overheating of the transducer, it was wrapped with pipes filled 

with cooling water. 

 

2.2 Electrochemical techniques used in the study 

 

An open circuit potential measurement (OCP), was normally done for several minutes in the beginning 

of the electrochemical experiments, in order to check the conditions in the electrolyte. 

Linear sweep voltametry (LSV) is one of the potential sweep methods where potential is varied 

linearly with a time at a constant sweep rate (in a range from a few mV up to about 1000 V/s for 

conventionally applied electrodes). During LSV measurement the current is recorded and can be 

presented as a function of time or potential. 
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Cyclic voltammetry (CV) was done as the starting point for the study of each system (method 

explained in more details in Chapter 1.4). Recorded cyclic voltammograms provided first informations 

about the system. The influence of ultrasound on the electrochemical parameters was followed by 

recording CV’s without and with the presence of ultrasound as well as with intensity variation. The 

influence of ultrasound on the current efficiencies was studied as well. 

Electrochemical depositions were done either potentiostatically (at a certain given potential) or 

galvanostatically (at a certain given current density). At certain given conditions electrodeposition was 

at first done without ultrasound and thereafter under ultrasound irradiation with different intensities. 

The morphology of the obtained deposits was examined and they were compared. For the production 

of nanoparticles pulsed deposition was applied. Metal nuclei were galvanostatically deposited during 

short electric pulses which were then followed by ultrasonic pulses removing particles from the 

electrode surface and preventing their growth (more details on the technique are given in Chapter 

5.2.1). 

Rotating disc electrode (RDE) experiments were done with a variation of the rotation rate between 500 

and 3000 rpm (more details on the technique can be found in Chapter 1.4). Influence of the forced 

convection provided by the rotation of the working electrode was compared with an influence of the 

acoustic streaming caused by ultrasound waves introduced into the solution. 

In EQCM (explained in details in Chapter 1.4.1) measurements the change in the resonance frequency 

of the quartz resonator was recorded simultaneously to the electrochemical measurements and change 

in mass was then calculated by Sauerbrey’s equation. Additional informations obtained by EQCM 

were very helpful for the study of the ultrasound influence on electrochemical parameters and 

especially current efficiencies. Current-less processes such are corrosion and erosion were also easier 

to follow with data provided by EQCM. 

 

2.3 Solutions used in the study 

 

Preliminary experiments were done in bi-distilled water. Cu plating was performed from sulfate and 

chloride based electrolytes. 0.01 M CuSO4×5H2O (Merck, >99.0 % purity) and 0.1 M Na2SO4×10H2O 

(Merck, >99.0 % purity), with pH adjusted to ~1 by addition of an appropriate amount of concentrated 

H2SO4, was the electrolyte composition for the sulfate based system. 0.01 M CuCl2 and 0.5 M NaCl 

(Merck, min 99.5 % purity) with pH adjusted to ~1 by addition of an appropriate amount of 

concentrated HCl was the composition of the chloride based electrolyte. 

For the electrodeposition of Ni/CeO2 composite, two different electrolyte compositions were used: 

Watts electrolyte (30 g/l NiCl2×6 H2O (Merck, ≥98 % purity) + 234 g/l NiSO4×6 H2O (Merck, ≥99 % 

purity)+ 30 g/l H3BO3 (Merck, ≥99.5 % purity)+ 3 mg/l sodium dodecylsulfate (SDS) [207]) and a 

sulfamate bath (100 ml/l of a 50 wt% solution of Ni(NH2SO3)2 (Alfa Aesar 50 % w/w aqueous 

solution)+ 10 g/l NiCl2×6H2O (Merck, ≥98 % purity) + 40 g/l H3BO3 (Merck, ≥99.5 % purity) [208]). 
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For the co-deposition in Co system, 0.1 M CoSO4×5H2O (Alfa Aesar 98 %) + 0.1 M Na2SO4 with pH 

adjusted to 4 [209] was used. 

Sonochemical synthesis of molybdenum oxide was done by decomposition of molybdenum 

hexacarbonyl Mo(CO)6 (~Alfa Aesar 98% pure) in n-decane (>94% pure) and n-hexadecane (>99% 

pure) as solvents and in presence of a stabilizer, oleic acid (90% pure), purchased from Aldrich and 

centrifuged prior to use. 

For the pulsed sonoelectrochemical deposition of nanoparticles the following precursors were used: 

for Au nanoparticles HAuCl4×3 H2O (Sigma Aldrich for analysis), for Ag nanoparticles AgNO3 

(Merck for analysis) and for Cu nanoparticles CuSO4×5H2O (Merck, >99.0 % purity). Polyvinyl 

pyrrolidone (PVP K30 Aldrich) was used as the stabilizer. 

 

2.4 Instruments used in the study 

 

Most electrochemical measurements were computer controlled by a Solartron Si1287 electrochemical 

interface. In parallel to the sonoelectrochemical measurements the electrical admittance spectra of the 

quartz resonator were measured in the vicinity of its resonance frequency using an Agilent E5100A 

network analyzer, which had been calibrated before the measurements using a “thru”-calibration 

(short-circuit) in the entire frequency range applied later on during electrochemistry. For the rotating 

disc electrode setup a Pine Research Instrumentation controller, AFMSRCE, was employed. In some 

experiments also an Ivium CompactPlus potentiostat and a Zahner IM5 electrochemical workstation 

were used. 

Ultrasound waves with a 20 kHz fixed frequency were provided by an ultrasonic processor (Sonics 

VCX 750 or Bandelin Sonopuls HD 3200) connected to electrical power by an isolating transformer. 

This was necessary in order to prevent the horn to be connected to the ground, which would have 

shortened it with the working electrode in the electrochemical setup. The power output of the 

ultrasonic horn was determined using a calorimetric method based on [210]. From the power output 

the ultrasonic intensity Ia was calculated by dividing the power by the tip area. 

 

2.4.1 Ultrasound equipment 

 

There are two main types of ultrasonic equipment commonly used in a laboratory, ultrasonic baths and 

ultrasonic liquid processors.  

An ultrasonic bath consists of a chamber in which a number of transducers for the ultrasound 

generation are built. These transducers have a fixed frequency usually in a range of 20-100 kHz. The 

bath is filled with water or some other appropriate liquid and chemical cells or objects for cleaning are 

then placed in the bath. Baths are mostly used for the purpose of cleaning and they are quite efficient 

in this application. Beside the cleaning purpose they are sometimes used for sonochemical reactions 
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where the reaction vessel is placed in the bath. Still with very low, unequal and fixed intensity they 

have a lot of limitations in their application for sono(electro)chemical reactions. 

Ultrasonic processors, on the other hand, with a much higher intensity are the better choice especially 

for chemical systems. They consist of three major parts, an ultrasonic power supply or generator, a 

converter or transducer and an ultrasonic probe or horn [211]. 

 

1. The ultrasonic power supply transforms 50/60 Hz electrical power to a high frequency 20 kHz 

electrical power.  

2. Further, this 20 kHz electrical power is by the converter changed into the mechanical vibrations. 

These converters are based on the piezoelectric effect described above. In ultrasound transducers, 

zircon-titanate piezoelectric ceramic discs function as piezoelectric materials. An alternating voltage 

with high frequency is applied to the opposing faces of the discs and they expand and contract with the 

change in polarity so they vibrate with the same frequency as the applied voltage. This structure is so 

constructed to resonate at a certain frequency and its length is commonly a half wave length of the 

resonant frequency. 

3. The ultrasonic probes serve to amplify the vibrations generated by the converters. The amplification 

factor is influenced by the mass ratio between upper and lower part (tip) of the assembly. Depending 

on the diameter of the tip, the intensity of generated cavitation is different as well as possibly the 

processed volume of liquid. In the case of a smaller tip the cavitation is more intensive but it is 

focused in a small area below the tip and the processed volume is small. With a larger tip diameter the 

cavitation intensity is lower but it can be spread over a larger area and the processed volume is 

consequently larger. The probes are commercially produced mostly from the high quality titanium 

alloy Ti-6Al-4V and with lengths (multiple of half of the US wavelength in the alloy) and diameters 

which are predetermined for certain volumes of liquids. Also some of the probes are produced with 

ends (tips) which can be replaced with another tip when the old one is damaged, with micro-tips or 

with boosters and all dependent on the purpose in a certain system. The micro-tips can process small 

volumes with very high intensity. They can be made as stepped or tapered micro-tips with 

characteristics appropriate for certain applications. Boosters are additional parts which can be inserted 

between the converter and the probe in order to increase the amplitude of vibrations at the probe tip 

and they are recommended for bigger systems or some difficult applications.  

In operating with an ultrasonic processor, the ultrasonic probe is directly immersed in the reaction 

liquid, generating ultrasound waves within the liquid. Adjusting of the reaction vessel geometry as 

well as positioning of the ultrasonic probe in it is a very important factor in order to adjust the 

appropriate conditions for the acoustic cavitation induction. It is normally necessary for the probe to 

be at least one centimeter immersed into the liquid. When a reaction takes place in an open vessel due 

to the probable evaporation of a liquid it is possible that in one moment the probe vibrates in air. This 

should not last more than 10 seconds in order to avoid probe damages. 
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2.4.2 Calibration of the ultrasonic power 

 

For the purpose of the present study, Sonics Vibra Cell (750 W) and Bandelin SONOPULS HD 3200 

(200 W) ultrasonic processors were used to produce the ultrasound field. The frequency of the 

generated ultrasound waves was fixed for both instruments to 20 kHz. Percentage of the probe 

vibration amplitude (range 20-100 % for Sonics and 10-100 % for Bandelin) is the parameter which 

was controlled by the instrument. 100 % amplitude corresponds to a maximum vertical displacement 

of the probe of 124 μm. Output power, delivered to the probe, as the characteristic of the irradiated 

energy, was then read on the display for the applied amplitude. When ultrasound is introduced into a 

liquid, under the influence of the possibly developed acoustic cavitation, the irradiated energy is not 

by default equal to the absorbed one, and only a part of the energy can be really active in the process 

under study [212]. Thus, it is necessary to determine the truly absorbed ultrasonic power in the liquid 

and connect it with irradiated power read from the display, and therefore to perform a calibration. 

Calibration was prepared for the entire available power range of the instruments. The basis of the 

calibration was a comparative calorimetric method, taken from the literature [210, 213]. Basically, 

temperature changes produced by the ultrasound and by an electrical heater were compared. By 

adjustment of the electric power to produce the same temperature change in the same time as the one 

produced with ultrasound irradiation, the really absorbed acoustic power can be determined without 

knowing the accurate heat capacity of the system. Furthermore, properties of the reaction vessel and 

all present objects as well as heat transport to them do not have to be known, since the used setup (the 

system) is the same during sonication as well as during heating with the electrical heater. A home-

made electrical heater was completely immersed into the liquid and stayed together with the ultrasonic 

horn in the liquid during all measurements. 

This system is schematically presented in Figure 2.3.  

 

 

Figure 2.3 A scheme of a circuit consisting of a small resistor R1 with voltage U1 across in series with the heating 
wire with a resistance R2 with voltage U2 across and the overall applied voltage Uappl=U1+U2. 
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R1 is a small resistor with a specified resistance connected in series with the heating wire. The voltage 

U1 was measured across the small resistance and U2 across the heating wire. The power of the 

electrical heater was calculated as Pel=U2·U1/R1 (in more details in Annex 1). Via the power supply the 

applied voltage and thus electric power were varied. An Agilent 34970A data acquisition module with 

a 34901A multiplexer unit was used for measuring voltages. 

In order to prevent an unequal temperature distribution in the liquid, it was constantly stirred with a 

magnetic stirrer during the measurements. Calibration measurements were done in the cell used for the 

studied processes, to avoid deviations possibly caused by change in dimensions and the shape of the 

cell. A Pt100 thermoresist served for the temperature measurement. A measuring converter 

transformed the resistance changes in a way that the temperature range of 0-100 °C corresponded to a 

voltage output of 0-10 V. 

 

Calorimetric procedure: 

 

1. The ultrasound processor was turned on for a short time tUS (normally 8 to 10 s) and the temperature 

change ΔTUS was recorded. 
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Figure 2.4 Recorded temperature change during ultrasound irradiation with 40 % amplitude of the Bandelin 
processor. Dot line-linear fit, dash line-exponential fit and intersection of fits gave ΔT. 
 

In Figure 2.4 the typical determination of ΔTUS from the plot of temperature change with time is shown 

(example for 40 % amplitude). A linear part during heating up and an exponential part during cooling 

down can be distinguished. From the intersection of the linear and exponential fit curves ΔTUS was 

read on the y axis.  

 

2. After cooling of the solution, the electrical heater was turned on for the same time and a similar 

curve was obtained for the electrical heating as for ultrasound and ΔTel was recorded and determined 

in the same way as ΔTUS. 
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3. The electric power was varied (by varying applied voltage), and for each applied power ΔTel was 

recorded and afterwards a plot of the electric (heating) power versus temperature change was made. 
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Figure 2.5 The electric (heating) power in the function of the temperature change (with line-linear regression) for 
the Bandelin processor. 
 

4. From the temperature change measured during ultrasonic irradiation and from the corresponding 

heating experiments Pdirect was determined. 
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Figure 2.6 Power Pdirect obtained from the temperature change of ultrasonic irradiation and corresponding heating 
experiment. Squares were measured first in a limited range and later another set of measurements (circles) at 
extended range of ultrasound amplitude was performed. The red lines represent linear regressions. 
  

5. Power Pinter was determined from a linear regression of the ∆T vs amplitude curve and application 

of the heating power - ∆T regression. 
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Figure 2.7 Ultrasonic power (Pinter) and heating power (Pdirect) given in function of the amplitude. 

 

A Table with ultrasonic powers obtained by the calibration is given in Annex 1. 

 

2.5 Characterization methods 

 

The morphology of the obtained Cu deposits was characterized by scanning electron microscopy 

(SEM) and the composition by energy dispersive X-ray spectroscopy (EDX) done on the CamScan 

instrument. For the co-deposits Ni/CeO2 and Co/CeO2 electron probe microanalysis (EPMA) was used 

as well and was done on a Cameca SX100 Electron Microprobe. The deposit thickness was 

determined by profilometry (Tencor Alpha-Step 500 Surface Profiler). 

The Dynamic Light Scattering (DLS) technique was applied for the determination of the particle size 

and distribution of colloidal Cu, Ag and Au nanoparticles and was done on the Malvern Zetasizer 

Nano Instrumentation. 

For the characterization of Mo-oxides X-ray diffraction technique was applied and done on the 

Siemens Diffractometer D5000. Transmission electron microscopy (TEM) of the colloidal samples of 

Mo oxide was carried out in a JEOL-2000 EX microscope operating at 200 kV. 
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Chapter 3-Fundamental study 

EQCM in an ultrasound field 

 

The quartz crystal resonator used in the EQCM technique is an acoustic wave based device and it is 

very sensitive to mechanical disturbances. Ultrasound, introduced in a liquid, is the source of acoustic 

cavitation and acoustic streaming, both possibly developed at and directed towards the electrode. The 

idea to combine EQCM and ultrasound was therefore not straightforward and it was necessary to 

prove that it is possible at all. With this aim an experimental study was at first carried out in distilled 

water. For the next step in the study, copper electrodeposition from a sulfate based electrolyte with a 

low Cu concentration was chosen, because of the well explored basic mechanisms involved. Further, 

the more complicated case of copper electrodeposition and –dissolution in a solution with excess 

chloride ions concentration is discussed. 

 

3.1 Study in water 

 

3.1.1 Resonance spectra of the quartz in an ultrasound field 

 

With the setup shown in Figure 2.1, but without CE and RE, measurements of the quartz admittance 

with time were performed while the quartz to horn distance was varied between 8, 10 and 22 mm. A 

set of experiments was done for distances d of 22 and 10 mm with a variation of the ultrasound 

intensity and one experiment, with the highest ultrasound intensity was done for the 8 mm quartz-horn 

distance. It was shown in literature that the area below the ultrasonic horn, the so-called “near field” 

(less than 30 mm) is the most important zone for the sonoelectrochemical processes [214]. 
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Figure 3.1 Real part of the quartz admittance measured in distilled water a) under silent conditions and b) at Ia = 
76 Wcm-2 and d = 10 mm. Lorentz fits are represented as red lines. 
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For d = 10 mm the real part of the admittance of the quartz resonator under silent conditions and in the 

presence of ultrasound at Ia = 76 Wcm-2 are compared in Figure 3.1. 

Under silent conditions the curve of the real part of the admittance matched almost perfectly the 

Lorentz fit. Under the influence of the ultrasound, the admittance curve remained the same in shape, 

but became noisier and the maximum slightly shifted to a lower frequency. Acoustic streaming, 

normally turbulent by nature, could be a possible explanation for the recorded noise. Still, there was 

no significant impact of the noise on the fitting of the admittance curve and it could be very well 

described with the Lorentz fit. Due to the relatively small distance between the quartz and the horn, the 

mechanical pressure developed on the electrode by the ultrasound energy (especially the acoustic 

streaming) can explain the small frequency shift. 

 

3.1.2 The frequency and the damping change in an ultrasound field-Distance variation 

 

After verifying that the quartz admittance could be measured and analyzed in the presence of 

ultrasound, the next step was to check how the resonance frequency and the damping behave and 

change with time in the presence of ultrasound. These changes are exemplarily presented in Figure 

3.2. 
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Figure 3.2 Resonance frequency (squares) and damping (circles) measured in distilled water under silent 
conditions (empty symbols) and at Ia = 76 W cm-2 and d = 10 mm (full symbols). 
 

As one could expect, there was almost no frequency change and a negligible change in the damping 

under silent conditions. In the presence of the ultrasound the resonance frequency of the quartz 

resonator decreased (∆f calculated with respect to f0 before turning on the ultrasound) and the change 

reached a maximal value of around -260 Hz. As mentioned above, the decrease in the resonance 

frequency was probably a result of the mechanical pressure of the streaming liquid towards the 

electrode and thus slower oscillations of the quartz resonator. This is similar to the behavior of quartz 

resonators under static pressure, where a similar decrease in the resonance frequency has been reported 
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in literature [215]. In the beginning of the experiment the resonance frequency rapidly decreased and 

then with some fluctuations the frequency changes leveled off at about -200 Hz. This was a hint to 

expect possible fluctuations in the beginning of the measurements. Therefore, one should, 

preventively, turn on the ultrasound before real measurements start and in this way avoid a very noisy 

signal and false results. Afterwards, when the frequency response is stable, the electrochemical 

experiment can start. For the damping, a similar situation under ultrasound influence is observed, an 

increase in the beginning and then a continuous decrease with time. 

 

As a next step, Figure 3.3 shows the influence of the distance d between quartz and horn on frequency 

and damping of the quartz resonator with time, for d = 8, 10 and 22 mm at Ia = 76 W cm-2 in distilled 

water. For d = 22 mm, the frequency decreased upon turning on ultrasound by ~ 110 Hz. With time it 

was slightly increasing again and finally leveled off around -56 Hz. At d = 10 mm, as described above, 

∆f leveled off at -200 Hz. When d decreased to 8 mm, the frequency was constantly decreasing with 

time and started to stabilize at the end of the 5 minute measurement period, with a maximum ∆f of 

around -430 Hz. At the distances of 22 and 10 mm, besides a slight difference in value (~100 Hz), the 

frequency changed in a similar way and became faster stable than at 8 mm distance. This clearly 

showed the enlarged influence of the ultrasound irradiation on the frequency with decreasing distance. 
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Figure 3.3 The resonance frequency a) and the damping b) of the quartz at 76 W cm-2 ultrasound intensity at 
various distances between horn and the quartz and with respect to the resonance frequency of the same quartz 
under silent conditions. 
 

The damping for all horn-quartz distances was largest upon turning on the ultrasound and then 

decreased with time and stabilized. The shape of the admittance curve was not strongly influenced by 

the change in distance but there was a rather clear influence of the ultrasound irradiation on the 

frequency with decreasing distance. 
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3.1.3 The noise of the admittance curve under ultrasound influence 

 

Further, the noise of the admittance curve, which could be determined from the standard deviation of 

the fits of the admittance spectra to the Lorentz function, was followed with respect to the ultrasound 

intensity and the horn-quartz distance. With an increase in the ultrasound intensity and a decrease in 

the horn-quartz distance the noise was increasing (Fig. 3.4). 

At 22 mm distance, the noise increased more than 10 times and at 10 mm even 30 times with 

increasing ultrasonic intensity. The observed noise did not have a significant impact on the Lorentz fit 

of the admittance curve. Except extreme noise in resonance spectra in the beginning of some 

experiments upon turning on the ultrasound there was no big influence on the shape and quality of the 

resonance spectra of the quartz resonator. For the higher ultrasonic intensities and smaller horn-quartz 

distances, extreme noise appeared in the beginning but after a few moments the resonance frequency 

was normally stable. 
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Figure 3.4 Standard deviation of Lorentz peak fit of quartz admittance spectra measured at different ultrasonic 

intensities and horn-quartz distances. 
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3.2 Studies in a copper sulfate - based electrolyte 

 

Due to the well explored and discussed basic mechanism [201, 205] the copper sulfate system was 

chosen for further study. A low concentrated copper solution, 0.01 M CuSO4×5H2O and 0.1 M 

Na2SO4 (pH adjusted to ~1 by addition of an appropriate amount of concentrated H2SO4), was used. 

An initial study, done in a sulfate-based Cu electrolyte, was actually an extension and further 

development of the basic study in distilled water. Open circuit measurements, on the bare quartz as 

well as on deposited copper layers, with “pulsed” ultrasound (i.e. on/off cycles) were done in order to 

check if there is a change in the resonance frequency and the rest potential upon turning on ultrasound 

and how significant these changes are. Furthermore, the influence of the ultrasound intensity was 

studied as well. 

 

3.2.1 Open circuit measurements with pulsed ultrasound on the bare quartz  

 

In a first experiment, the open circuit potential of the bare quartz in the Cu electrolyte was measured 

for 10 min, and the behavior of the resonance frequency was followed during the measurement. 

Ultrasound with an intensity of 29 Wcm−2 was applied in the pulsed mode. The pulse length of the 

ultrasound was 30 s, as well as the time under silent conditions (ton = toff = 30 s). Figure 3.5a shows the 

change in the resonance frequency (with respect to t = 0 s) upon application of the ultrasound. 
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Figure 3.5 a) Frequency change during open circuit potential measurement of the bare Au electrode of a quartz 
resonator in 0.01 M CuSO4, 0.1 M Na2SO4, pH ~ 1, the presence of air with pulsed ultrasound of Ia=29 W cm-2, 
ton = toff = 30 s, d = 22 mm (solid lines-ultrasound on, dotted lines-ultrasound off) b) corresponding potential 
changes. 
 

The solid lines parallel to the abscissa indicate when ultrasound was turned on, and the dashed lines 

when it was turned off. As soon as the ultrasound was turned on, the resonance frequency shifted to 
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lower frequencies, and gradually increased again after turning the ultrasound off. In the ultrasound 

field, the frequency was approximately 64±20 Hz lower than under silent conditions. 

In parallel to the frequency fluctuations, potential fluctuations in the range of 5 mV (Fig. 3.5 b) were 

also observed, superimposed to a potential drift of around 30 mV. 

 

3.2.2 Open circuit measurements with pulsed ultrasound on the deposited Cu layer 

 

A group of OCP measurements was performed on Cu layers, potentiostatically deposited for 2 min at a 

potential of −0.15 V and at different ultrasonic intensities. A set of such experiments with pulsed 

ultrasound with variation of the intensities was performed. Figure 3.6 shows a typical measurement at 

an ultrasonic intensity of 29 Wcm-2 under inert Ar atmosphere at d = 22 mm.  
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Figure 3.6 Measurement of open circuit potential (line) and frequency change (circles) of a quartz resonator after 
2 min deposition of Cu at –0.15 V in Ar atmosphere with pulsed ultrasound of Ia=29 W cm-2, ton = toff = 30 s, d = 
22 mm. The insert shows a part of the frequency curve enlarged.  
 

The OCP decreased by 1–2 mV upon the application of ultrasound. While the ultrasound was on, the 

frequency was continuously increasing with the slope of ~ 13 Hz/s determined during the first 30 s of 

experiment (∆f=0.39 kHz, taken for the first 30 s from the graph in Fig. 3.6 and divided by the time of 

30 s),. When the ultrasound was turned off, the frequency just slightly decreased. The irreversible 

increase in the resonance frequency in the presence of ultrasound indicates a mass decrease of the 

electrode and therefore the removal of Cu by erosion or corrosion caused by residual oxygen. 

The rate of the frequency change slightly decreased during the experiment. When similar experiments 

were done in the presence of air, it was even larger, 24±1 Hz/s at 29 Wcm−2, and 20 Hz/s at a low 

intensity of 11 Wcm−2. 

  



48 
 

 

The role of erosion and corrosion 

 

In order to explore the role of erosion (and thus cavitation) and of corrosion in more detail, a further 

study with a broader range of applied ultrasound intensities was done. A copper layer was deposited at 

-0.15 V at an ultrasound intensity of 80 Wcm-2 and with a 300 kHz frequency limitation (deposition 

was stopped after ∆f caused by deposition exceeded – 300 kHz), in Ar, followed by an open circuit 

potential measurement with a variation of the ultrasonic intensities at d = 10 mm. Mass losses were 

observed during OCP with rates between 0.08 μgcm
-2s-1 under silent conditions and ~0.15 μgcm

-2s-1 at 

an ultrasonic intensity of 80 Wcm-2, corresponding to the average corrosion currents of 0.24 and 0.45 

mAcm-2, respectively (Annex 2). The change in the resonance frequency with ultrasonic intensity 

during time is shown in Figure 3.7. The change in damping is also added to the graph. 
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Figure 3.7 Open circuit measurements with a variation of ultrasonic intensity (upward and then backward) on a 
Cu layer (deposited at -0.15 V, 80 Wcm-2, Δf=300 kHz, d=10 mm in Ar) a) frequency change (squares) and 
damping change (line) with time and Ia (circles) and b) rate of the frequency change with a stepwise increase 
followed by a stepwise decrease in Ia. 
 
At lower ultrasonic intensities, up to ~ 20 Wcm-2, the slope of the frequency change with time is small 

and there is almost no change in damping (Fig 3.7 a). At higher Ia, the rate of the frequency change 

becomes larger and then on the back sweep it decreases again. Damping was also increasing at higher 

ultrasonic intensities. Due to the larger frequency change observed under the influence of ultrasound 

and further with the increase in ultrasonic intensities, one can conclude that corrosion reactions were 

accelerated with enhanced transport of the oxygen towards the electrode. Further, in Figure 3.7 b, it is 

evident that the rate of the frequency change is finite under silent conditions indicating corrosion 

development due to the residual oxygen.  

An erosion process, possibly developed through surface cavitation, could be another explanation for 

the frequency shift during OCP measurements. Although the finite rate of the frequency change 

observed in Figure 3.7 b did not prove the presence of surface cavitation, and especially the frequency 
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change under silent conditions cannot be explained by it, cavitation could be an additional explanation 

for the enhanced corrosion reactions in the presence of ultrasound via created oxidants like OH· 

radicals and H2O2 in cavitation bubbles. 

 

  

 

Figure 3.8 Optical microscopy pictures: round features observed on the surface of the deposited Cu layer 
 

Round features shown in Figure 3.8 were observed by optical microscopy of a Cu film after deposition 

at -0.15 V, at 76 Wcm-2, Δf = 300 kHz and d = 10 mm. They could be caused by cavitation bubbles at 

the electrode surface. 

9990000 10000000 10010000

0

1

2

3

4

5

R
e
(Y

) 
/ 

m
W

-1

 

Figure 3.9 Admittance of quartz resonator at 24.6 Wcm-2 at the beginning of a deposition experiment 
 

Another observation was that in the beginning of a deposition experiment, at an ultrasound intensity of 

24.6 Wcm-2, the resonance spectrum was very noisy (Fig. 3.9). One reason could be development of 

cavitation, bubble collapse near or at the electrode and micro jets creation. This happened very rarely 

in the experiments in sulphate based electrolytes discussed in this work. As long as there was a deposit 

on the electrode it was always possible to analyse the data.  
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3.2.3 Cyclic electrodeposition and dissolution of copper 

 

A cyclovoltammetric study of the Cu electrodeposition on the Au electrode on the quartz was 

performed in a potential range between 0.45 V and -0.2 V vs. Ag/AgCl, with a 5mV/s scan rate, for 

two cycles under inert Ar atmosphere, first in silent conditions and afterwards in the presence of the 

ultrasound. A series of cyclovoltammetric measurements with a variation of the ultrasound intensity 

was performed. The potential sweep was started at a value where no deposition takes place and swept 

down to more negative values. In the sulfate system the deposition of copper takes place through a 

reduction of Cu2+ ions by a two consecutive one electron transfers [216-219]. 

Cu2++2e-
→Cu (s)         (3.2.1) 

The standard electrode potential for this reaction is 0.34 V [159]. Neglecting activity coefficients, for 

the concentration of 0.01 mol/l, one calculates from the Nernst equation (Eq. 1.4.5) an equilibrium 

potential of 0.084 V vs Ag/AgCl (Annex 3). 

 

Silent conditions 

 

The cyclic voltammogram together with the simultaneously recorded change in the resonance 

frequency of the quartz resonator under silent conditions is shown in Figure 3.10. A slight change to 

more negative currents, indicating a cathodic process, was already observed at potentials just below 

120 mV. Still, the first decrease in resonance frequency and consequently Cu electrodeposition was 

observed starting at the potential of 18 mV. Below this potential, a strong increase in the cathodic 

current as well as a decrease in the frequency was observed. 
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Figure 3.10 Current densities (lines) and associated frequency changes (circles) during cyclic deposition and 
dissolution of Cu from 0.01M CuSO4, 0.1M Na2SO4, pH~1 at a scanrate of 5 mV/s under quiescent conditions in 
a cell under Ar atmosphere. 
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At lower potentials, a cathodic peak appeared due to the mass transport limitation typical for low 

concentration systems [220]. With time there was a depletion of Cu species near to the electrode and 

the current started to decrease. It is known from the literature that the cathodic peak disappears with a 

larger copper ion concentration [205, 221]. At the beginning of the back sweep, the frequency was 

further decreasing and the current remained negative, so deposition was still taking place. The 

damping w increased by around 300 Hz, but the resonance frequency decreased by almost 5 kHz. 

Sauerbrey equation could therefore be applied. Above a potential of ~ 45 mV the current became 

positive and the frequency started to increase, indicating dissolution. The equilibrium potential 

calculated from the Nernst equation was in a reasonable agreement with deposition and dissolution 

potentials. After the anodic peak was reached at a potential of 160 mV the current dropped to 

background values and the frequency returned to the starting value and remained constant, which was 

sign that all Cu deposited in the cathodic sweep was dissolved in the anodic one. In this study 

moderate overpotentials for deposition were applied, so that hydrogen evolution was limited and thus 

copper hydroxides precipitation was avoided. In literature [205] part of the deposited copper remained 

on the electrode after the dissolution peak but in that study lower (more negative) potentials had been 

applied. In the second cycle, the recorded currents for the anodic and the cathodic peak were larger 

than in the first cycle. More copper was also deposited. The concentration profile of Cu ions near the 

electrode after dissolution of Cu in the first cycle was in the beginning of the second cycle changed in 

comparison with the beginning of the first cycle. It must be assumed that the concentration of Cu ions 

in the vicinity of the electrode was increased prior to the second cycle as a consequence of the just 

finished Cu dissolution and not enough time for Cu ions to diffuse away from electrode. This could be 

a reason for the observed deviation between the first and the second cycle in cyclic voltammograms. 

 

In an ultrasound field 

 

Further, a set of cyclic voltammetry experiments with increasing ultrasound intensity was run, in order 

to explore the influence of the ultrasound on this system. The distance between the quartz and the horn 

was 10 mm. The presence of the ultrasound significantly changed the cyclic voltammogram of the Cu 

deposition from the sulfate based electrolyte. 
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Figure 3.11 Current densities (lines) and associated frequency changes (circles) during cyclic deposition and 
dissolution of Cu from 0.01M CuSO4, 0.1M Na2SO4, pH~1 at a scan-rate of 5 mV/s, d=10 mm under ultrasonic 
irradiation at an intensity of a) 14 W/cm2 and b) 80 W/cm2 under Ar atmosphere. Note: different scaling used 
because of the better visibility of the diagram showing different magnitudes of the recorded parameters. 

Figure 3.11 shows the cyclic voltammograms for the deposition of Cu in presence of ultrasound with 

the lowest and the highest intensity used in the study, 14 Wcm-2 and 80 Wcm-2, respectively. 

At first, in an ultrasound field, there was no cathodic current peak, so mass transport control changed 

to charge transfer control. The presence of the ultrasound and the induced stirring effect led to a 

constant supplying of the electrode with the electroactive species. The current was continuously 

increasing while lowering the potential reaching values almost 7 (the lowest ultrasound intensity) and 

10 (the highest ultrasound intensity) times higher than in silent conditions. The maximum frequency 

change increased from 5 kHz in silent conditions to around 26 and 40 kHz, for the lowest and the 

highest ultrasound intensity, respectively. The more Cu was deposited during the cathodic sweep, the 

larger and broader became the anodic peak. The anodic peak potential was also shifted to more 

positive values. Otherwise, there was no significant change in potentials upon the application of the 

ultrasound. This was an indication that ultrasound does not influence charge transfer kinetics or 

nucleation overpotentials, but enhances mass transport. 

The influence of the ultrasound intensity on the electrochemical parameters was followed throughout 

this study. In Figure 3.12a, plots of the maximum cathodic current densities (at -0.15 V in the presence 

of ultrasound) and the anodic peak current densities versus the ultrasound intensity are shown. After a 

significant initial increase, values of these current densities were constantly, almost linearly, increasing 

with increasing ultrasound intensity. The maximum cathodic currents at the highest intensity reached 

values ten times larger than under silent conditions. 
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Figure 3.12 Influence of the ultrasonic intensity on (a) maximum current densities in the cathodic sweep (full 
squares) and anodic peak current densities (empty circles) and (b) maximum areal mass densities deposited in a 
voltammetric cycle (squares-black) and the corresponding total cathodic charge fluxes (circles-blue). Data are 
taken from cyclic voltammetry in deaerated 0.01 M CuSO4, 0.1M Na2SO4, pH~1 at a scan rate of 5 mV/s, d=10 
mm. 
 

Further, the maximum mass density of Cu deposited per cycle and the cathodic charge density 

obtained by integration of the current densities from the beginning of the Cu deposition in the forward 

sweep to the beginning of the Cu dissolution in the back sweep are given as a function of the 

ultrasound intensity in Figure 3.12 b. Under ultrasound influence, at an intensity of 80 Wcm-2, the 

deposited mass was more than 7 times larger in comparison to silent conditions.  

The increase in ultrasound intensity influences all parameters to change in a similar way. A strong 

increase in parameters is especially observed between experiments without any ultrasound and the low 

intensity ultrasound. With further increasing ultrasound intensity a less strong, almost linear increase 

is observed. In general, the parameters are mostly proportional to the square root of the ultrasound 

intensity. 

 

Current efficiencies 

 

In Figure 3.13, the change in the areal mass density versus the total electrical charge obtained from the 

cyclovoltammetric measurements with and without ultrasound is shown with dotted arrows indicating 

development of the process with time. In the beginning of the forward sweep (towards more negative 

potentials), there was a small cathodic current but it was not connected with any frequency change, 

thus no mass change, so no deposition started yet. For the cathodic deposition process the slope of the 

mass change versus charge curve was negative, as expected. In a small potential range, at the peak of 

the curve, where the change from the deposition to the dissolution process occurs, the slope was 

positive. 
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Figure 3.13 Mass changes Δm(t) as a function of the electrical charges Q(t) during deposition and dissolution of 
Cu in 0.01M CuSO4, 0.1M Na2SO4, pH~1 (a) under quiescent conditions and (b) under ultrasonic irradiation at 
an intensity of 80 Wcm−2 measured in Ar atmosphere. Bold line: theoretical curves corresponding to 100% 
current efficiency. Arrows indicate deposition and dissolution and point in the direction of increasing time 
during the potential sweep. Note: different scaling used because of the better visibility of the diagram showing 
different magnitudes of the recorded parameters. 

 

The deposition process takes place by reduction of Cu(II) ions through successive transfer of two 

electrons. When the slope of the mass-charge curve was compared to the calculated value for dm/dQ 

of -3.29·10-4 g·C-1, taking z = 2 and for a 100 % current efficiency (calculated in Annex 4 and 

according to Eq. 1.4.17), beside deviations in the beginning of the process (values larger than 

expected) and at the end of the deposition process (values smaller than expected) ideal behavior was 

approached. When dQ passes through 0 (current is zero) there is a mathematical discontinuity and thus 

a deviation from theoretical value. If dQ and dm do not pass through 0 in the same moment, it can 

influence the data. For the dissolution process the slope was most of the time larger than the 

theoretical one indicating that the dissolution process partly ends at Cu(I). In the presence of 

ultrasound, the mass-charge curve for Cu deposition was more linear and even more in agreement with 

theoretical values. This can be explained by a relatively smaller contribution of side reactions to the 

charge by selective enhancement of the Cu deposition rate. Under ultrasound also dm/dQ for Cu 

dissolution was more in agreement with theoretical values. Due to the thicker deposited layer in the 

presence of the ultrasound, dissolution takes place at higher currents and thus mostly Cu is dissolved 

via Cu(II), and no deviations from theoretically expected values for dm/dQ were observed as without 

ultrasound. 

As dm/dQ was not constant during the deposition and dissolution (Fig. 3.13), time resolved apparent 

current efficiencies εapp were calculated (shown in Annex 5 and according to Eq.1.4.19) and they are 

presented in Figure 3.14 a) for silent conditions and b) at an ultrasonic intensity of 80 Wcm-2.  
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Figure 3.14 Cyclic voltammogram (lines) during deposition and dissolution of Cu from 0.01M CuSO4, 0.1M 
Na2SO4, pH~1, d=10 mm and the calculated apparent current efficiencies (empty circles) (a) under quiescent 
conditions and (b) under ultrasonic irradiation at an intensity of 80 Wcm−2. Arrows indicate scan direction. Note: 
different scaling used because of the better visibility of the diagram showing different magnitudes of the 
recorded parameters. 
 

In the beginning of the deposition, when dQ crossed 0, in accordance with Eq.1.4.18, a mathematic 

discontinuity appeared and εapp, calculated in Eq.1.4.19 had positive values toward +∞ (Annex 4 and 

5). Subsequently, positive values still larger than 1 were found for the current efficiency. In the 

literature [203], this is explained by reduction of Cu(I) accumulated at the surface of the electrode, not 

sensed by the quartz but with contribution to the enlarged values of current efficiency. This 

explanation is supported by the measured negative current in the beginning of the forward sweep 

(some reduction of Cu(II) to Cu(I) possibly took place) that was not connected with any frequency 

change. In addition, sulfate ions could be co-adsorbed from the electrolyte and stripped off later during 

dissolution. The nucleation process could also affect the discrepancy of the current efficiency through 

a possibly non-uniform mass distribution in the beginning of the deposition, introducing an error into 

the masses calculated by the Sauerbrey equation. At lower potentials, values for εapp were approaching 

1, corresponding to an ideal behavior. At the end of the deposition, in the back sweep there was again 

disagreement with the expected values. If residual oxygen leads to corrosion at low current densities 

dm is less than expected from the value for dQ and consequently εapp decreased below 1. Furthermore, 

overall currents were still negative when dm crossed 0 and εapp through 0 and became negative. When 

then the current approached 0 values of εapp were increasing toward -∞.  

Once currents became positive, εapp was toward +∞ and with further increasing positive dQ and 

negative dm (dissolution process) the values for εapp were normalizing being in the beginning larger 

than expected due to dissolution via Cu(I). This observation was explained by Bund et al. [201] with 

the assumption that part of Cu is dissolved via Cu(I) which diffuses away. In this way the charge 

needed for dissolution process was reduced and consequently the current efficiency had values larger 

than 1. In literature Cu dissolution is described as two-step mechanism [216]. At lower potentials in 
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acidic solutions the oxidation of Cu to Cu(I) is faster and larger values for εapp are obtained. With 

increasing potential more Cu(I) was further oxidized to Cu(II) and the current efficiency decreased. 

In the presence of ultrasound the dependence of εapp on the potential was not significantly altered. As 

already explained for the dm/dQ-curves, values are in the presence of ultrasound closer to the 

theoretical ones due to the enhanced mass transport and deposition rate and thus less importance of 

side reactions. As more Cu is deposited, re-dissolution requires more time, and therefore a significant 

portion of the deposit dissolves at more positive potentials (same scanrate!) and higher current 

densities and thus dissolution via Cu(II) is more favored [222].  

 

3.2.4 Potentiostatic electrodeposition of Cu 

 

After the set of cyclovoltammetric measurements, potentiostatic depositions of Cu from the sulfate 

based electrolyte were carried out in order to study the influence of the presence and the intensity of 

the ultrasound on the quality and morphology of the obtained Cu films. All potentiostatic depositions 

were performed at -0.15 V, in air or in Ar atmosphere, with a variation of the ultrasonic intensity and 

the distance between the horn and the working electrode. 

At first, potentiostatic deposition of copper was carried out under silent conditions for 1 h in air. Due 

to the growing of the diffusion layer and thus concentration depletion near to the electrode, the current 

was decreasing with time during the deposition process (Fig. 3.15). After an initial rapid current 

decrease, and a small peak recorded due to the nucleation process, it continued slowly to decrease with 

time. A current efficiency of 84 % (Annex 6) was calculated under silent conditions. A bright and 

glossy Cu film was obtained with the calculated mass of 0.58 mg cm-2 corresponding to 650 nm 

thickness. 
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Figure 3.15 Current transient (dot line) measured in 0.01 M CuSO4, 0.1 M Na2SO4, pH~1 during the 
potentiostatic electrodeposition of copper (mass curve-circles) at an applied potential of −0.15 V vs. Ag/AgCl 
without ultrasound and in a cell open to the air. Insert: linear behavior of mass vs. charge plots and the calculated 
current efficiency. 
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In the presence of ultrasound of 9 Wcm-2, at a distance of 22 mm between horn and quartz, Cu 

deposition was carried out for 10 min. The current increased strongly in the beginning and then was 

slightly increasing until the end of the experiment, reaching values of about -4.7 mAcm-2 (Fig 3.16). 

Opposite to the deposition in silent conditions under mass transport limitation, where the current was 

decreasing during the experiment, here the growing of the diffusion layer was eliminated and the 

deposition occurred under charge transfer control. With an apparent current efficiency of 104 %, the 

deposited mass was ~ 0.90 mg cm-2
, corresponding to a thickness of 1 μm as determined by 

profilometry measurements. Even with the lowest ultrasound intensity in 10 min much more deposit 

was obtained than in silent conditions in 1h. 

 

-3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0

0

200

400

600

800

1000

0 100 200 300 400 500 600

-5

-4

-3

-2

-1

0

t / s

j 
/ 

m
A

 c
m

-2

0,0

0,2

0,4

0,6

0,8

1,0

D
m

 / m
g
 c

m
-2

slope = -3.42E-4

theory = -3.29E-4

efficiency = 104%

 

 

D
m

 /
 µ

g
 c

m
-2

Q / C cm
-2

 

Figure 3.16 Current transient (dot line) measured in 0.01 M CuSO4, 0.1 M Na2SO4, pH~1 during the 
potentiostatic electrodeposition of copper (mass curve-circles) at an applied potential of −0.15 V vs. Ag/AgCl 
under influence of 9 Wcm-2 ultrasonic intensity and 22 mm horn-quartz distance in a cell open to air. Insert: 
linear behavior of mass vs. charge plot and calculated current efficiency. 
 

With an increase in the ultrasound intensity to 22 W cm-2 and otherwise the same conditions as in the 

previous experiment, the current transient was similar with a maximum value of -15.6 mA cm-2. The 

deposited mass was ~ 2.3 mg cm-2
, corresponding to a layer thickness of about 2.5 μm. At an 

ultrasonic intensity of 22 W cm-2 the maximum cathodic current was more than 3 times higher and the 

deposited mass 2.5 times larger than at 9 Wcm-2. 

With a further increase in the ultrasound intensity to 29 W cm-2, a frequency change limitation of 300 

kHz was set up (i.e. the experiment was automatically stopped when the frequency decrease of the 

quartz resonator due to Cu deposition had accumulated to 300 kHz). Copper deposition was done 

under Ar atmosphere. Deposition lasted slightly longer than 13 min. With a maximum cathodic current 

of about -5.5 mA cm-2, the obtained mass of the deposit was 1.36 mg cm-2, corresponding to an 

average thickness of 1.5 μm. 



58 
 

With the highest applied intensity of 80 Wcm-2, with the 300 kHz frequency change limitation, Cu 

deposition lasted less than 10 min. The distance between horn and the quartz was decreased to 10 mm. 

The deposition was done under Ar atmosphere. After an initial strong increase, the current continued 

to increase slowly with time due to the change in surface conditions and roughening reaching finally~-

8.5 mA cm-2. Based on the slope of the mass versus charge curve the current efficiency was calculated 

as 96 %. SEM images of the morphology of the obtained deposits are shown in Figure 3.17. 

 a  b 

 c  d 

 e  f 

 g  h 
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Figure 3.17 Scanning electron microscopy of Cu films deposited at -0.15 V, d=22 mm a,b) silent, 1 h, in air, c,d) 
at 9 Wcm-2, 10 min, in air, e,f) 22 Wcm-2, 10 min, in air, g,h) 29 Wcm-2, Δf = 300 kHz, in Ar, i,j) 80 Wcm-2, Δf = 
300 kHz, in Ar, d=10 mm. 
 

All potentiostatic depositions of Cu were done at the same potential of -0.15 V. Under silent 

conditions for one hour less deposit is obtained than in all other experiments, lasting at most 13 min in 

the presence of ultrasound. Without ultrasound the current was decreasing during potentiostatic 

deposition due to the depletion of the electroactive species and growing of the diffuse layer. 

Deposition under silent conditions was under mass transport limitation for the low concentration Cu 

electrolyte used in this study. In the presence of ultrasound the current was increasing during the 

potentiostatic deposition and the obtained mass of the deposit increased. The current efficiency was 

also increased upon application of ultrasound, due to the elimination of electroactive species depletion 

and less contribution of side reactions. In the presence of low intensity ultrasound (9 W cm-2, cf. Fig 

3.17 c, d) there was no significant change in morphology in comparison to Cu deposited under silent 

conditions (Fig 3.17 a, b). With an increase in the ultrasound intensity (22 Wcm-2), the maximum 

current (-15.6 mAcm-2) as well as deposited mass increased and larger and flatter grains were observed 

(Fig. 3.17 e, f). In further experiments, the limitation in frequency change of 300 kHz was set up and 

experiments were done under Ar inert gas atmosphere. In the presence of ultrasound with an intensity 

of 29 Wcm-2, copper deposition lasted around 13 min with a maximum current of -5.5 mA cm-2 and a 

deposited mass of 1.36 mg cm-2. The maximum values of the current and the deposited mass were less 

than at an ultrasound intensity of 22 Wcm-2. The obtained deposit was more compact, the grains were 

in general slightly smaller but also some bigger particles were present (Fig 3.17 j, h). Depositions at 9, 

22 and 29 W cm-2 ultrasound intensity were done at the same distance of 22 mm between horn and 

quartz. With the highest intensity of the ultrasound and the decreased distance between the horn and 

the quartz at 10 mm, with frequency limitation of 300 kHz, Cu deposition lasted less than 10 min. In 

this time the current was larger than at 29 Wcm-2 but still less than at an ultrasound intensity of 22 

Wcm-2. With an increase of the intensity, up to some intermediate values, the maximum currents as 

well as the deposited mass are increasing, whereas for further intensity increase they start to decrease 

in comparison with lower ultrasonic intensities. Whereas the morphology of the obtained deposits is 

similar without and with low intensity ultrasound, with increasing intensity it is severely changed. 

With ultrasound a less powdery deposit was obtained, more compact with slightly larger grains but 

 i  j 
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more uniform in size. As already reported in literature [233] when deposition is taking place under 

charge transfer control normally much better deposits are obtained than under mass transport control.  

 

3.2.5 Experiments with the rotating disc electrode 

 

Cyclo-voltammetric experiments with a platinum rotating disc electrode in the same type of solution 

were carried out in order to compare the ultrasound influence on the Cu electrodeposition from the 

sulfate based electrolyte to situations where purely effects of enhanced mass transport under well 

controlled conditions can occur. Cyclic voltammograms in the same potential range between 0.45 and 

-0.2 V vs. an Ag/AgCl reference electrode and using a PtTi wire as a counter electrode, with a rotation 

rate variation between 0 and 3000 rpm (in increments of 500 rpm) were recorded in air and are shown 

in Figure 3.18a. For the sake of comparison, recorded cyclic voltammogramms in the presence of 

ultrasound with intensities up to 28.2 Wcm-2 are shown in Figure 3.18b. 

The behavior of the system with the RDE setup was similar as upon application of ultrasound. At first, 

in experiments with the rotating disc electrode the cathodic current peak disappeared as in experiments 

with ultrasound. Further, with increasing rotation rate, the cathodic currents were increasing and at the 

highest rotating rate the maximal cathodic current was 5 times larger than in quiescent conditions. In 

consequence of the increased cathodic currents more copper was deposited on the electrode, and the 

anodic peak became much larger with increasing rotation rate while the anodic peak potential was 

shifted to more positive values. 
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Figure 3.18 Electrodeposition and -dissolution of Cu from 0.01M CuSO4, 0.1M Na2SO4, pH~1 during cyclic 
voltammetry in a potential range of 0.45- (-0.2 V), at 5 mVs-1, in air a) on Pt rotating disc electrode at 0-3000 
rpm, b) under the influence of ultrasound, intensity variation 0-28.2 W cm-2. 
 

Maximum cathodic currents in the presence of ultrasound were in general slightly higher than in the 

rotation disc electrode setup. At an intensity of ~9.4 W cm-2 (the lowest intensity applied) the 

maximum cathodic current was equal to the one at 1000 rpm in the RDE setup. The maximum 
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cathodic current recorded at 3000 rpm corresponded to the one at 16.6 Wcm-2. The increase in 

maximum currents with further intensity increase was less significant (in the range applied in the 

presented experiments). 
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Figure 3.19 Electrodeposition and -dissolution of Cu from 0.01M CuSO4, 0.1M Na2SO4, pH~1 during cyclic 
voltammetry in a potential range of 0.45- (-0.2), 5 mVs-1, in air a) on Pt rotating disc electrode at 0 and 3000 
rpm, b) on Au electrode of quartz resonator under silent conditions and at an ultrasound intensity of 28.2 Wcm-2. 
 

In order to get a clearer overview, cyclic voltammograms in silent conditions are compared with the 

highest rotation rate (Fig. 3.19a) and the highest ultrasonic intensity (Fig. 3.19b). Although, recorded 

cyclic voltammograms are not completely the same the general tendency is clear. As in the case with 

the rotating disc electrode setup, in the presence of the ultrasound indications for a change from mass 

transport control (indicated by the cathodic peak observed in silent conditions) to charge transfer 

control (disappearance of the cathodic peak) were observed. 
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Figure 3.20 Dependance of maximum cathodic charge recorded during cyclic voltammetry in 0.01M CuSO4, 
0.1M Na2SO4, pH~1 on a Pt rotating disc electrode on rotation rate. Insert: Koutecky–Levich plot of inverse 
current densities at −0.2V as function of the inverse square root of the rotation rate. 
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In Figure 3.20, a plot of the cathodic charges versus the rotating rate is shown. Already at small 

rotation rates the cathodic charges are strongly increased. With a further rotation rate increase the 

cathodic charges continue to increase but less strongly. The Koutecky-Levich plot (according to Eq. 

1.4.13 and given explanation) was linear in the entire range of applied rotation rates showing the 

gradual change from mass transport to charge transfer control. Cyclic voltammograms recorded on a 

rotating disc electrode were similar to those recorded under ultrasound influence. From the obtained 

similarity and the fact that ultrasound did not alter significantly potentials one could conclude that in 

the presented system the main influence of the ultrasound is enhanced mass transport. There is no 

evident impact on the charge transfer kinetics or nucleation overpotentials. 
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3.3 Studies in a copper chloride - based electrolyte 

 

Opposite to the sulfate based electrolyte, a quite simple model system for metal electrodeposition, the 

chloride-based system with a high chloride concentration was more complicated. It has been 

postulated in the literature that in the presence of chloride ions, an anion-bridge activated complex of 

the Cu-Cl-Cu type is built for the Cu(II) reduction [223]. With different surface techniques it has been 

established that in the presence of the Cl- ions, the copper surface is covered with an ordered layer of 

adsorbed Cl- [224]. In an EQCM study of the electrodeposition and -dissolution of Cu from an 

electrolyte with a low chloride concentration, due to obtained dm/dQ data the accumulation of Cu(I) in 

the beginning of the cathodic scan and its adsorption on the surface was suggested [205]. The 

intermediate Cu(I) could form a porous film of CuCl [225, 226], which further in the excess of Cl--

ions dissolves forming [CuCl2]
-, [CuCl3]

2- and [CuCl4]
3- complexes [227-229]. Due to the complex 

formation two well defined reduction (and oxidation) waves appear in cyclic and linear sweep 

voltammetry [230, 231]. The first reduction wave is due to the Cu2+/[CuCl2]
- system with a standard 

potential of 0.53 V vs. NHE and thus 0.33 V vs. Ag/AgCl calculated the from standard potential for 

Cu2+/Cu+ (0.159V [159]) and the complex stability constant from [232] (Annex 7). The second 

reduction wave is due to the deposition of Cu from [CuCl2]
- with a standard potential of –0.05 V vs. 

Ag/AgCl (Annex 7). The electroplating of Cu from chloride electrolyte has been reported not to be 

favorable due to the high exchange currents reported in literature [233], resulting in powdery, low 

quality deposits. Furthermore, Cu is not stable in chloride solution in the presence of Cu(II) and 

according to T. Kekesi and M. Isshiki strong chemical corrosion of the Cu is due to the combined 

effect of the cupric and chloride ions [232]. Regarding the mechanism of Cu metal oxidation in 

hydrochloric acid solution, ireported and established in the literature is the formation of adsorbed 

CuCl species on the Cu surface at low current densities, further followed by the dissolution of [CuCl2]
- 

[234-237]. All above mentioned can lead to complex reaction dynamics [238]. 

The solution used in this study was 0.01 M CuCl2 and 0.5 M NaCl with pH adjusted to ~1 by addition 

of an appropriate amount of concentrated HCl. 

 

3.3.1 Cyclic electrodeposition and dissolution of copper 

 

Cyclovoltammetric measurements were carried out in a potential range between 0.5 and -0.35 V vs. 

Ag/AgCl at a 5 mV/s scan rate. A series of cyclovoltammetric measurements, at first under silent 

conditions and then with variation of the ultrasound intensity, was performed. All measurements were 

performed under inert Ar atmosphere. As in the study in the sulfate system, the potential sweep was 

started at a value where no deposition takes place and swept down to more negative values. 
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Silent conditions 

 

A typical cyclic voltammogram accompanied by the frequency response of the quartz under silent 

conditions is shown in Figure 3.21 a. In Figure 3.21 b plots of charge and mass change versus 

potential are presented, where regions with different electrochemical reactions can be distinguished. 

Under silent conditions, two cathodic and two anodic peaks are observed, which is in agreement with 

literature data [205, 221, 239]. In the forward sweep the first cathodic peak appears at a potential of ~ 

130 mV and then the second one at a potential of about -160 mV. On the back sweep the first peak is 

at a potential of about -10 mV and the second one at ~ 270 mV. A frequency change as an indication 

of a deposition and a dissolution process is recorded just for the cathodic and anodic peak pair at lower 

potentials, at -160 mV and -10 mV, respectively. Five ranges of potential can be distinguished, starting 

from the beginning of the forward sweep, where different reactions and processes take place (Fig. 3.21 

b). 
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Figure 3.21 Electrodeposition and -dissolution of Cu from 0.01 M CuCl2, 0.5 M NaCl, pH~1 at a scan-rate of 5 
m V/s under quiescent conditions in a cell under Ar atmosphere, a) current densities (lines-) and associated 
frequency changes (empty circles) with numbers showing cathodic (1c and 2c) and anodic (1a and 2a) peaks and 
b) charge density-potential curve (line) obtained from integration of current density and corresponding mass 
changes (circles) with numbers labeling regions where different combinations of electrochemical reactions are 
taking place. 
 

1. 500-(-125) mV 

In this region, the first cathodic peak appears, but no frequency change is recorded and thus no 

deposition takes place. The cathodic current in this potential range is due to Cu(II) to Cu(I) reduction 

according to the following reaction: 

 

Cu2+ (aq) + 2Cl-(aq) + e- ↔ [CuCl2]
- (aq)      (3.3.1) 

 

2. -125-(-350)-(-100) mV 
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The second cathodic peak appears in this region and is accompanied by a frequency decrease, so 

deposition takes place. The deposition of Cu is taking place partly by reduction of Cu(II) and partly by 

reduction of Cu(I) and this reaction is accompanied with continuing Cu(II) to Cu(I) reduction (at mass 

transport limited rate). The main reaction for this reduction process can be written as: 

 

[CuCl2]
- (aq) + e-

↔ Cu(s) + 2Cl
- (aq)        (3.3.2) 

 

3. -100-(~0) mV 

The first anodic peak which appears at a lower potential and is connected with a frequency increase, is 

indicative of a dissolution process, with the main reaction being the dissolution of Cu to Cu(I). The 

efficiency obtained (for z=1) in this region is larger than 1 (Fig. 3.26), meaning that the actually 

measured anodic charge is less than the minimum charge for Cu dissolution as calculated from the 

frequency increase. This can be explained by the continued reduction of Cu(II) to Cu(I) taking place in 

parallel to Cu dissolution. 

 

4. 0-200mV 

This is the potential region after the dissolution peak in the anodic sweep. The currents are negative 

and determined by reduction of Cu(II). 

 

5. 200-500mV 

The second anodic peak appears in this region but it is not connected with any frequency change. The 

re-oxidation reaction of Cu(I) to Cu(II) takes place and determines the positive currents in this region. 

 

In an ultrasound field – 15 mm horn-quartz distance 

 

Cyclic voltammograms under ultrasonic irradiation were recorded at a distance of 15 mm between 

horn and quartz. In Figure 3.22 cyclic voltammograms and the corresponding frequency response of 

the quartz resonator at 14 Wcm-2 (the lowest applied) and at an ultrasound intensity of 76 Wcm-2 (the 

highest applied) are shown. 
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Figure 3.22 Electrodeposition and –dissolution of Cu, current densities (lines) and associated frequency changes 
(empty circles), from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1 at d = 15 mm under an ultrasonic 
intensity of a) 14 Wcm-2 and b) 76W cm-2. Arrows indicate the direction of potential sweeps, sweep rate 5 mV/s. 
Note: different scaling used because of the better visibility of the diagram showing different magnitudes of the 
recorded parameters. 
 

Ultrasound, even with a low intensity, changed significantly the shape of the cyclic voltammogram. 

Both cathodic peaks as well as the anodic peak at higher potentials disappeared. The starting potential 

for Cu deposition, obtained from the initial change in frequency was shifted to a more negative value 

of -216 mV. Cathodic currents were constantly increasing until the deposition started. Maximum 

cathodic currents as well as the maximum frequency change were more than ten times larger than 

under silent conditions. The dissolution process started at a similar potential but the anodic peak was 

broader due to the dissolution of more deposited copper. After the dissolution peak, the current went 

back to negative values and just at the end of the back sweep became slightly positive, following the 

current trace from the forward scan.  

With an increase in ultrasound intensity to 76 Wcm-2, the entire cyclic voltammogram finally remained 

in the negative current range (Fig. 3.23b) and the potential where Cu deposition started became even 

more negative (-264 mV).  

Figure 3.23a shows the shift of the potential where deposition started and of the anodic peak potential 

versus the ultrasound intensity. The potential of deposition shifted to more negative values upon 

application of ultrasound. Already at low intensity ultrasound there was a strong decrease in potential 

in comparison to silent conditions. With further increase in ultrasonic intensity the potential continued 

to shift slightly to more negative values up to ~ 30 Wcm-2 and then started to level off for higher 

intensities. In silent conditions, at a potential sufficiently below the standard potential for the redox 

couple Cu(II)/Cu(I), but still above the potential required for Cu deposition, all Cu(II) in the vicinity of 

electrode surface has been reduced to Cu(I). The concentration of Cu(I) close to the electrode surface 

therefore is equal to the bulk concentration of CuCl2 before the onset of Cu deposition. Under these 
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circumstances Cu deposition is expected to take place entirely from Cu(I), and the electrode reaction 

given as reaction 3.3.3 and corresponding potential would be the Nernst potential for this reaction. 

 

        (3.3.3) 

 

With ultrasound and the intensive stirring provided, the concentration profile is changed, there is more 

Cu(II) and less Cu(I) in the vicinity of the electrode in comparison with silent conditions and therefore 

the potential where actual Cu deposition starts shifts to more negative values. 
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Figure 3.23 Electrodeposition and –dissolution of Cu from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 
1, (E: 0.5 V – (-0.35 V), 5 mV/s) at d = 15 mm. a) potential where deposition started (full squares) and potential 
of the anodic peak (empty circles) b) maximal cathodic currents (triangles), anodic peak currents (full squares) 
and corrected anodic peak currents (empty circles). 
 

On the same graph, the change in the anodic peak potential (Epa) under influence of ultrasound is also 

shown. At small ultrasonic intensities, Epa shifts to more positive values as compared to silent 

conditions, but thereafter continuously shifts to more negative values with further increase in Ia. This 

shift of anodic peak potential is immediately connected with the total amount of Cu deposited 

beforehand (see Fig. 3.24a). With more Cu deposited Epa moves to more positive values (analogous to 

the situation in sulfate-based electrolytes) and the anodic peak was also in the range of positive total 

currents. The negative shift in Epa accordingly was caused by the deposition of less Cu at increasing Ia.  

At low ultrasound intensities the cathodic currents and the deposited mass were increased by a factor 

of nine or even more compared to silent conditions (Fig. 3.23b and Fig. 3.24a). The anodic peak 

currents shifted to larger more positive values while more Cu had to be dissolved. A further increase in 

the ultrasonic intensity still caused an increase in the maximum cathodic currents but the anodic peak 

currents decreased in magnitude, finally becoming negative above Ia~30 Wcm-2. This behavior of the 

anodic peak currents was accompanied by a decrease in the deposited mass with ultrasonic intensity. 

In the forward scan, there was a significant cathodic current due to Cu(II) reduction at the same 
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potential where in the backward sweep the anodic peak was located. Due to the efficient stirring 

induced by the ultrasound, this current was not less in the backward sweep. Therefore the total anodic 

peak current actually is the sum of the dissolution current for Cu and the reduction current for Cu(II). 

After background corrections for the Cu(II)->Cu(I) reduction, the corrected anodic peak currents 

remained at positive values for all applied ultrasonic intensities, but still were decreasing in  

magnitude as a consequence of less deposited Cu. 

From the total deposited mass and the total cathodic charge flux (Fig. 3.24a) an averaged (apparent) 

current efficiency εapp (according to Eq. 1.4.19) for the deposition (assuming z = 2), and from the 

anodic peak charge (after background correction, assuming z = 1) for the dissolution was calculated 

(Fig. 3.24b). For the deposition process εapp decreased from the value of 1 without ultrasound to 0.5 at 

the lowest ultrasonic intensity and decreased even further with increasing ultrasonic intensity. For the 

dissolution the εapp-values were for all ultrasonic intensities larger than 1. 
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Fig. 3.24 Electrodeposition and –dissolution of Cu from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1 at 
d = 15 mm. a) maximum mass deposited and dissolved and maximum cathodic charge density in a single 
voltammetric cycle (E: 0.5 V – (-0.35 V), 5 mV/s) b) corresponding averaged cathodic and anodic apparent 
current efficiencies. 
 

In an ultrasound field – 8 mm horn-quartz distance 

 

In the next step of the study the distance between the horn and the quartz was decreased to 8 mm and a 

set of cyclovoltammetric experiments was performed under otherwise identical conditions.  

The cyclic voltammograms at the lowest (14 Wcm-2) and the highest (76 Wcm-2) ultrasound intensity 

are shown in Figure 3.25. Both cyclic voltammograms were completely in the range of negative 

currents. At an intensity of 14 Wcm-2, with exception of a small range in the very beginning of the 

forward sweep, the cathodic current was constantly increasing in magnitude and according to the first 

onset of a frequency change Cu deposition took place below -260 mV. The cathodic currents at the 

lower potential limit reached a maximum value of about -5.7 mAcm-2. After the dissolution peak at 
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about -120 mV the currents were decreasing in magnitude and just at the very end of the back sweep 

became slightly positive. At an intensity of 76 Wcm-2 the deposition started at a slightly more negative 

potential of -270 mV, but the maximum cathodic currents were almost 4 times larger than at 14 Wcm-2 

ultrasound intensity. The deposited mass was much less and consequently the anodic peak, measured 

with respect to the large background current, was smaller. 
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Figure 3.25 Electrodeposition and –dissolution of Cu, current densities (lines) and associated frequency changes 
(empty circles), from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1 at d = 8 mm under an ultrasonic 
intensity of a) 14 W cm-2 and b) 76 W cm-2. Arrows indicate direction of potential sweeps, sweep rate 5 mV/s. 
Note: different scaling used because of the better visibility of the diagram showing different magnitudes of the 
recorded parameters. 
 

The maximum mass deposited and the total cathodic charge density in a single voltammetric cycle as 

well as corresponding averaged cathodic and anodic apparent current efficiencies followed similar 

trends with increasing ultrasound intensity as in the case of 15 mm quartz-horn distance discussed 

above. 

Similar to the situation discussed for the sulphate-based electrolyte, under silent conditions both 

reduction of Cu(II) to Cu(I) and Cu deposition are eventually under mass transport control, as seen by 

the two cathodic peaks. In the presence of ultrasound, the strong stirring effect connected with acoustic 

streaming, and possibly the collapse of cavitation bubbles and associated microjets led to a gradual 

change to charge transfer control, to the disappearance of both cathodic peaks and strongly enhanced 

cathodic currents.  
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Current efficiency 

 

In silent conditions, small cathodic currents were recorded in the beginning of the forward sweep. In 

this region of potentials reduction of Cu(II) to Cu(I) occurred, as explained in literature [205, 220, 221, 

225]. With increasing extent of reduction the concentration of Cu(II) close to the electrode decreased 

and the one of Cu(I) increased, and a cathodic peak appeared due to mass transport control. At a 

certain potential below the standard potential for the redox couple Cu(II)/Cu(I), Cu deposition started 

by reduction of the Cu(I) species enriched close to the electrode surface, while the parallel reduction of 

further Cu(II) to Cu(I) was already under mass transport limitation. This is a reason for εapp (calculated 

for z = 1 in Eq. 1.4.19) to be around 1 in the beginning of the deposition (Fig. 3.26 a).  
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Figure 3.26 Currents (line) and potential-resolved apparent current efficiencies calculated for z=1 (empty circles 
and lines) during cyclic Cu deposition and dissolution from a CuCl2-based electrolyte at 15 mm distance a) silent 
conditions b) at Ia=14 Wcm-2. Note: different scaling used because of the better visibility of the diagram showing 
different magnitudes of the recorded parameters. 
 

For values larger than one, it is possible that the short delay between the measurement of the current 

via the potentiostat and the change in frequency via the network analyzer is responsible. At even lower 

potentials most of the Cu(I) was consumed and the deposition was increasingly taking place by mass 

transport limited reduction of Cu(II), leading to a decrease in cathodic currents. Therefore εapp was 

approaching 0.5. The values obtained for εapp (calculated for z = 1) confirm therefore that at higher 

potentials the deposition occurs via Cu(I) and at lower potentials via Cu(II). In the beginning of the 

(anodic) back sweep, part of Cu(II) was reduced to Cu(I) and part to Cu, and εapp decreased below 0.5. 

With further increasing the potential, an even smaller proportion of Cu(II) was reduced to Cu metal, 

further decreasing εapp. Finally Cu dissolution to Cu(I) started while the total current was still negative 

due to the reduction of Cu(II) to Cu(I), and ε became negative. When the current became positive, εapp 

had in the beginning values larger than 1. This is still due to the on-going negative current contribution 
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of Cu(II) to Cu(I) reduction, which is why the change in mass is larger than expected from the anodic 

charge.  

Ultrasound enhanced mass transport and thus severely changed the situation. The current efficiency 

had a value of 0 in the beginning of the deposition, because the cathodic currents were already large 

due to the reduction of Cu(II) to Cu(I), but deposition just started (small Δm). At lower electrode 

potentials εapp was approaching 0.5, so deposition from Cu(II) occurred. With accelerated mass 

transport there was little if any depletion of Cu(II) and no enrichment of Cu(I) and at lower potentials 

solely Cu(II) contributed to Cu deposition. Values of 0.5 were also found in the beginning of the back 

sweep but when dissolution started in the region of total negative current, εapp became negative. With 

currents becoming positive εapp became positive and had larger values than 1. In this potential range 

there was also Cu(II) reduction taking place, as explained above for silent conditions. With increasing 

rate of Cu dissolution εapp was decreasing, and became finally negative. 

The reduction process in the copper chloride system is a two-step process and this mainly determines 

the behavior of parameters also under the influence of ultrasound. Ultrasound leads to enhanced mass 

transport and the depletion of Cu(II) near the electrode, as in the case without ultrasound, is 

eliminated. From one side this encourages Cu(I) formation but from another side Cu can be easier 

corroded with Cu(II). With enhanced mass transport not just Cu(II) ions are faster brought to the 

electrode but also Cu(I) can be faster removed from the electrode, being then no longer available for 

further reduction to Cu metal. Cu deposition is therefore maximal at intermediate ultrasonic intensities 

and then it decreases, leading to a decreasing of current efficiency. This is in part caused by the large 

cathodic currents due to the reduction of Cu(II) to Cu(I). When less mass is deposited with increasing 

Ia, the anodic peak currents are decreasing as well and the anodic peak potential shifts to lower 

potentials. With a further increase of the ultrasound intensity, although cathodic currents were further 

slightly increasing, deposited mass was decreasing and current efficiencies strongly decreased. 

 

3.3.2 Potentiostatic deposition of Cu 

 

The potentiostatic deposition of Cu layers was performed at different potentials and at different 

ultrasonic intensities at a same horn-quartz distance (d=22 mm) and the morphology of the obtained 

deposits was examined by scanning electron microscopy. 

At the potential of -0.3 V and at an ultrasound intensity of 30 Wcm-2, with the given limiting 

frequency change of 300 kHz of the quartz resonator in less than 5 minutes Cu deposition was 

finished. After an initial increase in the current, it was noisy, leveled off and slightly decreased toward 

the end of the deposition (Fig. 3.27). The mass was continuously (almost linearly) increasing and 

reached a value of 1.34 mg cm-2 (predetermined by the limitation of ∆f) corresponding to a thickness 

of 1.5 μm. For these conditions, potentiostatic deposition occurred with a 76 % current efficiency, 

calculated from the slope of the mass versus charge curve. 
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Figure 3.27 Current transient (line) recorded at –0.3 V and Ia = 30 W cm-2 in 0.01 M CuCl2, 0.5 M NaCl, pH ~ 1, 
and mass change of the resonator (empty circles). Insert: Corresponding mass versus charge plot with given 
current efficiency calculated from the slope. 
 

The deposited layer was not uniform and one could also observe small holes or cracks (Fig 3.28a). On 

the top of the layer, consisting of grains similar in size merged together (Fig. 3.28b), were bigger 

grains different in size and shape. 

 

 a)  b) 

 c)  d) 
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 e)  f) 

 g)  h) 

 
Figure 3.28 Cu films deposited from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1, sweep rate 5mV/s, 
d=22mm at Ia = 30Wcm-2 and E = - 0.3 V, |Δf| ≥ 300 kHz (a and b), at Ia = 11Wcm-2 and E = - 0.3 V, |Δf| ≥ 300 
kHz (c and d), Ia = 29Wcm-2 and E = - 0.33 V, 10 min (e and f), Ia = 27.5Wcm-2 and E = - 0.25V, |Δf| ≥ 300 kHz 

(g and h). 
 

At the same potential of -0.3 V and a lower ultrasound intensity of 11 Wcm-2 deposition of copper 

lasted less than 7 min. Grains, bigger but more uniform in size, without merging together formed a 

powdery, rough layer, shown in Figure 3.28 (c, d). 

At a lower potential of -0.33 V at an ultrasound intensity of 29 Wcm-2, deposition took place with a 

current efficiency of 91% in less than 5 min, and a layer with a uniform size of particles was obtained 

(Fig. 3.28e). At a higher magnification smaller particles with a similar shape and size merged together 

with a flat compact layer underneath were visible (Fig. 3.28f). 

When the applied overpotential was lower (E= -0.25 V vs Ag/AgCl), with an ultrasound intensity of 

27.5 Wcm-2, the copper layer was deposited with a current efficiency of 100 % in the beginning and 90 

% towards the end of experiment, which lasted 10 min. The grains were large and flat forming a rather 

rough layer (Fig. 3.28g, h). 

When lowering the ultrasonic intensity from 30 to 11 Wcm-2 under otherwise identical conditions, a 

potential of -0.3 V and a frequency change limitation of 300 KHz, the deposition lasted 2 min longer 

and a more powdery and rougher layer was obtained with a bigger grain size. At an ultrasonic intensity 

of 29 Wcm-2, the same frequency limitation, but a higher overpotential (E = -0.33 V) smaller grains 

and a more compact, less rough layer was obtained in the same time (less than 5 min). At an intensity 

of 27.5 Wcm-2 in 10 min but at a rather low overpotential of -0.25 V, the largest size of the flat grains 

was observed forming a rough layer. 
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With a higher ultrasound intensity in the range of applied intensities in these experiments grains 

smaller and more uniform in size and more compact layers were obtained. A similar effect was 

observed for a more negative potential (corresponding to a higher overpotential). With the lowest 

overpotential, the largest grains were observed and with the lowest ultrasound intensity the roughest 

and most powdery layer was deposited. 

 

3.3.3 Potentiostatic depositions at different overpotentials and ultrasound intensities 

 

With the aim to investigate in more details the influence of the potential and the ultrasonic intensity on 

the current efficiency of the potentiostatic deposition of copper from chloride electrolyte, a set of the 

potentiostatic depositions with a potential and an ultrasonic intensity variation at a distance of 22 mm 

between horn and electrode, was done. A potential range between -0.25 and -0.35 V was chosen 

because in that potential range Cu deposition was obtained in the cyclovoltammetric study (cf. Fig. 

3.26). At the potential of -0.2 V there was no deposition taking place. For each value of the applied 

potential ultrasound intensity was varied between 10.6 and 30 Wcm-2. In Figure 3.29, the rate of the 

deposition and the current efficiency are presented with potential and intensity variation. 

The deposition rate strongly increased upon turning on the ultrasound for all applied potentials (Fig. 

3.29a). With increasing ultrasound intensity and at more negative potentials the deposition rate 

gradually increased. When increasing the ultrasonic intensities beyond ~ 13 Wcm-2, for lower 

overpotentials the deposition rate was slightly decreasing, for intermediate potentials it leveled off and 

for higher potentials it was slightly increasing.  

 

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7
 -0.25 V
 -0.27 V
 -0.29 V
 -0.31 V
 -0.33 V
 -0.35 V

d
m

/d
t 

/ 
µ

g
 c

m
-2
 s

-1

I
a
 / W cm

-2

 

0 5 10 15 20 25 30
0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

 -0.25 V
 -0.27 V
 -0.29 V
 -0.31 V
 -0.33 V
 -0.35 V

e a
p

p

I
a
 / W cm

-2

 

a) b) 

Figure 3.29 Potentiostatic deposition from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1, sweep rate 5 
mV/s, d=22 mm. Change in a) deposition rate and b) apparent current efficiency with ultrasonic intensity at 
potentials between -0.25 and -0.35 V. 
 

The apparent current efficiency strongly decreased at a potential of -0.25 V with increasing ultrasonic 

intensity, although the deposition rate was increasing at the lower ultrasonic intensities. At all other 
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potentials the current efficiency at first strongly increased upon turning on the ultrasound whereas with 

further intensity increase it decreased (Fig. 3.29b). For the higher overpotentials the decrease in 

efficiency was less significant. 

The current densities jel measured in these experiments (Fig. 3.30a) were much larger upon application 

of ultrasound. At the lowest intensity of 10.6 Wcm-2 the electrical current for the lowest applied 

potential was about 6 times larger than under silent conditions. Up to 22.6 Wcm-2 the current was 

significantly increasing with increasing Ia for all potentials. With a further increase in ultrasound 

intensity currents became only slightly larger. Increasing of the currents with larger ultrasonic 

intensity was more significant at lower potentials (larger overpotentials).  

A similar tendency was found for the currents jM, (by Eq. 1.4.20 as in Annex 2) expected from the 

deposited mass and calculated for z = 2 (Fig 3.30b). At lower ultrasonic intensities and for all 

potentials, there was a strong increase in these currents, but with a further intensity increase, over 19 

Wcm-2 the effect was much less, almost negligible. 
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Figure 3.30 Potentiostatic deposition from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1, sweep rate 
5mV/s, variation of ultrasonic intensity up to 30 Wcm-2, a) measured current and b) calculated current from the 
mass for 100 % current efficiency for z=2, versus potential. 
 

The two step nature of the redox process in chloride electrolyte is mostly responsible for the behavior 

of the parameters in these experiments. The presence of the ultrasound leads to enhanced mass 

transport, and thus an enlarged Cu (II) concentration near to the electrode. More Cu(II) provokes more 

Cu (I) formation, which is beneficial for electrodeposition. However, mass transport is not enhanced 

just in one way and the formed Cu(I) is also very effectively removed from the electrode. Reverse 

effects caused by ultrasound explain maximum deposited mass at intermediate intensities and mass 

decrease with further intensity increase. Cavitation at the electrode also might contribute to the mass 

decrease, that in turn leads to a decrease in current efficiency. In order to further improve the 

understanding of the kinetics of the Cu chloride system in the presence of ultrasound, rotating disc 

electrode studies were carried out for comparison. 
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3.3.4 Rotating disc electrode experiments 

 

In the experimental setup with a rotating disc electrode the mass transport was enhanced as well. For 

the sake of comparison and further clarifying the nature of the ultrasound influence, cyclic 

voltammograms on the Pt rotating disc electrode with a rotation rate between 500 and 3000 rpm were 

recorded in the same potential range as the sonovoltammograms (Fig. 3.31a). Next to the recorded 

cyclic voltammograms, for comparison, cyclic sonovoltammograms at ultrasonic intensities up to 29 

Wcm-2 are presented as well (Fig. 3.31b). A stirring effect is present in RDE as in experiments with 

ultrasound, thus mass transport is enhanced and currents are larger due to the decreased diffusion layer 

thickness. All these effects are further enhanced with increasing rotating rate of the RDE. The peak 

couple at higher potentials also disappeared as with ultrasound. With increasing the rotation rate there 

was a slight shift in the potential where the deposition started but not as significant as with ultrasound. 

Anodic peak currents also increased with the rotation rate, as a consequence of increased deposited 

mass, but part of the peak still remained at negative currents.  
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Figure 3.31 Electrodeposition and –dissolution of Cu from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1 
a) on a rotating Pt disc electrode at rotation rates of 0, 500, 1000, 1500, 2000, 2500, and 3000 rpm and b) at 
different ultrasonic intensities on Au as given in the legend. Sweep rate: 5 mV/s. Experiments were performed 
under Ar. Note: different scaling used because of the better visibility of the diagram showing different 
magnitudes of the recorded parameters. 

Maximum cathodic currents from RDE experiments and from experiments with ultrasound intensity 

up to 29 Wcm-2 are shown on the Figure 3.32. The maximum cathodic currents at 1500 rpm are similar 

in magnitude as maximum currents at an intensity of 9 Wcm-2. The maximum cathodic currents for the 

highest rotation rate (3000 rpm) are less than at an intensity of 17 Wcm-2. Under the influence of the 

ultrasound, even with the lowest intensity, currents were much noisier than in RDE measurements, Cu 

deposition under ultrasound started always at more negative potentials and the anodic peak current 

was smaller. 
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Figure 3.32 Maximum cathodic currents (full squares-in ultrasound field and empty circles in RDE experiments) 
recorded during electrodeposition and –dissolution of Cu from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH 
~ 1 a) on a rotating Pt disc electrode at rotation rates of 0, 100, 500, 1000, 1500, 2000, 2500, and 3000 rpm and 
b) at different ultrasonic intensities on Au as given in the legend. Sweep rate: 5 mV/s. Experiments were 
performed under Ar. 
 

In RDE experiments, for both reduction processes, the reduction of Cu(II) to Cu(I) and Cu deposition, 

limiting current conditions were reached. The limiting currents for Cu(II) reduction to metallic Cu 

were slightly larger than twice the limiting current of Cu(I) formation (Fig. 3.33). The reason for this 

small deviation could be the increased surface area due to the deposition of a rough Cu layer. On the 

other hand with ultrasound, only at the lowest ultrasonic intensity limiting behavior is observed. 
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Figure 3.33 Limiting currents for Cu(I) (jlim, cath1) and Cu metal formation (jlim, cath2) during electrodeposition of 
Cu from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1 on a rotating Pt disc electrode at rotation rate of 
3000 rpm, sweep rate 5mVs-1, under Ar atmosphere. 
 

From the recorded cyclic voltammograms diffusion coefficients and the diffusion layer thicknesses 

can be obtained [159]. 

Equation 1.4.11 could be applied for both redox processes (both showed limiting behavior for all 

rotation rates) and one could expect a straight line for the plot jlim versus ω0.5, the Levich plot (Fig. 

3.34a). From the slope and for ν = 0.0103 cm2 s-1 (literature data for 0.5 M NaCl [240]), z = 1 for Cu(I) 
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formation and z = 2 for Cu formation under limiting conditions diffusion coefficients of 5.6 10-6 and 

6.7 10-6 cm2 s-1 (Annex 8) were obtained and they were in a good agreement with values of D = 5-

8·10-6 cm2s-1obtained in literature  [232, 239]. From Equation 1.4.12, diffusion layer thicknesses of 11 

μm at 1500 rpm and 7.9 μm at 3000 rpm can be calculated (Annex 9). 

A Levich plot was also made for currents at an intermediate potential of -0.17 V (taken from CV data), 

where Cu deposition is already taking place, but not yet under diffusion control (Fig. 3.34b). In this 

region two parallel reactions are taking place, reduction of Cu(II) to Cu(I) occurs under diffusion 

control and Cu(I) to Cu under mixed control. In addition nucleation processes are taking place as well. 

Thus the Levich plot is not linear in this region. 
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Figure 3.34 a) Dependence of limiting currents for the electrochemical formation of Cu(I) (squares) and Cu(0) 
(circles) on the electrode rotation rate. Lines: linear fits through the origin, neglecting the current measured 
without rotation b) Dependence of cathodic currents on rotation rate at an intermediate potential of -0.17 V 
where deposition takes place but before reaching limiting conditions. 
 
According to Eq. 1.4.14 and from the set of potentiostatic depositions with a potential variation 

between -0.25 and -0.35 V and a variation of ultrasonic intensities for each potential (Fig. 3.30a), by 

plotting reciprocal of measured current 1/j versus 1/Ia
0.5 one obtains the analogue of a Koutecký-

Levich plot for the ultrasonic data (Fig. 3.35).  
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Figure 3.35 Mass transport plots analogous to Koutecký-Levich plots for the currents jel measured during 
potentiostatic Cu deposition at different applied potentials (legend) and ultrasonic intensities Ia. Lines: Linear 
fits. 

 

Only at a potential of -0.25 V the plot was linear. At this potential most of the electric current was due 

to Cu(II) reduction to Cu(I), and only little Cu deposition occurred. The slope of the linear fit gave a 

value for K = 1.21·106 Ω
-0.5 cm1/6 mol-1 s2/3, and from the intercept an activation-controlled current 

density of 56 mA cm-2
 was calculated (Annex 10). The obtained values were close to the values found 

in literature [241]. A dependency jlim = -3.17·10-3 Ia
0.5 (Eq. 1.4.14) was obtained and currents of jlim = -

9.5 mA cm-2 at 9 W cm-2 and jlim = -17 mA cm-2 at 30 W cm-2 were calculated. The obtained limiting 

currents were larger than the currents observed in cyclic voltammograms at -0.25 V under ultrasound 

influence. Therefore the limiting behaviour for Cu(II) to Cu(I) reduction could not be reached. 

Linear fits, despite a small deviation from linearity, were also done for -0.29 and -0.31 V. Slopes of 

the fits were smaller than for -0.25 V. Since the slope (and thus K) is proportional to the number of 

electron transferred (in analogy to the RDE Eq. 1.4.13) it indicates that for lower potentials z has 

higher values. This is in agreement with the consideration that at lower potentials more deposition of 

Cu occurs via Cu(II).When the potential range in cyclic voltammetry was extended to -0.7 V (Fig. 

3.36) still no limiting current behaviour in experiments with higher intensity ultrasound at small 

distance was seen. This in part could be due to hydrogen evolution that will take place at such low 

potential in a pH 1 electrolyte. However, at a lower potential limit, still much larger amounts of Cu (Δf 

was almost 25 times larger) were deposited and the anodic peak appeared at positive currents. Because 

also the current efficiency did not decrease at the lower potentials, as one would expect if Cu 

deposition was under diffusion control and the increasing current due to hydrogen, the continuous 

increase in current must be due to cavitation disruption of the Nernst diffusion layer preventing 

depletion even at large deposition rates – even though one would then expect the occurrence of 

erosion. Since there was no residual deposit after the dissolution process was finished (Δf=0), there 

was no precipitation of Cu hydroxide as a possible consequence of the hydrogen evolution. 
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In all experiments with ultrasound, except for the lowest ultrasonic intensity at 22 mm distance 

between horn and quartz, no limiting behaviour was observed. Still, when the ultrasonic intensity 

increased above a certain value and especially for lower overpotentials the deposited mass started to 

decrease. Moreover, as a consequence of the decreased mass and enhanced removal of Cu(I), current 

efficiency also decreased. 
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Figure 3.36 Electrodeposition and –dissolution of Cu, current densities (lines) and associated frequency changes 
(empty circles), from an electrolyte of 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1 at d = 8 mm under an ultrasonic 
intensity of 76 W cm-2, under Ar atmosphere. Arrows indicate direction of potential sweeps, sweep rate 5 mV/s. 
 

3.3.5 Influence of ultrasonic intensity on Cu leaching 

 

With the intention to resolve remaining unclarities and to understand more in depth how the presence 

of the ultrasound influences this specific electrochemical system, the development of copper corrosion 

in CuCl2 was also studied. 

At first, open circuit measurements with variation of the ultrasound intensity between 10 and 30 Wcm-

2 were performed. A Cu layer was deposited for 3 minutes, at a potential of -0.33 V and at an 

ultrasonic intensity of 30 Wcm-2. After the deposition was finished, an open circuit potential 

measurement was made, the first minute under silent conditions and then 9 minutes with different 

ultrasound intensities. The recorded open circuit potential and the concurrent change in mass during 

the measurement at 25 Wcm-2 is shown in Figure 3.37a. The OCP increased slightly, with a rate of 

0.02 mVs-1, under silent conditions and more significantly, with 0.2 mV s-1, at an ultrasonic intensity 

of 25 Wcm-2, as long as some Cu still remained on the electrode. After all Cu was dissolved, the 

potential steeply increased to a value of 350 mV. The mass decrease was about 0.20 µgcm-2s-1 under 

silent conditions, and at an ultrasonic intensity of 25 Wcm-2 increased to 6.4 µgcm-2s-1. Corrosion 

currents, calculated from the mass change were 0.3 mAcm-2 and 9.8 mAcm-2 (calculated according to 

Eq.1.4.20-Annex 11), for silent conditions and with ultrasound, respectively. 

In Figure 3.37b, corrosion currents are presented for intensities up to 30 Wcm-2, calculated from the 

mass change during open circuit measurements of Cu films, and cathodic currents recorded at same 
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potential (during cyclic voltammetry) as the corrosion potential in OCP measurements (-0.055 V) but 

in the absence of a Cu film on the electrode. Except for the lowest applied ultrasonic intensity, the 

absolute values of cathodic currents were smaller than the corrosion currents. Further, the corrosion 

currents were smaller than the limiting currents for Cu(II) reduction, calculated from the dependency 

jlim = -3.17·10-3 Ia
0.5 for all intensities (jlim = -9.5 mA cm-2 at 9 W cm-2, given in previous Chapter). 
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Figure 3.37 a) Corrosion of Cu in CuCl2 solution in open circuit potential measurements, under silent conditions 
(first 60 s) and at Ia = 25 W cm-2, OCP potential (line) and mass change (empty circles) b) Corrosion currents 
calculated from mass changes in function of the currents measured at an applied potential of -0.055 V in the 
absence of a Cu layer. Numbers: Ia / W cm-2. Straight line: -jcorr = jcath. 
 

In addition, 30 minutes of an open circuit measurement, for the first 60 seconds in silent conditions 

and the remaining time at an ultrasonic intensity of 76 Wcm-2, was made on a Cu layer, deposited in 3 

minutes at a potential of -0.3 V and at Ia = 19 Wcm-2. The potential and the mass change recorded 

during the measurement are shown in Figure 3.38. 
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Figure 3.38 Corrosion of Cu in CuCl2 solution during an open circuit potential measurement, under silent 
conditions (first 60 s) and at Ia = 76 W cm-2, a) OCP potential (line) and mass change (empty circles). 
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The open circuit potential increased in silent conditions by about 0.02 mVs-1 and 0.8 mVs-1 at an 

intensity of 76 Wcm-2
. Under silent conditions, the mass decrease rate was about 0.2 μgcm

-2s-1. When 

ultrasound with Ia= 76 Wcm-2 was applied, the mass loss rate increased to a value of 9.8 μgcm
-2s-1. 

These mass decreases were corresponding to corrosion currents of 0.3 and 14.8 mAcm-2 (calculated 

according to Eq.1.4.20 in a way as in Annex 10). After the entire deposit was dissolved the open 

circuit potential jumped by several hundred mV to a value of 380 mV. The potential, measured during 

corrosion in silent conditions was around -0.060 V. At this potential under silent conditions and 

without a Cu layer the measured cathodic current was about -0.32 mAcm-2 (taken from the CV under 

silent conditions-Fig. 3.21a). At an intensity of 76 Wcm-2 the measured potential was about -0.055 V 

and the corresponding cathodic current was about -7.4 mAcm-2 and about -10.8 mAcm-2, at 15 mm and 

8 mm horn-quartz distance respectively. 

At the highest applied ultrasonic intensity, similar behavior was observed as at intermediate intensities 

up to 30 Wcm-2. The cathodic current recorded at the corrosion potential was much smaller than the 

corrosion current, which in turn was smaller than the limiting cathodic current for Ia = 76 Wcm-2. 

As explained above and seen in many experiments, the deposited copper layer is not stable in Cu(II) 

solution in the presence of Cl- ions (for characterization of the morphology it was always necessary to 

remove the samples very fast from the solution after deposition). 

As for all applied intensities corrosion currents were smaller than calculated limiting currents for 

Cu(II) reduction, the decrease in mass during open circuit measurements on the previously deposited 

Cu layer (Fig. 3.37a and 3.38) can be described by the corrosion process: 

 

Cu + Cu2+ + 4 Cl- → 2 [CuCl2]
-         (3.3.4) 

 

At higher ultrasonic intensities, at the corrosion potential, cathodic currents were smaller than limiting 

currents but also by absolute value smaller than the corrosion currents. Therefore, the measured 

cathodic currents and thus corrosion could not completely explain the mass loss at larger Ia. There are 

two possibilities for the discrepancy between cathodic currents and (corrosion) currents calculated 

from mass loss: On the one hand the exchange current density for Cu(II)/Cu(I) might be larger on Cu 

than on Au, and on the other hand erosion might contribute to the mass change. The latter aspect will 

be discussed in the following section. 
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3.3.6 Influence of cavitation 

 

In a chloride based electrolyte there were a few indications for the presence of the surface cavitation. 

At first, noisy currents were generally observed during cyclovoltammetric and potentiostatic 

measurements. At a potential of -0.33 V, with a 300 kHz frequency limitation, at an ultrasonic 

intensity of 76 Wcm-2 and at a horn-quartz distance of 8 mm a potentiostatic deposition experiment 

was intended to be done. The recorded resonance spectrum (Fig. 3.39a) at the beginning of the 

experiment was extremely noisy and there was almost no deposition occurring at the electrode. These 

are strong indications for the occurrence of caviation at or in the proximity of the electrode surface. 

After lowering the ultrasound intensity to 47 Wcm-2, deposition started, indicated by the increase in 

the current efficiency from 0.6 to 49 % (Fig. 3.39b). Furthermore, the noise, quantitatively determined 

from the standard deviation χ of Lorentzian peak fit of the quartz admittance spectra, decreased by two 

orders of magnitude (Fig. 3.39b). 
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Figure 3.39 a) Characteristic resonance spectrum in the presence of cavitation at quartz surface at Ia = 76 W cm-2 
and b) potentiostatic deposition of Cu from 0.01 M CuCl2 + 0.5 M NaCl, pH ~ 1, at E = -0.33 V vs. Ag/AgCl, at 
a range of ultrasonic intensities (76 W cm-2 – 47 W cm-2, see text): Total mass change Δm as function of total 
charge Q (ε determined from slope, Ia given on top of figure) and the corresponding standard deviation χ of 
Lorentzian peak fit of the quartz admittance spectra. 
 

The resonance frequency of the bare quartz was followed during a set of cyclovoltammetric 

experiments where the intensity of the ultrasound was first stepwise increased and then stepwise 

decreased. It was observed that in the course of the experiment, after all deposited Cu was dissolved, 

the resonance frequency of the bare quartz increased (Fig. 3.40). This was a clear indication of gold 

electrode erosion. Also, after a set of the potentiostatic depositions and dissolutions performed at 

different ultrasonic intensities, one could see that the surface of the gold electrode was much rougher 

in the center, where it was exposed to the ultrasound, than at the edge (Fig. 3.41). 
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Figure 3.40 Resonance frequency measured before Cu deposition during cyclovoltammetric experiments with 
stepwise increasing and stepwise decreasing of Ia in a Cl- based electrolyte. Arrow shows the order of 
experiments. 
 

  

                                                                       
a) b) 

Figure 3.41 Au surface of a quartz resonator after a series of sonoelectrochemical experiments in 0.01 M CuCl2 

+ 0.5 M NaCl, pH ~ 1 at d = 8 mm a) outside the sealing O-ring where the Au was not in contact with the 

electrolyte b) in the center of the electrode exposed to solution and ultrasound. 

 

Several observations made during the study in the chloride system could not be explained only by the 

enhanced mass transfer influenced by the ultrasound. In experiments with higher ultrasonic intensities, 

with increasing Ia, total Cu mass deposited was decreasing. Due to the decreased deposited mass the 

anodic peak currents decreased. In some potential ranges, with increasing Ia a decrease in cathodic 

currents was also observed. Beside cyclic voltammograms recorded at 22 mm horn-quartz distance, no 

limiting behavior was observed in experiments with ultrasound even for the extended range of 

potentials, and the cathodic currents were (except at 9 Wcm-2) always higher than in RDE experiments 

for all applied rotation rates. A possible explanation for these discrepancies could be the presence of 

surface cavitation generated by the ultrasound. Erosion, as a consequence of the surface cavitation 

could lead to the removing of the deposited copper metal and therefore could explain the dependence 

of anodic peak currents on intensity as well as the large values for corrosion currents. 
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Chapter 4 - Synthesis of composites 

 

4.1 Background 

 

By combining two or more materials, having quite different properties, composites can be formed. 

Two different materials can build up a composite with unique properties. In the composite it is still 

possible to distinguish the individual materials. Most composites are made up of just two materials. 

One material (the matrix or binder) surrounds and binds together a cluster of fibers or fragments of a 

much stronger material (the reinforcement) [242].The biggest advantage of composite materials is 

their strength and stiffness combined with lightness [243]. With appropriately chosen combination of 

reinforcement and matrix material, as well as the manufacturing processes, it is possible to tailor 

properties that exactly fit the requirements for a particular structure for a particular purpose [244]. In 

general, composite materials are very durable. The flaw of composites is usually the cost. For the sake 

of synthesizing new materials and lowering the costs many studies have been conducted [245]. 

The electrochemical codeposition of metals and ceramic particles has been widely studied in literature 

in order to modify the metals properties like hardness, corrosion resistance, and high temperature 

oxidation resistance [246-251]. Fine particles are suspended in the electrolyte and embedded in the 

growing metal layer during electrocodeposition. Recently, intense research has been done on 

electrocodeposition of nanostructured composites due to enhanced mechanical properties, including 

wear and corrosion resistance [252]. It has been reported that by the incorporation of oxide particles 

such as Al2O3 and TiO2 hardening of metals could be achieved [253-255]. Further, the corrosion rate 

was significantly decreased by A12O3, BaSO4, Si3N4, V2O5 and Cr2O3 embedded in a metal matrix 

[253-258]. N. S. Qu et al. reported higher microhardness, better wear resistance, enhanced corrosion 

resistance and improved high temperature oxidation resistance of Ni/CeO2 composite in comparison to 

pure nickel both prepared by electrocodeposition [259]. 

As mentioned above, the experimental parameters play a significant role in the structure of the 

produced composite material and thus its properties. In this manner many studies were carried out in 

order to optimize the experimental conditions, rise the percentage of the incorporated particles and 

obtain desired improved material properties. It was found that the volume percentage of Al2O3 

particles in a nickel matrix increases with increasing particle concentration in the bath [260]. 

Moreover, the nature of the particles has its own influence. Greco et al. reported that in a Ni matrix, 

three times as much TiO2 was incorporated than Al2O3 for the same plating conditions [255]. 

Furthermore, an increase in the particles size increased the percentage of Al2O3 in Ni [261], but 

lowered the deposition rate [262]. Temperature was shown to have an influence on some systems. For 

Ni-V2O5 a maximum particle content at 50 °C was reported [258], but for Ni-A12O3 no effect of 

temperature on the percentage of embedded particles was found [260, 263]. The use of codeposition 

for electrocatalysis was reported [264, 265]. Electrodes are made by codeposition of particles of an 
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electroactive material with a metallic matrix. The behavior of these electrodes was found to be 

controlled by the embedded material. 

Nickel electroplating is one of the few surface finishing processes that can satisfy the requirements of 

decorative and functional applications. Ultrasound irradiation was found to enhance electrodeposition 

of Ni from a modified Watts electrolyte via increased mass transport of the electroactive species to the 

cathode caused by acoustic streaming [266]. It is reported that many plating characteristics, such as 

coating structure and morphology could be modified by the presence of ultrasound [267]. Parameters 

like internal stress and hardness distribution were found to be very sensitive on the ultrasound 

presence [268]. Application of the ultrasound irradiation showed many advantages in electrodeposition 

of pure metals and alloys, mostly higher current efficiencies [269], but also harder, more compact and 

better adherent deposits [270-272] corresponding to improved wear resistance, smoothness and 

brightness [172, 271]. 

Although many advantages of electrocodeposition of nanoparticles in thin metal films are reported, 

problem of nanoparticles agglomeration was frequently present [273]. In order to reduce 

agglomeration of particles, several strategies were developed such as variation of pH [274] and 

dilution of electrolyte [275]. O. V. Abramov reported ultrasound irradiation to be very helpful in 

dispersion of the agglomerated nanoparticles in the electrolyte as well as on the surface of the 

deposited film [269]. Moreover, when ultrasound was applied before and during electrodeposition, 

more uniform dispersion and less agglomeration of particles was observed [275, 276] in comparison 

without ultrasound. 

Composites of Ni/CeO2 and Co/CeO2 [248, 259] have large significance because of the possible 

application in high temperature fuel cells. Nickel oxide is frequently used as cathode material in 

molten carbonate fuel cells. Under the extreme conditions, the cathode material undergoes dissolution. 

Addition of LiCoO2 on the surface of the cathode is known to reduce the precipitation of Ni in the bath 

[265]. It is also reported that cerium oxide layers and Co-oxide ceria layers reduce nickel oxide 

dissolution and catalyze the Li incorporation into the nickel oxide cathode [277, 278] and therefore 

there is an increased interest in the electrodeposition of Co/CeO2 composites for protection of cathodes 

in fuel cells. 

Due to the strong interest in the electrocodeposition of Ni/CeO2 and Co/CeO2 composites and benefits 

ultrasound irradiation could provide sonoelectrochemical deposition of these composites applying the 

EQCM technique was studied. 

The electrocodeposition of Ni and Co with dispersed nano-sized ceria particles was studied by the 

incorporation of oxide (ceria) dispersed in the electrolyte during electroplating of Ni or Co metal. For 

composite deposition, commercial nanocrystalline gadolinia doped ceria powder - GDC (Fuel Cell 

Materials, 5-10 nm crystallite size, softly agglomerated, particle size < 149 μm) was added to the 

metal electrolyte. Prior to the deposition, the electrolyte was ultrasonically treated before transfer to 

the cell. Ultrasound also was applied a few seconds before and for the entire duration of the deposition 
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ensuring bath agitation and break up of particle agglomerates. All experiments were done without 

deaeration. Ceria content in solution and the applied ultrasonic intensity Ia were varied. Layers of the 

co-deposits were made by potentiostatic and galvanostatic co-deposition, with the aim to find optimal 

conditions for the deposition of good composites. 

 

4.2 Ni/CeO2 system 
 
For the electrodeposition of Ni/CeO2 composite, two different electrolyte compositions were used: The 

Watts electrolyte (30 g/l NiCl2+234 g/l NiSO4×6 H2O+30 g/l H3BO3+3 mg/l sodium dodecylsulfate 

(SDS) [207]) and a sulfamate bath (100 ml/l of a 50 wt% solution of Ni(NH2SO3)2+10 g/l 

NiCl2×6H2O+40 g/l H3BO3 [208]) at 50 °C. For both electrolytes, always first experiments with cyclic 

voltammetry in pure electrolyte were carried out, without addition of ceria, to obtain basic information 

about the electrochemical behavior of Ni in the corresponding electrolyte. 

 

4.2.1 Watts electrolyte 

 

Cyclic voltammetry under silent conditions 

 

A preliminary cyclovoltammetric study was done in a Ni-Watts electrolyte without presence of the 

ceramic ceria particles. Three cycles in a potential range between 0.3 and -0.8 V, at a 5 mVs-1 scan 

rate, were recorded. The cyclic voltammograms under quiescent conditions are shown in Figure 4.1. 
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Figure 4.1 Electrodeposition and dissolution of Ni from Watts electrolyte at 5 mVs-1 at 50 ºC under silent 
conditions, a) measured electrical current and deposited mass versus potential and b) measured (dotted line) and 
calculated current (from the deposited mass for 100 % current efficiency-Eq. 1.4.19) versus time. 
 

There was no cathodic peak observed in any of the three recorded cycles due to the high concentration 

of Ni in the electrolyte, thus deposition was not under mass control. There was a big discrepancy in the 

measured currents as well as in the frequency changes between the first and the second/the third cycle. 
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In the first cycle deposition started at potential below -0.6 V, which was accompanied by a decrease in 

the resonance frequency of the quartz resonator. The maximum cathodic current density was about -11 

mAcm-2 and the frequency change was 7 kHz, corresponding to ~ 30 μgcm
-2. In the beginning of the 

back sweep currents were decreasing, but still negative, and deposition was still taking place. At a 

potential of around -0.35 V the dissolution of the deposited Ni started. After the anodic peak, all 

deposit was dissolved and the current dropped to a background value. The traces of the second and the 

third cycles were severely different from the trace of the first cycle. The deposition started at a slightly 

lower value and the maximum cathodic currents were lower, up to about -7.6 mAcm-2. The maximal 

change in the resonance frequency was up to 14 kHz, corresponding to the deposited mass of ~62.6 

μgcm
-2, in the second and slightly larger in the third cycle. In the back sweep two anodic peaks were 

recorded. The second anodic peak was the smaller one (and more like a shoulder of the first anodic 

peak), overlapped the first one. After the second peak the dissolution process was complete. In the 

curve of the mass change a shoulder corresponding to the second anodic peak in the current trace was 

observed. When measured jel and calculated jM (from the mass change, determined by EQCM via 

frequency change, for 100 % current efficiency-Eq. 1.4.17) current densities were plotted versus time 

one could see a big discrepancy in the first cycle and very good matching for the second and the third 

cycle. In the first cycle maximum cathodic currents were higher but less deposit was obtained opposite 

to the second and third cycle where less current but more deposit was observed. The strong deviation 

between the measured and the calculated currents was detected when the change in damping was 

observed, and that could be the possible source (Fig. 4.2). 
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Figure 4.2 The change in the damping vs change in the frequency during electrodeposition and dissolution of Ni 
from Watts electrolyte at 5 mVs-1, at 50 ºC, in a potential range of 0.3-(-0.8) V. 
 

In the first cycle the damping change was ~ 3 kHz and the frequency change less than 7 kHz, thus the 

condition for the Sauerbrey equation (the frequency change to be at least 10 times larger than the 

change in damping) to be applied was not satisfied [128]. The calculated mass and thus the calculated 

current did not have realistic values. Normally, during the deposition of a rough, inhomogeneous 
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layer, the damping is increasing. When a rough layer is deposited, the surface area is also larger. The 

situation was clearly different in the second and the third cycle. The frequency change of almost 15 

kHz was more than ten times bigger than the damping change (less than 1). Moreover, the mass on the 

quartz, after the dissolution cycle was finished, was increasing from cycle to cycle indicating 

incomplete dissolution in these conditions and probably due to Ni(OH)2 incorporation into the deposit. 

 

Cyclic voltammetry in an ultrasound field 

 

At an ultrasound intensity of 26 Wcm-2 cyclic voltammograms in two cycles were recorded (Fig. 4.3). 
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Figure 4.3 Electrodeposition and -dissolution of Ni from Watts electrolyte at 5 mVs-1 at 50 ºC, at 26 Wcm-2, a) 
measured electrical current and deposited mass versus potential and b) measured and calculated current (from the 
deposited mass for 100 % current efficiency - Eq. 1.4.20) versus time. 
 

The shape of the recorded cyclic voltammograms in the first and the second cycle was similar, with 

enlarged maximum current densities and deposited mass in the second cycle. The ultrasound did not 

influence the potentials where deposition and dissolution took place. The dissolution peak did not have 

a shoulder as without ultrasound. The highest damping increase recorded was ~1 kHz and was less 

than ten times of the frequency change, thus Sauerbrey equation could be applied. The currents 

calculated from the mass jM for 100 % efficiency (Eq. 1.4.20) were in a very good agreement with the 

measured values.  

The dependency of the recorded parameters on the ultrasonic intensity is shown in Figure 4.4. All 

observed parameters, the maximum cathodic current density, the deposited mass, and consequently the 

current of the anodic peak as well as the cathodic charge followed a similar trend with the ultrasonic 

intensity. In the presence of ultrasound and at lower intensities, an initial increase was observed. With 

a further increase in the ultrasound intensity, a decrease in these parameters was observed and again an 

increase with the highest ultrasound intensity applied (26 Wcm-2).  
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Figure 4.4 Recorded parameters during electrodeposition and –dissolution of Ni from Watts electrolyte in a 
single voltammetric cycle between 0.3 – (-0.8), 5 mVs-1, a) maximum cathodic current (squares) and anodic peak 
current (circles) densities and b) maximum deposited mass and total cathodic charge densities. 
 

After addition of 5 g/l GDC to the Watts electrolyte and at an ultrasound intensity of 26 Wcm-2, cyclic 

voltammetry was carried out. The shape of the first and the second cycle were similar, without 

cathodic peaks and with one anodic peak in each cycle (Fig. 4.5). Still, there was a big difference in 

values of measured parameters between the cycles. In the first cycle, the maximum cathodic current 

(about -7.5 mAcm-2
) and the deposited mass (~53 μgcm

-2) were almost half the ones in the second 

cycle (about -13.2 mAcm-2 and ~102 μgcm
-2, respectively). In the beginning of the first cycle, there 

were some drifts in the mass change curve. At the end of the first cycle not all deposited mass was 

dissolved during the back sweep. 
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Figure 4.5 Measured electrical current (line) and the deposited mass (empty circles) during electrodeposition and 
-dissolution of Ni from Watts electrolyte in potential range of 0.2-(-0.8), at 5 mVs-1 and 50 ºC, at an ultrasonic 
intensity of 26 Wcm-2. 
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Potentiostatic deposition 

 

Potentiostatic deposition of Ni from Watts electrolyte was done at a potential of -0.8 V for 10 min and 

at an ultrasound intensity of 28 Wcm-2, without and with addition of 5 g/l ceria. Current transients 

recorded during deposition are shown in Figure 4.6. Under the same conditions as for pure nickel, Ni-

ceria composite deposition was performed in order to study the influence of the ceria addition on the 

morphology of the deposits and to determine the amount of the embedded ceria. 
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Figure 4.6 Current transients (line) recorded during 10 min of potentiostatic deposition from Watts electrolyte at 
-0.8 V and at 28 Wcm-2, together with deposited mass (circles) a) without ceria and b) with 5 g/l ceria. Note: 
different scaling used because of the better visibility of the diagram showing different magnitudes of the 
recorded parameters. 
 

At a 78 % current efficiency, about 770 µgcm-2 of nickel was deposited. At the same current efficiency 

~ 1.1 mgcm-2 of composite was deposited, with an average maximum current density of – 7.6 mAcm-2. 

The current was already noisy during deposition of pure nickel (Fig. 4.6a), but with ceria additional 

jumps in the current values were observed (Fig. 4.6b). Observed spikes in the current transients are 

explained in literature as the consequence of the developed cavitation when the ultrasound intensity is 

above the threshold for a certain system [170, 178, 182]. Cavitation leads to a combined effect of 

material ablation from the surface and fast random changes in the surface concentration. 
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a) b) 

 

Figure 4.7 Morphology of potentiostatically deposited layers for 10 min at E = -0.8 W at 28 W cm-2 from Watts 
electrolyte a) without and b) with ceria addition. 

The amount of ceria embedded was found by EDX to be 1.8 wt% (applying a correction factor of 1.15 

based on EPMA measurements). An EDX measurement at a specific location (point analysis) gave a 

much larger ceria content of 12%. It was supposed that at this position a larger CeO2 particle was 

embedded. For this electrolyte, where features of embedded ceria were visible, the morphology of the 

deposits was clearly altered by the presence of ceria (Fig. 4.7). Similar observations have been made in 

literature [246]. 

 

4.2.2 Sulfamate bath 

 

Electrodeposition and dissolution of Ni and Ni/CeO2 in an ultrasound field 

 

Ultrasound caused significant changes in cyclovoltammograms in nickel sulfamate bath (Fig. 4.8a). At 

an ultrasonic intensity of 22 Wcm-2, in the potential range of 0.3 to (-0.73) V and at 5 mVs-1 scan rate, 

cyclovoltammetric electrodeposition and -dissolution of nickel was carried out. Whereas the curve of 

the deposited mass looked similar as under silent conditions, the current trace was totally different. 

The currents during the forward sweep at more negative potentials were smaller than during the back 

sweep. Besides a small potential range in the beginning of the forward sweep and at the end of the 

back sweep, the current was negative, even in the range where Ni dissolution was recorded in the 

EQCM signal. On the back sweep there was a positive peak superimposed to the current trace. When 

the current, calculated from the mass change during the deposition and the dissolution by Faraday’s 

law (for 100 % current efficiency), was plotted versus the potential and compared with the recorded 

cyclic voltammogram at 22 Wcm-2, one could see that the superimposed peak was matching with the 

dissolution peak (Fig. 4.8b). The obtained curve was also very similar to the corresponding curve 

under silent conditions. 
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Figure 4.8 Measured electrical current density (black) during electrodeposition and -dissolution of Ni from 
sulfamate bad, (0.3-(-0.73) V), 5 mVs-1, 50 ºC and 22 Wcm-2 (bold arrow shows the position of the dissolution 
peak) and a) deposited/dissolved mass (empty circles), b) current density (circles) calculated from the mass 
deposited assuming 100 % current efficiency. Note: different scaling used because of the better visibility of the 
diagram showing different magnitudes of the recorded parameters. 
 

From the comparison of cyclic voltammograms it was concluded that the ultrasound did not alter Ni 

deposition itself a lot, but that it rather strongly accelerated side reactions. The main difference to the 

Watts electrolyte was the presence of the sulfamate ions. These ions could be the reason for the 

recorded discrepancy. 

Addition of 5 g/l ceria to the sulfamate bath did not change significantly the shape of the cyclic 

voltammogram. The maximum cathodic currents were slightly larger and the deposited mass increased 

as well. The mass change curve, calculated from the frequency change, was also noisier in the 

presence of ceria (Fig. 4.9). 
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Figure 4.9 Measured electrical current density (line) and deposited/dissolved mass (empty circles), during 
electrodeposition and -dissolution of Ni from sulfamate bath, (0.3-(-0.73) V), 5 mVs-1, 50 ºC and 22 Wcm-2, 5 g/l 
ceria. 
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Potentiostatic and galvanostatic depositions 

 

A series of potentiostatic and galvanostatic depositions of the Ni/ceria composite from the sulfamate 

bath was performed in order to study the morphology of the obtained deposits and to determine the 

embedded ceria content and finally to find optimal parameters for a good quality composite to be 

obtained. 

The potentiostatic deposition of nickel from the Ni-sulfamate bath without addition of ceria was 

carried out at a potential of -0.73 V, for 30 min, under quiescent conditions. The change in the current 

and mass with time are shown in Figure 4.10. After an initial increase in the current, it decreased and 

then continued slightly to increase till the end of the deposition. The deposited mass of the nickel layer 

was ~0.9 mgcm-2. An apparent current efficiency of 103 % indicated a slight role of side reactions and 

a possible deposition of Ni(OH)2. 
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Figure 4.10 Current transient (line) recorded during 30 min of potentiostatic deposition of Ni from a sulfamate 
bath at -0.73 V, together with the deposited mass (circles). 

The morphology of the obtained Ni layer is shown in Figure 4.11. 

  
 

Figure 4.11 Morphology of the potentiostatically deposited Ni layer from sulfamate bath without ceria addition, 
30 min, -0.73 V. 

 



95 
 

With deposition time extended to one hour, at an ultrasonic intensity of 28 Wcm-2, deposition of a 

nickel/ceria composite was carried out at a potential of -0.73 V. Co-deposition was performed from 

the Ni-sulfamate bath with addition of 5 g/l of ceria. The currents increased in comparison with 

deposition without ceria addition and became also noisier (Fig. 4.12a). The current efficiency 

decreased to 30 % and the deposition rate was smaller. During one hour slightly more deposit was 

obtained, ~ 1 mgcm-2. Figure 4.13a shows the morphology of the obtained deposit. With the 

normalization to a total content of 100 % an average 1.2 ±0.03 wt% of ceria content was obtained by 

EPMA analysis. 
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Figure 4.12 Current transients (line) together with deposited mass (circles) recorded during potentiostatic 
deposition of a Ni/ceria co-deposit from a sulfamate bath at 28 Wcm-2 with addition of 5 g/l ceria a) at -0.73 V, 1 
h and b) at -0.8 V, Δf ≤ 250 kHz. Inserts: mass vs. charge plots for the determination of apparent current 

efficiencies. Note: different scaling used because of the better visibility of the diagram showing different 
magnitudes of the recorded parameters. 

 
At a lower potential, -0.8 V, with a 250 kHz frequency limitation and under otherwise the same 

conditions co-deposition of Ni-ceria was also performed. At this larger overpotential, the deposition 

rate as well as the current efficiency (51 %) increased and a ceria content of 1.55 ± 0.02 wt% in the 

deposit was found. Besides slightly larger ceria content at -0.8 V in comparison to -0.73 V there was 

no significant difference in the morphology (Fig. 4.13). 
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a) b) 

Figure 4.13 Morphology of the potentiostatically deposited (28 Wcm-2) Ni/ceria layer from sulfamate bath with 5 
g/l ceria addition a) at -0.73 V, 1 h and b) at -0.8 V, Δf ≤ 250 kHz. 

 

From the sulfamate bath with addition of 5 g/l ceria, at an ultrasonic intensity of 28 Wcm-2 

galvanostatic deposition of Ni-ceria composite was performed as well. For the first galvanostatic co-

deposition the applied current density was -15 mA/cm2. The change in potential and the deposited 

mass with time are shown in Figure 4.14a. With 70 % current efficiency, 1.9 mgcm-2 of composite was 

deposited and an average of 2.08 wt% embedded ceria was found. The morphology of the obtained 

deposit is shown in Figure 4.15a. 
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Figure 4.14 Potential and mass change during galvanostatic deposition of a Ni/ceria composite from Ni 
sulfamate bath with addition of 5 g/l ceria in electrolyte at Ia=28 Wcm-2and a current density of a) 15 and b) 30 
mAcm-2. Note: different scaling used because of the better visibility of the diagram showing different 
magnitudes of the recorded parameters. 
 

For the following deposition, the current density was increased to -30 mA/cm2 and otherwise the 

conditions remained the same. With an increased current efficiency of 80 %, 2.3 mgcm-2 of composite 

was deposited corresponding to 2.4 wt% embedded ceria. 

The morphology of the galvanostatically obtained deposits from sulfamate bath with added 5 g/l ceria 

is presented in Figure 4.15. 



97 
 

 

  

a) b) 

Figure 4.15 Morphology of the galvanostatically deposited Ni/ceria composite from Ni sulfamate bath with 
addition of 5 g/l ceria in electrolyte at Ia=28 Wcm-2and a current density of a) 15 and b) 30 mAcm-2. 
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Figure 4.16 Amount of CeO2 embedded in Ni (squares- g is for galvanostatic experiments with given current 
density in brackets and given potentials for potentiostatic experiments) and the average mass/charge ratio dm/dQ 
(circles) for electrodeposition of Ni/CeO2 composites in function of the average current density. 
 

In Figure 4.16, an overview of the results obtained for potentiostatic and galvanostatic depositions is 

presented. All depositions were carried out at an ultrasonic intensity of 28 Wcm-2. With increasing 

current density, more ceria was embedded. The current efficiency increased as well. Still 2.4 wt% was 

the largest amount of ceria incorporated in the nickel layer. In these experiments rather low contents, 5 

g/l ceria in the starting electrolyte, were used. In the literature [248], more ceria, between 5 and 20 

vol% were found but for ceria concentrations of 50 g/l in the starting electrolyte. 

Under the influence of the ultrasound, deposition and dissolution of nickel from Watts electrolyte and 

sulfamate bath are found to be very different. EQCM measurements gave the possibility to reveal the 

presence of side reactions and to conclude that these differences are not directly connected with the 

deposition of Ni films. The Ni concentrations in both electrolytes were high and deposition was not 

under mass control, so there was just a slight influence of the ultrasound on the deposition 

enhancement. In general, more negative currents led to an increase in current efficiency and an 

increase in the amount of the embedded ceria. The morphology of the deposits with ceria embedded 
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was altered but not so significant due to the small percentage of ceria content. There was no big 

difference in morphology of the films with ceria from two different electrolytes. Due to the quite 

enhanced side reactions, the current efficiency was far less than theoretically expected so that less 

ceria was embedded and it was not possible to determine the amount of ceria in the deposited films 

from EQCM data. Contrary to the relatively smooth pure Ni layer deposited, especially from Watts 

electrolyte, addition of ceria caused layer roughness. On the other hand the formation of very rough 

layers is actually, due to enhanced surface, a very good property for the application in fuel cells or as 

support for catalytic reactions. 

 

4.3 Co/CeO2 system 
 
For the co-deposition in the Co system, a solution of 0.1 M CoSO4 + 0.1 M Na2SO4 with pH adjusted 

to 4 [209] was used. All measurements were performed at 25 ºC with the electrochemical cell open to 

air. 

 
4.3.1 Electrodeposition and dissolution of Co and Co/CeO2 

 

A cyclovoltammetric study of the Co system was performed in a potential range between 0.5 and -0.85 

V at 5 mVs-1 scan rate. At first, the Co electrolyte without ceria addition was studied with a variation 

of the ultrasound intensities.  
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Figure 4.17 Current density (line) and deposited mass (circles) during electrodeposition and –dissolution of Co 
in a potential range of 0.5-(-0.85) V, at 5 mVs-1 in a function of potential in a) silent conditions and at b) 29 
Wcm-2 ultrasonic intensity. Note: different scaling used because of the better visibility of the diagram showing 
different magnitudes of the recorded parameters. 
 
Cyclic voltammograms under silent conditions and at an ultrasonic intensity of 29 Wcm-2 are shown in 

Fiure 4.17. Cobalt deposition under silent conditions started below –0.7 V (Fig. 4.17a). There was no 

cathodic peak observed, so deposition was not under mass transport control. Dissolution started 

around –0.5 V, and an anodic peak was located around –0.18 V. The frequency change curve followed 
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the deposition and dissolution process as expected, but not all deposited material during the cathodic 

sweep was dissolved during the anodic one. Almost half of the material remained on the electrode at 

the end of the first cycle. As already reported in literature [209], Co(OH)2 was probably incorporated 

in the deposit, especially significant at lower potentials. This situation is more noticeable in the Co 

than in the Ni system because Co is less noble, standard potentials for the redox couples are for 

Ni/Ni2+ -0.25 V and for Co/Co2+ -0.29 V. Hydrogen evolution takes place already during the 

deposition process. Therefore the pH value near to the electrode is increased causing Co(OH)2 

precipitation. The remaining deposit was removed from the electrode by polarization to 0.65 V for 

several minutes. 

There was no significant change in the shape of the voltammogram under ultrasonic irradiation. At an 

ultrasonic intensity of 29 Wcm–2 the currents and the mass deposited were slightly increased (Fig. 

4.17b), but by a factor of less than two. Still, in the presence of ultrasound deposition was completely 

reversible. The enhanced mass transport under ultrasonic irradiation reduces the pH increase at the 

electrode and therefore the tendency for Co(OH)2 precipitation. 

Figure 4.18 shows cyclic voltammograms in the presence of 3 (a) and 5 g/l CeO2 (b) at an ultrasonic 

intensity of 29 W cm–2.  
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Figure 4.18 Current density (line) and frequency change (circles) during electrodeposition and –dissolution of Co 
in a potential range of 0.5-(-0.85) V, at 5 mVs-1 at 29 Wcm-2 with addition of a) 3 g/l and b) 5 g/l ceria. Note: 
different scaling used because of the better visibility of the diagram showing different magnitudes of the 
recorded parameters. 
 
There was no significant change in the shape of the cyclic voltammograms. With the addition of ceria 

the damping was so high that the conditions for the Sauerbrey equation were not fulfilled anymore and 

it was not possible to calculate the deposited mass from EQCM. The addition of CeO2 caused a 

decrease in the currents which further caused less frequency change due to the less deposited Co. And 

this was even more evident with increased amount of ceria added.  

After the addition of ceria, even in the presence of ultrasound deposition was not totally reversible. 

There were always remaining deposits on the electrode after the end of the dissolution peak. Addition 
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of ceria particles increases the solution pH and thus favors the precipitation of hydroxides. According 

to highly increased damping, it can be concluded that a very inhomogeneous layer was deposited. 

 
4.3.2 Potentiostatic deposition 

 

Potentiostatic depositions at a potential of -0.85 V with a 250 kHz frequency change limitation and at 

an ultrasonic intensity of 28 Wcm-2 were carried out in Co electrolyte without and with 3 and 5 g/l 

ceria addition. 

A comparative overview for potentiostatic depositions is given in Figure 4.19. After a strong initial 

increase, currents continued increasing till the end of the depositions. Still, the maximum cathodic 

currents were decreasing with the addition and a further increase of the ceria content. The frequency 

change was fastest for 3 g/l CeO2. In the presence of ceria a strong increase in the damping was 

observed after a few minutes of deposition, indicating roughening of the electrode. The damping 

increased from less than 5 kHz in the electrolyte without ceria to more than 20 kHz (3 g/l ceria) and 

almost 120 kHz (5 g/l ceria) with ceria addition. 
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Figure 4.19 Potentiostatic deposition of Co and Co-ceria co-deposits at -0.85 V, 28 Wcm-2, 250 kHz frequency 
limitation, without and with addition of 3 g/l and 5 g/l ceria. a) current transients and change in the frequency b) 
charge density and damping change. 
 

For 3 g/l ceria the damping was still in the range where Sauerbrey equation can be applied, for 5 g/l 

ceria this was not any more the case. 

Without ceria, with an apparent current efficiency εapp of 93%, 1.1 mgcm-2 deposit was obtained with 

an average thickness of about 2.3 µm, as determined from profilometry measurements. With the 

addition of 3g/l of ceria with an apparent current efficiency of 146 %, for the same frequency change, 

the average thickness was about 5.8 µm. The weight percentage of the embedded ceria was about 

6.2% (from EPMA measurements). With the increased content of 5 g/l of ceria in the starting solution, 

the weight percentage of the embedded ceria was around 7.75 % and the average thickness was about 

8.8 µm. 
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The morphology of the obtained deposits is shown in Figure 4.20. 

 a)  b) 

 c)  d) 

 e)  f) 
 

Figure 4.20 Morphology of the obtained deposits from potentiostatic deposition of Co and Co-ceria co-deposits 
at -0.85 V, 28 Wcm-2, 250 kHz frequency limitation a) and b) without ceria, c) and d) with 3 g/l and e) and f) 
with 5 g/l ceria added. 

 

The significant difference in the morphology of the deposits upon ceria addition is obvious from SEM 

pictures (Fig. 4.20). Deposits were less uniform, especially at the edges of the electrode where the 

layer thickness was also higher. With the ceria addition inhomogeneous and rough layers were 

deposited which caused also the damping to increase. For the same frequency change limitation, the 

thickness of the pure Co film was 2.35 µm, with 3 g/l 5.83 µm and with 5 g/l 8.86 µm indicating the 

porous nature of the deposits. Large numbers for the apparent current efficiencies, 146 % for 3 g/l 

ceria and 144 % for 5 g/l ceria (still calculated for obtaining a relative value despite the fact that 

Sauerbrey equation was not valid), can be caused by precipitation of Co(OH)2, as already discussed, 

by a contribution of the damping, and by the mass of the co-deposited ceria. According to EPMA the 
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ceria contents in the deposits were 6.2 wt% for 3 g/l and 7.8 wt% for 5 g/l solution concentration. 

These numbers are quite large for the low solution concentrations. Cârâc et al. found – using a 1.2 M 

Co electrolyte and 50 g/l µm-sized CeO2 particles– values of 22 wt% [248]. 
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Chapter 5 - Sonoelectrochemical synthesis of stable colloidal 

nanoparticles 

 

5.1 Background 

 

Metallic nanoparticles are quite attractive because of their physicochemical characteristics such as 

catalytic activity, optical properties, electronic properties, and magnetic properties [279]. In the field 

of catalysis, the size and shape of the nanoparticles are extremely important since they greatly 

influence the catalytic reactivity [280-282]. Due to the high surface energy nanoparticles possess, they 

tend to agglomerate and one of the challenges in research work is to find possible ways to prevent this 

process and avoid loss of the surface area. The synthesis of stable colloidal particles with controlled 

size and shape is very important. By reduction of appropriate metal salts in the presence of a suitable 

surfactant, stable metal colloids can be obtained [283].  

The sonoelectrochemical method and more recently pulsed sonoelectrochemistry have been shown to 

be very useful methods in the production of a number of metal and semiconductors nanoparticles [284, 

285]. A narrow size distribution of the synthesized nanomaterials has been reported [286, 287]. 

The sonoelectrochemical synthesis of a stable colloid of copper dendrites in the presence of polyvinyl 

alcohol (PVA) [288] and polyvinyl pyrrolidone (PVP) [289] has been reported. A stable solution of 

Au nanoparticles with a particle size between 5 and 35 nm was prepared by means of 

sonoelectrochemistry in the presence of several stabilization agents [290]. Monodisperse silver 

nanoparticles with spherical shape were reported to be synthesized from the saturated solution of silver 

citrate in the presence of PVP by sonoelectrodeposition [291]. Later on, from an aqueous solution of 

AgNO3 in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA) and PVP silver 

nanoparticles in a shape of spheres, wires and dendrites were synthesized [292]. 

The pulsed sonoelectrochemical method comprises successive electrochemical and ultrasonic pulses 

for the production of nanopowders. A planar circular area on the bottom of the ultrasonic horn serves 

both as the cathode (sonotrode) and as an ultrasound emitter. The rest of the ultrasonic horn is 

electrically insulated in order to prevent permanent metal plating on it. At first, during an 

electrochemical pulse a high density of metal nuclei is formed on the cathode and the horn acts just 

like an electrode. After the electric pulse is over, it is followed by an ultrasound pulse which bursts the 

formed nuclei into the liquid, cleans the electrode and supplies the electrode with a new portion of 

cations by the acoustic streaming caused [293]. After the ultrasonic pulse there is a rest time before the 

next electric pulse which is important for obtaining conditions in the cell, especially in the vicinity of 

the sonotrode, similar to the starting ones [294]. With an optimization of the electrochemical 

parameters, such as current density and time of electric pulse duration and ultrasonic parameters such 
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as ultrasonic intensity and time of the sonic pulse, one can obtain materials with desired shape and 

particle size as well as with a narrow size distribution. If there is an appropriate surfactant in an 

appropriate amount in the liquid, the particles could be stabilized and agglomeration and thus loosing 

of active surface area could be prevented. 

Stable colloids of noble metal nanoparticles have a special significance as catalyst materials. It has 

been reported in literature that decoration of Ni based materials with metal nanoparticles such as Cu, 

Ag and Au leads to advanced stability towards the process of anode material degradation in SOFC 

caused by C and S [295, 296]. Due to their particular importance, in this work, for the preliminary 

study on the pulsed sonoelectrochemical synthesis of stable nanoparticles, exactly these materials Cu, 

Ag and Au were chosen. PVP was chosen for the stabilization of particles since the usage was already 

reported [289, 291, 292] in these systems. 

PVP has the structure of a polyvinyl skeleton with polar groups. Nitrogen and oxygen atoms form the 

polar groups [289] and they serve as donators of ion-pair electrons. The number of metal ions can be 

attached to a PVP molecule forming a complex compound M
m

m+
-PVP, where m is the number of 

attached metal ions. Yin B et al. [297] proposed that the electrochemical deposition process develops 

through four steps. In the first step a M
m

m+
-PVP complex compound is formed. In the second step 

reduction of the complex on the electrode/electrolyte interface occurs and PVP protected metal 

adatoms M
m

0
-PVP with chemical bonds are formed. As polar groups of PVP contribute more to the 

electronic density of metal atom orbitals than H2O thus metal ions in M
m

m+
-PVP complex can possibly 

obtain easier electrons from cathode than hydrous metal ions. Therefore the M
m

m+
-PVP complexes 

rather than single ions are reduced and in the third step a number of PVP protected nuclei are formed. 

In the fourth step PVP contributes to nucleation but also inhibits growth and agglomeration of the 

formed nuclei.  

 

5.2. EQCM study 

 

In a Cu electrolyte with the composition of 0.1 M CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted with 

H2SO4)according to [289], EQCM measurements were performed in order to obtain information about 

electrochemical deposition and dissolution of Cu in the presence of the surfactant. The main 

differences to the solution used previously were that the solution was more concentrated (0.1 M 

instead 0.01 M in the fundamental study) and that the surfactant PVP was present. As in the 

fundamental study, a cyclic voltammogram in Cu electrolyte was at first recorded in silent conditions 

in a potential range between 0.5 V and -0.3 V vs. Ag/AgCl, with a 5mV/s scan rate in inert Ar 

atmosphere. The recorded current density and the frequency change upon potential change are shown 

in Figure 5.1a. 
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Figure 5.1 Electrodeposition and -dissolution of Cu from 0.1 M CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted 
with H2SO4), measured current density (line) and a) frequency change (circles) and b) apparent current efficiency 
(circles) in a potential range of 0.5 V to -0.3 V vs Ag/AgCl, at 5 mVs-1 scan rate under silent conditions, in Ar. 
 

In the presence of PVP two cathodic waves are visible in the cyclic voltammogram. Below a potential 

of about 28 mV the cathodic current slightly increased and a frequency change (about 2 kHz) was 

observed as well, so Cu deposition was taking place. After reaching the peak the current slightly 

decreased and then remained constant. At a potential of about -220 mV, the current started to increase 

significantly reaching values of almost -10 mAcm-2, whereas the frequency change was around 25 

KHz. After a cathodic peak was reached, the cathodic current started to decrease till the end of the 

forward scan. In the beginning of the back scan deposition was still taking place. Above -85 mV the 

cathodic currents and the mass increase were very small, leading to the appearance of a wide plateau 

in the frequency curve. This is very different from the fundamental study, where a more or less 

immediate change from deposition to dissolution was observed (cf. Fig. 3.11). At a potential of around 

170 mV anodic currents started to increase and the frequency was decreasing, so Cu dissolution was 

taking place till no deposit was left on the electrode, when the current dropped to starting values. 

The behavior of the apparent current efficiency (calculated for z=2) during the deposition and 

dissolution process is shown in Figure 5.1b. During the first cathodic step, εapp had the theoretically 

expected values with exception of a small deviation in the very beginning indicating that already then 

reduction of Cu2+ to Cu occured. For the second cathodic wave, besides deviations in the beginning of 

the process (values smaller than expected) and at the end of the deposition process (values larger than 

expected) ideal behavior was approached. For the dissolution process, from the values larger than 1 in 

the beginning of the process values of efficiencies were fluctuating between 1 and 0.5. 

Cyclovoltammetric deposition and dissolution of Ag in the presence of PVP was studied by Yin B. et 

al [297]. In their study no additional peaks were observed but the anodic peak was smaller in the 

presence of PVP, whereas the cathodic peak remained the same. They concluded that the cathodic 

current in the presence of PVP was from reduction of silver ions deposited on the electrode and from 
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reduction of silver ions to silver nanoparticles stabilized with PVP. Since during the dissolution 

process just part of the silver which was deposited on the electrode was dissolved, the anodic peak 

appeared to be smaller than in the case without PVP. However, the results on Cu in this work could 

not be explained by a similar theory, since the performed EQCM measurements demonstrated that 

cathodic currents in both cathodic waves were connected with a frequency change and thus deposition 

of Cu on the electrode. This effect of the PVP presence on the behavior of Cu deposition should be 

further studied. 

Further, cyclic voltammograms in the presence of ultrasound at different ultrasonic intensities were 

recorded, and an example with an intensity of 76 Wcm-2 is shown in Figure 5.2. The horn-quartz 

distance was 15 mm and the experiment was done in Ar inert atmosphere. 
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Figure 5.2 Electrodeposition and -dissolution of Cu from 0.1 M CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted 
with H2SO4), measured current density (line) and a)frequency change (circles) and b) apparent current efficiency 
(circles) in a potential range of 0.5 to -0.3 V, at 5 mVs-1 scan rate at an 76 Wcm-2 ultrasonic intensity, d=15 mm, 
in Ar. 
 

In comparison with silent conditions the cathodic currents during the first cathodic wave were larger 

but the frequency change just slightly larger influencing the current efficiency (Fig. 5.4b) to have 

values less than expected. This was in part due to a side reaction at more positive potentials that was 

not associated with any frequency change. During the second cathodic wave, the maximum cathodic 

currents were smaller than under silent conditions and less mass was deposited. Current efficiencies 

had values smaller than 1 during the forward scan and larger than 1 during back scan. After the 

dissolution peak was reached the currents went back to the starting values as well as the frequency 

indicating that all deposited mass was removed from the electrode. Current efficiencies were 

decreasing from positive values during dissolution but remained all the time larger than 1. 
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5.3. Pulsed sonoelectrochemical deposition 

 

5.3.1 General setup 

 

After the EQCM study of the electrodeposition and -dissolution of the copper system in the presence 

of the surfactant PVP in silence and in an ultrasound field, the Cu system was the first one under study 

for the pulsed sonoelectrochemistry. The solution used was the same as in the EQCM measurements. 

With the aim to use the horn tip as an electrode, the sides of the horn had to be electrically insulated in 

order to prevent permanent metal plating on them. The insulation of the horn was done by the use of 

shrinkage tube, appropriately mounted and adjusted. 

The general synchronization of the times of the galvanostatic deposition, the ultrasound emission and 

the rest time, controlled by the computer, is presented in Figure 5.3. At first, during an electric pulse 

with duration tel nuclei of metal are formed on the electrode and grown to nanoparticles. Afterwards 

during the time tus these nanoparticles are burst from the electrode by the action of the ultrasound. At 

the end of one cycle there is a rest time tr for restoring initial conditions in the cell. 
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Figure 5.3 Synchronisation of the times of the particular steps during the pulsed sonoelectrochemical synthesis 
of colloidal Cu nanoparticles from 0.1 M CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted with H2SO4) solution, 
tel is the time of the electrical pulse, tus of the ultrasonic pulse and tr is the rest time. 
 

In all experiments performed for the pulsed sonoelectrochemical synthesis of nanoparticles each cycle, 

containing the time of the electric pulse, the time of the ultrasonic pulse and the rest time lasted 1s. 

Each experiment lasted 30 min or 1800 cycles. Currents, the time of current pulses and the time of 

sonic pulses varied through experiments. The ultrasonic intensity was fixed to 15 Wcm-2 throughout 

the study. Since the product was in all cases a stable colloidal suspension, the particle size distribution 

was determined by the Dynamic Light Scattering (DLS) technique. 
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The potential change during the periodical action of electric and ultrasonic pulses is shown in Figure 

5.4. During the electric pulse, the potential is from the OCP value moved to more negative potentials 

(reduction overpotential) needed for supplying the given current between WE and CE electrode, and 

thus for deposition of the metal. When the electric pulse is over and the ultrasound pulse is on, the 

potential returns to a more positive value, but does not reach the OCP value during action of the 

ultrasound (shift of the OCP under action of ultrasound as explained in chapter 3.2.1). This is shown in 

the enlarged part of the graph on the Figure 5.4. After turning off the ultrasound the OCP value is 

finally reached and it stays unchanged until a new cycle starts. 

 

 

Figure 5.4 Potential changes during galvanostatically depositing Cu metal nanoparticles from 0.1 M 
CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted with H2SO4) solution, their removal from the electrode by 
ultrasound and the rest phase. The enlarged part shows the potential during the time when the ultrasound is on 
and during the rest time. 
 

5.3.2 Synthesis of colloidal Cu nanoparticles 

 

In the Cu electrolyte with the composition of 0.1 M CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted 

with H2SO4) two experiments were done and the conditions used are shown in Table 5.1. 

 

Table 5.1 Conditions for pulsed sonoelectrochemical synthesis of Cu colloidal nanoparticles from 0.1 M 
CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted with H2SO4) solutions, lasting 30 min at 15 Wcm-2 ultrasonic 
intensity, under Ar. 

Sample Current 

(I, mA) 

Time of current pulse 

(tI, ms) 

Time of ultrasound pulse 

(tUS, ms) 

Cu(1) -500 300 300 

Cu(2) -500 50 100 
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The particle size distribution of the obtained stable colloids of Cu nanoparticles is shown in Figure 5.5. 

The main difference between the two experiments was the duration of the current pulse. The duration 

of ultrasound was also different but one can assume that the major role of ultrasound is mechanical 

thus removing the formed particles and that this difference did not have a significant influence on the 

size and the size distribution of the formed colloidal nanoparticles. 
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Figure 5.5 Particle size distribution of Cu colloidal nanoparticles produced during pulsed sonoelectrochemical 
deposition from an electrolyte of 0.1 M CuSO4×5H2O, 2 wt% PVP and pH~0 (adjusted with H2SO4) solution, 
lasting 30 min at 15 Wcm-2 ultrasonic intensity. Cu(1): I=-500 mA, tI=300 ms, tUS=300 ms, Cu(2): I=-500 mA, 
tI=50 ms, tUS=100 ms. 
 

When the electric pulse in the experiment lasted 300 ms the mean diameter of the obtained 

nanoparticles was around 40 nm. With shortening the time to 50 ms nanoparticles with a mean 

diameter of less than 10 nm were obtained. The application of very short pulses therefore is crucial for 

the preparation of small nanoparticles. 

 

5.3.3 Synthesis of colloidal Ag nanoparticles 

 

Synthesis of the colloidal Ag nanoparticles was done in four experiments from a solution with the 

composition of 1 mM AgNO
3
, 0.1 M NaNO3 and 20 g/l PVP in Ar inert atmosphere (according to 

[297]). Conditions for particular experiments are given in Table 5.2.  
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Table 5.2 Conditions for the pulsed sonoelectrochemical synthesis of Ag colloidal nanoparticles from 1 mM 
AgNO

3
, 0.1 M NaNO3 and 20 g/l PVP solution, lasting 30 min, at 15 Wcm-2 ultrasonic intensity, under Ar. 

Sample Current 

(I, mA) 

Time of current pulse 

(tI, ms) 

Time of ultrasound pulse 

(tUS, ms) 

Ag(1) -50 300 300 

Ag(2) -100 50 100 

Ag(3) -100 100 100 

Ag(4) -100 200 200 

 

The particle size distribution for all obtained colloidal samples is shown in Figure 5.6. The first sample 

Ag(1) was obtained with the lowest applied current of - 50 mA and the largest time of electric pulse 

and showed a mean particle size of about 30 nm. The other three samples were obtained with the same 

applied current of – 100 mA and the electric pulse length was varied. Sample Ag(2) with the shortest 

electric pulse of 50 ms showed the largest mean particle size of about 60 nm, even larger than particles 

in sample Ag(1). With increasing electric pulse time smaller nanoparticles were detected and 

accordingly the smallest particle size was recorded for the sample where the longest electric pulse of 

200 ms was applied. The origin of this behavior and its reproducibility should be the focus of further 

studies. Ag solutions are in general light sensitive and a purely sonochemical formation or growth of 

nanoparticles just by acoustic cavitation might contribute to the observed trends for particle size 

distribution. 
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Figure 5.6 Particle size distribution of Ag colloidal nanoparticles formed during pulsed sonoelectrochemical 
deposition from a 1 mM AgNO

3
, 0.1 M NaNO3 and 20 g/l PVP solution, lasting 30 min, at 15 Wcm-2 ultrasonic 

intensity, Ag(1): I=-50 mA, tI=300 ms, tUS=300 ms, Ag(2): I=-100 mA, tI=50 ms, tUS=100 ms, Ag(3): I=-100 
mA, tI=100 ms, tUS=100 ms, Ag(4): I=-100 mA, tI=200 ms, tUS=200 ms. 
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5.3.4 Synthesis of colloidal Au nanoparticles 

 

The composition of the electrolyte for synthesis of Au colloidal nanoparticles (according to [290])was 

2.8·10-4 M HAuCl4·3H2O, 20 g/l PVP, pH ~1 (adjusted with HCl). Two experiments were done and 

the conditions are given in Table 3. 

 

Table 5.3 Conditions for pulsed sonoelectrochemical synthesis of Au colloidal nanoparticles from 2.8·10-4 M 
HAuCl4·3H2O, 20 g/l PVP, pH ~1 (adjusted with HCl), lasting 30 min, at 15 Wcm-2 ultrasonic intensity in Ar. 

Sample Current 

(I, mA) 

Time of current pulse 

(tI, ms) 

Time of ultrasound pulse 

(tUS, ms) 

Au(1) -100 50 100 

Au(2) -60 50 100 

 

The only difference between the two syntheses of colloidal Au particles was the applied current which 

was in the first experiment Au(1) -100 mA and in the second one Au(2) -60 mA. A decrease in current 

led, as it can be seen in Figure 5.7, to a decrease in the mean particle size. 
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Figure 5.7 Particle size distribution of Au colloidal nanoparticles obtained by pulsed sonoelectrochemical 
synthesis from 2.8·10-4 M HAuCl4·3H2O, 20 g/l PVP, pH ~1 (adjusted with HCl), lasting 30 min, at 15 Wcm-2 
ultrasonic intensity, Au(1): I=-100 mA, tI=50 ms, tUS=100 ms, Au(2): I=-60 mA, tI=50 ms, tUS=100 ms. 
 

5.3.5 Summary of nanoparticles synthesis 

 

Colloidal Cu, Ag and Au nanoparticles were prepared by the means of pulsed sonoelectrochemical 

deposition. The mean particle size of prepared particles was in the range between 10 and 100 nm and 

the stabilization of colloids with addition of appropriate amount of PVP as the stabilizer was 

successfully done. Particle size was determined by DLS and would have to be further proven by TEM 

studies. It is shown that the variation of parameters such as the electric current and the duration of the 

electric pulse influence the particle size. One of the most important findings this preliminary study 
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provided is that by optimization of the experimental conditions the size of the obtained particles can be 

tailored. In order to learn more about nucleation and growth process and to understand better how 

surfactant as well as other experimental parameters influence them, a study of the deposition of Cu, 

Ag and Au on the Ti alloy (the ultrasonic horn is made of this alloy) would be needed. This study 

would contain variation of applied currents, potentials, concentrations of stabilizers and metal 

precursors as the crucial parameters influencing size and particle size distribution.  
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Chapter 6 - Synthesis of molybdenum oxide 

 

6.1 Background 

 

Nano-sized transition metals as well as their compounds with their exceptional chemical and physical 

properties have drawn a lot of attention in recent years. Molybdenum oxide materials are particularly 

attractive due to their photochromic, thermochromic, electrochromic as well as gas sensing and 

catalytic properties. 

Several synthetic routes for molybdenum oxide materials have been already established. The synthesis 

of molybdenum oxide nanoparticles via a citrate sol-gel process has been reported [298]. It was shown 

that the obtained MoO3 (10-100 nm in size) possesses enhanced gas sensing capabilities. Sun Jiebing 

et al. [299] synthesized molybdenum oxide thin films by preparing a molybdenum acetylacetonate sol 

from which MoO3 films on fused silica, Si and Al2O3 substrates were obtained. Besides sol-gel routes 

[300-303] atomic layer deposition was used for the synthesis of nanodispersed molybdenum oxide on 

mesoporous silica [304]. Hydrothermal synthesis [7, 305, 306] and oxidation of molybdenum coil 

[307, 308] have been reported as well. With the above mentioned preparation routes a variety of 

particle shapes was obtained, including nanorods, nanofibers, nanospheres, nanobelts and lamellas, all 

of which depended on particular synthetic route and parameters. Also, different types of molybdenum 

oxides were reported, such as molybdenum oxide in its different oxidation and hydration states (most 

frequently stable orthorhombic α-MoO3 and somewhat rarely metastable monoclinic β-MoO3) [309-

311]. MoO2 nanospheres were prepared by the redox etching method [312] by facile solution-phase 

approach [313] and by the solvothermal method [314]. 

It has been proven over the years that the sonochemical decomposition of volatile transition-metal 

carbonyls is a successful method for obtaining nano-sized particles of transition metals alloys and 

metal oxides (see Chapter 1.3). Decomposition of metal-carbonyl bonds takes place upon the extreme 

conditions that arise from the acoustic cavitation, driven by sonication of liquids. Since many 

parameters influence the final structure and size of the obtained nanoparticles, it is necessary to make a 

proper choice of precursor, solvent and experimental conditions. Several papers have been published 

on the synthesis of molybdenum oxide by means of sonochemical decomposition of Mo(CO)6, mainly 

followed by in-situ coating on different types of supports. N. Arul Dhas and A. Gedanken reported 

preparation of pentavalent molybdenum oxide (Mo2O5×H2O) and molybdenum carbide (Mo2C) 

nanoparticles coated on silica spheres [112, 315]. As it was shown, sonication of Mo(CO)6 under 

argon atmosphere yielded molybdenum carbide, while sonication under air resulted in production of 

molybdenum oxide with an average size of the nanoparticles in the range of 5-10 nm. Sonochemically 

prepared unsupported nanostructured pentavalent molybdenum oxide resulted in particles of an 
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average size of ~20 nm. Similar preparation and coating of molybdenum oxide on alumina 

submicrospheres was performed [316]. 

In those studies, sonication was typically carried out for about 3h and the obtained molybdenum oxide 

particles were either coated on supports or recovered from slurry followed by further treatments and 

analysis. In all cases obtained powder showed the presence of agglomerates.  

 

6.2 Sonochemical synthesis 

 

Molybdenum oxide colloid suspensions were prepared by sonochemical decomposition of 

molybdenum hexacarbonyl in n-hexadecane and n-decane as solvents as well as with oleic acid as a 

stabilizing agent. The usage of oleic acid in similar systems has been already reported [101, 317]. It 

was shown that the stabilization can be achieved by coating the particles with long-chain surfactants, 

such as oleic acid with its double bond which inhibits the neighboring chains from bundling together. 

N-decane and n-hexadecane were used as a solvents due to their low vapor pressure thus preventing 

the increase in vapor content of the cavity, since it has been shown that high vapor pressure of the 

solvent cushions the implosion of the cavity and lowers the temperature of implosion (Chapter 1.2.3). 

 

6.2.1 System with n-hexadecane as a solvent 

 

According to the previously reported synthesis of cobalt nanoparticles, a proportional amount of 

molybdenum carbonyl and oleic acid and 3h of sonication time were chosen. A reaction vessel with 

cooling jacket was filled with 140 ml of n-hexadecane, 7 ml (150.9mM) of oleic acid and 1.4 g 

(36.1mM) of Mo(CO)6. The intensity of ultrasound irradiation was 76 Wcm-2. The first color change, 

from transparent to light blue, was registered after 3 minutes of sonication and the color gradually 

became darker with time, so that after 30 minutes it appeared to be almost black. According to N. Arul 

Dhas et al. the blue color is believed to be due to generation of pentavalent molybdenum oxide [112]. 

The obtained liquid appeared to be a stable colloid suspension even after 2.5 months. 

Figure 6.1a and 6.1b show the TEM images of the sample taken after 10 min of sonication. 

Agglomerates with an average size between 200 and 300 nm consist of small spherical particles with a 

diameter of 3-10 nm. Next to the each agglomerate, a single spherical particle with a size proportional 

to the corresponding agglomerate could be observed and varied from 50 to 100 nm in diameter. 

Electron diffraction pattern (Fig. 6.1c) showed the narrow diffraction rings with diffraction spots 

indicating the presence of polycrystalline material. On the other hand, diffraction spots can appear due 

to crystallization of the amorphous sample under the electron beam in the TEM chamber during the 

analysis.  
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a) b) c) 

Figure 6.1 a) and b) TEM images and c) electron diffraction pattern of the sample after 10 min of sonication of 
140 ml of n-hexadecane, 7 ml (150.9 mM) of oleic acid and 1.4 g (36.1 mM) of Mo(CO)6 at Ia=76 Wcm-2. 
 

In comparison with the sample taken after 10 min, the sample taken after 3 h of sonication (Fig. 6.2a) 

had slightly different particle size and morphology. The agglomerates of the spherical particles 

became smaller and less coherent with a prolonged time and more diffuse rings were present on the 

diffraction pattern (Fig. 6.2b). 

 

 

 

a) b) 

Figure 6.2 a) TEM image, b) electron diffraction pattern of the sample after 3h of sonication of 140 ml of n-
hexadecane, 7 ml (150.9 mM) of oleic acid and 1.4 g (36.1 mM) of Mo(CO)6, at Ia=76 Wcm-2. 

The obtained diffractogram of the powder recovered by the centrifugation and dried at 110 °C (Fig. 

6.3) did not show any peaks proving that the sample was amorphous.  
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Figure 6.3 XRD of the sample of the sample after 3h of the sonication of 140 ml of n-hexadecane, 7 ml (150.9 
mM) of oleic acid and 1.4 g (36.1 mM) of Mo(CO)6, at Ia=76 Wcm-2. 

 

Without any peaks in the XRD patterns, the identity of the obtained material could not be determined 

and EDX analysis was done (Tab. 6.1). The presence of molybdenum and oxygen peaks was obvious 

and the quantitative analysis gave a higher percentage of oxygen, even in comparison with the one 

expected for MoO3 where molybdenum is in the highest oxidation state. Either the higher oxygen was 

from still adherent oleic acid or an indication for the formation of hydrates with moisture from the 

ambient air since the samples were kept in air. 

 

Table 6.1 Results of the EDX analysis done for the samples after 3h of the sonication of 140 ml of n-hexadecane, 
7 ml (150.9 mM) of oleic acid and 1.4 g (36.1 mM) of Mo(CO)6, at Ia=76 Wcm-2. 
 Point 1, % Point 2, % 

Mo 25.94 21.23 

O 74.06 78.77 
 

Due to the first changes in color of the suspension observed after 3 min it was assumed that 

decomposition of the carbonyl takes place in the first minutes of sonication in a system with low 

precursor concentration. Therefore, sonication time for the subsequent experiments was lowered to 6 

min. Consequently, the chosen precursor concentration and volume of the solution were set to a lower 

value and the following experiments were done in a 100 ml cylindrical reaction vessel in order to 

provide the proper immersion of the ultrasonic horn into the small volume of the solution.  

In order to dissolve 0.1 g (7.58 mM) Mo(CO)6 in 50 ml of hexadecane stirring on a magnetic stirrer for 

30 min was applied followed by addition of 631 μl (0.04 M) of oleic acid. Mixing was continued for 

additional 15 min. The obtained mixture was transferred to the cylindrical vessel open to air and 

sonication lasted 6 min. First change in color was observed after 2 min of sonication when the 



117 
 

transparent solution turned to a light blue and then at the end of the third minute to an almost black 

colored solution. The obtained colloid was stable even after 45 days. 

The change in the experimental parameters in comparison with the first experiment led to a completely 

different morphology of the synthesized material. The TEM image of the sample taken after 6 min of 

sonication showed the presence of porous aggregates of poorly ordered nanotubes (Fig. 6.4a). Tubes 

with a diameter of around 20 nm were observed on the magnified image of one of the nanotubes 

aggregates (Fig. 6.4b). Due to the broad variation it was not easy to determine the length of the tubes. 

 

  

a) b) 

Figure 6.4 TEM images of the sample obtained by 6 min of sonication of 0.1 g (7.58 mM) Mo(CO)6 and 631 μl 
(0.04 M) of oleic acid in 50 ml of hexadecane, at Ia=76 Wcm-2. 

Samples were in the same way as in the previous experiment prepared and XRD and EDX analysis 

was done showing very similar results. 

The dramatic change in morphology of the obtained sample, in comparison to samples from the 

previous experiment, was assumed to be primarily a consequence of the change in temperature and 

time of sonication. Since the adsorption is by its nature exothermic process, lower temperature 

facilitates surfactant adsorption on the surface of formed particles. Therefore, upon temperature 

regulation (~20°C) a particle easily becomes coated with surfactant and keeps its prior spherical shape. 

In systems without this regulation where temperature increases during sonication, it is more probable 

that molecules of surfactant will group in a formation, so called micelles, which varies in shape 

depending on the type of used solvent and surfactant. Concerning the investigated system, where 

unpolar solvent was used, it was assumed that inverse micelles were obtained forming a tubular 

structure, which presents the template for the shaping of the synthesized material. In this manner, 

oxide particles can be adsorbed on the polar heads of the surfactant molecules at the outer wall of the 

formed inverse micelle. Further on, with a shorter time of sonication it is easier to keep the formed 

tubular structure. 
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6.2.2 System with n-decane as a solvent 

 

In order to dissolve 0.1 g (7.58 mM) of Mo(CO)6 in 50 ml of n-decane, 20 min stirring on a magnetic 

stirrer was performed, followed by addition of 631 μl (0.04 mM) of oleic acid. Stirring was continued 

for the next 10 min. Ultrasound was applied for 9 min at an intensity of 80 Wcm-2 without temperature 

regulation and the samples for TEM analysis were taken after 6, 8 and 9 min (at the end of the 

experiment). During sonication the first color change was observed after 4 min, when the solution 

changed color from transparent to light brown. Even after 2 months of ageing, the obtained colloidal 

suspension appeared to be stable. For the better overview and possibility to compare obtained samples, 

TEM images together with particular diffraction patterns are presented together in the Figure 6.5. 

 

Figure 6.5 TEM images together with diffraction patterns of the samples prepared from 0.1 g (7.58 mM) of 
Mo(CO)6 and 631 μl (0.04 mM) of oleic acid in 50 ml of n-decane at Ia=80 Wcm-2 after 6 min a) and b), 8 min c) 
and d) and 9 min of sonication e) and f). 
 

Particles with not well defined shape, several hundred nanometers wide and around 1 μm long were 

detected in the sample within the shortest time of sonication (Fig. 6.5 a-b). Beside this type of particles 

tubular shaped particles with a diameter of 60-70 nm and a length of 300-500 nm were found in the 

same sample. Diffraction patterns of these particles showed dispersed diffraction rings which indicated 

an amorphous structure. In the sample taken after 8 min (Fig. 6.5 c-d) of sonication more complex 

tubular structures were detected. On the dark field image, the presence of hollow tubes whose walls 

are formed by a network built from small (primary) particles was clearly noticable. TEM analysis done 

on the sample taken at the end of sonication, after 9 min (Fig. 6.5 e-f), indicated again a hollow tube 

structure with small particles on the walls. The diameter of these tubes was around 130 nm and their 

length around 1 μm. In this sample, also some very complex structures, porous and irregular in the 

shape, were located. The tubes with bigger diameter and the walls were made from the network of 

small 20 nm wide rods. This experiment showed once more that with longer time of sonication there is 

a tendency for particle growth as well as for forming of a not so compact structure. The diffraction 
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patterns with dispersed rings gained from all samples obtained in this experiment indicated the 

amorphous structure. 

Due to the high stability of the colloid suspension, centrifugation appeared to be inefficient for 

recovering the powder. Therefore, the layer of powder was isolated by filtration, dried at 110°C in the 

oven and taken for EDX analysis. EDX analysis (Tab. 6.2) showed even higher percentage of oxygen 

in comparison with the sample obtained in hexadecane as the solvent. 

 

Table 6.2 Results of the EDX analysis done for the sample of 0.1 g (7.58 mM) of Mo(CO)6 and 631 μl (0.04 
mM) of oleic acid in 50 ml of n-decane after 9 min of sonication at Ia=80 Wcm-2. 
 Point 1, % Point 2, % 

Mo 16.92 16.79 

O 83.08 83.21 
 

In order to get information about the influence of precursor concentration an experiment with half of 

the carbonyl concentration (0.05 g, 3.79 mM) and 8 min of sonication was performed. The first color 

change from transparent to light blue occurred at the end of the 3rd min and by the end of the 4th 

minute color changed to light brown. In comparison to the previous experiment, the obtained colloidal 

suspension was lighter. It appeared to be stable even after 2 months of ageing. 

 

Figure 6.6 TEM images together with diffraction patterns of the samples prepared from 0.05 g (3.79 mM) of 
Mo(CO)6 and 631 μl (0.04 mM) of oleic acid in 50 ml of n-decane after 8 min of sonication at Ia=80 Wcm-2. 
 

On the TEM picture (Fig. 6.6 a) a 2µm wide porous agglomerate was observed. This agglomerate was 

formed by a great number of 20 nm wide nanorods. Very small (3-15 nm) particles were observed in 

this agglomerate on the dark field TEM image (Fig. 6.6 b). In comparison with the previous 

experiment there was a clear difference in the shape as well as in the particle size. A more ordered and 

dense structure was observed in the sample obtained from the experiment with the lower concentration 

of the precursor in comparison with the irregular and less compact nanorods network in the sample 

formed in the experiment with higher precursor concentration. Diffraction pattern showed amorphous 

structure as in the previous experiment.  
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Chapter 7 - Conclusions 

 

In the present study the EQCM technique was used in an ultrasound field for the study of 

sonoelectrochemical reactions. As acoustic wave based technique EQCM is very sensitive on 

mechanical disturbances. Since ultrasound is a source of phenomena such as acoustic cavitation and 

acoustic streaming, both origins of extreme mechanical agitation and disturbances, the imagined 

concept to combine ultrasound and EQCM technique was very challenging and in the beginning not 

for sure a realizable one. 

EQCM data in addition to electrochemical data give opportunity to obtain informations about mass 

changes on the electrode and current efficiencies and thus facilitate the study of mechanism of 

sonoelectrochemical reactions and distinguishing the nature of reactions taking place at the electrode. 

In addition quantification of current-less processes such as corrosion and erosion is much easier to be 

done.  

The study was performed in two steps. In the first step of the study done in water and in a sulfate and 

chloride-based Cu electrolyte, the applicability of the EQCM technique in an ultrasound field was 

proven and the influence of ultrasound on the electrochemical parameters was studied. In the second 

step materials with a possible practical usage were synthesized. 

In experiments done in water the resonance frequency, the damping and the noise of the quartz 

response signal (quartz admittance) were recorded and their behavior was followed, as function of 

time and with a variation of the ultrasonic intensity and the quartz-horn distance. The major trend was 

that with an increase in the ultrasonic intensity and a decrease in the distance, the admittance signal 

became noisier and there was a larger shift in the resonance frequency. A problem usually occurred in 

the beginning of the measurements, especially at higher intensities and smaller distances, where a 

certain time was needed to obtain a stable signal and where fluctuations in the frequency and damping 

were bigger. When the horn-quartz distance was 8 mm and the ultrasonic intensity 76 Wcm-2, the drift 

in the frequency was significant and it took more than 4 minutes for the signal to become stable. 

However, even the highest recorded noise was not large enough to destroy the signal and make it 

useless. Frequency changes observed during these measurements were also much smaller than ∆f 

caused by actual mass changes normally obtained during EQCM measurements. Nevertheless, when 

analyzing the deposition/dissolution of very small amounts of material in the presence of ultrasound, 

as for deposition of (sub)monolayers or for underpotential deposition studies, ultrasound induced 

effects on ∆f might become important. 

The basic study done in water was further performed in a sulfate-based Cu electrolyte due to the well 

explored basic mechanism. Ultrasound irradiation, in a pulsed mode and with different intensities, was 

applied in the Cu electrolyte. The open circuit measurements on the bare quartz and on the previously 

deposited Cu layers were done in order to check the influence of ultrasound on the frequency change 
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and the rest potential. The observed shifts in followed parameters, more pronounced at elevated 

ultrasonic intensities, indicated a significant role of the corrosion and also the surface erosion 

developed due to the acoustic cavitation. 

The electrodeposition of Cu from the sulfate based electrolyte was further studied and the influence of 

the ultrasound on the electrochemical parameters was investigated. It was found that all parameters are 

influenced in a similar manner, mostly proportional to the square root of the ultrasound intensity. 

Enhanced mass transfer, due to acoustic streaming and phenomena such as microjets formed due to 

asymmetric collapse of the cavitational bubble, was mainly responsible for the enhanced cathodic 

currents and mass changes during deposition of Cu. EQCM data gave the possibility to determine 

current efficiencies in function of the applied potential or the time. Their deviation from theoretical 

values was explained as a consequence of a few phenomena such as dissolution and partial deposition 

of Cu via Cu(I), co-adsorption of sulfate ions and developed acoustic cavitation. These deviations 

were less significant in an ultrasound field due to the enhanced mass transport and less influence of the 

side reactions. One further indication that the main influence of the ultrasound is enhanced mass 

transport is the similarity of the obtained cyclic voltammograms under ultrasound irradiation with 

those ones obtained in RDE experiments in a similar potential range. The morphology of the obtained 

deposits was influenced as well. In solutions with a low concentration of the electroactive species, 

electrodeposition generally occurs under mass transfer control. With the presence of ultrasound and 

eliminated depletion of electroactive species, a gradual change from mass to charge transfer control 

occurs and in principal better quality deposits can be obtained. In the present experiments, under 

ultrasound radiation, less powdery and more compact layers were observed with larger grains but a 

more uniform size distribution.  

The two step nature of the Cu electrodeposition was more pronounced in a chloride based solution, 

due to the complex formation and the stabilization of Cu(I) in the presence of Cl- ions, and was mainly 

responsible for the behavior of the electrochemical parameters also in an ultrasound field. Enhanced 

mass transport and eliminated depletion of electroactive species leads to enhanced formation of Cu(I), 

beneficial to the electrodeposition but also to corrosion of Cu. This dual effect of the ultrasound is 

visible in its effect on cathodic currents and deposited mass as well as in the current efficiencies. With 

an increase in ultrasound intensity till intermediate values an increase in deposited mass was observed, 

but with further ultrasound intensity increase the deposited mass started to decrease. Despite a further 

slight increase in the cathodic currents, the current efficiency decreased. From the data obtained in 

RDE experiments it was possible to calculate limiting currents as a function of ultrasound intensity 

and it was shown that they were higher than the cathodic currents actually observed during cyclic 

voltammetry. Beside the enhanced mass transfer due to the acoustic streaming, accompanying 

processes like corrosion and erosion were observed as well. The latter is due to the occurrence of 

acoustic cavitation, and was more evident in the chloride electrolyte. Cathodic currents were found to 

be smaller than corrosion currents obtained from the OCP measurements on the deposited layer in an 
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ultrasound field. Several indications pointed out a significant role of the erosion which in turn 

explained the decrease in deposited mass and high values for corrosion currents. 

The synthesis of materials with practical usage such as Ni/CeO2 and Co/CeO2 composites was also 

done. Since the electrolytes used for both systems were quite concentrated there was no need for 

ultrasound to enhance mass transport, but rather to supply a stirring effect to distribute ceria 

homogeneously in the electrolyte as well as to break up soft agglomerates and to direct them towards 

the electrode. On the other hand, in some systems, ultrasound enhanced significantly side reactions 

and changed the electrochemical behaviour. In these cases EQCM permitted distinguishing them from 

the actual metal deposition and via a change in damping indicated the roughening of deposited layers. 

Still, it was not possible to determine the amount of the incorporated ceria from the EQCM data, due 

to greatly enhanced side reactions. Whereas in synthesized Ni/ceria composites a rather small amount 

of ceria was embedded (up to 2.4 wt% for the 5 g/l ceria addition), the content of the ceria in the 

Co/ceria composite was up to almost 8 wt% (for the 5 g/l ceria addition). With an enhanced amount of 

the ceria embedded in the Co film, the damping also increased and more inhomogeneous and rougher 

layers were obtained. These results are promising for the purpose of a possible application of such 

materials in fuel cells where rather rough and porous than smooth and dense high quality layers are 

needed. 

The sonochemical synthesis of colloidal solutions of Mo-oxide particles with amorphous structures 

was performed as well. The prepared colloids were successfully stabilized and remained stable for 

months. With the regulation of the temperature during sonication, agglomerates with mostly spherical 

particles were produced due to enhanced adsorption of surfactants on the particle surface. With 

increased temperatures the process of micelles formation was enhanced and more tubular structures 

were formed.  

In some experiments the influence of the sonication time was also examined. In general with longer 

sonication times more complex structures were produced. In the case of tubular structures, growing of 

tubes and rods with the time was observed. The agglomerates of the spherical particles became smaller 

and less coherent with a prolonged time. These contradictory observations can be explained with the 

dual influence of ultrasound, on one side collision and on the other side fragmentation of particles. In 

the system with decane as a solvent, higher concentrations of molybdenum precursor led to the 

production of less ordered agglomerates of bigger nanorods in comparison to the case with lower 

precursor concentration. 

In addition, a preliminary study on the pulsed sonoelectrochemical electrodeposition of Cu, Ag and Au 

colloidal nanoparticles was carried out. Stable colloidal nanoparticles in the nanometer range were 

obtained and it was shown that particle size strongly depends on the experimental conditions. This 

finding was very important since with further optimisation of crucial parameters influencing size of 

the particles it can be tailored and the desired size can be achieved. 
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Annexes 

 

Annex 1-Table with ultrasonic powers obtained from calibration of Bandelin Sonopuls HD 

3200 

 

amplitude Pdirect dPdirect Pinter DPinter 

100 83.5 1.9 83.0 2.5 
95 - - 78.9 2.4 
90 74.2 1.8 74.9 2.3 
85 - - 70.8 2.2 
80 - - 66.8 2.2 
75 - - 62.8 2.1 
70 62.9 3.6 58.7 2.0 
65 58.9 3.5 54.7 1.9 
60 - - 50.6 1.9 
55 50.9 3.3 46.6 1.8 
50 47.2 3.3 42.6 1.7 
45 42.7 3.2 38.5 1.6 
40 38.8 3.1 34.5 1.6 
35 33.1 3.0 29.1 0.9 
30 26.5 1.6 26.4 0.9 
25 - - 23.6 0.8 
20 20.6 1.5 20.8 0.8 
15 - - 18.0 0.7 
10 15.3 1.5 15.2 0.7 
 

Annex 2-Calculation of rates of mass changes and corrosion currents 

From Sauerbrey equation (Eq.1.4.16): 

 =>  

 =>  

ZQ=8.849·105 gcm-2s-1 

f0 (for the quartz used in the experiment in Figure 3.7b) = 9.6958739560·106 Hz 

for silent conditions: 

∆f/∆t (taken from the Figure 3.7 b upward case) = 17.62 Hzs-1 

 

From the equation 1.4.17 with an integral value for ∆m/∆t one can calculate the expected current from 

mass, corresponding to the corrosion currents under open circuit conditions, as follows: 
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where:  

F=96485 Cmol-1  

and for Cu z=2 and M=63.59 gmol-1 

 

In the same way one calculates ∆m/∆t and jcorr for 80 Wcm-2 

∆f/∆t (taken from the graph 3.7 b upward case)=32.69 Hzs-1 

 

 

 

Annex 3-Calculation of the equilibrium potential for Cu2+ reduction in CuSO4 system 

For Cu2++2e-
→Cu (s) 

Nernst equation (Eq. 1.4.5) can be written as follows: 

 

For: 

E0=0.34 V vs. NHE (normal hydrogen electrode) 

In our experiments Ag/AgCl (0.197 V vs NHE) was used and thus E0=0.143 vs Ag/AgCl 

R=8.315 Jmol-1K-1 

T=298.15 K (25 °C room temperature) 

z=2 

F=96485 Cmol-1 

c(Cu2+)=0.01 moldm-3 

84  
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Annex 4-Calculation of  function for Cu 

From the equation 1.4.18: 

 

and for z=2 one calculates: 

 

When dQ in this equation is 0 a mathematical discontinuity appears because dividing with 0 is not 

defined. 

 

Annex 5-Calculation of apparent current efficiency 

Calculation is done in Origin for experimentally obtain data in the following steps: 

From the equation 1.4.19: 

 

one calculates a set of data: 

 

For each value of dm (calculated from Sauerbrey equation similar as in Annex 1) and differentiated by 

t one obtains: 

 

jel is the measured current divided per electrically active area (in this experiment 0.2917 cm2). 

 

Annex 6-Calculation of the current efficiency 

In Origin dm (calculated from Sauerbrey equation similar as in Annex 1) is plotted versus Q (obtained 

as one of electrochemical data and then divided per electrically active area) and one obtains the slope 

of this plot. The value of this slope is divided by  and by multiplying it 

with 100% the current efficiency is obtained. 
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Annex 7-Calculation of the standard electrode potentials for the electron transfer reactions in 

the CuCl2 system 

Solution composition: 0.01 M CuCl2 and 0.5 M NaCl (pH=1 addition of HCl) 

c(Cu2+)=0.01 moldm-3 

c(Cl-)=c(Cl- from CuCl2)+ c(Cl- from NaCl)+c(Cl- from HCl) 

c (Cl- from CuCl2)=0.01 moldm-3 

c (Cl- from NaCl)=0.5 moldm-3 

pH=-logc(H3O
+)=> c(H3O

+)= c(Cl-)=0.1 moldm-3 

c(Cl-)=0.62 moldm-3 

Cu2+ + e- ↔ Cu
+  

Cu+ + e- ↔ Cu(s)  

a) 

For reaction 1. Cu2+ + e- ↔ Cu
+ 

Nernst equation (Eq. 1.4.5) can be written as: 

 

For the reaction: Cu+ (aq) + 2Cl-
(aq) ↔ [CuCl2]

- (aq) 

Kβ2 (complex stability constant) = 1.995  

and can be written as: 

 

 

 

For reaction: 2. Cu2+ (aq) + 2Cl-(aq) + e- ↔ [CuCl2]
- (aq) 

Nernst equation (Eq. 1.3.5) can be written as: 
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E(for reaction 1)=E(for reaction 2) 

 

 

 

0.53V vs NHE = 0.33 V vs Ag/AgCl 

b) 

For reaction 3: [CuCl2]
- (aq) + e-

↔ Cu(s) + 2Cl
- (aq) 

Nernst equation (Eq. 1.4.5) can be written as: 

 

where:  

 

For reaction 4: Cu+ + e- ↔ Cu(s) 

Nernst equation (Eq. 1.4.5) can be written as: 

 

E(for reaction 3)=E(for reaction 4) 

 

 

=  vs NHE = -0.05 V vs Ag/AgCl 
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Annex 8-Calculation of the diffusion coefficients 

From experimental data and according to the Levich equation (Eq. 1.4.11): 

 

the plot jl vs  for both reactions was made (Fig. 3.33 a) and slopes are given 

For the first electron transfer, first reduction reaction: 

Slope  

for z=1, ν = 0.0103 cm2 s-1
 (  

c0=0.01 moldm-3=0.01 10-3molm-3 

 

 

 

 

In the same way for the second reduction reaction: slope  and z=2 

 

 

 

 

Annex 9- Calculation of the diffusion layer thickness 

When D is known one can calculate the diffusion layer thickness from (Eq. 1.4.12): 

 

1) f=1500rpm=1500/60=25rps=>ω=2πf=2·3.14·25=157 ms
-1 

 

 

2) f=3000rpm=3000/60=50rps=>ω=2πf=2·3.14·50=314 ms-1 
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Annex 10 -Calculation of K from the analogue of a Koutecký-Levich plot for the ultrasonic 

data 

 

where: 

d (distance between tip and electrode)=2.2 cm=> d-1/2=0.674 cm-1/2 

A (tip area) = 1.2 cm2=>A1/2=1.095 cm 

D=6.7·10-6 cm2s-1=>D2/3=3.55·10-4 cm4/3s-2/3 

c=0.01 moldm-3=1·10-5 molcm-3 

 was plotted versus  and and fitted linearly and from the obtained slope=313.19 cmΩ
0.5 K was 

calculated as follows 

·10-9 molcm-7/6s2/3=>1/ =3.8·108 mol-1cm7/6s-2/3 

313.19 cmΩ
0.5=3.8·108 mol-1cm7/6s-2/3·K-1 

K=1.21·106 mol-1cm1/6s-2/3 Ω-0.5 

From the intercept of the linear fit = 17.9 cm2A-1, one can calculate activation controlled current as 

reciprocal value: 

Ik=1/17.9 cm2A-1=56 mAcm2 

 

Annex 11-Calculation of the corrosion currents 

From the mass changes rates, 0.20 µgcm-2s-1 under silent conditions and 6.4 µgcm-2 s-1 (obtained by 

linear regression of the plots in a certain range) under ultrasound corrosion currents were calculated 

according to Eq. 1.4.20 

 

 for silent conditions, and 
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