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Abstract

The main numerical e�ort in common electronic structure methods is spent in the
setup and diagonalization of the Hamiltonian. Without further approximations, this
e�ort scales cubicly with the number of particles involved. The complexity of quantum
mechanics usually requires an iterative approach. This is unfavorable, because the
badly scaling system of equations needs to be solved several times in order to reach
su�ciently accurate results. Over the years, there have been several more or less
sophisticated approaches to circumvent these problems. The e�ort in reducing the
numerical demands usually either results in less intelligible approaches, theoretically
not well funded approximations or representations which make it hard to extract the
physical meaning.
The approach presented in this work is focused on a formulation which is consistent

with the physico-chemical intuition and makes use of straight forward and well con-
trollable approximations to reduce the numerical e�ort. In order to achieve this goal,
the transformation from isolated to clustered atoms is splitt in two steps: deformation
from the atomic to a reference state, and clustering. An ab initio based construction
of embedding potentials allows to deform the individual atoms such that the non-
spherically deformed fragment densities re�ect the crystal structure. The numerical
e�ort in this step corresponds to isolated atom calculations and scales virtually linear
with system size. The superposition of fragment densities however comes close to
the clusters density. It can therefore be used as input-density for non-selfconsistent
calculations. Furthermore, a new non-selfconsistent functional, based on energies rel-
ative to the isolated atom, is introduced. It allows to reduce the numerical errors due
to enhanced error cancellation and improves the interpretability of results. Because
of the localized nature of the deformed densities, the cluster's Hamiltonian becomes
sparse. This additionally reduces the numerical e�ort.
Due to the non-spherical character of the deformed fragments, the crystal structure

is re�ected in the input-density. The new construction therefore overcomes the limi-
tations of usually applied frozen atomic fragments. This is con�rmed by systematic
analysis of a H2 model system.
Pros and cons of several possible numerical implementations are discussed in detail.





1 Introduction

Although the common citizen does not realize, a good portion of the modern techni-
cal world's advances involves the application of quantum theory. This reaches from
amenities such as portable mp3 players, which are able to store several Gigabyte
of coded music and decode it on the �y with an energy consumption so low, that
a micro-battery lasts for ten's of hours. The underlying semiconductor devices are
nowadays present in almost every area of life. Quantum mechanically driven mate-
rials engineering on the other hand allows to develop new alloys which are e.g. used
in astronautics, automobiles or medical devices such as hip joint endoprosthesis. Be-
sides these quite technical applications, quantum theoretical methods even contribute
to the progress in understanding biological systems and the basic principles of life.
All these outstanding applications however correspond to fruits matured on a tree
fostered and nourished by generations of scientists. The nutriments thereby come
from basic research. Development of new methods usually starts with an idea, which
�rst of all needs to be formulated on a theoretical basis. The complexity of quantum
mechanics usually does not allow to solve the corresponding mathematical equations
analytically. In order to apply new approaches to all day work problems, theoretically
well funded approximations need to be applied. In the framework of computational
approaches, appropriate numerical implementations need to be found. The e�ort in
reducing the numerical demands however usually either results in less intelligible ap-
proaches, theoretically not well funded approximations or representations which make
it hard to extract the physical meaning.
The approach presented in this work1 is focused on a formulation which is consis-

tent with the physico-chemical intuition. We thereby apply theoretically well funded
and straight forward approximations. In our view, intuition, well controllable approx-
imations and numerical e�ciency do not have to be mutually exclusive, but can lead
to synergetic e�ects2.
The thesis consists of four main parts. The �rst part addresses the basic concepts. It

prepares the ground in which the seeds of the novel theory, discussed in part two will be
sowed. As in any fruit-growing, the �rst grafts need to be thoroughly examined. This
is done in part three. The last part of this thesis �nally provides detailed background
information concerning the speci�c prospects and sensitivities of the new approach.

1In the presented thesis, I keep the internal working title SESM - which is derived from Simple (to
interpret) Electronic Structure Method. The �nal denomination of the approach however may be
di�erent.

2I use the plural we in this statement, because the development of the new approach rests on
contributions from several current and former members of our institute.



2 1 Introduction

It should allow the interested gardener to grow the plantlet to strong trees, full of
sweet fruits.



Part I

State of the art





2 Basic concepts and tool kit

preparation

2.1 The Hamiltonian for a multi-particle system

The solution of the time independent Schrödinger equation

Ĥ|Ψ〉 = E|Ψ〉 (2.1)

gives access to the total energy E of a given system. Considering a system of N
nuclei and n electrons the wave function1 Ψ (x1, ...,xn,R1, ...,RN ) is depending on
the coordinates of every nuclei Ri and electron xi. The coordinates xi comprise space
coordinates ri and spin coordinates si. The contributions to the Hamiltonian operator
Ĥ can be divided as follows (the terms on the right of the equals signs correspond to
the expressions in con�gurational space):

• Kinetic energy of the nuclei
T̂n = −∑

i

~2

2mi
∇2

Ri

• Nuclei-nuclei interaction
V̂nn = 1

2

∑
i 6=j

ZRi
·ZRj

·e2

4πε|Ri−Rj |

• Kinetic energy oft the electrons
T̂ = −∑

i

~2

2me
∇2

ri

• Electron-electron interaction
V̂ee = 1

2

∑
i 6=j

e2

4πε|ri−rj |

• Electron-nuclei interaction
V̂en = −∑

i,j

ZRj
·e2

4πε|ri−Rj |

• External potential
V̂ext′ =

∑
i

(
Vext′e(xi) + Vi,ext′n(Ri)

)
.

1Ψ(r) is a projection of |Ψ〉 on the con�gurational space according to |Ψ〉 =
R
|r〉 〈r|Ψ〉| {z }

Ψ(r)

dr. |r〉

thereby is an abbreviation of the form |r〉 = lim
∆r̃→0

|r̃〉√
∆r̃

, with discrete |r̃〉 [1].
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Following the Born-Oppenheimer2 approximation one can decouple the electronic from
the atomic motion [2]. The electrons then experience an external potential with
contributions from the static atomic geometry and the Hamiltonian can be written
as:

Ĥ = T̂ + V̂ee + T̂n + V̂nn + V̂en + V̂ext′

= T̂ + V̂ee + V̂ext (2.2)

Using Hartree atomic units3 (~ = e = me = 4πε0 = 1) [3] this can be written as:

Ĥ = −
∑
i

1
2
∇2

ri +
1
2

∑
i 6=j

1
|ri − rj | + V̂ext (2.3)

The above setup with division of physical systems in classical nuclei and quantum
mechanically treated electrons will in the following simply be referred to as system.

2.2 Empirical tight-binding

Empirical tight-binding was introduced in 1954 by Slater and Koster [4] as an in-
terpolation method to be used in connection with more accurate calculations. It is
based on the method of linear combination of atomic orbitals (LCAO), which Bloch
extended to periodic potentials [5]. Bloch showed that the wave function in a periodic
potential can be written as the product of a periodic function times a phase factor.
This suggests that superposition of the atomic orbitals of a certain species, residing
on all periodic images of a crystal, may be an appropriate basis set for the solution of
the corresponding Schrödinger equation. These so called Bloch sums can be written
as

Φn(k, r) =
1√
N

∑
j

eikRjφn (r−Rj) (2.4)

with φn denoting the n'th atomic orbital for a given species residing at the various
crystal sites Rj and k being the wave vector. The sum in principle is to be extended
over all (N) periodic images.
The resulting expressions for the Hamiltonian matrix elements at a given k are

2The Born-Oppenheimer approximation rests on the fact that the nuclei are much more massive
than the electrons and therefore move much slower. This allows the electrons to relax almost
immediately while the nuclei are moving. The movement of the electrons is therefore adiabatic
and decoupled from the nuclei motion. The Born-Oppenheimer approximation is also called
�adiabatic approximation�.

3These will be used in the following (unless otherwise speci�ed). The length unit is the Bohr radius
a0 = 0.5392Å, the charge unit is the charge of an electron e, the mass unit is the mass of an
electron me and the energy unit H corresponds to twice the ground-state energy of an electron
in an hydrogen atom (2× 13.6eV ).
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linear combinations of integrals of the form∫
φn (r−Ri)Hφm (r−Rj) d3r. (2.5)

For φn and φm residing on two di�erent sites (Ri − Rj 6= 0), the part of the
Hamiltonian describing the interaction with the potential of a third site, leads to
three center integrals. As Koster and Slater stated, it becomes almost impossibly
di�cult to carry out all these calculations with full rigor4.
A �rst step towards simpli�cation is to set up new atomic orbitals such, that the

resulting linear combinations obey the same symmetry properties as the original ones,
but are orthogonal across di�erent atomic sites. Therefore the overlap matrix becomes
diagonal and the secular equation simpli�es. This can be achieved by Löwdin functions
[6].
Koster and Slater proposed to account only for the potential contributions origi-

nating from the sites of the atomic orbitals φn and φm. This approximation allows
parametrization of the Hamiltonian matrix - and hence the band-structure energy de-
rived thereof - according to the symmetry properties of the involved orbitals and the
separation of the corresponding sites. The free parameters can then be �tted against
a number of reference data for certain k. The references can be exact calculations e.g.
for high symmetry k points or even experimental data. The band structure energy
can then be extrapolated into regions where exact determination is unfavorable.
The following crucial point should be mentioned: atomic orbitals have been used in

the derivation of the parametrization scheme. In implementations of the method, ba-
sis functions however were never explicitly determined. In fact, the �tting procedure
introduces corrections into the Hamiltonian which can not be described by atomic
orbitals. We will illustrate this by a simple example. It is common practice to reduce
the dimension of the empirical Hamiltonian to valence states. This actually requires
the introduction of a constraint, which forces the resulting valence states to be or-
thogonal to the excluded core states. In the empirical tb-approach approach however,
this constraint is not explicitly accounted for. Fitting the free parameters against
reference data, which takes core orthogonalisation into account, indirectly introduces
the orthogonalisation into the valence only Hamiltonian.
Andersen and Jepsen 1984 published a �rst principles tight-binding based construc-

tion [7], which was derived from linear mu�n tin orbitals [8]. The results emphasize
the fact that atomic orbitals are far from ab initio tb-orbitals (see section 2.5 for more
details).
A common approximation in empirical tb is the restriction to nearest neighbor

interactions. This is problematic in case of orthogonalized atomic basis functions as
4Although the computer power has multiplied since then, Koster and Slater's statement still holds.
This is because - applying no further approximations - the numerical costs to set up and diagonal-
ize the Hamiltonian and overlap matrix scale cubic with the number of involved particles. This
limits the number of particles per unit cell that can be calculated in full rigor even on modern
supercomputers to a few hundred.



8 2 Basic concepts and tool kit preparation

originally proposed by Koster and Slater. The orthogonalization leads to extended
basis functions. The Hamiltonian matrix therefore exhibits nonzero contributions,
even for well separated particles. These problems can either be circumvented by non-
orthogonal tight-binding approaches e.g. applied by Ho�mann [9] or by enforcing the
localization of the basis set [10, 11, 12].
A more detailed discussion of these and other (tight-binding speci�c) topics like

extension to atomistic calculations, transferability of parametrization, charge transfer
and self consistency is out of the scope of this thesis. A review can be found in [10, 13].

2.3 Density functional theory

2.3.1 Predecessors of DFT

Density functional theory (DFT) is a successful approach for the e�cient quantum
mechanical description of ground state properties of many-body systems. It is widely
used in solid state physics and quantum chemistry. The basic principles rest on
considerations taken earlier by Hartree [3], Fock [14], Slater [15], Thomas [16], Fermi
[17] et al. DFT was no isolated development but incorporated many ideas from
earlier quantum-chemical approaches. Basic knowledge of these approaches facilitates
the comprehension of DFT. Appendix A will illustrate these concepts as well as some
standard implementations of DFT in more detail.

2.3.2 The Hohenberg-Kohn theorems

The properties of a system are entirely determined by the corresponding many-body
wave function |Ψ〉, which itself is a solution of Schrödinger's equation, and therefore
only depends on the number of electrons n and the external potential Vext(r).
In their �rst theorem, Hohenberg and Kohn (1964) [18] proved, that one can use

the electron density n(r) instead of the wave function |Ψ〉 as basic variable for (non
degenerate) ground states. This means that for each electron density (which is deter-
mined by an external potential) the external potential is uniquely assigned. The basic
idea of Hohenberg and Kohn's proof is rather simple: the assumption of the existence
of two di�erent external potentials (di�ering by more than a constant) which should
be assigned to the same ground-state electron density leads to a contradiction while
applying the minimum-energy principle for the ground state upon the appropriate
Hamiltonians.
The second Hohenberg-Kohn theorem shows that the variational principle holds for

density functionals [18]:

for a trial density ñ(r), such that ñ(r) ≥ 0 and
∫
ñ(r) dr = n,

E0 ≤ E[ñ]
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where E[ñ] = T [ñ] + Vee[ñ]︸ ︷︷ ︸
FHK

+Vne[ñ] =
∫
ñ(r)Vext(r) dr + FHK [ñ].

As already mentioned above the Hohenberg-Kohn theorems imply that (even the trial)
electron density can be determined by an external potential (is V -representable5).
There exist physical systems (for example systems with ground state degeneracy >
2) for which this condition can not be ful�lled. This problem can be circumvented
by following Levy's constrained-search formulation of the density functional theory
[19, 20, 21]. In this formulation a weaker condition, namely the �n-representability�
of electron densities is required. In mathematical terms this means:

n(r) ≥ 0,
∫
n(r) dr = n, and

∫ ∣∣∣∇n 1
2 (r)

∣∣∣2 dr <∞.

For canonical and grand-canonical ensembles at �nite temperature, the equilibrium
state is similar to the ground state at zero temperature. By applying statistical
mechanics, the density functional theory can even be expanded to these systems [22].

2.3.3 Exchange and Correlation

The Hohenberg-Kohn theorems legitimize the usage of the electron density to describe
the ground-state properties of a system. There are two densities which are of main
interest in density functional theory: the one electron (n(r)) and the two electron
density (n(r, r′)). The one electron density for a multi-electron system can be written
as

n(r) = 〈Ψ|n̂|Ψ〉 = 〈Ψ|
n∑
i=1

δ(ri − r)|Ψ〉 (2.6)

and corresponds to the probability to �nd one of the n electrons at the position r,
whereas the two electron density is associated with the probability to �nd one electron
at position r and, at the same time, a second one at r′. In classical electrodynamics
this would just be

nclass(r, r′) = n(r)n(r′)

because the second electron is independent from �rst one. In quantum mechanics,
the determination of one electron's position a�ects the possible residence of the other

5An electron density n(r) is referred to as V -representable if it is the density associated with the
antisymmetric ground-state wave function of a Hamiltonian of the form (2.2) with some external
potential V (r) .
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electrons. Taking this into account, the two electron density has to be written as6:

n(r, r′) = 〈Ψ|1
2

∑
i 6=j

δ(ri − r)δ(rj − r′)|Ψ〉. (2.7)

An electron at r feels the density of the remaining n− 1 electrons which is given as7:

n̄(r, r′) :=
2n(r, r′)
n(r)

(2.8)

The di�erence between the one electron density n(r′) and the two electron density
n̄(r, r′), which accounts for the exchange interaction is called �exchange hole�:

n̄(r, r′)− n(r′) = h(r, r′). (2.9)

Combining (2.8) and (2.9) the two electron density can be written in terms of one
electron densities

n(r, r′) =
1
2
[
n(r)n(r′) + n(r)h(r, r′)

]
and the electron-electron interaction energy splits in:

〈Ψ|V̂ee|Ψ〉 =
∫∫

n(r, r′)
|r− r′| dr dr′ (2.10)

=
1
2

∫∫
n(r)n(r′)
|r− r′| dr dr′︸ ︷︷ ︸
VH

+Vxc (2.11)

with

Vxc =
1
2

∫
n(r)

∫
h(r, r′)
|r− r′| dr′ dr

and VH being equal to the (classical) electrostatic energy of the electrons. Vxc corre-
sponds to the Coulomb interaction of the electrons with their exchange-hole.

2.3.4 The Kohn-Sham Method

Using the results from section (2.3.3) the total energy can be written as follows:

E = 〈Ψ|T̂e|Ψ〉+
∫
n(r)Vext(r) dr +

1
2

∫∫
n(r)n(r′)
|r− r′| dr dr′ + Vxc (2.12)

6Note that we de�ne the two particle density including the factor 1
2
, which is then not explicitly

present in (2.10).
7Note that n̄(r, r′)

r→r′−→ 0.
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where the kinetic energy term for the electrons still contains the many-body wave
function.

The kinetic energy of non-interacting electrons can be obtained by minimization of
the kinetic energy with respect to the many-body wave function |Ψ〉 for a constant
electron density n(r):

Ts[n] := min
Ψ

n[Ψ] != n

〈Ψ|T̂e|Ψ〉 . (2.13)

It can be shown that the many-body wave function |Ψ〉 for the ground state of non-
interacting electrons can be written as Slater determinant of one-electron wave func-
tions |ψi〉. These were usually referred to as Kohn-Sham orbitals.

One can then separate the kinetic energy of non interacting electrons in the following
way:

E = Ts +
[∫

n(r)Vext(r) dr +
1
2

∫∫
n(r)n(r′)
|r− r′| dr dr′ + Exc

]
with

Exc = 〈Ψ|T̂e|Ψ〉 − Ts + Vxc

called the energy of exchange and correlation. It usually cannot be determined ex-
plicitly, but it is expressed as functional of the density. See section 2.3.5 for details.

Choosing an arbitrary e�ective potential Veff the n one-electron Schrödinger equa-
tions look like: [

T̂e + Veff

]
|ψi〉 = εi|ψi〉 (2.14)

and the energy for the non interacting system is

Enon :=
∑
i

〈ψi|T̂e + Veff |ψi〉. (2.15)

Minimization of (2.15) grants access to the ground state one electron wave functions
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ψ0,i, the ground state energy and the electron density 8:

Enon0 = min
ψi

∑
i

〈ψi|T̂e + Veff |ψi〉 = Ts +
∑
i

〈ψ0,i|Veff |ψ0,i〉

n0(r) =
∑
i

∑
s

ψ∗0,i(r, s)ψ0,i(r, s). (2.16)

Variation of the e�ective potential is equivalent to a variation of the density n(r).
The functional derivative of Enon0 is:

δEnon

δn

∣∣∣∣
n0

=
δTs
δn

∣∣∣∣
n0

+ Veff = 0

⇒ δTs
δn

∣∣∣∣
n0

= −Veff

The total energy of an interacting system can be written as functional of the density:

E[n] = Ts[n] +
[∫

n(r)Vext(r) dr +
1
2

∫∫
n(r)n(r′)
|r− r′| dr dr′ + Exc[n]

]
(2.17)

= Ts[n] + Epot[n]
with

Epot[n] =
[∫

n(r)Vext(r) dr +
1
2

∫∫
n(r)n(r′)
|r− r′| dr dr′ + Exc[n]

]
. (2.18)

Substituting δTs
δn in the functional derivative of the total energy with respect to the

density n(r) leads to:

δE

δn
= −Veff +

[
Vext(r) +

∫
n(r′)
|r− r′| dr′ +

δExc[n]
δn

]
︸ ︷︷ ︸

δEpot
δn

. (2.19)

The derivative vanishes if n(r) equals the ground state density n0(r). The ground
state e�ective potential is then de�ned as

V0,eff = Vext(r) +
∫

n0(r′)
|r− r′| dr′ +

δExc[n(r)]
δn(r)

∣∣∣∣
n0

(2.20)

8Note that the ground state of the many particle non interacting Hamiltonian is a Slater-
determinant. Therefore, we can switch to a single particle picture (we have to choose the potential
which produces the correct density) in order to determine the single particle wave functions which
build up the Slater determinant. It can be shown that for one particle operators 〈Ψ|Op|Ψ〉 folds
down to

P
i fi〈ϕi|Op|ϕi〉. Therefore we can directly determine Ts from the one particle wave

functions ϕi.



2.3 Density functional theory 13

and (2.14) becomes:[
−1

2
∇2

r + Vext(r) +
∫

n0(r′)
|r− r′| dr′ +

δExc[n(r)]
δn

∣∣∣∣
n0

]
ψi = εiψi. (2.21)

Equations (2.20) and (2.21) are the Kohn-Sham equations [23]. An iterative solution
cycles the following steps:

1. Choose an arbitrary e�ective potential.

2. Solve the Schrödinger equation (2.14) to obtain the one electron wave functions
ψi.

3. Use them to calculate the electron density of the non interacting system (n(r))
according to (2.16).

4. Use it to calculate the derivative of the total energy of the interacting system
with respect to the electron density ( δE

δn(r)) in (2.19)

5. Build a new e�ective potential9 Vnew,eff = Veff + α δE
δn(r) .

6. Do the next step of the iteration with the new e�ective potential starting at 2.

The calculation of the corrected e�ective potential as shown above is just one possibil-
ity. Other correction terms can be used in addition. See section 2.4 for a comparison
of the Kohn-Sham and the Harris-Foulkes method.

2.3.5 Approximation of the Exchange and Correlation Energy

To be able to determine the derivative of the total energy of the interacting system
with respect to the electron density, one needs an explicit form for the exchange
and correlation energy Exc[n(r)]. I will introduce three of the simplest (nevertheless
successful) approximations in the following.

• The local density approximation (LDA) uses the uniform-electron-gas approach

ELDAxc [n] =
∫
n(r)εxc(n) dr

where εxc(r) stands for the exchange and correlation energy per particle of a
uniform electron gas of density n. The di�erent spin densities n↑ and n↓ are
usually treated as if they had the same weight: n = n↑ + n↓. Unlike LDA, the

9α is called �mixing parameter� and determines the weight of the correction term in the new e�ective
potential. This corresponds to Vnew,eff = Veff + α(V out − V ineff )
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local spin density approximation (LSDA) composes the energy functional of two
functionals, one for each spin density:

ELSDAxc [n↑, n↓] =
∫
n↑(r)εxc(n↑, n↓) dr +

∫
n↓(r)εxc(n↑, n↓) dr

• An improvement of the LDA approximation is the generalized gradient approx-
imation (GGA). It additionally includes information about the gradient of the
density:

EGGAxc [n] =
∫
n(r)ε[n,∇n] dr.

• The Xα method approximates the Hartree-Fock exchange potential by a local
potential of the form:

Exc(r) = −3
2
α

[
3
π
n(r)

] 4
3

.

The parameter α can be extracted from Hartree-Fock calculations.

2.4 Non self-consistent DFT

2.4.1 Historical background

The Hohenberg-Kohn and Kohn-Sham theorems (discussed in section 2.3) allow to
access the many-particle total energy as functional of the density. This functional
(2.17) has some remarkable inherent properties: it is stationary and variational at
the ground state density n0(r). From the latter follows, that an approximate energy
obtained from an approximate ground state density n̄ lies above the exact ground
state energy (E[n̄(r)] ≥ E[n0(r)]). The stationary principle implies, that the relative
quality of approximate energies is better than the approximate densities - as long
as the deviation from the ground state density (δn = n̄ − n0) is small. Given an
appropriate density n̄, the ground state total energy, in principle, can be estimated
with satisfactory accuracy without the need for self-consistency. The Kohn Sham
equations however do not provide direct access to the total energy of a given density.
Three di�erent groups of authors independently took advantage of the stationary

principle to suggest density functionals, which allow a non self-consistent evaluation
of the total energy. The �rst have been Wendel and Martin [24]. They applied the
technique on phonon mode calculations in silicon. Harris [25] examined the coupling
energy of small molecules, built from weakly interacting fragments. He proposed to
estimate the molecular ground state density as superposition of the fragment densities.
Foulkes et. al. [26, 27] utilized the stationary principle in order to make connection
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between DFT and empirical tight-binding. This provided the tight-binding approach
a second fundamental basis10.
Non self-consistent density functionals derived from equation (2.17) using the sta-

tionary principle are usually referred to as Harris-Foulkes functional approaches.
They have widely been used in the context of semi-empirical tight-binding, as well as
in ab initio methods (see the sections 2.4.4 and 2.5 for more details).

2.4.2 Alternative derivation of the Harris-Foulkes functional

The formulation of an appropriate non self-consistent density functional is an essen-
tial part of our new method discussed in the main part of this work. The underlying
principles (partly) rest on considerations taken earlier in the context of Harris-Foulkes
functional approaches. Some basic expressions will therefore already be introduced
in this section. The derivation presented here will not follow the original formulation
of Harris and Foulkes. The resulting functional (2.40) is usually derived in a more
compact way. Our approach however allows a consistent treatment of error contri-
butions to the total energy. The discussion of the frozen core approximation, error
cancellations and numerical errors in the main part of this work are mainly based on
the equations derived in the following.

Basic de�nitions

The total energy of noninteracting electrons, given a many-particle wave function Ψ
and a potential v̄ can be determined as follows11:

Enon[|Ψ〉, v̄] = 〈Ψ|T̂ + v̄|Ψ〉
=

∫∫
Ψ∗(r1, . . . , rn)

∑
i

[
−1

2
∇2
i + v̄(ri)

]
Ψ(r1, . . . , rn)d3r1, . . . , d

3rn

(2.22)

The many-particle wave function does not necessarily have to be a solution to the
corresponding Schrödinger equation. Following Levys constrained search [19, 20, 21],
we could sort all many-particle wave functions according to their particle density
n(r) in virtual boxes (see equation 2.6 for further details concerning the one particle
density). Note that the particle number N =

∫
n(r)d3r per box is constant. We

10The connection between DFT and empirical tight-binding has also been discussed by Sutton et.
al. [28], who applied Harris formulation. Another fundamental basis has been laid by O. K.
Andersen as discussed in section 2.5.

11Here and in the following I partly mix real space integral formulation and Dirac's notation. It is
understood, that all expressions operating on bra's and ket's have to be operators. For the sake
of readability, I stay as close as possible to the real space notation.
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de�ne the minimum total energy per box as follows:

E
′
[n, v̄] := min

|Ψ〉
〈Ψ|n̂|Ψ〉 = n(r)

〈Ψ|T̂ + v̄|Ψ〉 (2.23)

The potential energy contribution, 〈Ψ|v̄|Ψ〉, within a certain box is constant (be-
cause the density is constant). We can therefore access the kinetic energy as functional
of the density12:

Ts[n] = E
′
[n, v̄]−

∫
n(r)v̄(r)d3r. (2.24)

Ts[n] was de�ned in (2.13).

Sorting all boxes with the same particle number N according the energy E
′
[n, v̄]

de�nes one special density n′[v̄], which minimizes (2.23) for a given potential v̄:

n′[v̄] : E
′
[n′[v̄], v̄] = min

n∫
n(r)d3r = N

E
′
[n, v̄] (2.25)

E
′
[n′[v̄], v̄] corresponds to the ground state total energy of a noninteracting system

in a given potential (v̄). It can easily be determined from one particle Schrödinger
equations as follows: (

T̂ + v̄
)
|ϕi〉 = εi|ϕi〉 (2.26)

E
′
[n′[v̄], v̄] =

∑
i

fiεi (2.27)

n′(r) =
∑
i

fiϕ
∗
i (r)ϕi(r) (2.28)

Due to the stationary principle, an approximation of E
′
[n, v̄] by E

′
[n′[v̄], v̄] intro-

12Note that the many-particle wave function is not required to be a solution of the corresponding
Schrödinger equation for the potential v̄. The kinetic energy therefore is independent from the
shape of the potential.
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duces only errors to second order in (n− n′):

E
′
[n, v̄] = E

′
[n′[v̄], v̄] +O

(
(n− n′)2

)
︸ ︷︷ ︸

Oa

(2.29)

with

Oa =
1
2

∫∫
δ2E

′

δn(r)δn(r′)

∣∣∣∣∣
n′

(n(r)− n′(r))(n(r′)− n′(r′))d3rd3r′

+O
(

(n− n′)3
)

(2.30)

Introducing a trial density

The total energy of an interacting system for a given density (2.17) can then be written
as:

E[n] = Ts[n] + Epot[n]
(2.24)

= E
′
[n, v̄]−

∫
n(r)v̄(r)d3r + Epot[n]

(2.29)
= E

′
[n′[v̄], v̄]−

∫
n(r)v̄(r)d3r + Epot[n] +O

(
(n− n′)2

)
(2.31)

≈ E
′
[n′[v̄], v̄]−

∫
n(r)v̄(r)d3r + Epot[n] (2.32)

The potential v̄ thereby, in principle, is arbitrary. The density n
′
and hence the

quality of the approximation in the last line is however a�ected by the choice of v̄.
For the sake of readability, we write the potential in a local form.
Equation (2.31) allows to access the total energy of an interacting system as func-

tional of the density in a numerical convenient way. In real life applications, one would
typically want to determine the ground state total energy E[n0]. The ground state
density n0 is usually not known, but can be estimated by a trial density. In a �rst
step, we expand Epot[n] up to linear order around a trial density n̄:

Epot[n] = Epot[n̄] +
∫
v([n̄], r) (n(r)− n̄(r)) d3r +O

(
(n− n̄)2

)︸ ︷︷ ︸
Ob

(2.33)

with

v([n̄], r) :=
δEpot
δn

∣∣∣∣
n̄

(2.34)

and

Ob =
1
2

∫∫
δ2Epot

δn(r)δn(r′)

∣∣∣∣
n̄

(n(r)− n̄(r))(n(r′)− n̄(r′))d3rd3r′

+O
(
(n− n̄)3

)
(2.35)
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The total energy (2.31) can then be written as (we write here several identities, for
use in later discussions):

E[n] = E
′
[n′[v̄], v̄]−

∫
n(r)v̄(r)d3r + Epot[n̄] +

∫
v([n̄], r) (n(r)− n̄(r)) d3r

+O
(

(n− n′)2
)

+O
(
(n− n̄)2

)
(2.36)

= E
′
[n′[v̄], v̄]−

∫
n̄(r)v̄(r)d3r + Epot[n̄] +

∫
(v([n̄], r)− v̄(r)) (n(r)− n̄(r)) d3r

+O
(

(n− n′)2
)

+O
(
(n− n̄)2

)
(2.37)

= E
′
[n′[v̄], v̄]−

∫
n̄(r)v([n̄], r)d3r + Epot[n̄] +

∫
n(r) (v([n̄], r)− v̄(r)) d3r

+O
(

(n− n′)2
)

+O
(
(n− n̄)2

)
(2.38)

The Harris-Foulkes functional

The freedom in the arbitrary potential v̄ allows to get rid of the explicit dependence
on the density n. The following restriction:

v̄(r) != v([n̄], r) (2.39)

results in the Harris-Foulkes functional:

E[n] = E
′
[n′[v([n̄], r)], v[n̄]]−

∫
n̄(r)v([n̄], r)d3r + Epot[n̄]

+O
(

(n− n′)2
)

+O
(
(n− n̄)2

)
(2.40)

Note that I use a short hand notation E
′
[n′[v([n̄]r)], v[n̄]] = E

′
[n′[v], v[n̄]] in the

following. The ground state total energy can then be approximated as follows:

E[n0] ≈ E
′ [
n′[v], v[n̄]

]− ∫ n̄(r)v([n̄], r)d3r + Epot[n̄] (2.41)

=
∑
i

fiεi − 1
2

∫∫
n̄(r)n̄(r′)
|r− r′| d

3rd3r′ + Exc[n̄] (2.42)

−
∫
n̄(r)µxc([n̄], r)d3r

with

µxc([n̄], r) :=
δExc
δn

∣∣∣∣
n̄

(2.43)

We used (2.18), (2.27) and (2.34) in the last step.
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The advantage of equation (2.38) over (2.40) lies in the presence of the arbitrary
potential. Although v̄ should be close to v([n̄], r) (see the following error discussion)
(2.38) allows an explicit deviation and provides a closed expression for the determi-
nation of the introduced error13, namely

∫
n(r) (v([n̄], r)− v̄(r)) d3r.

Error discussion

The energy E
′
[n′[v̄], v̄] corresponds to the ground state of a noninteracting system

and therefore is a lower bound for E
′
[n, v̄]. From this and (2.29) follows:

Oa ≥ 0.

The exact total energy E[n] therefore is an upper bound for (2.32). The same holds
for the corresponding contributions to the functionals (2.38) and (2.40), respectively.
The higher order errors O

(
(n− n̄)2

)
may however be either positive or negative. The

Harris-Foulkes functional therefore in fact is stationary, in particular at the ground
state density n0, but does not necessarily correspond to a minimum.

2.4.3 Comparison to Kohn-Sham-DFT

Let us point out again, that the total energy as functional of the density (2.17) is
stationary at the ground state density. This implies, that the relative quality of ap-
proximate energies is better than the approximate densities - as long as the deviation
from the ground state density (δn = n̄ − n0) is small. Given an appropriate density
n̄, self-consistency therefore is, in principle, dispensable. The Kohn Sham equations
however do not provide direct access to the total energy of a given density. This is,
because the kinetic energy for a given density Ts[n] can not easily be determined.
Without further approximations, a numerical convenient calculation of the Ts[n] can
only be achieved in terms of one particle equations. This however requires an ap-
propriate e�ective potential (see section 2.3 for further details). For a single, non
self-consistent step, the Kohn Sham method provides no closed expression for Veff .
In order to illustrate this, we rewrite (2.17) analogue to the Harris-Foulkes expressions:

E[n̄] = Ts[n̄] + Epot[n̄]

=
∑
i

fiεi −
∫
n̄(r)

δEpot
δn

∣∣∣∣
nin

d3r + Epot[n̄] (2.44)

The one particle energies need to be determined in the potential δEpot
δn

∣∣∣
nin

. nin

thereby is to be choosen such, that the ground state one particle wave functions ϕi
13Note that for an explicit calculation, the density n(r) needs to be known. The aim of usual

numerical implementations of the Harris-Foulkes functional however is to determine the ground
state total energy E[n0] without exactly knowing the ground state density n0 (see eq. (2.41)).
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add up to the density n̄. The corresponding Harris-Foulkes functional:

E[n̄] ≈
∑
i

fiεi −
∫
n̄(r)

δEpot
δn

∣∣∣∣
n̄

d3r + Epot[n̄]

allows to determine the one particle energies in a potential which is a functional of
the trial density. From a physical point of view, it is much easier to estimate a good
trial density n̄ than a density nin - or an appropriate potential - which leads to the
trial density n̄.
Even if we could estimate an appropriate e�ective potential for a one step Kohn-

Sham calculation, the Harris-Foulkes method is numerically advantageous. This is,
because the eigenvectors of (2.26) never have to be determined. For self consistent
cycles, however, the advantages of the method are lost.

2.4.4 Generating input densities

As discussed in the previous sections, the quality of the predicted ground state total
energy of the Harris Foulkes functional signi�cantly depends on the quality of the
input density. The most obvious approach is to use superimposed free-atom charge
densities, as proposed by Harris [25]. Good agreement with full self consistent calcula-
tions can e.g. be achieved for weakly interacting fragments, several metallic crystals,
silicone bulk properties and even the ionic NaCl compound [29]. The results however
are not satisfactory in general. Read and Needs [30] as well as Finnis [31] e.g. ad-
dressed the problem of defect structures such as surfaces and vacancies. They found
the predicted Harris energies not to be su�ciently accurate. Finnis was the �rst to
suggest a renormalized atomic density in the context of Harris Foulkes functional
calculations14. He �tted the atomic charge density by three Gaussians such, that
the density signi�cantly drops beyond a certain radius. This spherically contracts
the input densities and dramatically improved the results for the aluminum surface
systems studied. Chetty et. al. [32] carried out an analysis of self-consistent den-
sities for various bulk and surface structures in reciprocal space. They found that
contributions due to surface and bulk character decouple in reciprocal space. The
surface character shows up in the long wavelength region, whereas the bulk properties
can be described by short wavelengths. This allows to combine both contributions
to transferable densities. The spherically averaged real space representation thereof
corresponds to Finnis contracted densities. These densities are furthermore similar
to those obtained by embedding the atom in a homogeneous electron gas. Hartford
et. al. [33] followed the latter approach. The di�erences in surroundings each frag-
ment experiences may - to a certain extent - be mapped onto a varying embedding
homogeneous electron gas density. Adapted input densities for a certain con�guration

14In fact, Finnis was inspired by the renormalisation approach of Weinert and Watson. They con-
strained the atomic charge density within a spherical symmetric potential in order to correct
surface dipole contributions to work functions.
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can then be obtained from jellium calculations using estimated embedding densities
characterizing the surrounding in this con�guration.
Besides so called one shot calculations, the Harris Foulkes functional can be solved

self consistently (see section 2.4.3 for further details). The simplest step beyond the
frozen atomic fragment approaches discussed above has been suggested by Averill and
Painter [34]. They use the frozen atomic fragments as basis and decompose the out-
put density such, that the norm is conserved. The atomic fragments thereby may be
spherically compressed, which corresponds to a self-consistent basis set optimization.
This approach, as well as the approaches discussed above, however, approximate the
trial density as superpositions of spherically densities. Due to this approximation, self
consistency does - in general - not result in the exact many particle ground state. Nev-
ertheless, the spherical approximation has been successfully applied to small molecules
[34]. We will discuss this in more detail in the context of H2 (chapter 6).
All �avors of approximations and numerical techniques developed in the context

of density functional theory can, in principle also be applied to the Harris Foulkes
functional. The implementation in an existing DFT code therefore is straightforward
and has been accomplished by a countless number of groups. The e�cient generation
of appropriate input densities, however, is in a class of its own.

2.5 Ab initio tight-binding

The complexity of seemingly simple quantum mechanical many body problems and
the limited access to computer power have been the driving force for the development
of empirical tight-binding methods. Although applied successfully in many �elds, em-
pirical tight-binding generally su�ers from typical limitations of empirical techniques.
Correct description of a class of problems �tted against is understood. But the trans-
ferability of a parameterization to a new class of problems is at least questionable.
This is a strong argument for ab initio approaches. Starting form �rst principles,
almost any level of simpli�cation can be achieved by a well de�ned series of approxi-
mations. This allows to judge the applicability of certain techniques and the quality
of obtained results more precisely.
In the context of ab initio tight-binding there exist three main roots: localized mu�n

tin orbitals tracing back to O. K. Andersen, atomic like orbitals related to Sankey and
Niklewski's scheme and Car-Parrinello dynamic localized orbitals schemes introduced
by Galli and Parrinello.

Localized mu�n tin orbitals

Andersen and Jepsen 1984 published a �rst principles tight-binding based construction
[7], derived from linear mu�n tin orbitals [8]. The basic approach to mu�n tin
orbitals is to separate the crystal potential in spherical regions around the nuclei
and �at interstitial regions outside the spheres. Inside the spheres, a basic �nding
is applied: the di�erence between the atomic and the crystal solution can - to linear
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order - be mapped onto a contribution of the energy derivative of the atomic solution.
Due to the assumption of a �at potential, the solutions in the interstitial region
correspond to spherical waves originating from the atomic sites. The total solution is
then constructed by matching the linear combination of the atomic solution and its
energy derivative (angular momentum dependent) to spherical waves at the sphere
boundary. The original interstitial mu�n tin orbitals die out proportional to r−(l+1),
with r being the distance from the corresponding atomic site. They are therefore not
su�ciently localized for tight-binding calculations.
In 1984, Andersen et. al. [7] introduced a localization transformation of the

LMTO's. The basic idea corresponds to screening of charges: a certain spherical
wave is superimposed by several waves15 originating from nearest neighbor sites such
that the result dies out exponentially beyond second nearest neighbor distances. A
review can be found in [35].
A more recent development are the so called third generation mu�n tin orbitals.

In this approach, an even stronger shielding is achieved by forcing parts of the linear
combinations of interstitial waves exactly to zero within neighboring spheres. See [36]
for a detailed discussion.

Sankey-Niklewski and related schemes

Sankey and Niklewski [12] derived a tabulation scheme in the spirit of Koster and
Slater. There are, however, three main di�erences to corresponding empirical tight-
binding methods. First of all, the approach is based on the �rst principles Harris
Foulkes functional, which, in case of self-consistency, provides access to the exact
many-particle ground state energy. Secondly, three center integrals were not neglected
but explicitly included. Last but not least, a localized atomic orbital basis is used. It
is obtained by enclosing the isolated atom in a spherical hard box16 . Interpolation
tables for two and three center integrals are then calculated. Some contributions, such
as the energy of exchange and correlation, explicitly depend on the electronic density,
which can not be known beforehand. In order to speed up the method, Sankey and
Niklewski therefore introduced an approximative method, which allows to estimate
these contributions in terms of overlap and density matrix elements in a numerically
e�cient way.
The Sankey-Niklewski method has been extended to allow for double numeric basis

sets and iterative charge transfer. This extension is usually related to as FIREBALL
[37].
Con�ned atomic orbital basis sets are meanwhile applied by several groups17. The

localization potential thereby varies from the original hard sphere over exponential,

15corresponding to interstitial solutions
16ϕ = 0|r>rc
17I classify the following methods as Sankey-Niklewski related in the sense, that they start from �rst

principles, take three center contributions into account, use localized atomic orbitals as basis and
make use of certain approximations to speed up numerics.
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and r6 to harmonic shape [38, 39, 40]. Delley on the other hand supplements free
atomic orbitals by orbitals of positively charged ions [41]. The actual choice depends
on the desired localization and the tolerance for kinks in the potential and its deriva-
tives.
Most of the state of the art simulation packages in this �eld make use of �exible

implementations. The user can choose from di�erent con�nement potentials as well
as from several levels of approximations. The latter usually is achieved by applying
Harris Foulkes functional approaches. They can be used in single shot mode or self-
consistently. The basis can thereby be �xed or even be adapted iteratively [42, 43, 40].
The full potential localized orbital method (FPLO) [44] is exceptional in the sense

that it uses locally �nite lattice sums for the treatment of the multi-center integrals.
It is based on a multi-cycle scheme with a �exible, localized orbital base. The basis is
obtained as follows. The crystal potential is spherically averaged around each atomic
site and, in case of valence states, supplemented by a con�nement potential de�ned as

vconf =
(
r
r0

)4
with r0 =

(
x0rNN

2

) 3
2 . rNN corresponds to the nearest neighbor distance.

x0 is a dimensionless scaling parameter. It allows to minimize the total energy with
respect to the strength of localization of the basis functions in each iterative cycle.
The numerical implementation is done in 3D real space in terms of �nite lattice sums.
This approach allows to incorporate the coherent potential approximation for the
e�cient handling of substitutionally disordered solid systems. For a review see [45].

Car-Parrinello dynamic localized orbital scheme

Car and Parrinello 1985 introduced a �ctitious Lagrangian formulation including the
electrons [46]. It allows to propagate the wave functions according to quasi classical
equations of motion. This enables molecular dynamic simulations at �nite tempera-
ture (simulated annealing) and, by application of friction, lets the system iteratively
converge to (local) minima18. Instead of direct diagonalisation of the Hamilton matrix
in each step, the ground state hence is approached in small corrections to the preced-
ing time step. The procedure however not necessarily leads to localized one particle
states. Galli and Parrinello therefore introduced an additional localization potential
per atom in the Hamiltonian. A consistent extension of the �ctitious dynamics then
allows to converge the system in localized states such, that the result corresponds to
a unitary transformation of the result obtained from the original system [47]. Never-
theless, an exact unitary transformation between localized orbitals and exact ground
state density is not possible in general. The localization potential then leads to a
variational approximation of the ground state energy. The above approach is well
justi�ed for periodic insulators, for which exponentially localized Wannier functions
can be constructed. The Wannier functions will be discussed in the following section.

18We extended the nucleonic part of the �ctitious Lagrangian formulation to allow for so called
dimer calculations for �nding transition states within Car-Parrinello dynamics. See section 12
for details.
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For details on implementations see [48, 49, 50].

Self-consistent atomic deformation (SCAD) method

Recently, a self-consistent method for the deformation of atomic orbitals has been
published by Boyer et. al. [51]. This approach, just as the Car-Parrinello dynamic
localized orbital scheme, applies an additional localization potential on the electrons.
These localization potentials are derived from the overlap contribution to the kinetic
energy and therefore depend on the self-consistent density of the system. This however
introduces the need for self-consistent iterations. In addition, this approach brakes
the natural error cancellation of DFT. A detailed discussion of the di�erences to our
approach is most simply done in the terms introduced in the main part of this thesis.
I therefore decided to shift the discussion to section 7.6.

A word about the chemists absolutely localized molecular orbitals

In the context of energy decomposition analysis (EDA) [52, 53], the notation abso-

lutely localized molecular orbitals appears. In this approach, large systems of (e.g.
molecular clusters) are logically divided into non overlapping subsets. Each subset
represents a part, which interacts weakly with the rest of the system. The boundaries
between subsets must not cross covalent bonds in molecules. In a second step, occu-
pied molecular orbitals on a fragment are expanded in terms of atomic orbitals of the
same fragment. These constraints produce molecular orbitals that are localized on
fragments in the same sense as atomic orbitals are localized on atoms. The authors
therefore call these molecular orbitals absolutely localized.
This denomination however is exaggerated. Atomic orbitals, in which the molecular

orbitals of the fragments are expanded, usually are quite long-ranged. Therefore, the
separation between two subsets of the system which can be divided into individual
fragments following this approach needs to be large. This obviously is totally di�erent
from the fragment localization presented in this work. We introduce a method which
allows to localize quasi-atomic orbitals such, that molecules and crystals can be di-
vided in strongly interacting fragments. Our fragment boundaries therefore explicitly
cross covalent bonds.

2.6 Wannier functions

The electronic groundstate of periodic potentials can be described by Bloch states
(2.4). These states are extended across the crystal and therefore are contradictory
to the chemical picture of bonding. Electron transport, bulk polarisation and many
body correlations are, for example, more naturally discussed in terms of local orbitals.
Bloch states - as every solution to Schrödingers equation - carry an arbitrary phase.

Gregory Wannier in 1937 used this fact to introduce a unitray transformation of Bloch
states into local orbitals (nowadays refered to as Wannier functions) [54]. Due to a
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remaining arbitrariness in the phase, the Wannier representaion however is not unique.
In order to obtain maximally localized Wannier functions, an additional localisation
condition needs to be applied. Mazari and Vanderbilt 1997 introduced an algorithm to
iteratively determine a set of unitary transformations of Bloch states while minimizing
the spread of the resulting Wannier functions in real space [55]. The result is refered
to as maximally localized generalized Wannier functions.
The notation maximally localized is however misleading in two ways: at �rst, the

localisation is maximal only with respect to the localization criterion used. In fact,
there exist di�erent plausible choices. They were partly discussed in the context of
localized molecular orbitals since the 1960's. Among others these are measures for the
chemically invariance [56, 57], the Coulomb self-repulsion [58] and the projection on
Mulliken populations [59]. The resulting Wannier function e.g. di�er in the quality of
reproduction of σ− and π−charater of double bonds. The localisation is furthermore
a�ected by the choice of intermixing unoccupied Bloch states. For a detailed discussion
and possible implementations see [60] and [61, 62, 63, 64].
A more recent approach is the formulation of quasiatomic minimal basis orbitals

(QUAMBO's) [65]. The localisation condition corresponds to maximum overlap with
free atomic orbitals.
The achievable localization of Wannier functions, in general, depends on the under-

laying physical system. The decay was found to be algebraic for metals and exponen-
tial for insulators[66, 67, 68].
The notation maximally localized is misleading in a second way. The Wannier func-

tions dicussed above correspond to a unitary transformation of Bloch states. The
Bloch states and hence the resulting Wannier functions are orthonormal. It can
formally be shown, that the orthonormality condition prevents further localisation
[69]. This lead to the developement of nonorthogonal generalized Wannier functions
[70, 71, 43, 42]. The basic concept is to construct the density matrix from nonorthog-
onal, so called support functions. The support functions are expanded in realspace
localized basis functions. This can, for example, be periodic, bandwidth limited delta
functions [43], b-splines [70] or polynomials [71]. The localisation is achieved as fol-
lows. Contributions to a certain support function is allowed only from those basis
functions, which fully reside inside a given sphere around that support function. The
total energy is then minimized in a nested loop approach. In a �rst step, the total
energy is minimized with respect to the expansion coe�cients of the allowed basis
functions (the shape of the support functions is optimized). In a second step, the
expansion coe�cients of the now �xed support functions are optimized. During opti-
mization, two constraints need to be ful�lled. The total number of electrons has to
be constant and the resulting groundstate densitymatrix needs to be idempotent19.
A recent approach by Qian et. al. corresponds to a reformulation of the QAMBO

method. Instead of projecting the Bloch states onto atomic orbitals, the atomic

19Idempotency of the groundstate density matrix corresponds to the eigenfunctions of the Kohn-
Sham Hamiltonian beeing orthonormal.
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orbitals are projected into the subspace spanned by the Bloch states. This results in
a nonorthogonal but complete basis of quasiatomic orbitals (QO). There however seem
to be open issues for cases in which the QO's become approximately linear dependent.
For a detailed discussion see [72].

2.7 Frozen core approximation

The chemical picture of bonding suggests that the sensitivity of core electrons to the
chemical environment should be small. From this follows, that the core wavefunctions
in an altered chemical environment may not have to be recalculated, but could be
replaced by the atomic core. In fact, electronic structure methods which neglect
the redistribution of core electrons lead to results, which are close to the fully self
consistent ones. This approximation, usually refered to as frozen core approximation

[73], is numerically convenient and therefore widely used.
Full core calculations, however demonstrate, that the core wavefunctions are all but

insensitive to the chemical environment. The good agreement between frozen- and
fullcore total energies instead arises from the stationarity of the density functional20.
This has been pointed out by Barth and Gelatt [73]. They have been the �rst to
propose a closed expression for the second order correction in the selfconsistent case.
We derive the frozen core equations from the density functional E[n], discussed in

section 2.3. For the groundstate density n0, the total energy E[n0] can be written in
terms of oneparticle solutions ψ0

i :

E[n0] =
∑
i

fi〈ψ0,i|T̂ |ψ0,i〉+ Epot[n0]

−
∑
j,k

λj,k [〈ψ0,j |ψ0,k〉 − δj,k] (2.45)

The one particle solutions need to be obtained from the Kohn-Sham equations
(2.21). The density n0 is related to the one particle solutions according to (2.16).
The potential v[n0] corresponds to the groundstate e�ective potential de�ned in (2.20).
The last term is the orthonormality constraint due to Fermis exclusion principle, with
λj,k and δj,k beeing Lagrange multipliers and the Kronecker-Delta, respectively. Note
that the constraints are equal to zero in the above situation.
We can then de�ne a functional of one particle wavefunctions21:

Ẽ[ψi] :=
∑
i

fi〈ψi|T̂ |ψi〉+ Epot[n]

−
∑
j,k

λj,k [〈ψj |ψk〉 − δj,k] . (2.46)

20See section 2.4 for a detailed discussion.
21We use the shorthand notation E[ψi] = E[{ψ∗i }, {ψi}]
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Obviously, Ẽ[ψ0,i] = E[n0]. Furthermore, the following relation holds:

∂Ẽ

∂ψi

∣∣∣∣∣
ψ0,i

=
∂E

∂n

∣∣∣∣
n0

= 0. (2.47)

The functional Ẽ[ψi] is stationary and variational at ψ0,i:

Ẽ[ψi] = Ẽ[ψ0,i] +
∑
i

(ψi − ψ0,i)
∂Ẽ

∂ψi

∣∣∣∣∣
ψ0,i

+O((ψi − ψ0,i)2)

= Ẽ[ψ0,i] +O((ψi − ψ0,i)2)︸ ︷︷ ︸
Õ

with
Õ ≥ 0.

Within the frozen core approximation, the one-particle core wavefunctions are kept
�xed while the valence is allowed to adapt to the chemical environment. For a given set
of core wavefunctions, minimization of (2.46) with respect to the valence wavefunctions
results in an approximation of the total energy with the smallest possible error. The
minimum condition translates in a set of coupled di�erential equations for the valence
wavefunctions22: [

−1
2
∇2 + v[n]

]
ψi −

∑
k 6=i

λi,kψk = εiψi (2.48)

with i ∈ valence and k running over all states. This equation can be solved selfcon-
sistenly, by introduction of a basis which, per de�nition, is orthogonal to the frozen
core states.

In many implementations of the frozen core approximation, the orthogonality con-
dition is not full�lled in a stringent way [73]. The valence wavefunctions are kept
orthogonal to the core wavefunctions ψ′i, which correspond to the potential v[n]. For
spherical potentials, this is numericaly convenient, as the condition can be ful�lled
without explicit determination of ψ′i. Barth and Gelatt [73] found, that the errors of
this approximation vanish to �rst order in the charge density di�erences.

Connection to Harris-Foulkes

Given a set of selfconsistent frozen core wavefunctions ψsfci , and the corresponding
density as superposition of core and valence contributions n̄ = nfcc + nfcv . We could

22We use
P
j,k λj,k [〈ψj |ψk〉 − δj,k] =

P
j 6=k λj,k [〈ψj |ψk〉 − δj,k] +

P
j εj [〈ψj |ψj〉 − 1]
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use n̄ as trial density for the Harris-Foulkes functional discussed in section 2.4:

EHFo[n̄] = E
′
[n′[v], v[n̄]]−

∫
n̄(r)v([n̄], r)d3r + Epot[n̄]

=
∑
iεc

fiεi +
∑
jεv

fjεj −
∫
n̄(r)v([n̄], r)d3r︸ ︷︷ ︸

tHFo

+Epot[n̄]

The energy in frozen core approximation Ẽ[ψsfci ] deviates from EHFo[n̄] in the kinetic
energy. The Harris-Foulkes oneparticle energies εi correspond to the output wavefunc-
tions ψ′i of the potential v[n̄]. Due to the variationality of E

′
[n′[v], v[n̄]], the following

relation holds:

tHFo =
∑
i

∫
ψ′i

(
−1

2
∇2 + v([n̄], r)

)
ψ′id

3r −
∫
n̄(r)v([n̄], r)d3r

=
∑
i

∫
ψsfci

(
−1

2
∇2 + v([n̄], r)

)
ψsfci d3r+︸ ︷︷ ︸

Esfc

O((ψsfci − ψ′i)2)︸ ︷︷ ︸
Osfc

−
∫
n̄(r)v([n̄], r)d3r

=
∑
i

∫
ψsfci

(
−1

2
∇2

)
ψsfci d3r︸ ︷︷ ︸

tsfc

+O((ψsfci − ψ′i)2)

= tsfc +O((ψsfci − ψ′i)2) (2.49)

The output wavefunctions ψ′i correspond to the ground state of a noninteracting
Hamiltonian and minimize E

′
[n′[v], v[n̄]]. For any other wavefunction, the nonin-

teracting total energy lies above the groundstate energy. In the present case: Esfc ≥
E
′
[n′[v], v[n̄]]. The introduced error Osfc in line two of (2.49) therefore is smaller than

or equal to zero. From all this follows:

EHFo[n̄] = Ẽ[ψsfci ] +O((ψsfci − ψ′i)2)︸ ︷︷ ︸
Osfc

with
Osfc ≤ 0. (2.50)
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The Harris-Foulkes energy of a frozen core density therefore is a lower bound to the
frozen core energy23.

2.8 Madelung energy and Born repulsion

Empirical approaches sometimes divide the potential energy of a system into two parts
in order to derive parametrized potentials:

E = Emad + Eborn.

The Madelung term Emad is the electrostatic interaction between all nuclei and elec-
trons treated as point charges24:

Emad =
1
2

∑
i,j

QiQj
|ri − rj | . (2.51)

The second term, Eborn, accounts for the fact that electrons correspond to overlap-
ping electron clouds which obey Fermi's exclusion principle. This leads to a purely
repulsive character of exponential form and re�ects the exponential decay of the elec-
tronic density for large distances. It was originally discussed by Max Born who, for
numerical convenience, proposed an approximation according to Eborn = B/rn [74].
It should be stressed that the Born repulsion includes two contributions: the e�ects
of Fermi's exclusion principle - which usually are denoted as Pauli repulsion - and
the compensation for the point charge terms, already accounted for in Emad. In sec-
tion 4.3, we will derive so called Pauli potentials, which are mainly based on Pauli
repulsion.

23Note however, that the Harris-Foulkes energy may be below the exact groundstate total energy.
The deviation of the Harris-Foulkes energy from the exact groundstate for a frozen core density
therefore may be larger than the one of the frozen core functional (2.46).

24Note that this is not the Madelung constant. It can however be derived from Emad for binary
compounds.
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3.1 Introduction

The new approach consists of a combination of several, partly new, theoretical con-
cepts. The approach is not only characterized by the sum of concepts used, but sig-
ni�cantly depends on the �ne-tuning thereof. A certain part might hence not always
become immediately clear to the reader not being aware of the complete approach.
In this section, we will therefore focus on the full picture without going too much into
detail. The theoretical subtleties will be dealt with in section 4.
First of all, we will motivate our fundamental energy functional. The physical

meaning of the individual contributions and how they might be accessed will then be
discussed in section 3.3.

3.2 Derivation of the fundamental energy functional

3.2.1 Basic ideas

The underlying question usually addressed by electronic structure methods can be
boiled down to: 'What happens when we bring isolated atoms together (so that
they can form molecules or crystals)?' The approach of splitting the total energy
of electronic systems into individual, physically meaningful contributions, nowadays
referred to as energy decomposition analysisis [52, 75], in principle is as old as quantum
mechanics [76].
One can identify some speci�c transformations: The atomic charge density will be

deformed. The Pauli principle disallows two electrons to have the same quantum
numbers. This leads to the so called Pauli repulsion which is maximal in the vicinity
of the neighboring atoms. We have repulsive (electron - electron) and attractive
(electron - nuclei) Coulomb interactions of the charge densities. Bonding and anti-
bonding orbitals are formed, electronic charge is transferred and so on. The resulting
system can be understood as a mixture of covalent (overlapping charge densities) and
ionic (Coulomb interactions of point charges) bonding.
This in mind, we split the transformation from isolated to 'clustered' atoms in two

steps:

1. We deform the charge density of the isolated atom such as they will be de-
formed during embedding in the cluster (this deformed atom will be referred to
as deformed ion or simply ion in the following). Deformation thereby refers to
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the change in shape and charged state. The deformation e�ect of embedding
will be described by a potential, referred to as vemb. The embedding poten-
tial thereby has contributions from the individual neighbors of the embedded
atom. Although not exactly representing the Pauli repulsion1, we will refer to
these contributions as Pauli potentials vpauli. As a consequence of the poten-
tial formulation of the embedding process, the ion does not have the possibility
to interact with neighboring densities. Loosely spoken, we force the atom in a
shape, which re�ects the vicinity when embedded in the cluster without allowing
the formation of bonding and anti-bonding states with the neighbors. Due to
the increase of the kinetic energy, the total energy of the deformed ion will be
above the atomic energy.

2. We then bring the deformed ions together, now allowing the charge densities
to interact. The formation of bonds brings the total energy down (usually well
below the energy of the isolated atoms).

It is common knowledge, that relative energies determined from DFT calculations
usually compare much better than absolute. This is, because, for relative expressions,
the linear contribution of systematic errors cancel. The numerical e�ort for a su�-
ciently accurate description of a combination of two contributions to the total energy
may be much less than for individual handling. Error cancellation therefore plays an
important role in our formulation. We will discuss this in more detail in the context
of numerical implementation.
The new functional addresses the atomization energy in the following way2:

∆E =
∑
i

(
Eioni − Eati

)
︸ ︷︷ ︸

step 1

+Ecry −
∑
i

Eioni︸ ︷︷ ︸
step 2

(3.1)

The index i thereby runs over all n members of the unit cell.

3.2.2 Full core expression

Ionic contributions

Suppose embedding e�ects could be condensed in a potential vemb. We could then
solve the ion self-consistently in a potential v̄, which includes the usual potential v[n]
for the isolated ion de�ned in (2.34) and the embedding e�ects of the neighbors vemb:

v̄ = v[n] + vemb

1Our Pauli potentials represent the predominantly repulsive interaction between the electrons. Be-
sides the Pauli repulsion, this includes e.g. the Coulomb repulsion between electrons.

2The energy of the cluster (molecule or crystal) will be written as Ecry.
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This approach corresponds to an exact Kohn-Sham calculation as well as to a self-
consistent solution of the Harris-Foulkes Functional (2.40). The ion state however
is a theoretical concept. The explicit contribution of the energy Eion in (3.1) drops
out. The e�ect of embedding is inherent in the altered shape - re�ected in the kinetic
energy - and total charge of the density. We therefore de�ne the total energy for a
speci�c ion, excluding the explicit contribution of the embedding potential, as follows:

Eion[n] := E
′
[n′[v̄], v̄]−

∫
n(r)v̄(r)d3r + Epot[n]

= E
′
[n′[v̄], v̄]−

∫
n(r)v̄(r)d3r + Ecoul[n] + Exc[n] (3.2)

For self-consistency, n′ = n. Note that the potential Epot[n] de�ned in (2.18) does
not include the embedding potential. The embedding potential contribution of the
�rst and the second term in (3.2) cancel each other. This de�nition makes sense
because we are interested in what could be referred to as the cost of deformation and
not in the interaction energy with the embedding potential. Consequently, the ionic
band structure energy is de�ned excluding the embedding potential:

εn,i :=
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2 + v̄[n̄i(r)]− vemb|ψioni,n 〉

= ε̃i,n −
∑
i,n

f ioni,n 〈ψioni,n |vemb|ψioni,n 〉 (3.3)

In (3.2) and in the following, we split the potential energy Epot[n] in the Coulomb
and exchange-correlation contribution:

Epot[n] = Epot[n] + Exc[n]
with

Ecoul[n] =
∫
n(r)Vext(r) dr +

1
2

∫∫
n(r)n(r′)
|r− r′| dr dr′

The above expressions hold for a single ion and therefore should carry an index
i, which we left out for the sake of readability. To be explicit, we will denote the
n'th self-consistent one-particle state of ion i and its occupation by ψioni,n and fi,n,
respectively.
In the following section, we will use the superposition of the deformed ionic densities

as approximation of the crystals total density n̄, which we de�ne as follows:

n̄i := ni =
∑
i

f ioni,n 〈ψioni,n |ψioni,n 〉

n̄ :=
∑
i

n̄i (3.4)
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The total ionic contribution is then given by:∑
i

Eioni =
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2 + v̄[n̄i(r)]|ψioni,n 〉

−
∑
i,n

f ioni,n 〈ψioni,n |v̄[n̄i(r)]|ψioni,n 〉

+
∑
i

Ecoul[n̄i] +
∑
i

Exc[n̄i]

=
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2|ψioni,n 〉

+
∑
i

Ecoul[n̄i] +
∑
i

Exc[n̄i] (3.5)

Crystal contribution

For the ground-state total energy of the crystal Ecry[n0], we use the approximate
formulation according to (2.40). With the trial-density de�ned in (3.4):

Ecry[n0] = E
′
[n′[v], v[n̄]]−

∫
n̄(r)v([n̄], r)d3r + Ecoul[n̄] + Exc[n̄]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄i)2) (3.6)

= E
′
[n′[v], v[

∑
i

n̄i]]−
∑
i,n

f ioni,n 〈ψioni,n |v[
∑
i

n̄i(r)]|ψioni,n 〉

+Ecoul[
∑
i

n̄i] + Exc[
∑
i

n̄i]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄i)2) (3.7)
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Assembling the energy expression

Bringing the ionic and crystal energies together, equation (3.1) can be written as
follows:

∆E =
∑
i

(
Eioni − Eati

)
+E

′
[n′[v], v[

∑
i

n̄i]]−
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2 + v[

∑
i

n̄i(r)]|ψioni,n 〉

+Ecoul[
∑
i

n̄i]−
∑
i

Ecoul[n̄i]

+Exc[
∑
i

n̄i]−
∑
i

Exc[n̄i]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄i)2)

In order to be able to extract some information about the ionic character of the bonds,
we de�ne an atomic charge as follows:

Qi :=
∫
n̄i(r) + Zi(r)d3r

Zi(r) := −ziδ(r−Ri)

and split the long-range point-charge from the short-range Coulomb interaction:

∆E =
∑
i

(
Eioni − Eati

)
+E

′
[n′[v], v[

∑
i

n̄i]]−
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2 + v[

∑
i

n̄i(r)]|ψioni,n 〉

+
1
2

∑
i 6=j

[∫ ∫
(n̄i(r) + Zi(r))(n̄j(r′) + Zj(r′))

|r− r′| d3rd3r′ − QiQj
|Ri −Rj |

]
+

1
2

∑
i 6=j

QiQj
|Ri −Rj |

+Exc[
∑
i

n̄i]−
∑
i

Exc[n̄i]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄i)2) (3.8)
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The individual energy contributions to the functional will be referenced by the fol-
lowing abbreviations (see section 3.3 for a detailed discussion):

Edef :=
∑
i

(
Eioni − Eati

)
(3.9)

Etb := E
′
[n′[v], v[

∑
i

n̄i]] (3.10)

Ediag :=
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2 + v[

∑
i

n̄i(r)]|ψioni,n 〉 (3.11)

Ecoup :=
1
2

∑
i 6=j

[∫ ∫
(n̄i(r) + Zi(r))(n̄j(r′) + Zj(r′))

|r− r′| d3rd3r′

− QiQj
|Ri −Rj |

]
(3.12)

Emad :=
1
2

∑
i 6=j

QiQj
|Ri −Rj | (3.13)

∆Exc := Exc[
∑
i

n̄i]−
∑
i

Exc[n̄i] (3.14)

3.3 The full picture

Although exaggerated, a resume of the state of the art electronic structure methods

discussion in part one of this thesis could state:

The main numerical e�ort in common electronic structure methods is
spent in the setup and diagonalization of the Hamiltonian. Without fur-
ther approximations, this e�ort scales cubic with the number of particles
involved. The complexity of quantum mechanics thereby usually requires
an iterative approach. This is unfavorable, because the bad scaling system
of equations needs to be solved several times in order to reach su�ciently
accurate results. Over the years, there have been several more or less
sophisticated approaches to circumvent these problems. The e�ort in re-
ducing the numerical demands usually either results in less intelligible ap-
proaches, theoretically not well funded approximations or representations
which make it hard to extract the physical meaning.

The approach presented in this work is focused on a formulation which is consistent
with the physico-chemical intuition. We thereby apply theoretically well funded and
straight forward approximations. In our view, intuition, well controlable approxima-
tions and numerical e�ciency do not have to be mutually exclusive, but can lead to
synergetic e�ects.
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We split the transformation from isolated to 'clustered' atoms in two steps: defor-
mation from the atomic to a reference state, which shall be referred to as ionic state,
and clustering (see section 3.2.1 for further details). The numerical most demanding
part is the determination of the clusters total energy. This e�ort can be reduced
by application of the Harris-Foulkes approximation. This approximation however de-
pends on a good approximation of the clusters total density. The deformation process
therefore will be formulated such, that it provides a good approximation of the clus-
ters total density. In addition, it can be handled on a per atom basis, which leads to
almost linear scaling with the number of atoms in the cluster. In other words: We
split the problem in two and work as much as possible on the almost linear scaling �rst
part. This in turn allows to reduce the numerical e�ort of the most demanding second
part. Aside from this, the relative energy expressions permit to play error cancellation
to its strength. Historically, there has been an ongoing discussion about the role of
potential and kinetic energy in bonding processes. This discussion basically has been
settled by Ruedenberg [76]. He pointed out that bonding processes in principle may
best be understood when splitted in two steps, which correspond to our deformation
and clustering. To our knowledge, an appropriate formulation of the deformation so
far has not been presented.

Let us therefore take a closer look at our deformation process. The e�ect of em-
bedding will be described by a potential. This potential can be thought of as a
superposition of nearest neighbor contributions representing the deformation e�ects
due to e.g. Pauli repulsion and Coulomb interaction. In order to be able to formulate
the embedding potential, a new representation of so called nodeless wavefunctions has
been introduced in previous works at our institute [77, 78, 79]. An introduction will
be given in section 4.3.3. The embedding potential will then be discussed in section
4.3.7. The neighbor-dependent deformation potential allows to generate nonspheri-
cal input densities, which re�ect the spatial structure of the vicinity in the crystal.
The repulsive character thereby leads to a localization. Although the Harris-Foulkes
approximation is widely used, this approach, to our knowledge, is the �rst to apply
nonspherical input densities. See chapter 2 for a detailed discussion of the state of the
art. We suppose the superposition of deformed densities to be a good approximation
of the clusters density. The corresponding one particle states consequently should be
a good guess of a minimal and localized basis set.

So far, the discussion of the deformation potential has been focused on the in-
teraction of neighboring atoms. The technique however can also be applied on the
interaction between core and valence states. This allows an numerical e�cient formu-
lation of valence only expressions.

The deformation process requires the solution of nonspherical Schrödinger equa-
tions. Our approach, based on radial, logarithmic grids, is illustrated in appendix
B.5.

The basic total-energy functional in frozen-core formulation will be derived in sec-
tion 4.1.
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In the following, we will discuss the individual contributions (3.9- 3.14) to the energy
functional (3.8):

• The �rst line is the energy needed to convert atoms into the proper reference
ions. The energy related to the deformation potential was subtracted out in the
de�nition of Eion (3.2). The energy

∑
i

(
Eioni − Eati

)
therefore could be referred

to as real costs of deformation and is denoted by Edef .

• In the second line, we subtract the sum of one particle energies (Ediag) of the
deformed ions from the crystal's sum (Etb). The resulting energy gain corre-
sponds to the stabilization of the crystal due to covalent-bond formation. It is
considerably smaller than the sum of one-particle energies of the crystal. This
has been pointed out by Robert Mulliken already in 1935 [80] in the context of
LCAO. He showed that the eigenvalues λ1,2 of H2 in LCAO may not be written
as3 λ1,2 = Haa ±Hab. Assuming a negligible overlap S, this result indeed can
be obtained from the more general expression λ1,2 = Haa ± β/(1 + S), with
β = Hab − HaaS. β usually is referred to as reduced resonance integral. The
approximation however is not valid. Mulliken stated that the essential contri-
bution to the covalent bond corresponds to the reduced resonance integral and
not simply to the o�-diagonal element of the Hamiltonian. The line two of (3.2)
corresponds to Mullikans expressionβ/(1 + S).

• The third line is a short-ranged pair-potential (Ecoup). The short-range charac-
ter arises from the subtraction of the long-ranged point-charge interaction and
the fact that the deformed densities are localized. Note that the subtraction
of the ionic contributions from the crystal expression is re�ected in the missing
self-interaction i = j. Unlike in traditional Harris-Foulkes formulations, this
pair-potential is not only repulsive, but exhibits a minimum for a certain value
of |r− r′|. This value however lies above the bond length. The bond length
corresponds to the minimum of the complete functional with respect to the
fragment separation. As will turn out in the discussion on the basis of H2 in
part III, the energy gain due to covalent and ionic bonding (line two and four)
as well as the contribution of the exchange correlation energy (line �ve) are
attractive up to very short distances. This attraction is mainly balanced by the
repulsive character of the pair-potential term and the bond length therefore is
smaller than the minimum separation of line three.

• The fourth line corresponds to the Madelung energy (Emad). It is a measure of
the ionic character of the bonding. The point-charge formulation furthermore
allows to handle the long-range Coulomb interaction in a numerically e�cient
way.

3Here, Haa =
R
φa(r)Hφa(r)d3r and S =

R
φa(r)φb(r)d3r. φaand φb correspond to the atomic

orbitals.
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• The �fth line is the change in exchange correlation energy (∆Exc) during cluster
formation. The trend of this contribution can easily be approximated. Suppose
we would have a diatomic system. The overlapping part of the densities will
increase if we bring the two fragments together. In local density approxima-
tion, the energy of exchange and correlation for a given density can be esti-
mated as follows: Exc = −C ∫ n 4

3 (r)d3r. For increasing overlap, the di�erence
(
∑

i ni)
4/3 −∑i(ni)

4/3 will become more and more positive. The exchange and
correlation contribution in line �ve therefore should be zero for large distances
and become more and more attractive for decreasing fragment separation.

• The error terms in line six have extensively been discussed in section 2.4 (see
e.g. equations (2.30) and (2.35) and the corresponding text). In conclusion, the
functional (3.8) is stationary at the exact ground-state density, but does not
necessarily correspond to a minimum.
It is however worth taking a closer look at our choice of the trial potential v̄,
as it directly in�uences O((n0 − n′)2). During the derivation of the non self-
consistent functional (2.38), which enters (3.8), we already mentioned, that the
trial potential v̄ should be chosen reasonably. In the transition to the Harris-
Foulkes functional (2.40), as well as in the above approach, we choose the trial
potential to be equal to the potential v[n̄]. One may ask if this choice - besides
the further simpli�cation of the equations - is reasonable. In order to illustrate
this, suppose

∑
i n̄i to be a good approximation of the self-consistent crystal

density, that is O((n0 −
∑

i n̄i)
2) is small. The potential v[

∑
i n̄i(r)] then is

close to the self-consistent crystal potential, which, for exact self-consistency
produces

∑
i n̄i as output density of the non interacting Schrödinger equation.

Therefore O((n0 − n′)2) is small.

The error discussion leads us to another interesting point: The deformed orbitals,
which form the correct crystal density, should be a good choice for a basis set. It
therefore seems natural to determine E

′
[n′[v], v[

∑
i n̄i]] approximately, using a tight-

binding ansatz in the deformed basis. The fact that the deformed basis is localized
leads to a sparse Hamiltonian, which is numerically convenient. Moreover, the inter-
pretation of the crystals orbitals, built from atom centered deformed atomic orbitals
is quite intuitive.
In conclusion, a possible program �ow would go through the following steps:

• Determine the embedding potential contribution once per chemical element.
These potentials are structure-independent and can be predetermined.

• Loop over all unique atoms of a given unit cell and setup the embedding poten-
tial, determine the ionic (deformed) orbitals and densities.

• Superimpose the ionic densities to the crystals trial density.

• Determine the contributions in line one and three to �ve.
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• Setup the potential v[n̄].

• Determine the contribution in line two from a tight-binding approach in the
deformed basis. Note that the second term corresponds to the sum of the cor-
responding Hamilton matrix diagonal elements.

The above stated guideline surely misses several theoretical and practical subtleties,
which will be discussed in the following sections.



4 Theoretical details

4.1 Frozen core formulation of the fundamental functional

The basic idea of the approach is to introduce the frozen core approximation in the
selfconsistent calculation of the ions. The frozen core approximation results in an
energy functional of the one-particle wave functions, which is stationary and varia-
tional. The resulting ionic densities are then superimposed to provide the trial density
for the crystal part of the total energy functional. The variationality of the crystal's
band-structure energies furthermore allows to cancel the core contributions to �rst
order. The basics have been discussed in section 2.7.

Note that we do not introduce an explicit notation to distinguish the frozen core
from the full core expressions. We e.g. use the same symbols f ioni,n and εioni,n for the
occupations and the band-structure energy of the ion in both cases. We do this,
because the basic meaning is the same. Nevertheless, the actual numbers in the full
core and frozen core case may be di�erent.

Ionic contributions

Let ψioni,n be the nth one-particle frozen core wave function of the ith ion. The core
wave functions (n ∈ c) should be �xed (e.g. to the atomic solutions). The valence
wave functions (n ∈ v) should be determined self-consistently using equation (2.48).
The ionic contribution can then be written in terms of the functional (2.46) as follows:∑

i

Eioni =
∑
i,n∈c

f ioni,n 〈ψioni,n | −
1
2
∇2|ψioni,n 〉+

∑
i,n∈v

f ioni,n 〈ψioni,n | −
1
2
∇2|ψioni,n 〉

+Epot[
∑
i

n̄i]

−
∑
i

∑
j,k

λi,j,k
[〈ψioni,j |ψioni,k 〉 − δj,k] .

+O((ψioni,n − ψ0
i,n)2) (4.1)
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Crystal contribution

Splitting the core from the valence kinetic energy, the crystal total energy expression
(3.6) can be written as follows:

Ecry[n0] =
∑
i,n∈c

fi,n〈ψ′i,n| −
1
2
∇2|ψ′i,n〉

+
∑
i,nεv

fi,nεi,n −
∫
n̄v(r)v([n̄], r)d3r + Epot[n̄]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄fci )2) (4.2)

The trial density thereby was divided in the core and valence contribution according
to:

n̄(r) = n̄c(r) + n̄v(r). (4.3)

The one-particle energies εi,n correspond to the output wave functions ψ′i,n of the
potential v[n̄]. Due to the variationality of E

′
[n′[v], v[n̄]], the following relation holds

(see equation (2.49) and related text for details):∑
i,n∈c

fi,n〈ψ′i,n| −
1
2
∇2|ψ′i,n〉 =

∑
i,n∈c

fi,n〈ψi,n| − 1
2
∇2|ψi,n〉+O((ψi,n − ψ′i,n)2)

(4.4)

and (4.2) can be written as follows:

Ecry[n0] =
∑
i,n∈c

fi,n〈ψi,n| − 1
2
∇2|ψi,n〉

+
∑
i,nεv

fi,nεi,n −
∫
n̄v(r)v([n̄], r)d3r + Epot[n̄]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄i)2) +O((ψi,n − ψ′i,n)2) (4.5)

Assembling the energy expression

The frozen core formulation of (3.8) is then given by:
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∆E =
∑
i,n∈v

(
f ioni,n ε

ion
i,n − fati,nεati,n

)
+
∑
i,nεv

fi,nεi,n −
∑
i,n∈v

f ioni,n 〈ψioni,n | −
1
2
∇2 + v̄[

∑
i

n̄i(r)]|ψioni,n 〉

+
1
2

∑
i 6=j

[∫ ∫
(n̄i(r) + Zi(r))(n̄j(r′) + Zj(r′))

|r− r′| d3rd3r′ − QiQj
|Ri −Rj |

]
+

1
2

∑
i 6=j

QiQj
|Ri −Rj |

+Exc[
∑
i

n̄i]−
∑
i

Exc[n̄i]

+O((n0 − n′)2) +O((n0 −
∑
i

n̄i)2) +O((ψioni,n − ψ′i,n)2)

+O((ψioni,n − ψ0
i,n)2) (4.6)

In the �rst and second line, the core contribution can be removed because the
occupations of the core states are �xed and the ionic core wave functions have been
assumed to be frozen atomic :

fati,n = f ioni,n = fi,n for i, n ∈ c (4.7)

εioni,n = εati,n for i, n ∈ c (4.8)

Alternatively, the ionic core wave functions could be frozen to e.g. localized atomic
wave functions. The �rst row in (4.6) then however needs to include the di�erence in
the core energies ( the sum need to extend over i, n ∈ c). Note that the ionic band-
structure energy εioni,n was de�ned excluding the embedding potential (see (3.3)). The
orthogonality constraint in the third line of (4.1) occurs twice and can be removed
from (4.6). Nevertheless, the orthogonality has to be ful�lled. This naturally is the
case, when the ionic wave functions were determined in solving Schrödingers equation
derived from 4.1, which includes the constraints.
Except for the removed core contribution in the �rst two rows, the meaning of the

term is just as already discussed in the context of the full core expression (see section
3.3 for a discussion).
A word about the sequence in which we introduced the approximations: we could

just as well have started with the fully selfconsistent frozen core expression for the
crystal and introduce the Harris-Foulkes approximation for the valence only. This
however would result in almost unmanageable orthogonality constraints. Inter ionic
core orthogonality and the orthogonality of the valence to all core wave functions
would need to be satis�ed. As discussed in section 2.7, the orthogonality constraint
between valence and frozen core usually can be relaxed to �rst order. This however
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is not obvious.
Our formulation of the frozen core atomization energy in contrast is straightforward.

It complies to our philosophy to put as much as possible work in the linear scaling
ionic contribution and to use well de�ned approximations.

4.2 Error cancellation in the fundamental functional

The new functional (3.8) is formulated in terms of energy di�erences (3.9-3.14), to
achieve best possible error cancellation on implementation. Obviously, the corre-
sponding terms should be handled on the same level of numerical approximation.
Besides these, there are however several more concealed connections across the indi-
vidual di�erences (3.9-3.14), which result from the reformulation of the kinetic en-
ergy (2.24) and the approximations (2.29) and (2.33). The second term in (2.33),∫
v([n̄], r) (n(r)− n̄(r)) d3r, e.g. partly enters in the coupling (Ecoup) and diagonal

(Ediag) energy, respectively. Because this integral, together with the potential energy
Epot[n̄] needs to cancel the �rst order errors in (2.33), the potential v([n̄], r) should
not be handled di�erently in the implementation of Ecoup and Ediag.
The following list provides some facts about the connections between individual

terms and should be helpful when trying to disentangle the error cancellations:

• The Eion contribution is handled exactly (with respect to DFT) and therefore
includes no trial potential. The original kinetic energy expression is used (see
equation (3.5)). The electrostatic and exchange correlation terms of the ion and
crystal are treated in the same way.

• The electrostatic energy and the energy of exchange and correlation are con-
nected, as Exc (in the usual formulation of exchange and correlation func-
tionals) cancels the self interaction of the electronic density. This, in partic-
ular, needs to be taken into account when generating the potential for the
tight-binding calculation. It is e.g. not valid to approximate the potential
of exchange and correlation (µxc) by a superposition of fragment contributions
(µxc[

∑
i ni] ≈

∑
i µxc[ni]), while including interference contributions in the elec-

trostatic potential.

• The potential v[
∑

i n̄i], in which the energy Etb (3.10) needs to be determined
originates from the approximation (2.36) and the choice of the trial potential
(2.39). Note the n in the second term of (2.36). The approximation of the
potential energy (2.33) in the crystal's expression (3.6) contributes

∫
v([n̄], r)

(n(r)− n̄(r)) d3r, which cancels the corresponding term in (2.36). The �nal∫
n̄(r)v([n̄], r)d3r in Ediag therefore traces back to the potential energy of the

crystal.

• The potential v[
∑

i n̄i] is the same for both, Etb and Ediag as long as the approx-
imation of the crystal density in terms of fragment densities (3.4) is valid. The
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ion contributes only the kinetic energy of the trial (=ionic) wave functions to the
energy Ediag. Therefore, the Hamiltonians for the diagonal and tight-binding
energies are the same, provided (3.4) holds.
Taking the interference contribution of the deformed wave functions into ac-
count (which we did for testing reasons), this however is not the case and needs
to be compensated (see equation (6.1) and the related discussion for details).

• If numerical errors occur in v[n̄], this contributes to both, Ediag and Etb and
therefore partly cancels. Note however that the remaining error, according to
(2.37) scales linearly, and therefore, in general cannot be neglected. Section
(10.2) illustrates this for the potential of exchange and correlation.

Concerning the frozen core expression:

• The frozen core approximation outlined in section 4.1 alters the trial density,
which however enters all terms of the above discussion in the same way. The
arguments therefore stay the same.

• In the crystal expression, we split the kinetic energy of the core from the valence,
and expand it about the ionic core wave functions (4.4). This term therefore
cancels to �rst order with the corresponding ionic term.

4.3 Embedding potentials in node-less representation

4.3.1 Historical background

In this section, the Pauli repulsion and embedding potentials, outlined in chapter
(3), will be derived. The underlying methods have been proposed by Prof. Blöchl
[77]. First aspects of the node-less wave function formulation have been studied in
the diploma thesis of Mike Thieme [78]. The work of Thieme has been continued in
the PhD-thesis of Clemens Först [79]. The compilation of de�nitions and conditional
equations in sections 4.3.3 to 4.3.5 are mainly based on the formulation introduced
by Clemens Först.

4.3.2 The role of the energy derivative

The basic problems in the derivation of a numerically convenient formulation of em-
bedding potentials can be illustrated by a simple, one dimensional model system shown
in �gure 4.1. It consist of two identical atoms A and B. Following the commonly
known LMTO approach, we identify the regions near the atom A (ΩA) and B (ΩB),
as well as the interstitial region between both atoms (Ωint). From a mathematical
point of view, any given molecular orbital φ(r) (full line in the lower panel), can be
regarded as built from the quasi-atomic orbitals χA(r) and χB(r) (dashed line in the
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Ω
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Ω
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B

Figure 4.1: Model system of two identical atoms A and B. The regions near the atom
A and B, as well as the interstitial region between both atoms (Ωint) are denoted by ΩA,
ΩB and Ωint, respectively. The upper panel shows a sketch of atomic orbitals. A molecular
orbital (full line) and the corresponding quasi-atomic orbitals (dashed line) are shown in the
lower panel. See the text for further details.
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lower panel) as follows:

φ(r, ε) = aχA(r, ε) + bχB(r, ε) (4.9)

The orbital χi thereby dominates the region Ωi and has a minor contribution in the
region Ωj 6=i. Due to the shape of the quasi-atomic orbitals, the contributions of χi
in Ωi and Ωj 6=i are denoted by head and tail, respectively. Once determined, the
molecular orbitals and hence the total crystal density can be build from the quasi-
atomic orbitals. We will therefore refer to the corresponding orbitals and densities as
fragment orbitals and fragment densities.

Our aim is to �nd formation rules which allow to determine the quasi-atomic or-
bitals and hence the molecular orbitals in a numerically e�cient way. An approach
applied by so called linear methods is based on the fact that the molecular potential
in the atomic regions ΩA and ΩB are mainly dominated by the corresponding atomic
potentials. It is therefore reasonable, to describe the solutions in these regions by
perturbed atomic wave functions:

φ@ΩA(r, ε) = φat,A(r, εν) + φ̇at,A(r, εν)(ε− εν) +O((ε− εν)2) (4.10)

φat,A(r, εν) denotes the atomic orbital of A and φ̇at,A the corresponding energy deriva-
tive. Rewriting equation (4.9) as follows:

φ@ΩA(r, ε) = a

(
χ@ΩA
A (r, ε) +

b

a
χ@ΩA
B (r, ε)

)
(4.11)

allows to relate the head and tail of χ with the corresponding atomic wave function
and its energy derivative, respectively. Explicitly:

χ@ΩA
A ∼ φat,A (4.12)

χ@ΩB
A ∼ φ̇at,B (4.13)

χ@ΩB
B ∼ φat,B (4.14)

χ@ΩA
B ∼ φ̇at,A. (4.15)

A basis build from atomic orbitals and their energy derivatives therefore allows to
solve the molecular Schrödinger equation, at least to linear order. It can be shown,
that the energy derivative φ̇at is orthogonal to the corresponding atomic core and
valence wave functions. The above approach therefore ensures the orthogonality of the
molecular orbitals among each other, as well as to the atomic core. The orthogonality
to the core wave functions allows to easily apply the frozen core approximation.

As a �rst step towards the formulation of embedding potentials, one can state
that the di�erence between the isolated atom and an embedded fragment could be
described in terms of atomic wave functions and their energy derivatives. The energy
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derivative in principle can be determined from the energy derivative of Schrödingers
equation: [

−1
2
∇2 + v − ε

]
φ̇(r, ε) = φ(r, ε). (4.16)

This can be written in terms of a homogeneous Schrödinger equation including an
additional potential:[

−1
2
∇2 + v + η(r, ε)− ε

]
φ̇(r, ε) = 0

with

η(r, ε) = −φ(r, ε)
φ̇(r, ε)

.

Due to the nodal character1 of φ̇, such a potential however is numerically inconve-
nient. Blöchl, Thieme and Först introduced node-less wave functions to solve this
problem. The idea is to decompose the wave function and its energy derivative in
a superposition of several contributions from node-less functions. The language of
node-less wave functions thereby not only circumvents the numerical problems stated
above. It furthermore allows to derive so called Pauli repulsion potentials, which de-
scribe the interaction between valence- and core-states. In addition, the connection
between the energy derivative character of the tail and the Pauli repulsion potential
becomes evident.

4.3.3 Node-less wave functions

The node-less wave functions are derived from isolated atoms. Due to the sphericity
of the potential, the angular momentum channels can be separated. In the following,
we will therefore drop the indices for the angular (l) and magnetic (m) momentum.
A given atomic wave function can be decomposed in node-less contributions as

follows (for further details see [79]):

|φn(ε)〉 =
n−1∑
i=1

|ui〉ci,n + |qn(ε)〉cn,n (4.17)

with
|ui〉 = |qi(εi)〉 (4.18)

The index n thereby refers to the n-th state for a given angular momentum channel2.

1φ̇, just as well as the atomic wave function, exhibits nodes for all but the �rst wave function for a
given angular momentum l.

2For e.g. l = 1, the sequence 2p, 3p, . . . corresponds to n = 1, 2, . . . etc.
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Figure 4.2: |q3(ε)〉 for the Si s-channel in an energy window of ±0.15 H around the atomic
eigenvalue ε3. The bound state |u3〉 = |q3(ε3)〉 is indicated by the bold line. The dash dotted
and dashed curves show |q3(ε2)〉 and |q3(ε4)〉, respectively. Figure courtesy of Clemens Först.

The energy εi denotes the i-th atomic eigenvalue. The node-less wave functions are
de�ned as follows:

(Ĥ − ε)|qn(ε)〉 = |un−1〉 (4.19)

(Ĥ − εi)|ui〉 = |ui−1〉 (4.20)

with
|u0〉 = 0 (4.21)

Equation (4.20) follows from (4.19) and (4.18). The �rst node-less wave function per
angular momentum channel (u1) corresponds to the atomic wave function.
The expansion coe�cients are given by:

ci = c1

i−1∏
j=1

(ε− εj). (4.22)

Note that the index n has been dropped here.
Figure 4.2 shows |q3(ε)〉 for the Si s-channel in an energy window of ±0.15 H

around the atomic eigenvalue ε3. The bound state |u3〉 = |q3(ε3)〉 is indicated by
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index i |φi〉 |ui〉 |u̇i〉
1 rl rl rl+2

2 rl rl+2 rl+4

...
...

...
...

n rl rl+2(n−1) rl+2n

Table 4.1: The behavior of the atomic node-less wave function |u〉and the corresponding
energy derivative |u̇〉 compared to the atomic wave functions |φ〉 for r → 0. The energy
derivative is discussed in section 4.3.5.

the bold line. The dash dotted and dashed curves show |q3(ε2)〉 and |q3(ε4)〉, re-
spectively. Apparently, the node-less character of |qn(ε)〉 only applies in the energy
interval εn−1 ≤ ε ≤ εn+1. With this in mind, the choice to absorb the energy depen-
dence of the wave function only in the expansion coe�cients and the highest node-less
wave function becomes reasonable. In this way, all expansions for a given angular mo-
mentum channel share the same, energy independent basis {u}. Furthermore, the
node-less character of each individual contribution is ensured.

A typical approach in the work with node-less wave functions is to determine the
basis {u} per angular momentum channel from bottom up, repeatedly solving the
inhomogeneous Schrödinger equation (4.20). The atomic wave functions |φn(ε)〉 can
be reconstructed from the node-less wave functions via the expansion (4.17) and the
coe�cients (4.22) or, alternatively, by an orthogonalization to all |φj(εj)〉 with j < n
(see appendix B.1 for further details):

|φn(ε)〉 =

1−
n−1∑
j=1

|φj(εj)〉〈φj(εj)|
 cn,n|qn(ε)〉 (4.23)

Figure 4.3 shows the 3s wave function of silicon decomposed into the contributions
from the node-less wave function |ui〉 times the corresponding weights ci. Each node-
less wave function is responsible for one local extremum of the atomic wave function.
The extrema of the atomic wave function |φ3〉 are slightly shifted to larger r values
compared to those of the node-less wave functions.

The �rst three node-less wave functions |u1〉, |u2〉 and |u3〉 for the silicon s-channel,
scaled to have a common maximum, are plotted in �gure 4.4. The behavior of the
atomic node-less compared to the atomic wave functions for r → 0 is listed in table 4.1.
For large radii, the |ui〉 become identical to the corresponding |φi〉. The corresponding
derivations can be found in appendix D.1 of [79]. The node-less wave functions may
be parametrized by Slater type orbitals [15]. A su�ciently accurate representation
however requires at least two polynomial and two exponential parameters per radial
part [78, 79].
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Figure 4.3: The 3s wave function of silicon decomposed into the contributions from the node-
less wave function |ui〉 times the corresponding weights ci. Each node-less wave function is
responsible for one local extremum of the atomic wave function. The extrema of the atomic
wave function |φ3〉 are slightly shifted to larger r values compared to those of the node-less
wave functions. Figure courtesy of Clemens Först.

Figure 4.4: The �rst three node-less wave functions |u1〉, |u2〉 and |u3〉 for the silicon s-
channel, scaled to have a common maximum. The lower panel shows the node-less wave
functions on a logarithmic scale. Figure courtesy of Clemens Först.
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4.3.4 Potentials for the node-less wave functions

Rewriting (4.19) into a homogeneous equation[
−1

2
∇2 + v + ηn(r, ε)− ε

]
qn(r, ε) = 0 (4.24)

de�nes ηn(ε) as follows:

ηn(r, ε) = −un−1(r, ε)
qn(r, ε)

. (4.25)

Any atomic wave function may be expanded in node-less wave functions. Therefore,
and due to the node-less character of qn(r, ε) in the energy interval εn−1 ≤ ε ≤
εn+1, (4.25) corresponds to a numerically convenient ab initio pseudo potential. The
additional potential term ηn(r, ε) mimics the presence of the lower shells and thus has
been identi�ed with a Pauli repulsion potential.

The energy dependence of η however renders the numerical solution of Schrödingers
equation cumbersome. Linearization in energy around some energy ε̄ leads to:

ηn(r, ε) = vpaulin (r, ε̄)− on(r, ε̄) · ε+O((ε− ε̄)2) (4.26)

with

η̇n(r, ε̄) :=
∂ηn
∂ε

∣∣∣∣
ε̄

(4.27)

vpaulin (r, ε̄) := ηn(r, ε̄)− ε̄η̇n(r, ε̄) (4.28)

on(r, ε̄) := −η̇n(r, ε̄) (4.29)

vpaulin (r, ε̄) is denoted by energy independent Pauli repulsion potential. The energy
dependence is, to linear order, absorbed in the so called overlap times energy (on(r, ε̄)·
ε) term. This is common practice in linear methods and results in a generalized
eigenvalue problem:[

−1
2
∇2 + v + vpaulin (r, ε̄)− ε(1 + on(r, ε̄))

]
qn(r, ε) = 0.

The Pauli repulsion potential and overlap term, explicitly expressed in node-less wave
functions, read as follows:

vpaulin (r, ε̄) = −un−1(r)
qn(r, ε̄)

[
1 + ε̄

q̇n(r, ε̄)
qn(r, ε̄)

]
(4.30)

on(r, ε̄) = − q̇n(r, ε̄)un−1

q2
n(r, ε̄)

. (4.31)

The energy derivative of the node-less wave function q̇n(r, ε) will be discussed in the
following section.
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4.3.5 The energy derivative of node-less wave functions

The energy derivative of atomic wave functions plays an important role in linear
methods (see section 4.3.2 for details). A decomposition in node-less wave functions
can be achieved in analogy to (4.17) :

|φ̇n(ε)〉 =
n∑
i=1

|ui〉di,n + |q̇n(ε)〉dn,n. (4.32)

A di�erential equation de�ning the energy derivative of the node-less wave function
can be obtained from the corresponding derivative of (4.19):

(Ĥ − ε)|q̇n(ε)〉 = |qn(ε)〉 (4.33)

Comparison of (4.19) and (4.33) leads to:

|qn+1(εn)〉 = |q̇n(εn)〉. (4.34)

This expression can be generalized to higher derivatives (see appendix D.3 in [79]):

|q(j)
n+1(εn)〉 =

1
j + 1

|q(j+1)
n (εn)〉. (4.35)

In accordance to the atomic wave function, |φ̇n(ε)〉 can be reconstructed from the
node-less wave functions by an orthogonalisation to all |φj(εj)〉with j < n (see ap-
pendix B.1 for further details):

|φ̇n(ε)〉 =

1−
n−1∑
j=1

|φj(εj)〉〈φj(εj)|
 cn,n|q̇n(ε)〉. (4.36)

4.3.6 Potentials for |q̇(ε)〉
In analogy to (4.24), we rewrite (4.33) as follows:[

−1
2
∇2 + v + η̃n(r, ε)− ε

]
q̇n(r, ε) = 0 (4.37)

with

η̃n(r, ε) = −qn(r, ε)
q̇n(r, ε)

. (4.38)
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Linearisation of η̃n(r, ε) in energy can be written as:

η̃n(r, ε) = ṽn(r, ε̄)− εõn(r, ε̄) + (ε̄− ε) +O((ε− ε̄)2) (4.39)

with

ṽn(r, ε̄) := −qn(r, ε̄)
q̇n(r, ε̄)

[
1 + ε̄

q̈n(r, ε̄)
q̇n(r, ε̄)

]
(4.40)

õn(r, ε̄) := −qn(r, ε̄)
q̇2
n(r, ε̄)

q̈n(r, ε̄). (4.41)

The extra term (ε̄ − ε) in (4.39), when compared to (4.26) results from the energy
dependent denominator in (4.38).
Comparison of (4.25) and (4.38) shows an interesting connection between the Pauli

repulsion potential η and the potential generating the q̇-character (η̃). For the energy
εn, the Pauli repulsion potential (4.25) for the �rst exited state (using the substitution
n→ n+ 1)

ηn+1(εn) = − |un〉
|qn+1(εn)〉

corresponds to the potential η̃n

η̃n(εn) = −|qn(εn)〉
|q̇n(εn)〉

= − |un〉
|qn+1(εn)〉 .

We used the relation (4.18) and (4.34) in the last step. Note however, that this exclu-
sively holds for the energy εn. The energy dependence of the potentials is di�erent,
as can be seen from the energy linearisations (4.26) and (4.39).

4.3.7 Embedding potentials

Before we return to the model system, let us introduce the following de�nition of
terms: in the context of the deformation process, we divide the atoms of the crystal
in two classes. We distinguish the central atom, the one which actually gets deformed,
from all the other atoms, which build the embedding surrounding. These are referred
to as o�-central. Contributions arising from central or o�-central sites, usually carry
the adverb on-site or o�-site, respectively.
The node-less representation introduced in the preceding sections, allows to access

the fragment orbitals discussed in section (4.3.2) in a numerically convenient way.
The repulsion potential η (4.25) mimics the Pauli repulsion of the lower shells. The
o�-center electrons approaching the central atom should feel the repulsion of the
central valence electrons. It is therefore physically consistent to generate the tails
from ηn+1(r, ε). This results in the tails having qn+1(r, ε)-character. In the desired
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energy range ε < εn+1, the functions qn+1(r, ε) - and therefore the in�uence of the
neighbors - vanish at the central atom (see Figure 4.2).
Our new formulation of the tail function however di�ers from the construction

(4.10), which corresponds to a q̇n(r, ε)-character of the tails. As discussed in sec-
tion (4.3.6), the energy of the atomic bound-state, εn, is special. For this energy,
the potential η̃n(r, ε) (generating q̇n(r, ε)) corresponds to ηn+1(r, ε) (which in turn is
related to qn+1(r, ε)). According to (4.35), the energy derivative q̇n(r, εn) becomes
equal to qn+1(r, εn). Our new construction therefore corresponds to a more general
formulation, which includes the linear methods approach (4.10) as special case.
In the following, we will illustrate the procedure of generating atomic fragments,

�rstly neglecting the energy and angular momentum dependence of the potential η.
Suppose we want to determine the fragment orbital residing on atom A. Atom A

therefore refers to the central atom. In the node-less representation, it is possible to
achieve the required character of the tail in the o�-site region ΩB by application of the
corresponding potential3 ηBm+1. In our example, we would need to add the potential
ηBm+1 to the total crystal potential. The index B thereby indicates the origin of ηm+1.
In electronic structure calculations, it is common practice to apply the frozen core

approximation (see section 2.7 for further details). The Pauli repulsion potential of
the node-less representation allows to determine the valence wave function in frozen
core approximation in a numerically e�cient way. Application of the potential ηn at
the central atom, with n corresponding to the valence, results in a node-less character
of the fragment orbital in this region.
The general procedure to determine a valence fragment orbital therefore implies the

following steps:

• Estimate the total potential (e.g. as superposition of atomic potentials)

• On the central atom add the corresponding Pauli repulsion potential for the
valence ηn

• On all o�-site atoms I, add the corresponding o�-center potentials ηIm+1

The resulting atomic fragment obeys qn(r, ε)-character in the central region, and the
corresponding qm+1(r, ε)-character in all o�-center regions. As a consequence, the
crystal solution in a given atomic region ΩA (in the following denoted by f@ΩA(r, ε))
can be written in terms of the unperturbed atomic node-less solution un and energy
dependent function qn+1 as follows:

f@ΩA(r, ε) = un(r) + (ε− εn)qn+1(r, ε). (4.42)

This equation corresponds to equation (4.11) with a = 1 and b = (ε− εn). Note how-
ever, that f@ΩA(r, ε) solves the unperturbed Schrödinger equation exactly, whereas
φ@ΩA solves the corresponding Schrödinger equation only to linear order.
3m corresponds to the valence state of the o�-center orbital. It may be di�erent from n, which
refers to the valence of the central atom.
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So far, the angular momentum dependence of the potential η has been neglected.
The equation (4.25) holds for a speci�c angular momentum channel. Due to the non-
sphericity of the crystals potential, the fragment orbitals in general have contributions
from several angular momenta. We thus have to set up potentials which probe the
angular momentum character of the wave function and then provide the correct radial
potential:

η̂i(ε) =
∑
lm

|Ylm〉ηi,lm(ε)〈Ylm|

with i now referencing a certain atom. This is a so called nonlocal potential, which,
in explicit form reads as follows:

ηi(ε, r, r′) = 〈r|η̂i(ε)|r′〉
=

∑
lm

Ylm(r̂−Ri)
(
ηi,lm(ε, |r|)δ(|r| − |r

′|)
r2

)
Y ∗lm(r̂′ −Ri) (4.43)

where r̂−Ri denotes the direction of the vector r − Ri and Ricorresponds to the
i-th atomic position. The potential η is energy dependent and therefore needs to be
redetermined in each step of a self-consistent cycle.
We �nally de�ne the embedding potential vembed(ε) for atom i as the potential

which needs to be added to the selfconsistent potential of the crystal (vae,cry), in
order to produce the appropriately shaped atomic fragment |χi〉:[

−1
2
∇2 + vcry,ae + vembed(ε)− ε

]
|χi〉 = 0. (4.44)

In the node-less representation, the embedding potential can be written as follows:

vembed(ε, r, r′) := ηi(ε, r, r′) +
∑
j 6=i

ηoffj (ε, r, r′) (4.45)

with the index off denoting the o�-site valence repulsion potential ηn+1.

4.3.8 Linearized and localized embedding potentials

In principle, the fragment orbital approach in node-less formulation is more general
than the linear approach discussed in section 4.3.2. The energy dependence of the
repulsion potential η however is numerically cumbersome. We will therefore in the
following make use of the linearized repulsion potentials derived in (4.26- 4.29). As can
be seen from equation (4.42), the tail contribution to the crystal solution is explicitly
energy dependent. A comparable degree of approximation can be achieved by taking
the on-site potential to linear order and the o�-site repulsion potential only to zero
order into account.
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The deformation process in the above construction implies the estimation of the
self-consistent crystal potential vae,cry. Following the basic idea of the new method
discussed in section 3.3, we split the crystal expression in contributions originating
from the individual members of the crystal:

vcry,ae =
∑
i

vi,ae

The total potential in the vicinity of the central atom is mainly dominated by
the nearest neighbor contributions. The sum therefore may be limited to nearest
neighbors.

The contributions of the neighbors could be estimated from self-consistent, atomic
calculations. The atomic orbitals of isolated atoms and hence the resulting selfconsis-
tent potential however are well extended. For usual crystal and molecular separations
of the fragments, the potentials derived from isolated atoms therefore are inappro-
priate. We propose to derive the neighbors contributions from atoms con�ned in a
spherical box. At the walls of the box, the potential rises to in�nity. This ensures
strict localization within the sphere. The radius of the box (rt), which corresponds
to a free parameter, will be chosen relative to the covalent radius of the chemical
element. From a physical point of view, this approach meets the situation in crystals
or molecules much better than the isolated atom. In addition, the above construction
allows to estimate the energy ε̄, at which the potentials will be expanded. We suppose
the valence total energy to be dominated by bonding orbitals. This is, because the
valence anti-bonding orbitals will in general be occupied to a much lesser extend. The
expansion energy ε̄ therefore should be close to the energy of the bonding valence
orbitals. The bonding valence orbitals however are characterized by a zero spatial
derivative of the wave function in the bonding region. We will therefore choose the
energy, at which the derivative of the wave function at the walls of the box vanishes,
as expansion energy ε̄.

Following the approach illustrated in �gure 4.1, the o�-site valence repulsion poten-
tials ηoff shall induce the desired tail shape in the atomic region of the neighbors. It is
important to determine these potentials from atoms con�ned in a box such, that they
do not lap into the interstitial region. We therefore introduce a second free parameter
rp, which corresponds to the radius of the box used for the calculation of the repulsion
potentials. The radius rp will, just as rt, be chosen relative to the covalent radius. The
embedding potential contributions per chemical element can then be precalculated as
setups. The setup for a chemical element thereby is fully determined by the radii rt
and rp and will in the following be coded in the form (r̃p : r̃t) with

rp = r̃p × rcovalent.
rt = r̃t × rcovalent (4.46)

The central potential contribution to the embedding potential �nally will be de-
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termined self-consistently during the deformation process. In this way, no arti�cial
localization is applied to the deformed fragment density which is used as trial density
for the energy functional. Hence, the localization of the trial density is only due to the
repulsion of the neighbors and therefore re�ects the symmetry of the crystal. This
is di�erent from the spherically localized frozen atomic fragment approach usually
applied by other groups. In part III, the di�erence of the approaches and the results
will be discuss in more detail.



Part III

First applications





5 Introduction

5.1 The H2 reference system

In the preceding sections, a new approach to non self-consistent electronic structure
calculations has been introduced. It basically consists of two main aspects: a new
formulation of a non self-consistent energy functional and an ab initio construction
of non-spherical input densities for such functionals. As discussed in section 2.4.4,
atomic densities, so called frozen atomic fragments, as well as spherically localized
atomic densities have been successfully applied in connection with non-selfconsistent
functionals for certain systems classes, such as weakly interacting fragments [25, 29].
They however fail for more sophisticated systems such as defect structures, surfaces
and vacancies [30, 31, 32]. In order to point out the reasons for these limitations, I will,
�rst of all, discuss some results obtained from the new non self-consistent functional
when applied to spherical input densities for the hydrogen dimer. This molecule has
been chosen for several reasons. The most important lies in the nature of the node-less
wave functions. Per construction, in the nodeless picture, the �rst member per angular
momentum channel (e.g. 1s, 2p, 3d,. . .) corresponds to the atomic wave function. The
embedding potentials and obtained non-spherical densities can therefore be compared
to usual potentials and densities without an additional transformation (see section 4.3
for further details).
Furthermore, the H2 molecule does not possess any core electrons which, in our

formulation, would imply the application of onsite Pauli repulsion potentials. From
a physical point of view, the o�site repulsion potentials are of much more interest.
They give rise to the non-sphericity of the fragment densities. Following a divide and
conquer approach, it is therefore reasonable to initially concentrate on the valence
repulsion only.

5.2 Approximations

In order to make a �rst attempt towards non-spherical input densities, we apply
several additional approximations in all calculations presented in this work. Unless
otherwise stated, the following approximations are understood:

1. The linearized and localized formulation of the repulsion potentials discussed
in section 4.3.8 is applied. For some calculations we however determine the
repulsion potentials at the energy of the crystal state. It therefore corresponds
to the exact repulsion potential.
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2. A local form of the repulsion potentials is used. As shown in equation (4.43),
the repulsion potentials have contributions from several angular momenta and
therefore are non local. As a �rst approximation, we either keep only the spher-
ical part or the spherical average of the repulsion potential. The central atom
therefore gets deformed by spherical neighbors. We suppose the relative position
and deformational strength of the neighbors to be the most dominating e�ects.
The deformed fragment densities obtained from spherical o�center deformation
potentials therefore should provide an appropriate approximation of the crystal
density.

3. The total potential for the deformation process is estimated by a superposition
of individual fragment contributions (see the discussion in section 4.3.8 for more
details). As a consequence, the nonlinear contribution to the exchange and
correlation potential, which is due to overlap of the neighboring and onsite
density, is missing (µxc[

∑
i ni] 6=

∑
i µxc[ni]). For overlapping densities, this

contribution is of repulsive character. Its maximum is located in the bonding
region. The deformed fragment densities therefore might be overestimated in
the interstitial region. This e�ect however partly cancels with the approximation
discussed next.
The di�erence between superimposed exchange and correlation potentials and
potentials of superimposed densities is illustrated in �gure 7.5.

4. The interference contribution of the fragment wave functions to the total density
is not taken into account. In order to illustrate this, I will once again pick
up the model system shown in �gure 4.1. Let the deformed wave functions
(including head and tail) of atom A and B be χA and χB, respectively. The
total density approximated by a superposition of the fragment contributions
consequently would correspond to (χA + χB)2 /C, with C corresponding to a
normalization factor1. In our formulation, we however superimpose the fragment
densities. This corresponds to the density χ2

A + χ2
B and therefore misses the

interference contribution 2χAχB. The e�ect of the interference contribution
will be discussed in the following sections for both, spherical atomic fragments
and deformed densities. Neglecting the interference contribution shifts density
from the interstitial to the atomic region. This approximation therefore partly
cancels with the previous one, concerning the exchange and correlation potential.

5. The Perdew Zunger parametrization [81] of the local density approximation is
used.

6. Spinpolarization is not explicitly taken into account. For the binding energy
studies, a spinpolarization correction to the total energy of the isolated frag-
ments is applied. This correction is obtained from fully converged PAW cal-

1C = 1
2

R
(χA(r) + χB(r))2 d3r for χA and χB being normalized.
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culations for non- and spinpolarized systems (see section 5.4 for computational
details of the PAW calculations).

It should be noted that the approximations 1-4 discussed above only a�ect the quality
of the input density. Apart from numerical errors, no further approximations to the
non self-consistent functional (3.8) are applied.

5.3 Computational Details

5.3.1 Preface

The aim of this part of the thesis is to allow an evaluation of the theoretical basis of the
new approach. In this context, numerical convergence and reproducibility of results
is much more important than numerical e�ciency. The implementation and level of
convergence applied in the following - with errors usually below 1 mH - therefore cer-
tainly might not be the �rst choice for all day work applications, but ensures as much
comparability of individual contributions as possible. Details concerning other possi-
ble numerical implementations of the new approach, discussion of the corresponding
subtleties and convergence studies can be found in part IV.

5.3.2 Grid representations

The deformation potential calculation and the deformation itself are carried out on
logarithmic, atom-centered, radial grids with 1000 support points in the range 1.056 ·
10−4 ≤ r ≤ 26.96 a.u.. The o�center deformation potentials are re-expanded at
the central site, using the spherical harmonics re-expansion algorithm discussed in
section 8.2. Unless otherwise stated, the expansion of the deformed fragment density
is truncated at l = 3. The truncation for all other expressions are chosen such, that the
selection rules for the products of spherical harmonics are ful�lled (in the present case,
the potential e.g. needs to be expanded up to l = 6). We found that noncompliance
of the selection rules strongly a�ects the numerical convergence. This is discussed in
more detail in section 8.4.
After deformation, Poisson's equation for the deformed density is solved on the

radial grid. The resulting potential as well as the fragment densities are then trans-
formed to a cylinder grid representation. We exploit here the cylinder symmetry
of the dimer molecules. The z-axis of the grid is aligned parallel to the molecule-
axis at r = 0. We keep the data on a representative two-dimensional plane with
the side length lr = 1

2 lz and nr = 1
2nz equispaced support points. Typical values are

lz = 30 a.u. and nz = 2000. The �rst grid point in r resides at r1 = 1
2dr, with dr = lr

nr
.

For intermediate values, a third order polynomial interpolation is applied. The inter-
polation is based on the function and the numerical �rst and second derivative values
of two adjacent support points.
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The cylinder grid allows to evaluate the exchange and correlation energy and poten-
tial point by point in 3D space and therefore results in accurate results for densities
of arbitrary symmetry. In the context of the new functional we found this approach
superior to the common approach with the densities held as spherical expansions (see
section 9 for a detailed discussion).

5.3.3 Tight-binding approximation, potential of exchange and
correlation

In line two of equation (3.8), we subtract the sum of one particle energies of the
deformed ions from the crystal's sum. This is solved in a tight-binding approach.
The deformed ions contributions (part two of line 2) then corresponds to the diagonal
sum of the tight-binding Hamiltonian. For all calculations presented in this part of
the work, we use an extended basis set. The combination of the deformed orbitals
with three spherical basis-functions of the form e−λr (λ = 1.0, 1.5 and 2.0), one 2pz
function has been found to be su�cient (see section 10.1 for further details).
Unlike in the deformation process, the exchange and correlation potential contri-

bution to the total potential v[
∑

i n̄i] cannnot be approximated by a superposition of
atomic contributions of the form

∑
i Vxc[ni]. Figure 10.1 shows the resulting binding

energy for deformed atomic fragments, once applying the exact potential Vxc[
∑

i ni]
(dashed black line) and once the approximate potential

∑
i Vxc[ni] (grey line) in the

tight-binding calculation. At the lda equilibrium separation of H2 (1.41 a.u.), the
error introduced in the tight-binding energy (3.10) by the approximation of the ex-
change and correlation potential has been found to be in the range of 415mH, which
corresponds to 225 % of the binding energy (Ebond ≈ 185mH). Due to the a�orded
error cancellation in line two of (3.8), the e�ective deviation is reduced to about 21 %
of the binding energy (∼ 38mH), which however is still far too large.
The reason for the success of the approximation in the context of deformation (sec-

tion 5.2, item three) and the failure in the tight-binding calculation is the following: in
the deformation process, the approximation of the exchange and correlation potential
a�ects the trial density. For the trial density however, a variational principle holds.
This is not the case for the potential of the tight-binding calculation. As can be seen
from equation (2.38), errors in the potential linearly enter the total energy.

5.3.4 Grid transformations, density splitting and interference
contribution

In order to evaluate the e�ect of the interference contribution discussed in section
5.2, calculations for the total density including the interference term have been car-
ried out. This implies the solution of Poisson's equation for the interference density,
which can not easily be converged on the standard cylinder grid. The interference
density therefore has been transformed to a spherical expansion centered at the mid
of the bond as outlined below. Poisson's equation can then be solved on the radial
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logarithmic grid just as for the atomic contributions.
In a �rst step, the data-points are transformed from the cylinder grid onto an

equispaced 3d grid, which then is Fourier-transformed into G-space. The side length
of the 3d box thereby is chosen such, that the arti�cial periodic image contributions
in G-space can be neglected (30 a.u. have been found to be su�cient). The separation
of support points in 3d and G are determined by a plane wave cuto� energy. A cuto�
of 200Ry usually leads to converged results. In order to center the expansion at the
origin, the corresponding structure factor is applied in G-space. Applying an inverse
spherical Bessel-transformation on a per plane wave basis then allows to determine
the corresponding spherical harmonics expansion (for a detailed derivation see section
B.3.3).
The tight-binding calculation for the self-consistent PAW density of the H2 dimer

shown in �gure 6.1 follows a similar approach. The PAW density is imported on a 3d
grid. It is then splitted in two symmetric atomic contributions which add up to the
total density. This is achieved by application of a fading proportional to cos2 along
the bond axis in the direction of the neighbor2. The tight-binding potential can then
be determined in the way discussed above.
In order to determine the selfconsistent density for the hydrogen dimer in the repre-

sentation of the new method, the tight-binding term has been solved selfconsistently,
applying a potential mixing. The output density, written in terms of the occupied
output wave function, can be splitted in atom-centered and interference contributions.
This allows to determine the output potential following the above approach.

5.4 PAW reference calculations

Selfconsistent reference calculations are performed based on the projector augmented
wave (PAW) method [82, 83]. The PAW method is a frozen-core all-electron method.
Like other plane-wave based methods, the PAW method leads to the occurrence of
arti�cial periodic images of the structures. This e�ect was avoided by explicit sub-
traction of the electrostatic interaction between them [84]. Wave function overlap
was avoided by choosing the unit cell large enough to keep a distance of more than 6
between atoms belonging to di�erent periodic images. We used a plane wave cuto�
of 50Ry for the auxiliary wave functions of the PAW method. The following sets of
projector functions were employed, N 2s2p, H 2s, which provides the number of pro-
jector functions per angular momentum magnetic quantum number m in each main
angular momentum channel l.

2Let the dimer be aligned parallel to the z-axis, with z1 and z2 being the z-position of atom one
and two, respectively (we suppose z2 > z1). The fading function f1 for atom one is then given as

f1(x, y, z) =

8<:
1 for z ≤ z1

cos2φ for z1 < z ≤ z2

0 for z > z2

, with φ = π(z−z1)
2(z2−z1)

. The fragment density for atom

one can then be determined by multiplication of the total density by f1 on the 3d grid.
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Etot(H) Etot(eV)

H nonspinpolarized -0.445 -12.11
H spinpolarized -0.478 -13.01

spinpolarization correction per H2 -0.066 -1.79

Table 5.1: The total energy for the spin- and nonspinpolarized hydrogen atom, as well as
the spinpolarization correction used in the following calculations obtained from self-consistent
PAW calculations.

Atomic structures were optimized by damped Car-Parrinello [46] molecular dynam-
ics. We used a time-step of 10 a.u. (2.5 fs) for all calculations. The convergence was
tested by monitoring if the total energy change remains below 10−5H during a sim-
ulation of 500 time steps. During the simulation for the convergence test, no friction
was applied to the atomic motion and the friction on the wave function dynamics was
chosen su�ciently low to avoid a noticeable e�ect on the atomic motion.
The total energy for the spin- and non-spinpolarized hydrogen atom, as well as the

spinpolarization correction used in the following are listed in table 5.1.
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6.1 Selfconsistent reference calculations

In order to determine the selfconsistent density for the hydrogen dimer at the lda
equilibrium spacing (1.45 a.u.) in the representation of the new method, the tight-
binding term has been solved self-consistently, applying a potential mixing. The out-
put density, written in terms of the occupied output wave function, can be splitted
in atom-centered and interference contributions. This allows to determine the out-
put potential following the approach discussed in section 5.3.4. The deformed orbital
basis functions have been replaced by the output molecular wave functions in each
step of the selfconsistent iteration. Figure 6.1 compares the resulting selfconsistent
density (full line) to the PAW selfconsistent density (dashed). The dash dotted line
corresponds to the output density obtained using the self-consistent PAW density as
input density in a tight-binding cycle. The numerical implementations of both meth-
ods follow a completely di�erent approach. The applied approximations, namely the
limited number of real-space grid points in the tight-binding and the limited number
of plane waves in the PAW calculation, lead to small di�erences in the selfconsistent
density.
Table 6.1 provides the energy contributions to the self-consistent total energy for

both calculations. The energy terms of the SESM representation correspond to the
crystal contribution (3.6) of the new functional (3.8).

PAW (H) SESM (H) Di�erence (mH)

Ekin 1.0740 1.0817 7.7
Ecoul -1.5656 -1.5780 -12.4
Exc -0.6445 -0.6442 0.3

Etot -1.1360 -1.1406 -4.6

Table 6.1: The energy contributions to the selfconsistent total energy determined from
a PAW and a selfconsistent SESM calculation. The provided energy terms of the SESM
representation correspond to the crystal contribution (3.6) of the new functional (3.8).

The energy di�erences are in accordance with the di�erent shape of the selfcon-
sistent densities: compared to PAW, in the SESM representation density is shifted
from the bonding into the atomic region. This, on the one hand, is electrostatically
favorable but leads to an increased kinetic energy due to the higher curvature of the
wave function in the bonding region.
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Figure 6.1: The PAW selfconsistent density (dashed) and the resulting output density
(dash dotted) compared to the selfconsistent SESM density (full line) along the molecular
axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.). The input and output
densities correspond to the trial density n̄ de�ned in (3.4) and the density n′, de�ned in
(2.25), respectively. All densities integrate to the same number of electrons. The ordinate of
the inset is scaled by a factor of 20.
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Energy (H)

Etb -0.7455
Einterdiag -0.4456

Etb − Ediag -0.2999
Ecoup 0.0418
∆Exc -0.0653

Table 6.2: The energy contributions (3.12-3.14) to the selfconsistent SESM energy ∆E (3.8).

Table 6.1 lists the SESM functional energies (3.12-3.14) obtained for the selfconsis-
tent density. These will be plotted in the following �gures for comparison with the
energies obtained from deformed fragments. It should however be noted, that the
values do not correspond to a reference (such as e.g. the self-consistent total energy).
This is, because the energies listed in table are relative to the deformed ion, which
however is not unique.

The output and hence the selfconsistent wave functions in our implementation is
given in terms of superimposed, atom-centered contributions. The selfconsistent den-
sity therefore needs to include interference contributions. For the selfconsistent as
well as for all other calculations including interference contributions, equation (3.4),
n̄ =

∑
i n̄i, is not ful�lled. As a consequence,∫

n̄(r)v([n̄], r)d3r 6=
∑
i,n

f ioni,n 〈ψioni,n |v[
∑
i

n̄i(r)]|ψioni,n 〉.

The energy contribution Ediag de�ned in (3.11) therefore needs to be replaced by:

Einterdiag :=
∑
i,n

f ioni,n 〈ψioni,n | −
1
2
∇2|ψioni,n 〉+

∫
n̄(r)v([n̄], r)d3r. (6.1)

Let me stress another subtle point. The deformed ion reference is not unique.
The actual shape is arbitrary, except that it needs to result in the correct crystal
density. The individual SESM energy contributions for two di�erent reference systems
therefore may be di�erent. Because a unique reference does not exist, neither of them
is more or less exact. The only reference energies which can be used to estimate the
quality of a trial density are the crystal energy contributions listed in table 6.1 and
the SESM total energy ∆E.

The results shown in table 6.1 correspond to a selfconsistent calculation which does
not follow the two step deformation/clustering approach. The deformed ion reference
therefore is not self-similar to the deformed ions discussed in the following. The
energies therefore may di�er.
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6.2 Frozen atomic fragments

Figure 6.2 shows the binding energy of the H2 dimer as a function of inter-atomic
spacing. The full line corresponds to the selfconsistent PAW reference. The dashed
line shows the results for the frozen atomic fragment density (FAF) approach deter-
mined in the representation of the new method. The single data points correspond
to frozen atomic fragment results published by Kobayashi et. al. [85], Averill and
Painter [34] and Foulkes and Haydock [27]. The ground state binding energy (−5.61
eV) and bond length (1.31 a.u.) obtained by the new method are in good agreement
with the results of Kobayashi et. al. (the deviation in binding energy is below 4
mH, the bond lengths agree exactly). Averill and Painter unfortunately did not pro-
vide the binding energy of the FAF ground state, but �xed the bond length to the
selfconsistent value (1.45 a.u.). The binding energy is however close to our �nding
for this inter-atomic spacing (the deviation is about 3 mH). Foulkes and Haydocks
ground state results obviously deviate in both, binding energy and bond length. They
follow a tight-binding approach with a basis consisting of just two s functions on each
hydrogen atom. Convergence tests with respect to the basis set showed, that, at least
in our implementation, convergence can only be achieved adding three extra s and
one pz function per atom to the FAF orbital. Reducing the number of basis functions,
the ground state binding energy and length shift towards Foulkes results, which we
therefore regard as unconverged.
Figure 6.3 compares the frozen atomic fragment input (dashed) and corresponding

output density (dash dotted) to the selfconsistent density (full line) along the molecu-
lar axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.). The input and
output densities correspond to the trial density n̄ de�ned in (3.4) and the density n′,
de�ned in (2.25), respectively. All densities integrate to the same number of electrons.
The ordinate of the inset is scaled by a factor of 20.The FAF trial density signi�cantly
deviates from the selfconsistent one. It underestimates the density in the molecular,
and overestimates it in the outer region. Generally, the crystal potential overcompen-
sates the kinetic energy costs of localization. This is, because the electrons feel the
attraction of both nuclei. From an energetic point of view, it is therefore favorable
to shift electronic density closer to the molecule. In the isolated atom with only one
nucleus, the driving force for localization is much smaller. Hence, a superposition of
atomic densities is no adequate estimate of the crystal density. An arti�cial localiza-
tion can be introduced by a spherical localization of the atomic density. This will be
discussed in the following section.

6.3 Spherically localized FAF

As discussed in the previous section, a superposition of frozen atomic densities is not a
good estimate of the crystal density. The missing localization can however arti�cially
be introduced, applying a localization potential to the isolated atom potential. All
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Figure 6.2: Binding energy of the H2 dimer as a function of inter-atomic spacing. The
full line corresponds to the selfconsistent reference. The dashed line shows the results for
the frozen atomic fragment density approach determined in the representation of the new
method. The single data points correspond to published results of other groups for frozen
atomic fragments. Foulkes results (grey triangle) seem to be unconverged. For details see the
text.
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Figure 6.3: The frozen atomic fragment input (dashed) and output density (dash dotted)
compared to the selfconsistent density (full line) along the molecular axis for a hydrogen
dimer at the lda equilibrium spacing (1.45 a.u.). The input and output densities correspond
to the trial density n̄ de�ned in (3.4) and the density n′, de�ned in (2.25), respectively. All
densities integrate to the same number of electrons. The ordinate of the inset is scaled by a
factor of 20.
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�avors of localization potentials, from harmonic to exponential shape, have been used
in the past decades. See section 2.4.4 and 2.5 for further details.
Figure 6.4 shows the binding energy ofH2 for spherically localized atomic fragments

at the lda equilibrium spacing (1.45 a.u.), using an additional exponential potential
of the form:

V loc(|r|) = min
(
Vmax · e−

rc
|r|+1

, Vmax

)
.

Vmax has been �xed to a value of 1000, the cuto� radius rc, at which V loc = Vmax
served as free parameter. The dashed and dash dotted line correspond to trial densities
composed from superimposed localized atomic fragments excluding and including the
interference contribution, respectively.
In common implementations, the interference contribution is not taken into ac-

count, because it is numerically demanding and, in general, does not lead to better
results. This will become clear in the following analysis. Excluding the interference
contribution, the lda ground state binding energy (full line) is achieved for rc = 2.10
a.u. and 3.69 a.u.. Taking it into account, best results are obtained for rc = 2.09 a.u.
and 4.65 a.u..
Table 6.3 references the corresponding trial densities to abbreviations used in the

following. It includes an additional density (F-2) for which Etb, which corresponds to
the eigenvalue of the occupied molecular orbital, is equal to the selfconsistent value.

rc (a.u.) Trial density referenced as

no interference contribution 2.10 (F-1)
3.28 (F-2)
3.69 (F-3)

including interference contribution 2.09 (F-4)
4.65 (F-5)

Table 6.3: List of trial density identi�cation code used in the this section. For details see
the text.

Figure 6.5 shows the crystal total energy contributions over cuto� radius for H2 at
the lda equilibrium spacing (1.45 a.u.). No interference has been taken into account.
The horizontal lines mark the self-consistent reference values given in table 6.1. The
vertical lines denote the densities (F-1) - (F-3). The corresponding in- and output
densities are given in �gure 6.6. Although the correct binding energy is achieved for
the trial densities (F-1) and (F-3) (see �gure 6.4 for details), the individual crystal
energy contributions deviate from the selfconsistent values. The cuto� radii, for which
the non- and selfconsistent energy contributions coincide are close (Ekin : 3.10 ,
Ecoul : 3.04, Exc : 3.30) but not the same. From this follows, that it is impossible to
represent the selfconsistent crystal density in spherically localized atomic fragments.
Only for rc = 2.10 (F-1) and 3.69 a.u. (F-3), the individual errors - although quite
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Figure 6.4: The binding energy of H2 for spherically localized atomic fragments at the
lda equilibrium spacing (1.45 a.u.), using an additional exponential potential of the form

V loc(|r|) = min
(
Vmaxe

− rc
|r|+1, Vmax

)
. Vmax has been �xed to a value of 1000, the cuto�

radius rc, at which V loc = Vmax served as free parameter. The dashed and dash dotted
line correspond to trial densities composed from superimposed localized atomic fragments
excluding and including the interference contribution, respectively. The lda ground state
binding energy (full line) is achieved for rc = 2.10 a.u. and 3.69 a.u. (no interference
contribution) and rc = 2.09 a.u. and 4.65 a.u. (including the interference contribution).
Table 6.3 references the corresponding trial densities to the abbreviations used in the text.
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Figure 6.5: The crystal total energy contributions over cuto� radius for H2 at the lda
equilibrium spacing (1.45 a.u.). No interference has been taken into account. The horizontal
lines mark the self-consistent reference values given in table 6.1. The vertical lines denote
the densities (F-1) - (F-3) (from left to right). The corresponding in and output densities
are given in �gure 6.6. Although the correct binding energy is achieved for the trial densities
(F-1) and (F-3) (see �gure 6.4 for details), the individual crystal energy contributions deviate
from the selfconsistent values. The cuto� radii, for which the non- and selfconsistent energy
contributions coincide are close (Ekin : 3.10 , Ecoul : 3.04, Exc : 3.30) but not the same. From
this follows, that it is impossible to represent the selfconsistent crystal density in spherically
localized atomic fragments.

large - cancel exactly. The corresponding densities (dashed and dash dotted line in
�gure (6.6) are not even close to the selfconsistent one. This re�ects the stationarity
of the total energy functional.

Figure 6.7 compares the SESM functional energies (3.12-3.14) over cuto� radius
rc to the selfconsistent values listed in table 6.1. As discussed above, the di�erences
are due to the di�erent deformation strategies used in generation of the input density.
This most signi�cantly can be seen for the coupling energy (double dash dotted lines),
which do not even cross.

For trial densities including the interference contribution, one intuitively would
expect better results. This is, because the trial densities excluding interference (shown
in �gure 6.6) generally underestimate the density in the bond region with respect to the
atomic region. The interference term mainly contributes to the bond region. Taking
it into account therefore corresponds to shifting density from the atomic into the
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Figure 6.6: The spherically localized frozen atomic fragment input (black) and output
densities (grey) (mnemonics de�ned in table 6.3) compared to the selfconsistent density (full
line) along the molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.).
All densities integrate to the same number of electrons. The ordinate of the inset in the upper
panel is scaled by a factor of 100. It can be seen that no trial density composed from atomic
fragments can accurately represent the selfconsistent density in the bond and atomic region
at the same time. Even the decay for larger separation from the bond center is qualitatively
wrong. The latter is the reason for the failure of this approach e.g. for defect structures. See
the text for further details.
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Figure 6.7: The SESM functional energies (3.9-3.14) over cuto� radius rc compared to
the selfconsistent values (horizontal lines) listed in table 6.1 for H2 at the lda equilibrium
spacing (1.45 a.u.). No interference has been taken into account. The vertical lines denote
the densities (F-1) - (F-3) (from left to right).

bond region1. For spherically localized atomic fragments, this e�ect however is much
stronger than for the selfconsistent crystal and the densities including interference
therefore overestimate the density in the bond region. This is illustrated in �gure 6.8.
Figure 6.9 compares the binding energy of the H2 dimer as a function of inter atomic

spacing for the spherically localized atomic densities (F-1) - (F-3) de�ned in table 6.3
to the selfconsistent PAW result. The binding energy converges to the spinpolarization
correction (1.79 eV), discussed in the context of table 5.1. For the cases (F-1) and
(F-3), the cuto� radius rc and hence the atomic densities have been �tted such, that
the correct binding energy is achieved at the lda ground state separation (1.45 a.u.).
Although the errors in binding energy are small for a wide range of inter-atomic
separations, the plots emphasize a general drawback of this approach: once rc is
chosen, the shape of each atomic fragment is held �xed for all inter-atomic separations.
A set of �xed atomic fragments can however not represent the crystal density for
arbitrary bond lengths. This is most obvious for large inter-atomic separations: the
spherically localized atomic densities deviate strongly from the free atom densities.
For regions not dominated by the bond, this mismatch however is present, independent
from the actual fragment separation. This can be seen in the insets of �gure 6.6 and
6.8. The decay of the trial density on the opposite side of the bond corresponds to the
decay of the spherically localized atom, whereas the selfconsistent density corresponds

1Due to norm conservation (
R
χ2
A + χ2

Bd
3r =

R
χ2
A + 2χAχB + χ2

Bd
3r = N) , the density in the

atomic region is scaled down for included interference contribution (2χAχB).
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Figure 6.8: The spherically localized frozen atomic fragment input (black) and output densi-
ties (grey) including the interference contribution (mnemonics de�ned in table 6.3) compared
to the selfconsistent density (full line) along the molecular axis for a hydrogen dimer at the
lda equilibrium spacing (1.45 a.u.). All densities integrate to the same number of electrons.
The ordinate of the inset in the upper panel is scaled by a factor of 100. See the text for
further details.
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to the free atom's density. This is the reason for the failure of the atomic fragment
approach for more complex systems such as defect structures and surfaces.
Our new approach, discussed in the following section, allows to determine non-

spherically deformed fragments re�ecting the crystal structure and therefore over-
comes these problems.
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Figure 6.9: Binding energy of the H2 dimer as a function of inter-atomic spacing for spher-
ically localized atomic densities, de�ned in table 6.3. The full line corresponds to the selfcon-
sistent PAW reference. The selfconsistent binding energy converges to the spinpolarization
correction (1.79 eV), discussed in the context of table 5.1. See the text for further details.



7 Non-spherical deformed atomic

fragments

7.1 Deformed atomic density and binding energy

The embedding potentials introduced in section 4.3 allow to determine non-spherically
deformed atomic fragments, which re�ect the crystal structure and therefore overcome
the limitations of frozen atomic fragments. The contribution per chemical element to
the embedding potential thereby is fully characterized by the radii rt and rp de�ned
in subsection 4.3.7. In the following, we refer to individual setups in the form (r̃p : r̃t)
(see equation 4.46 and the corresponding text for further details).
Figure 7.1, 7.2 and 7.3 compare the binding energy of the H2 dimer as a function

of inter-atomic spacing for trial densities obtained from di�erent embedding poten-
tials, to the self-consistent result (full line). For large inter-atomic spacing, the bond
energies for all trial densities (except the FAF calculation (F-1)) converge to the spin-
polarization correction (1.79 eV), discussed in the context of table 5.1. Keeping rp
�xed to 1

8rcovalent, best results are obtained for rt = 3. A further increasing of rt has
only a little e�ect (upper panel of �gure 7.2). The results for rt = 5 (not plotted) in
fact are equal to those obtained for rt = 4.
Con�ning the repulsion potential in a box with rp = 1

4rcovalent (lower panel of
�gure 7.2), the binding energy for rt = 4 comes closest to the self-consistent result.
Comparing the upper and lower panel of �gure 7.2, one �nds that for rp = 1

8 , the
exact result can be reproduced much better than for 1

4 . The curves for the latter seem
to be somewhat tilted to the left. Choosing rp = 1

4 and rt such, that the binding
energy at the lda equilibrium spacing (1.45 a.u.) would corresponds to the correct
value (which is almost exactly obtained from (1/8:3)), the binding energy would be
overestimated for inter-atomic separations smaller than 1.45 a.u.. This e�ect is due
to the repulsion potential reaching further in the bonding region. As shown in �gure
7.3, the e�ect gets stronger for increased rp.
The setup (1/8:3) leads to an accuracy which is achieved by the best frozen atomic

fragment calculation (F-1) only near the inter-atomic spacing, for which it has been
optimized.
Figure 7.4 compares the trial densities obtained for di�erent setups to the self-

consistent density (full line) along the molecular axis for a hydrogen dimer at the
lda equilibrium spacing (1.45 a.u.). All densities integrate to the same number of
electrons. The ordinate of the inset in the upper panel is scaled by a factor of 100.
Following the sequence rt = 2 to rt = 4 for rp = 1

8 (black) and rp = 1
4 (grey), it is
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Figure 7.1: Binding energy of the H2 dimer as a function of inter-atomic spacing for trial
densities obtained from di�erent embedding potentials, compared to the self-consistent result
(full line). For large inter-atomic spacing, the bond energies for all trial densities (except
the FAF calculation (F-1)) converge to the spinpolarization correction (1.79 eV), discussed
in the context of table 5.1. The FAF density has been de�ned in table 6.3. The setups
for the nonspherical deformation are coded in the form (r̃p : r̃t) (see equation 4.46 and the
corresponding text for further details). See the text for a discussion.
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Figure 7.2: Binding energy of the H2 dimer as a function of inter-atomic spacing for trial
densities obtained from di�erent embedding potentials, compared to the self-consistent result
(full line). The setups for the nonspherical deformation are coded in the form (r̃p : r̃t) (see
equation 4.46 and the corresponding text for further details). See the text for a discussion.
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Figure 7.3: Binding energy of the H2 dimer as a function of inter-atomic spacing for trial
densities obtained from di�erent embedding potentials, compared to the self-consistent result
(full line). The setups for the nonspherical deformation are coded in the form (r̃p : r̃t) (see
equation 4.46 and the corresponding text for further details). See the text for a discussion.

found that the density at the atomic position is mainly in�uenced by the box radius
for the total potential of the neighbor's (rt), whereas the density in the bond region
is dominated by the localization of the repulsion potential (rp). For increasing rt,
density is shifted from the outer to the molecular region and the decay of the density
for larger distances from the bond center becomes equal to the selfconsistent one (see
the inset on the top panel of �gure 7.4). The curve (1/4:4) (grey, dotted line) mimics
the shape of the selfconsistent density (black, full line) the best. It is almost parallel
to the exact density in the bond and and equal to it in the outer region. Neverthe-
less, it does not lead to the best accordance with the selfconsistent result in terms of
binding energy. The reason for this seeming contradiction lies in the error cancella-
tion. As shown in �gure 7.7, the individual deviation in the kinetic, electrostatic and
exchange and correlation energy for (1/4:4) is, for wide ranges of inter-atomic sepa-
rations, smaller than those of (1/8:3). The quality of the total energy approximation
however does not depend on the absolute values of the individual errors, but on the
remaining error when added up.
Following the sequence rt = 2 to rt = 4, the amount of density in the molecular

region increases, but does not approach the selfconsistent reference. One could think
that a further increase of rt could bring the trial density for rp = 1

4 to exact accordance
with the selfconsistent one. As discussed above, the in�uence of rt however is minimal
for values larger than 4.
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Figure 7.4: Trial densities obtained for di�erent setups compared to the selfconsistent
density (full line) along the molecular axis for a hydrogen dimer at the lda equilibrium spacing
(1.45 a.u.). All densities integrate to the same number of electrons. The ordinate of the inset
in the upper panel is scaled by a factor of 100. The setups for the nonspeherical deformation
are coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further
details). See the text for a discussion.
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Figure 7.5: The embedding potential for the atom residing at −0.725 a.u. along the molec-
ular axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.) compared to the
selfconsistent total potential (full line). The setups for the nonspeherical deformation are
coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details).
See the text for a discussion.

The remaining deviation arises from the approximation of the total potential used
in the deformation process. The approximation of the exchange and correlation po-
tential (item 3 in 5.2) as superposition of the individual contributions (Vxc[

∑
i ni] ≈∑

i Vxc[ni]) thereby deviates from the selfconsistent crystal potential because of two
reasons: �rst, it misses a repulsion due to the overlap of the fragment densities, which
is mainly located in the bond region. The embedding potential (plotted in �gure 7.5)
hence is more attractive in these regions. This leads to density being shifted from
the atomic in the interstitial region. In addition, the exchange correlation potential
of the self-consistent crystal results from the superposition of the selfconsistent frag-
ment densities. In the embedding potential, we however use the density localized in a
spherical box with radius rt for all neighbors. The e�ects of these approximations mu-
tually interact. The di�erence between the embedding potentials (1/8:3) and (1/4:4)
therefore can not easily be explained.
In composition of the total density, we furthermore neglect the interference part

of the fragments. In the selfconsistent case including interference, a non negligible
contribution to the density in the atomic region however arises just therefrom (see
�gure 7.8 for more details).
Figure 7.6 and 7.7 emphasize the basic di�erence between the spherically localized

frozen and deformed atomic fragment approach. The approximated densities for the
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Figure 7.6: Trial densities obtained for di�erent setups compared to FAF and the selfcon-
sistent density (full line) along the molecular axis for a hydrogen dimer at the lda equilibrium
spacing (1.45 a.u.). All densities integrate to the same number of electrons. The ordinate of
the inset is scaled by a factor of 100. The FAF density has been de�ned in table 6.3. The
setups for the nonspeherical deformation are coded in the form (r̃p : r̃t) (see equation 4.46
and the corresponding text for further details). See the text for a discussion.

FAF are much worse, in particular for the regions not being part of a bond. The
decay of the selfconsistent crystal density, which is satisfactorily reproduced by the
deformed fragment densities, can not be described in terms of spherically localized
atomic fragments (see the inset in �gure 7.6). The FAF densities lead to considerable
errors in the kinetic, electrostatic and exchange and correlation energy plotted in
�gure 7.7. Due to the stationarity of the total energy functional, these errors mainly
cancel for small molecules and small deviations from the inter-atomic separation, the
FAF density has been optimized for. In the case of more complicated systems, such
as defect structures and surfaces, errors due to the wrong decay of the trial density
play an important role and the FAF approach breakes down.

7.2 Deformed atomic wave functions

Figure 7.8 shows the self-consistent trial density (full line) along the molecular axis
for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.) decomposed in atomic
(dashed line) and interference contributions (dotted line). The superposition of the
atomic contributions (dash dotted line) and the interference part (dotted line) add
up to the self-consistent density (full line). The interference density considerably
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Figure 7.7: Kinetic, electrostatic and exchange and correlation energy of the H2 dimer
as a function of inter-atomic spacing for trial densities obtained from di�erent embedding
potentials, compared to FAF and self-consistent results (full line). The FAF density has been
de�ned in table 6.3. The setups for the nonspeherical deformation are coded in the form
(r̃p : r̃t) (see equation 4.46 and the corresponding text for further details). See the text for a
discussion.
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Figure 7.8: The self-consistent trial density (full line) along the molecular axis for a hydrogen
dimer at the lda equilibrium spacing (1.45 a.u.) decomposed in atomic (dashed line) and
interference contributions (dotted line). The superposition of the atomic contributions (dash
dotted line) and the interference part (dotted line) add up to the self-consistent density (full
line). Excluding the interference contribution from the trial density, the atomic contributions
need to be rescaled in order to integrate to the same amount of electrons (dash dotted gray
line). The ordinate of the inset is scaled by a factor of 100. See the text for a discussion.

contributes to the density in the atomic region. Excluding the interference contri-
bution from the trial density, the atomic contributions need to be rescaled in order
to integrate to the same amount of electrons (dash dotted gray line). Because the
selfconsistent density has been optimized including the interference contribution, the
scaled atomic superposition can not reproduce the selfconsistent density satisfactory.
The trial densities, which lead to the best approximations of the binding energy (see

�gure 7.2 and the related discussion for details) when interference contributions were
excluded, are plotted in �gure 7.9 (results obtained from (1/4:4) correspond to the
black and (1/8:3) to the grey dashed and dash dotted lines). In order to reproduce the
selfconsistent crystal density in the bond region from atomic contributions solely, the
atomic fragments need to extend into this region. As a result, the overlap and hence
the interference contribution (relative to the atomic contribution) of these fragments
is larger than in the selfconsistent case (compare �gure 7.18 and 7.8).
Figure 7.10 shows the fragment wave functions for the setups (1/4:4) (black dashed

lines) and (1/8:3) (gray dashed lines) along the molecular axis for a hydrogen dimer
at the lda equilibrium spacing (1.45 a.u.) compared to the occupied selfconsistent
molecular orbital (full line). The small wriggles at −2.25 a.u. from the bond center in
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Figure 7.9: The trial density for the setups (1/4:4) (black) and (1/8:3) (grey) along the
molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.) decomposed
in atomic contributions (dashed line) compared to self-consistent trial density (full line). See
the text for a discussion.

the on-site branch are due to an artifact in the embedding potential (shown in �gure
7.11). During the deformation calculation, the Pauli repulsion peak of the neighbor
is described in a spherical harmonics expansion. The strong localization and �nite
angular momentum cuto� lead to Gauss oscillations (see section 8.3 for a detailed
discussion) in the potential.
The amplitude of the fragment wave function in the tail region is considerably re-

duced (compare the lower dashed lines with the full line at the atomic positions) but
does not exactly approach zero for the neighbors position. This might be due the
tunnel e�ect because the Pauli repulsion peak is strongly localized and �nite. Never-
theless, the desired localization e�ect of the neighbor is present. This is emphasized
in the inset of �gure 7.12, which compares the decay of the o�-site fragments density
to that of the molecular orbital. When applied to crystal systems, the new approach
should allow to decompose the density of delocalized states in localized, atom centered
contributions, as sketched in �gure 7.13.

7.3 Transferability of the embedding potentials

Figure 7.14 shows the hydrogen s- (black), p- (grey), and d- (light grey) radial function
of the valence repulsion potential, determined from atoms compressed in spherical
boxes with box radius rp = 1

8 ,
1
4 , and

1
2rcovalent, respectively (see section 4.3 for
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Figure 7.10: The fragment wave functions for the setups (1/4:4) (black dashed lines) and
(1/8:3) (gray dashed lines) along the molecular axis for a hydrogen dimer at the lda equi-
librium spacing (1.45 a.u.) compared to the occupied selfconsistent molecular orbital (full
line). The ordinate of the inset is scaled by a factor of 5. The setups for the nonspeherical
deformation are coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for
further details). See the text for a discussion.
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Figure 7.11: The embedding potential for the atom residing at −0.725 a.u. along the
molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.) compared
to the selfconsistent total potential (full line). The small peak at −2.25 a.u. corresponds
to Gauss oscillations originating from the limited angular momentum cuto� in the spherical
harmonic expansion of the peak residing at 0.725 a.u.. The setups for the nonspeherical
deformation are coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for
further details). See the text for a discussion.
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Figure 7.12: The o�-site trial density for the setups (1/4:4) (black) and (1/8:3) (grey) along
the molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.) compared
to self-consistent density of the occupied molecular orbital (full line). The ordinate of the
inset is scaled by a factor of 100. The setups for the nonspeherical deformation are coded in
the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details). See the
text for a discussion.
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Figure 7.13: A sketch of the decomposition of a localized crystal density (full line) in local
contributions for the setup (1/4:4). See the text for a discussion.

theoretical details). For all calculations shown in the upper panel, the expansion
energy ε̄ has been chosen to be equal to the energy of the crystal state at the lda ground
state separation (−0.37 H). Thus, the potentials correspond to the exact potentials
for this separation. In the lower panel, the repulsion potentials determined at the
corresponding bond energies in the spherical box (Esbond = −4.23 H, Epbond = 92.97 H,
Edbond = 244.95 H) are compared to the exact potentials for rp = 1

4rcovalent.
The corresponding densities are shown in �gure 7.15. Following the argumentation

in section 4.3.8, the densities have been calculated, applying only the spherical part
of the repulsion potentials. The sole exception is the result labeled by (1/4:4 p), for
which the spherical symmetrized p-channel has been used.
Picking up the discussion in 7.1, it can be stated that the density in the atomic re-

gion is dominated by the approximation of the fragments total potential contribution,
whereas the valence repulsion potential a�ects the bond region. The changes in the
trial density due to neglect of the spherical symmetrized contributions of higher angu-
lar momentum channels can be balanced by an adaption of the spherical box radii rt
and rd. The lower panel of �gure 7.14 emphasizes the fact that the energy-dependence
of the repulsion potentials is minimal. Besides, it should be noted that the error in
binding energy at the lda ground state separation of H2 for all trial densities plotted
in �gure 7.15 - except (1/2:1) - is in the range of 1 mH. The setup (1/2:1) leads to a
deviation of 38 mH.
The approach based on spherically approximated and energy linearized valence

repulsion potentials outlined in section 4.3.8 therefore is well justi�ed and should be
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applicable in all day work.

7.4 Results for included interference

Taking the interference contribution in the composition of the trial density into ac-
count, the setups (1/8:3) and (1/4:4) still lead to the best accordance with the self-
consistent binding energy. The four most accurate results are shown in Figure 7.16.
The corresponding trial densities, plotted in �gure (7.17), however dramatically un-
derestimate the density in the atomic region. This is, because the overlap and hence
the interference contribution of these fragments is large. In order to integrate to the
same amount of electrons, the atomic contribution needs to be scaled down, when
interference is taken into account (see �gure 7.18 for a decomposition of the trial den-
sity into the individual contributions). This weighting shifts density from the atomic
into the regions where the fragments overlap. Due to the approximation of Vxc and
the resulting underestimated repulsion in these regions (for details see the discussion
in the preceding sections), the density relocation is additionally forti�ed. It should be
noted that the regions with large overlap are located on a plane perpendicular to the
bond, subtending the molecular axis at the mid of the bond. All densities plotted in
�gure 7.17 in 3d integrate to the same value.
Figure 7.19 shows the trial densities and interference contributions obtained for

di�erent setups including interference, compared to the selfconsistent density (full
line) along the molecular axis for a hydrogen dimer at the lda equilibrium spacing
(1.45 a.u.). For stronger localized valence repulsion, the shape of the interference
part becomes similar to the selfconsistent one. Due to the unbalanced ratio between
interference and atomic contribution, the absolute height however is not the same.
Figure 7.20 shows the corresponding atomic contributions.

7.5 Deformed atomic fragments as minimal basis

One goal of the SESM approach was to allow a representation of the selfconsistent
crystal density in atom-centered contributions, because it is numerically convenient
and facilitates the interpretation of results. The results discussed above (see e.g. �gure
7.1 and 7.6) showed, that the non-spherical deformation allows to access the binding
energy as well as the self-consistent density su�ciently accurate. The trial density
from non-spherical atomic fragments thereby is much closer to the selfconsistent one
than in the case of spherically localized atomic fragments. The remaining di�erence is
due to the approximation of the total potential used during the deformation process.
The errors are in particular dominated by the neglect of the overlap contribution to
the exchange and correlation potential (see �gure 7.5 and the related discussion for
further details).
The deformed orbitals χ, optimized for the representation of the crystal density

from atomic contributions solely (e.g. in the case of H2: nH2(r) ≈ χ2
1(r) + χ2

2(r)),
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Figure 7.14: The hydrogen s- (black), p- (grey), and d- (light grey) radial function of the
valence repulsion potential, determined from atoms compressed in spherical boxes with box
radius rp = 1

8 ,
1
4 , and

1
2rcovalent, respectively (see section 4.3 for theoretical details). For

all calculations shown in the upper panel, the expansion energy ε̄ has been chosen to be
equal to the energy of the crystal state at the lda ground state separation (−0.37 H). Thus,
the potentials correspond to the exact potentials for this separation. In the lower panel,
the repulsion potentials determined at the corresponding bond energies in the spherical box
(Esbond = −4.23 H, Epbond = 92.97 H, Edbond = 244.95 H) are compared to the exact potentials
for rp = 1

4rcovalent. The repulsion potentials are coded in the form (r̃p : r̃t) (see equation 4.46
and the corresponding text for further details). See the text for a discussion.
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Figure 7.15: The trial densities obtained for the Pauli repulsion potentials plotted in �gure
7.14 along the molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45
a.u.), compared to the selfconsistent density (full line). The setups for the nonspeherical
deformation are coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for
further details). See the text for a discussion.
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Figure 7.16: Binding energy of the H2 dimer as a function of inter-atomic spacing for trial
densities including interference obtained from di�erent embedding potentials, compared to
the self-consistent result (full line). The setups for the nonspeherical deformation are coded
in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details). See
the text for a discussion.
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Figure 7.17: Trial densities obtained for the setups (1/8:3) and (1/4:4) including interfer-
ence, compared to the selfconsistent density (full line) along the molecular axis for a hydrogen
dimer at the lda equilibrium spacing (1.45 a.u.). All densities integrate to the same number
of electrons. The ordinate of the inset is scaled by a factor of 100. The setups for the nonspe-
herical deformation are coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding
text for further details). See the text for a discussion.
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Figure 7.18: The trial density, including the interference contribution, for the setup (1/4:4)
(grey line) along the molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45
a.u.) compared to the selfconsistent density (full line) and decomposed in atomic (dashed line)
and interference contributions (dotted line). The superposition of the atomic contributions
(dash dotted line) and the interference part (dotted line) add up to the grey line. The ordinate
of the inset is scaled by a factor of 100. The setups for the nonspeherical deformation are
coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details).
See the text for a discussion.
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Figure 7.19: Trial densities and interference contribution obtained for di�erent setups in-
cluding interference, compared to the selfconsistent density (full line) along the molecular axis
for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.). The setups for the nonspe-
herical deformation are coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding
text for further details). See the text for a discussion.
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Figure 7.20: The atomic contribution of the trial density for di�erent setups along the
molecular axis for a hydrogen dimer at the lda equilibrium spacing (1.45 a.u.) compared to
the selfconsistent density (full line). The setups for the nonspeherical deformation are coded
in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details). See
the text for a discussion.
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however can not be used as minimal basis for the solution of the crystals Schrödinger's
equation. This is, because the process of solving Schrödinger's equation operates on
the level of wave functions. The corresponding density and energy contributions
are connected to the square of the wavefunction, which automatically includes the
interference contribution. Applying a minimal basis which includes the interference
in the atomic contibution, therefore leads to a overstimation of interference.
In order to illustrate this, one may think of two minimal bases {χ} and {χ̃} for the

H2 system. The �rst ({χ}) corresponds to the deformed orbitals, optimized to repro-
duce the groundstate density from superposition of atomic contributions according
to

nH2(r) = χ2
1(r) + χ2

2(r). (7.1)

The latter ({χ̃}) may correspond to a correct description of the H2 groundstate wave-
function:

ϕH2(r) = χ̃1(r) + χ̃2(r).

The groundstate density obtained from a tight-binding approach in the basis {χ̃} can
be written as follows:

nH2(r) = ϕ2
H2

(r)

= (χ̃1(r) + χ̃2(r))2

=
(
χ̃2

1(r) + χ̃2
2(r) + 2χ̃1(r)χ̃2(r)

)
, (7.2)

and corresponds to the true density.
Solving theH2 system in a tight-binding approach in the minimal basis {χ} however

results in the following groundstate wavefunction and density:

φH2(r) = C (χ1(r) + χ2(r))

n
(χ)
H2

(r) = φ2
H2

(r)

= C2
(
χ2

1(r) + χ2
2(r) + 2χ1(r)χ2(r)

)
, (7.3)

with C corresponding to a normalization constant such, that
∫
φ2
H2

(r)d3r = 2.
Per construction (7.1), the deformed orbitals {χ} however include the interference

in the atomic contribution. From (7.1) and (7.3) therefore follows:

n
(χ)
H2

(r) = C2
(
χ2

1(r) + χ2
2(r) + 2χ1(r)χ2(r)

)
= C2 (nH2(r) + 2χ1(r)χ2(r)) .

This is a strange density explicitely including the interference χ1(r)χ2(r) of two bas-
isfunctions, which themselves implicitely include the interference χ̃1(r)χ̃2(r).
When following a tight-binding approach in an extended deformed basis, the in-

terference contribution χ1(r)χ2(r) can be compensated by additional basis functions.
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χ ∼ e−1.0|r| ∼ e−1.5|r| ∼ e−2.0|r| ∼ e−5.0|r| ∼ |r|e−0.5|r|

centered at RA 0.375 0.513 0.279 0.098 -0.005 0.059
centered at RB 0.384 0.525 0.258 0.107 -0.005 -0.060

Table 7.1: The expansion coe�cients for a hydrogen dimer at the lda equilibrium spacing
(1.45 a.u.). The deformed orbitals χ have been determined, using the setup (1/8:3). The
expansion coe�cients are normalized such that the orbitals density is equal to one. It can be
seen that a considerable mixing of additional basis functions occurs. The setup is coded in
the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details). See the
text for a discussion.

From a physical point of view, this is unproblematic, as long as the addition of further
basis functions leads to a complete basis set. The numerical costs however increase.
Table 7.1 provides the expansion coe�cients for a hydrogen dimer at the lda equi-
librium spacing (1.45 a.u.). The deformed orbitals χ have been determined, using
the setup (1/8:3). The expansion coe�cients are normalized such that the orbitals
density is equal to one. It can be seen that a considerable mixing of additional basis
functions occurs.
It should be noted, that the accurate determination of Etb (de�ned in equation

(3.10)), which implies the solution of Schrödinger's equation, is indispensable. An
arti�cial neglect of interference contributions in this step would a�ect the error can-
cellation and hence the accuracy of the density functional (3.8).
Nevertheless, non-spherical deformed atomic orbitals, in principle, should be suit-

able as minimal basis set. They simply need to be determined such, that the crystal
density is represented most accurate with included interference contribution (which
would correspond to the basis {χ̃} introduced above). It is therefore not possible to
determine atomic fragments which allow to split the crystal density in atomic contri-
butions - excluding interference - and serve as minimal basis set at the same time.
From the discussion of the interference contribution in section 7.4 follows, that the

approximation of the exchange and correlation potential in the deformation process
heavily a�ects the quality of the basis functions. Due to the stationarity of the SESM
functional, the derived density nevertheless leads to quite accurate results. In order to
determine deformed wavefunctions suitable as minimal basis ({χ̃}), the quality of the
deformed wavefunctions and hence the approximation of the exchange and correlation
potential needs to be enhanced.

7.6 Detailed discussion of the self-consistent deformation

method of Boyer et. al.

Recently, a self-consistent method for the deformation of atomic orbitals has been
published by Boyer et. al. [51]. This approach, just as the Car-Parrinello dynamic
localized orbital scheme, applies an additional localization potential on the electrons.
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The localization potentials are however derived from the overlap contribution to the
kinetic energy. The kinetic energy is approximated as follows:

Ts[n(r)] ≈
∑
i

T0[ni(r)] + Tk[n(r)]−
∑
i

Tk[ni(r)] (7.4)

where T0[ni(r)] is the kinetic energy of non-interacting electrons of density ni in a
potential vi, centered at the atomic positionRi, which shall be chosen such, that

n(r) =
∑
i

ni(r).

Tk is a functional to account for the non interacting kinetic energy due to the over-
lapping of electronic densities from neighboring sites. It corresponds to the Thomas-
Fermi form

Tk[n(r)] = TTF [n(r)] = A

∫
n

5
3 (r)d3r

and generalizations thereof for non-local functionals. See Appendix A.3 for the theo-
retical details of the Thomas Fermi approach.
The condition for the many particle energy (2.17) to be a minimum with respect

to the many particle density:

0 =
δE[n]
δn

=
δ

δn
(Ts[n] + Ecoul[n] + Exc[n])

allows to solve for the potential vi, which however depends on the actual crystal
density. This introduces the need for self-consistent iterations with respect to the total
crystal. This is totally di�erent from our approach, which allows to derive embedding
potential contributions on an chemical element basis in the form of setups. The
deformed fragment is then indeed calculated self-consistently, but only with respect
to the fragments density. The embedding potential itself is not explicitly dependent
on the self-consistent density of the crystal, in which the fragment is embedded. A
self-consistent determination therefore is dispensable.
In addition, in our density functional approach, all approximations operate on the

level of total energies. The stationarity of ground state total energies with respect
to the density ensures the cancellation of �rst order errors. Furthermore, closed
expressions for the second order errors can be derived (see section 2.4.2 for details).
Boyer et. al. however approximate the kinetic energy for which no stationarity

principle exists. This impedes the error cancellation. The resulting errors in the
total energy therefore usually are orders of magnitude larger than for balanced error
cancellations. In addition, the quality of the approximation of the kinetic energy is
not enhanced during the self-consistent iteration. This leads to a non-vanishing error,
even for self-consistency. Our method in contrast for self-consistency approaches the
exact many-particle ground state. See �gures 6.5 and 7.7 and the related discussion for
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more details about the error cancellation. Boyer et.al. in [51] besides owe a discussion
of the introduced errors.
The authors state that the numerical implementation is based on the re-transformation

of spherical harmonic expansions. It should su�er from Gauÿ-oscillations discussed in
section 8.3. This problem is however not discussed in the publication. It is therefore
unclear if the authors are aware of it.



Part IV

Implementational details





8 Spherical harmonics basis set

8.1 Advantages

The spherical harmonics basis set, with its decomposition in radial function times
spherical harmonics:

f(r) =
∑
l,m

fl,m(|r|)Yl,m(r̂),

is the natural basis of isolated atoms. For spherically symmetric potentials, Schrödinger's
equation can easily be solved in this representation (see standard textbooks for de-
tails). In numerical implementations, the radial functions thereby are usually held on
logarithmic radial grids:

r(x) = r1e
(x−1)α, x = 1 . . . nr

r(x+ 1) = r(x)eα

with typical values of nr = 250, r1 = 1.056 · 10−4a0 and α = 1/20, respectively. This
allows a high resolution near the nucleus, where the potential and wave functions are
steep, and a description of the smooth long-range behavior with a limited number
of mesh-points. This representation is therefore numerically convenient. Poisson's
equation can e.g. be solved with considerable reduced numerical costs compared to
standard 3D grid implementations.

An alternative approach is the commonly used plane wave basis. For a numerically
sensible application, the decomposed functions however need to be smooth. This is
not the case for our new method, in which we deal with extremely steep potential con-
tributions, originating from the Pauli repulsion discussed in section 4.3. Figure 8.1
compares the radial part of the embedding potential contribution vemb,H = vH,ae+ηoffH

of hydrogen for the setup (1/4:4) (grey line), to the corresponding radial functions ob-
tained from plane wave decompositions with di�erent plane-wave cuto� (black lines).
The high curvature of the potential makes it almost impossible to decompose it in a
numerically convenient number of plane waves, which would correspond to ∼ 30 Ry.

We therefore decided to use a real-space implementation based on atom centered
spherical harmonics expansions, which may be combined with other real-space ap-
proaches such as star-burst meshes.
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Figure 8.1: The radial part of the embedding potential contribution vemb,H = vH,ae + ηoffH

of hydrogen for the setup (1/4:4) (grey line), compared to the corresponding radial functions
obtained from plane wave decompositions with di�erent plane-wave cuto� (black lines). The
setup is coded in the form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further
details). See the text for a discussion.
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8.2 Expansion center transformation

In the context of the new method, multi-center integrals need to be solved. The em-
bedding potential, applied for the deformation of the fragments e.g. has contributions
from several neighbors. The neighbor contributions thereby are given as spherical
harmonics expansion, centered at the corresponding nuclei. A possible approach is to
transform the expansion center from the o�site to the central atom. Two alternative
general expressions for a transformation in 3D are derived in section B.4.3 and B.4.4,
respectively. For numerical implementations, it is however preferable to divide the
transformation in three steps. In a �rst step, the spherical harmonics expansion is
rotated such, that the connecting vector between old and new center resides on the
z-axis. In a second step, the center of the rotated expansion is transformed along the
z-axis. Finally, the result is rotated back into the original orientation. The advantage
of this approach is, that, in step two, we can exploit that all components for which
m 6= 0 do not contribute and that the integration along dφ can be carried out analyti-
cally. The spherical harmonics expansion of a function f(r), centered at R = (0, 0, R)
can then be expanded at the origin as follows1:

f(r) =
∑
L

fL(|r−R|)YL(r−R) =
∑
L′

gL′(|r|)YL′(r) (8.1)

with

gL′(|r|) =
∑
L

2πδm,m′
π∫

0

fL(
√
R2 + r2 − 2rR cos θ)P̄L′(cosθ)P̄L(cos(h(θ)))sinθdθ

(8.2)
The de�nition of P̄ and h(θ) and a detailed derivation can be found in section B.4

and B.4.5.

8.3 Gauÿ oscillations

The �nite angular momentum cuto� of transformed expansions leads to virtual re-
�ections of the transformed function. According to the oscillations emerging when
decomposing a given functions in plane waves (see e.g. �gure 8.1), we refer to this
e�ect as Gauÿ oscillations or shadows.
Figure 8.2 and 8.3 illustrate this e�ect. On the left panel, the transformed 1s orbital,

with origin on the right atom, expanded at the left atom is plotted for lmax = 0 . . . 5
(top → down). On the right panel, the corresponding di�erence between the exact
and the transformed function is shown. The scale is the same for all plots. Blue
color corresponds to negative, red to positive values. The errors due to �nite angular
momentum cuto� in the transformation leads to error contributions, located on a

1The indices l,m are in the following combined in a single index L.
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sphere with a radius corresponding to the distance of transformation (2 · 1.45 a.u.).
When calculating multi-center integrals this e�ect can dramatically in�uence the

result. Figure 8.4 shows the hydrogen 1s wave function of two atoms (left/rightmost
ball) at the lda ground-state separation of H2 (1.45 a.u.), when transformed to the
center of gravity (ball in the mid) applying a cuto� lmax = 2 (top- and mid-panel).
The corresponding overlap (bottom) is dominated by the Gauss oscillations. Figure
8.5 compares the analytic overlap (full line) over inter-atomic spacing for a hydrogen
dimer in lcao to the results obtained from transformed orbitals with lmax = 2 (dashed)
and lmax = 3 (dash dotted). The errors can only be suppressed by application of
selection rules (see section 8.4 for details).

8.4 Selection rules

The transformed expansion (8.1) in principle has contributions from in�nitely high
angular momentum components L′. The number of angular momentum contributions
needed to achieve a certain numerical accuracy increases with a stronger localization
in angle space. Therefore, a stronger localization at the original expansion center, or
a transformation over a larger distance (R) requires a higher cuto�. A convergence
with respect to angular momentum components for an individual expansion can, in
practical implementations, however not be achieved. It is therefore indispensable to
make use of the selection rules for the product of spherical harmonics (B.71).

Two-center integrals

For two-center integrals, the selection rules allow to derive an angular momentum
cuto� when one expansion is transformed in the other center. This can be illustrated
by the overlap of two wave functions residing on two di�erent nuclei2:

〈ϕ(1)|φ(2)〉 =
∫ ∑

lm,lm′

ϕ
(1)
lm(|r|)φ(2)

lm′(|r|)Ylm(|r|)Ylm′(|r|)d3r

B.65=
∫ ∑

lm

ϕ
(1)
lm(|r|)φ(2)

lm(|r|)r2dr

For two transformed expansions, the summation in principle has no upper limit. If
we however transform one function to the center of the second, the limited angular
momentum contribution of the onsite expansion naturally limits the maximum angular
momentum needed for the transformation. Suppose ϕ(1) to have contributions up to
l = 3. The highest angular momentum channel of φ(2), when re-expanded at r1, which
contributes to the integral therefore is also l = 3. Table 8.1 illustrates this for two
wave functions with hydrogen 1s and 2pzcontributions, separated at 1.45a.u. along z.

2Here, we suppose to deal with real spherical harmonics. The notation (i) denotes the original
expansion center.
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Figure 8.2: The transformed 1s orbital, with origin on the right atom, expanded at the
left atom for lmax = 0 . . . 2 (top → down,left panel). On the right panel, the corresponding
di�erence between the exact and the transformed function is shown. The scale is the same
for all plots. Blue color corresponds to negative, red to positive values. The errors due to
�nite angular momentum cuto� in the transformation leads to error contributions, located
on a sphere with a radius corresponding to the distance of transformation (2 · 1.45 a.u.).
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Figure 8.3: The transformed 1s orbital, with origin on the right atom, expanded at the
left atom for lmax = 3 . . . 6 (top → down,left panel). On the right panel, the corresponding
di�erence between the exact and the transformed function is shown. The scale is the same
for all plots. Blue color corresponds to negative, red to positive values. The errors due to
�nite angular momentum cuto� in the transformation leads to error contributions, located
on a sphere with a radius corresponding to the distance of transformation (2 · 1.45 a.u.).
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Figure 8.4: The hydrogen 1s wave function of two atoms (left/rightmost ball) at the lda
ground-state separation of H2 (1.45 a.u.), when transformed to the center of gravity (ball
in the mid) applying a cuto� lmax = 2 (panel on top and in the mid). The corresponding
overlap (bottom) is dominated by the Gauss oscillations.



118 8 Spherical harmonics basis set

Figure 8.5: The analytic overlap (full line) over inter-atomic spacing for a hydrogen dimer
in lcao compared to the results obtained from transformed orbitals with lmax = 2 (dashed)
and lmax = 3 (dash dotted). See the text for details.

The angular momentum cuto� for the transformation is given in column one. Column
two and three provide the calculated overlap, once with one transformed center (wave-
function two into the center of the �rst) and once with two transformed centers (both
wave functions in the center of gravity). Due to the natural cuto� in the case of one
transformed center, the result converges to the exact value at the highest angular
momentum contribution of the onsite function (l = 1). For two transformed centers,
the overlap hardly converges. Note that this e�ect gets worse for larger separations
and more complex wave functions.
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lmax one transformed center two transformed centers

0 0.38823 0.81651
1 1.59196 1.61325
2 1.59196 1.59249
3 1.59196 1.59180
4 1.59196 1.59201
5 1.59196 1.59195

Table 8.1: Calculated overlap for two wave functions with hydrogen 1s and 2pzcontributions,
separated at 1.45a.u. along z. The angular momentum cuto� for the transformation is given in
column one. Column two and three provide the calculated overlap, once with one transformed
center (wave-function two into the center of the �rst) and once with two transformed centers
(both wave functions in the center of gravity). See text for details.

Three-center integrals with at least two identical centers

For three-center integrals, with two expansions residing at the same center, the third
function should be transformed to the center of the �rst and second function. In this
way, the maximum angular momentum from the transformation gets naturally limited
by the limited untransformed expansions (see equation (B.71) for details):∫

f
(1)
lm′(|r|)h(1)

lm′′(|r|)u(2)
lm′′′(|r|)Ylm′(r)Ylm′′(r)Ylm′′′(r)d3r

l′′′max = l′max + l′′max

This situation e.g. occurs in calculation of tight-binding potential matrix elements of
the form 〈ϕ(1)|V (2)|φ(1)〉.
This class of cuto� can also be applied, when solving Schrödinger's equation. Sup-

pose to have a maximum cuto� for the wave function (lmaxψ ). The density and the
therefrom derived potential in selfconsistent calculations should then take contribu-
tions up to lmaxv = 2 · lmaxψ into account. Table 8.2 illustrates this for the eigenvalue
of the deformed hydrogen atom (setup (1/4:4)). The wave-function cuto� has been
held �xed to lmaxψ = 3.

lmaxv eigenvalue (H)

3 -0.38729
4 -0.38845
5 -0.38711
6 -0.38583
7 -0.38583

Table 8.2: The eigenvalue of the deformed hydrogen atom (setup (1/4:4)). The wave-
function cuto� has been held �xed to lmaxψ = 3. See text for details.
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Three-center integrals without identical centers

The numerically most demanding contributions in electronic structure calculations
come from real three-center integrals of the form 〈f (1)|h(2)|u(3)〉. For these integrals,
the application of selection rules is absolutely indispensable. The transformation of
two functions to the center of the remaining however does not lead to a natural
limitation in angular momenta. This usually not only leads to slow convergence, but
to totally wrong results (the reason will be illustrated in the following). Table 8.3
provides the result for an integral of the form∫

f
(1)
lm′(|r|)h(2)

lm′′(|r|)u(3)
lm′′′(|r|)Ylm′(r)Ylm′′(r)Ylm′′′(r)d3r, (8.3)

with f, h and u corresponding to wave functions with contributions from hydrogen 1s
and 2pz residing at r1 = (0, 0, 0), r2 = (0, 0, 1.45), and r3 = (0, 0, 2 ·1.45), respectively.

lmax result

2 0.23582
3 0.27596
4 0.28437
5 0.28630

exact 0.07545

Table 8.3: The result for an integral of the form (8.3). The expansion center of h(2)and u(3)

have been transformed to r1, using a cuto� lmax. Even for increased cuto�, the exact result
is not achieved. See text for details.

The expansion center of h(2)and u(3) have been transformed to r1, using a cuto�
lmax. Even for increased cuto�, the exact result is not achieved. The reason is that a
transformation always leads to so called Gauÿ oscillations (see section 8.3). Without
e�ective limitation of angular momentum contributions to the integral, the Gauÿ
oscillations are included and the result therefore can be far from the exact value.
A better convergence can be achieved applying a divide and conquer approach. In

a �rst step, we transform the function u(3) to r2 and determine a new function g(2),
centered at r2 as follows:

g(2)(r) =
∑

lm′lm′′′t

h
(2)
lm′(|r− r2|)u(3@r2)

lm′′′t
(|r− r2|)Ylm′Ylm′′′t

=
∑
lmg

∑
lm′′lm′′′t

h
(2)
lm′(|r− r2|)u(3@r2)

lm′′′t
(|r− r2|)clm′′,lm′′′t ,lmg︸ ︷︷ ︸

glmg (|r−r2|)

Ylmg (8.4)

=
∑
lmg

g
(2)
lmg

(|r− r2|)Ylmg (8.5)
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The notation u(3@r2) and the index t thereby accounts for the fact that the ra-
dial part and angular momentum contributions of u(3), when transformed to r2 are
di�erent from the original function.

Transformation of g to r1 then allows to rewrite the integral in the following way
(without any loss of generality, we suppose f (1) to reside at the origin):∫

f (1)(r)h(2)(r)u(3)(r)d3r

=
∫
f1(r)g(2)(r)d3r

=
∫ ∑

lm′lmgt

f
(1)
lm′(|r|)g(2@r1)

lmgt
(|r|)Ylm′Ylmgtd3r (8.6)

=
∫ ∑

lm′

f
(1)
lm′(|r|)g(2@r1)

lm′ (|r|)r2dr (8.7)

In this way, a cuto� similar to the two-center cuto� discussed above emerges for the
transformation of g. Note however that this cuto� limits lmgt and does not hold
for the expansion (lmg) of g in (8.5). The important point is, that, provided we
have a given function g, centered at r2, we can determine (8.7) without applying an
arti�cial cuto� for the second transformation. This step therefore does not introduce
contributions from Gauÿ oscillations.

The expansion of g(2@r2) in principle has in�nitely high angular momentum con-
tributions. Nevertheless, we can introduce a cuto� lmmax

g . Together with the cuto�
lm′′max for h

(2) (remember: the function h(2) has a limited angular momentum expan-
sion, because it is onsite), the selection rules for the Gaunt coe�cients in (8.4) then
allow to derive a cuto� for the transformation of u(3) to r2 as follows:

|l′′ − lg| ≤ l′′′t ≤ |l′′ + lg|

⇒ l′′′t,max = l′′max + lmaxg

Table 8.4 shows the result for the three center integral used for table 8.3, this time
determined following the double transformation approach. The functions f (1), h(2)

and u(3) have contributions up to l = 1. The cuto� for the transformations therefore
are:

lmaxgt = l
′
max

l′′′t,max = lmaxg + 1

Table 8.5 illustrates the natural limitation of l′′′t,max for given lmaxg .
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lmaxg l′′′t,max result |deviation|

1 2 0.07136 0.00409
2 3 0.07732 0.00187
3 4 0.07489 0.00056
4 5 0.07564 0.00019

exact 0.07545

Table 8.4: The result for an integral of the form (8.3), applying the double transformation
approach discussed in the text. This approach makes use of selection rules to suppress Gauÿ
oscillation e�ects arising from re-expansion. The quality of the result is directly related to
the angular momentum cuto� lmaxg .

lmaxg l′′′t,max result

2 2 0.07683
2 3 0.07732
2 4 0.07732

Table 8.5: Demonstration of the naturally emerging angular momentum cuto� for l′′′t , when
applying the double transformation approach discussed in the text.

Following the direct transformation approach, two re-expansions need to be arti-
�cially limited in angular momenta. The advantage of the double transformation
approach is, that only one cuto�, namely lmaxg needs to be introduced. The resulting
selection rules then allow to transform the expansion centers exactly.



9 Energy of exchange and correlation

The exchange and correlation energy contribution (3.14) to the new functional (3.8)

∆Exc = Exc[
∑
i

n̄i]−
∑
i

Exc[n̄i]

has been approached by cluster expanding Exc[
∑
i
n̄i] . In the following, I use a short

hand notation of the form:

Exc[n̄i] = Ei

Exc[n̄i + n̄j ] = Eij

Exc[n̄i + n̄j + n̄k] = Eijk
...

Exc[
∑
i

n̄i]−
∑
i

Exc[n̄i] =
∑
i

Ei −
∑
i

Ei︸ ︷︷ ︸
=0

+
1
2!

∑
i 6=j

Eij − Ei − Ej

+
1
3!

∑
i 6=j 6=k

{Eijk − Ei − Ej − Ek

− (Eij − Ei − Ej)
− (Eik − Ei − Ek)
− (Ejk − Ej − Ek)}

+ · · · (9.1)

The rule fore the n-th term is: inside the sum over n indices we have one n order
term and subtract all possible lower order terms1. The idea of the cluster expansion

1All possible means that one has to take
„

i
n

«
terms for the i-th order. This corresponds to

writing down all index combinations without double counting (ijk, ikj etc. is used only once) or
doing double counting and using a prefactor of 1

i!
.
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can be explained best using an example. Think of a 5 particle cluster. Particle 1,2
and 3,4 should overlap. The three groups should be separated in such a way, that the
densities do not overlap. The 5-particle term then 'degenerates' into two 2-particle
and a 1-particle term. The terms that are not compensated directly in the order-5
expression are compensated by lower-order terms. Writing down all terms, one can
see that there will remain exactly two two-order (1,2 and 2,3) and one one-order (5)
term. The deformed densities n̄i are localized (see �gure 7.13 and related text). The
highest order contribution to the cluster expansion therefore should correspond to the
number of nearest neighbors.
For each n-order summand (e.g. the expression in curly brackets in line 3-6 of (9.1)),

the densities of the n contributing atoms should be transformed onto a 3d grid centered
at the center of gravity. In order to minimize numerical errors (error cancellation), it
is important that all contributions (even the �rst order terms) share the same grid.
The resolution of the 3d representation may be increased near the center of gravity
(e.g. using a star-burst mesh with logarithmic radial spacing), because these regions
actually contributions to the di�erence (3.14).
It is not possible to use the transformation of spherical harmonics expansions dis-

cussed in section 8.2. This is because the energy of exchange and correlation expression
does not allow to apply selection rules (see section 8.4 for a detailed discussion). The
Gauÿ oscillations therefore heavily distort the result.
For the dimer calculations presented in part III, the cluster expansion becomes

trivial: Exc[
∑

i n̄i]−
∑

iExc[n̄i] = E12 −E1 −E2. The di�erence has been calculated
on the cylinder grid discussed in section 5.3.
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10.1 Basis set convergence

Table 10.1 shows the basis set convergence of the total energy in the tight-binding
calculation (Etb) for H2 at the lda ground-state separation (1.45 a.u.). The deformed
orbitals basis thereby is extended by atomic orbitals of the following radial shape:

1sλ ∼ e−λr

2pz ∼ re−
1
2
r

3pz ∼ (6− r)re− 1
3
r

3dz2 ∼ r2e−
1
3
r

A combination of deformed orbitals with three 1s orbitals and one 2pz function has
been found to be su�ciently accurate.

extra basis functions Etb (H)

no -0.72902
all above +1s1.0 -0.74389
all above +1s1.5 -0.76693
all above +1s2.0 -0.76694
all above +1s5.0 -0.76705
all above +2pz -0.76720
all above +3pz -0.76720
all above +3dz2 -0.76734

+(1s1.0,1s1.5,1s2.0,2pz) -0.76710

Table 10.1: The basis set convergence of the total energy in the tight-binding calculation
(Etb) for H2 at the lda ground-state separation (1.45 a.u.). See the text for details.

10.2 Vxc of fragment densities

Unlike in the deformation process, the e�ect on the total energy of an approximation
of the exchange and correlation potential Vxc[

∑
i ni] by a superposition of atomic

contributions of the form
∑

i Vxc[ni] can not be neglected. Figure 10.1 shows the
resulting binding energy for deformed fragments, once applying the exact potential
Vxc[

∑
i ni] (dashed black line) and once the approximate potential

∑
i Vxc[ni] (grey
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Etb (H) Ediag (H) Etb − Ediag (H)
Vxc[

∑
i
ni] -0.76719 -0.57537 -0.19182∑

i
Vxc[ni] -1.18165 -1.02781 -0.15383

delta (H) 0.41446 0.45244 -0.03799

delta (% of Ebond) 225 245 21

Table 10.2: The e�ect of the approximation of the exchange and correlation potential
Vxc[

∑
i ni] by a superposition of atomic contributions of the form

∑
i Vxc[ni] for the lda

equilibrium separation of H2 (1.41 a.u.). See the text for details.

line) in the tight-binding calculation. Table 10.2 provides detailed information for
the lda equilibrium separation of H2 (1.41 a.u.). The error introduced in the tight-
binding energy by the approximation of the exchange and correlation potential has
been found to be in the range of 415mH, which corresponds to 225 % of the binding
energy (Ebond ≈ 185mH). Due to the a�orded error cancellation in line two of (3.8),
the e�ective deviation is reduced to about 21 % of the binding energy (∼ 38mH),
which however is still far too large. The reason for the success of the approximation
in the context of deformation (section 5.2, item three) and the failure in the tight-
binding calculation is the following: in the deformation process, the approximation of
the exchange and correlation potential a�ects the trial density. For the trial density
however, a variational principle holds. This is not the case for the potential of the
tight-binding calculation. As can be seen from equation (2.38), errors in the potential
linearly enter the total energy.
For the dimer calculations presented in part III, the exchange and correlation poten-

tial has been calculated on the cylinder grid discussed in section 5.3. For a numerically
e�cient and general implementation, the following two approaches may be applicable.
Due to the localized character of the deformed density, the cluster expansion approach
discussed in section 9 should lead to su�ciently accurate results. An alternative, but
more involved approach is the application of selection rules as follows: Suppose we
want to determine a matrix element of the form 〈ϕi|Vxc|ϕj〉. First, the expansion
centers of the densities of the nearest neighbors are transformed to rj . Then, Vxc is
determined as spherical harmonics expansion centered at rj . Following the double
transformation approach discussed in 8.4, a new expansion, which may be limited in
the number of angular momenta, is determined from the product Vxc|ϕj〉 and then
transformed to ri.
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Figure 10.1: The binding energy for deformed fragments, once applying the exact potential
Vxc[

∑
i ni] (dashed black line) and once the approximate potential

∑
i Vxc[ni] (grey line) in

the tight-binding calculation. The setup for the nonspeherical deformation is coded in the
form (r̃p : r̃t) (see equation 4.46 and the corresponding text for further details). See the text
for a discussion.





11 Summary & Outlook

The main numerical e�ort in common electronic structure methods is spent in the
setup and diagonalization of the Hamiltonian. Without further approximations, this
e�ort scales cubicly with the number of particles involved. The complexity of quantum
mechanics thereby usually requires an iterative approach. This is unfavorable, because
the badly scaling system of equations needs to be solved several times in order to
reach su�ciently accurate results. Over the years, there have been several more or
less sophisticated approaches to circumvent these problems. The e�ort in reducing the
numerical demands usually either results in less intelligible approaches, theoretically
not well funded approximations or representations which make it hard to extract the
physical meaning.
The approach presented in this work is focused on a formulation which is consistent

with the physico-chemical intuition. Theoretically well funded and straight forward
approximations and numerical e�ciency thereby are not mutually exclusive, but lead
to synergetic e�ects.
The transformation from isolated to 'clustered' atoms is splitted in two steps: de-

formation from the atomic to a reference state, and clustering. The numerical most
demanding part is the determination of the clusters total energy. This e�ort has
been reduced by the application of a new formulation of a non-selfconsistent density
functional. Furthermore, an ab initio based construction of embedding potentials
has been introduced. The embedding potentials re�ect the crystal structure and al-
low to determine non-spherically deformed fragment densities as input densities for
non-selfconsistent functionals. Due to the non-spherical character of the fragment
densities, the new construction overcomes the limitations of frozen atomic fragments.
The following listing is a sketch of the steps that need to be taken next in order to

generalize the new approach to a full �edged electronic structure method:

• A node-less formulation of the tight-binding expressions, which allows to apply
the frozen core approximation needs to be derived. It is recommended to fol-
low the sequence of Harris-Foulkes and frozen core approximation discussed in
section (4.1). The actual formulation thereby should take the possible imple-
mentation of the exchange and correlation potential, discussed in the next item,
into account. Following an approach based on atom-centered spherical harmon-
ics expansions, the application of selection rules discussed in section (8.4) is
indispensable.

• Detailed studies of the core embedding potentials, according to the valence
potential studies presented in the main part of this thesis, need to be carried
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out. In particular, the e�ect of the frozen core approximation in the deformation
process should be studied. The transformation from the node-less picture to real
densities implies an orthogonalization to the corresponding core states. The core
states obtained in the selfconsistent deformation potential however are di�erent
from the frozen core states. The signi�cance of this deviation for the quality of
the trial density needs to be checked. In addition, the pros and cons of free and
spherically localized atomic states as frozen core states should be examined.

• The logarithmic radial mesh applied in the deformation process should be ex-
tended to provide a higher radial resolution in the neighbors region. The neigh-
bors valence deformation potential is quite localized. This may lead to a radial
egg-box e�ect for standard logarithmic grids. A possible approach, discussed in
[51], is to omit contributions for a selected number of points on either side of the
neighbors distances in integration. The missing contribution is then obtained
from a �ner mesh which covers this region.

• A three dimensional real-space mesh for the determination of the exchange and
correlation energy (3.14) in a cluster-expansion approach (discussed in section
9) needs to be introduced. The e�ective contribution thereby comes from the
regions in which the neighboring densities overlap and should be smooth. A
coarse radial grid, centered at the center of gravity of the cluster, should be
su�cient. The directions and weights for solid angles (Ω) may be generated
following Pederson and Jackson's approach [86]. Alternatively, an equispaced
star-burst mesh could be applied.

• For the determination of the exchange and correlation potential in the tight-
binding calculation, a 3D-mesh similar to the one discussed in the previous
item could be applied. The potential however has the full atomic contribu-
tion and therefore requires a higher resolution near the nuclei. It might be
numerically advantageous to apply the double transformation approach based
on atom-centered spherical harmonics expansions discussed in section 10.2.

• Charge transfer.

• Forces.

In order to reduce the numerical costs, further approximations usually applied in the
context of empirical tight-binding - such as parametrization of three center integrals
- might be introduced [12, 13].



12 Dimer Method

12.1 Change log

The dynamical dimer method for the determination of transition states, introduced by
the author in the framework of a diploma thesis [87] has been expanded and published
[88] (see appendix C). The derivations have been reworked for better readability.
Besides several minor extensions, the optimized friction control has been extended by
the possibility to limit the kinetic energy for the rotational, perpendicular and parallel
motion individually (see appendix C for details). The code �nally has been merged
into the release branch of the CP-PAW simulation package.

12.2 Handling the dimer method in CP-PAW

12.2.1 File names, start-up

The dynamical dimer method requires the parallel calculation of two coupled sys-
tems, referred to as 'monomers'. Each monomer has its own control-, structure-, and
output �les. The name convention is case_mi.ending, with i being the identi�er of
the monomer. 'case_m2.strc' e.g. speci�es the structure input �le for monomer 2.
The parallelization code in principle allows for a higher number of polymers (e.g. for
future implementation of the nudged elastic band method). For technical reasons, a
polymer calculation has to be triggered using a special command:

./paw_fast.x case_polymer.cntl

In future versions, the case_polymer.cntl will only contain control settings which
are speci�c for the polymer parallelization. All usual control settings (the traditional
'case.cntl') are kept in 'case_mi.cntl'. In the actual implementation (which is lim-
ited to dimer calculations), the case_polymer.cntl �le is not read by the program
and therefore does not have to exist physically. The above command simply trig-
gers the read-in of case_m1.cntl and case_m2.cntl. Even though it is possible to use
di�erent control setting for the individual monomers of the dimer, it is not recom-
mended. Best practice is to link 'case_m1.cntl' and 'case_m2.cntl' with one �le called
'case.cntl'. The structure �les 'case_m1.strc' and 'case_m2.strc' have to be present,
and need to di�er in the atomic positions. Dimer speci�c information is reported to
'case_mi.dimer_prot' and to stdout (in the following referd to as 'out').
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12.2.2 Control-�le parameters

Table 12.1 and 12.2 list the dimer method speci�c control-�le parameters.

Parameter Description

DIMERDIST
the constrainde dimer length in
massweighted coordinates

KDLENGTH
keeps the dimer-length �xed to the value
resulting from strc or restart �les

STRETCHDIST
the dimer length which sould be achieved
during stretch mode

CONSTRSTEP
the steplength in massweighted
coordinates for the couple constraint

COUPLE ATOM
the given atom is constrained to the same
coordinates on monomer 1 and 2.

DFOLLOWDOWN
=F: normal dimer calculation; =T:
parallel paw calculation with usual
equation of motion

INHIBITUP
the motion parallel to the dimer axis is
constrained to 0

INHIBITPERP
the motion perpendicular to the dimer
axis is constrained to 0

ONLYROT allows only rotation of the dimer
ONLYPERP allows only perpendicular motion

WDOWN
(developer option) scales the atomic
masses of monomer 1 by WDOWNFACT

WDOWNFACT scaling factor for the masses of monomer 1

FMPARA
�ctitiuos mass for the parallel motion
(typically -1.)

FMPERP
�ctitiuos mass for the perpendicular
motion (typically 0.5)

FMROT
�ctitiuos mass for the rotational motion
(typically 0.25)

FRICPARA fricion for the parallel motion
FRICPERP fricion for the perpendicular motion
FRICROT fricion for the rotational motion

OPTFRICPARA
should estimated optimal friction be used
for this type of motion

OPTFRICPERP
should estimated optimal friction be used
for this type of motion

Table 12.1: Description of the dimer speci�c control parameters. All lengths in mass-
weighted coordinates.
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Parameter Description

OPTFRICROT
should estimated optimal friction be used
for this type of motion

TMAXPARA
max. Temperature for this type of motion
(estimated via 〈Ekin〉 = f

2kBT ); only
active for optfric=T

TMAXPERP
max. Temperature for this type of motion
(estimated via 〈Ekin〉 = f

2kBT ); only
active for optfric=T

TMAXROT
max. Temperature for this type of motion
(estimated via 〈Ekin〉 = f

2kBT ); only
active for optfric=T

FAUTO[PARA/PERP/ROT]

enables the force autopilot, which
increases the friction to
FRIX(+)[PARA/PERP/ROT] if the
dimer moves opposite to the direction of
the forces

FRIC(+)[PARA/PERP/ROT] see FAUTO

DLFLEX

allow the dimers length to change
(shortened/stretched by DSTEP per
simulation step until the dimers length
equals DTOBE as long as NSTEPS is not
present; if NSTEPS is present, DSTEP
gives the limits the maximal stepwidth)

LCS see CENTERDIFFMIN

CENTERDIFFMIN
only shorten/stretch the dimer's lenth if
the center of gravity moved less than this
value for LCS steps

DSTEP see DLFLEX
DTOBE see DLFLEX

NSTEPS

on the presence of NSTEPS, the
dimerlength is reduced percentual in such
a way, that DTOBE is achieved after
NSTEPS

!ITERATION
(developers options controlling the
internal iteration)

!OUTPUT
enables ENERGYTRA output. should be
disabledS

ENERGYTRA
(developers option) write the actual total
energy and distance from RTS to a �le

NATOMS
3*NATOMS determines the dimension of
RTS

RTS coordinates of the transition state

Table 12.2: Description of the dimer speci�c control parameters. All lengths in mass-
weighted coordinates.
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The following is a sample control �le. The parameters may be mutually exclusive.

!CONTROL

!DIMER

DIMERDIST=2.0

KDLENGTH=T

STRETCHDIST=100.0

!CONSTRAINTS CONSTRSTEP=0.5

!COUPLE ATOM='H_1' !END

!COUPLE ATOM='H_5' !END

!END

!MOTION

DFOLLOWDOWN=F

INHIBITUP=F

INHIBIPTERP=F

ONLYROT=F

ONLYPERP=F

WDOWN=F

WDOWNFACT=2.000

FMPARA=-1.0

FMPERP=0.5

FMROT=0.25

FRICPARA=0.05

FRICPERP=0.05

FRICROT=0.05

OPTFRICPARA=T

OPTFRICPERP=T

OPTFRICROT=T

TMAXPARA=100.

TMAXPERP=100.

TMAXROT=100.

FAUTOPARA=T

FAUTOPERP=T
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FAUTOROT=T

FRIC(+)PARA=0.05

FRIC(+)PERP=0.05

FRIC(+)ROT=0.05

!END

!FLEXLENGTH

DLFLEX=F

LCS=0

CENTERDIFFMIN=0.2

DSTEP=0.1

DTOBE=100.0

NSTEPS=1000

!END

!ITERATION

LITERMAX=100

DLAMBDA=0.000001

VITER=100

DVELOCITY=0.00001

!END

!OUTPUT

ENERGYTRA=0.0001

NATOMS=6

RTS= 9.17391413148942 6.94296002500009 17.0181424401132 10.6780092163608
10.1572547830354 17.0327995478249 7.14274321484992 9.85239646799042
17.0317177501930 8.99698614125294 8.96184528623900 21.4880576000447
8.99608836545232 9.00108048192150 12.5578511945098 8.99836684655655
8.98406664039175 17.0361651787350

!END

!END

12.2.3 Recipes

Using DIMERDIST

• provide two strc �les
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• DIMERDIST=val; KDLENGTH=F

• rdyn o�

• dimer block present in cntl �le

• start with electron minimization

Monomer 2 will be placed according to1

xstart1 = xstrc1

xstart2 = xstrc1 + a(xstrc2 − xstrc1 )

with a such that the dimers length equals DIMERDIST.
The 'case_mi.dimer_prot' �le states :
'DIMER: DIMER_PROPAGATE: WE PLACED THE DIMER AND NOW HAVE

A DISTANCE OF'

Using KDLENGTH

• provide two strc �les

• KDLENGTH=T

• rdyn o�

• dimer block present in cntl �le

• start with electron minimization

xstarti = xstrci. The dimers length is constrained to the value resluting from the given
strc.
The 'case_mi.dimer_prot' �le states:
'DIMER: DIMER_PROPAGATE: WE KEPT THE DIMERLENGTH AND NOW

HAVE A DISTANCE OF'

Using STRETCHDIST

• provide the same restart �le for both monomers

• do not provide DIMERDIST, set KDLENGTH=F, set STRETCHDIST=val

• rdyn on

1xstrci refers to the mass-weighted coordinates read from the strc �le for monomer i; xstarti refers
to the mass-weighted coordinates used as initial position for monomer i
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Monomer 2 will follow down the potential energy surface (as usual) until the dimers
length equals STRETCHDIST. Monomer 1 is �xed to its original position.
The out �le states:
DIMER STRETCH : d should be", stretchdist," and is", sqrt(sqdimerdist)

General Hints

Do not start with optfric, but with a �xed value for the friction to damp sti� modes.
Best practice is to use some steps with ONLYROT=T, follwed by INHIBITUP=T.
Then switch to normal dimer calculation and limit the max. allowed temperature for
the parallel, perpendicular and roattional motion of the dimer.
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A Electronic structure methods at

length

A.1 The Hartree approximation

An early approximative approach solving Schrödinger's equation for a many particle
system was developed by Hartree. He assumed the electrons to be non interacting
(�independent electron approximation�). In addition, the fact that the electron expe-
riences the electric �elds of all other electrons was (approximately) incorporated by
treating the remaining electrons as a smooth distribution of negative charge with the
charge density1

n(r) =
∑
i

|ψi(r)|2 . (A.1)

The potential energy of a given electron can then be written as:

Ve(r) = −
∫

n(r′)
|r− r′| dr

′ + Vext(r). (A.2)

Placing (A.2) in the one-electron Schrödinger equation leads to the so called Hartree
equations: [

−1
2
∇2

r −
∫

n(r′)
|r− r′| dr

′ + Vext(r)
]
ψi(r) = εiψi(r). (A.3)

Note that these equations can also be obtained by applying the variational principle
to the expectation value of the energy

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ,

where Ψ is written as product of one electron wave functions in the above manner.
They are practically solved iteratively by assuming a charge density for the electrons,
solving Schrödinger's equation and then recalculating an improved charge density
using the one-electron wave functions until the potential is converged. Methods which
approximate the electron-electron interaction by the interaction of an electron with

1The sum extends over all occupied one-electron levels except the one of the considered electron.
Note that 〈ψi|ψj〉 = δij .
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a �eld (of the remaining electrons) and iteratively solve the problem in the above
described manner are called �self consistent �eld approximations� (SCF) [89]. These
approximations in general fail to describe the e�ect of a particular electron on the
electron under consideration.

A.2 The Hartree-Fock approximation

The requirement of the wave function being antisymmetric with respect to the inter-
change of two of its arguments

Ψ (x1, ...,xi, ...,xj , ...,xn) = −Ψ (x1, ...,xj , ...,xi, ...,xn)

can be satis�ed by replacing it by a so called Slater determinant of one-electron wave
functions2:

ΨHF (x1, ...,xi, ...,xj , ...,xn) =
1√
n!

∣∣∣∣∣∣∣
ψ1 (x1) · · · ψn (x1)

...
. . .

...
ψ1 (xn) · · · ψn (xn)

∣∣∣∣∣∣∣
This approach exploits the nature of determinants. They change their sign when any
two columns or rows are interchanged.

Minimization of the expectation value of the energy3

E[ΨHF ] = 〈ΨHF |Ĥ|ΨHF 〉

with respect to the one-electron wave functions ψi leads to the Hartree-Fock equations4

[89]:[
−1

2
∇2

r −
∫

n(r′)
|r− r′| dr

′ + Vext(r)
]

︸ ︷︷ ︸
Hartree operator

ψi(r)−
∑
j

∫
ψ∗j (r

′)ψi(r′)ψj(r)
|r− r′| δsisj dr

′ = εiψi(r)

2In a simplistic way, ψj (xi)can be understood as � electron i in the jth one-electron state�.
3Note that ΨHF is normalized: 〈ΨHF |ΨHF 〉 = 1.
4The terms with i = j are usually not included in the Hartree/Coulomb and exchange terms, even
though they cancel each other. The exchange term excluding the case i = j is also called �Fock
operator�.
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Using (A.1) this can be rewritten as follows:−1
2
∇2

r +
∑
j

∫
ψ∗j (r

′)ψj(r′)
|r− r′| dr′ + Vext(r)

ψi(r)−
∑
j

∫
ψ∗j (r

′)ψi(r′)ψj(r)
|r− r′| δsisj dr

′

=
[
−1

2
∇2

r + Vext(r)
]
ψi(r) +

∑
j

∫
ψ∗j (r

′)ψj(r′)ψi(r)
|r− r′| dr′︸ ︷︷ ︸

Coulomb term

−
∑
j

∫
ψ∗j (r

′)ψi(r′)ψj(r)
|r− r′| δsisj dr

′

︸ ︷︷ ︸
exchange term

= εiψi(r). (A.4)

The Hartree-Fock equations di�er from the Hartree equations by the exchange term.
The three most noticeable e�ects of the exchange term are the following:

1. For i = j the exchange term cancels the Coulomb term exactly and therefore
suppresses the self interaction of the electrons.

2. For i 6= j and si = sj (di�erent electrons with the same spin) the exchange term
contributes to the potential.

3. For i 6= j and si 6= sj (di�erent electrons with di�erent spin) the exchange term
vanishes.

The exchange term thus describes the interaction between electrons with the same
spin. Since an exact wave function usually can not be formed using a single deter-
minant, the Hartree-Fock approach gives a ground state energy that di�ers from the
exact energy. The Hartree-Fock energy always is higher than the real energy. The
di�erence between the exact (nonrelativistic) and the Hartree-Fock energy is called
the �correlation energy�.
There exist approaches using a higher number (up to millions) of determinants,

which achieve a higher accuracy at the expense of computing time. These methods
are referred to as con�guration interaction (CI) calculations. For further details see
[22].

A.3 The Thomas-Fermi theory

Solving the Schrödinger equation for a multi particle system, even approximatively, as
shown above, is a considerable task because one has to deal with i×N dimensional wave



144 A Electronic structure methods at length

functions (i=3 for nuclei and i=4 for electronic wave functions including a discrete spin
coordinate). There is a long history of approaches (starting with the works of Thomas
and Fermi around 1927) trying to replace these many-body wave functions (at least
partly) by the much simpler (electron) density function n(r), which solely depends on
3 spatial coordinates. Thomas and Fermi realized that statistical considerations can
be used to approximate the distribution of electrons in atoms in the following way5

[22]:

• One divides the space in many small cubes of the volume ∆V , containing a �xed
number of electrons ∆Ni

6.

• Assume the electrons in each cell to be independent fermions at 0 K.

• Considerations concerning the 3 dimensional, in�nite well
(

V = 0 , r < rw
V =∞ , r > rw

)
allow to determine the density of states g(ε) for a given energy ε.

• The probability for the state with the energy ε to be occupied is Fermi-Dirac

distributed7: f(ε) = 1
1+eβ(ε−µ)

T→0K=
{

1, ε < εF
0, ε > εF

.

• Summing the contributions from the occupied energy states gives the total ki-
netic energy of the cell (with n = ∆N/∆V ).

Tcube(n) =
3
10
(
3π2
) 2

3 ∆V n
5
3

• Taking the limit ∆V → 0 and integration over all (in�nitesimal small) cubes
gives the Thomas-Fermi energy functional 8:

TTF [n] = CF

∫
n

5
3 (r) dr (A.5)

Combining this result with the considerations of the foregoing sections one can write
the energy for one atom as follows:

ETF [n(r)] = CF

∫
n

5
3 (r) dr− Z

∫
n(r)
|r−R| dr +

1
2

∫∫
n(r)n(r′)
|r− r′| dr dr

′ (A.6)

5In the following, the kinetic energy of the electrons is determined as functional of the electron
density by applying locally relations appropriate for a homogeneous electronic system. This
idea can be used to determine other electronic properties as well and is called �local density
approximation�. See section 2.3.5 for further details.

6There may be di�erent numbers of electron in di�erent cells.
7With β = 1

kbT
, and µ being the chemical potential. εF is the zero-temperature limit of the chemical

potential and is called �Fermi energy�.
8With CF = 3

10
(3π2)

2
3 .
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This is the Thomas-Fermi energy functional for atoms, which of course omits ex-
change and correlation terms but depends solely on the electron density. Minimization
of (A.6) with respect to the electron density under the constraint of a �xed number
of electrons yields the Euler-Lagrange equation for the Thomas-Fermi model of the
atom. Because exchange and correlation terms were neglected, the accuracy for atoms
is not as high as with other methods. Furthermore, the method fails in describing
molecular bonds. Even so, the underlying idea of this approach is remarkable.

A.4 Standard implementations of DFT

A.4.1 Basis sets

In section 2.3, the density functional theory was introduced. It allows to (numerically)
solve quantum mechanical many-body problems approximatively9. For that purpose a
basis set of one electron wave functions called �Kohn-Sham orbitals� has to be chosen.
These basis sets have to reproduce the real behavior of wave functions in the atomic
and the bonding region.
In the atomic region near the nucleus the kinetic energy of the electrons becomes

large and the wave function therefore oscillates rapidly. In numerical calculations one
has to discretize the wave function. Drastic changes of the wave function (as in the
near nucleus region) require a �ne grid for a proper numerical representation. On
the other hand, the large kinetic energy leads to a small in�uence of the chemical
environment on the wave function. Therefore a small basis set su�ces to describe the
behavior in the atomic region.
In the bonding region the wave function is highly dependent on the environment

because the kinetic energy of the electrons is small. This requires large, almost com-
plete basis sets. In addition, a larger grid for discretization can be used because the
wave function is smooth.
Various approaches try to combine these di�erent requirements. In the following, I

will introduce three main routes before going into detail of the projector augmented
wave (PAW) method [82, 90].

• Atomic orbital methods use basis sets similar to real atomic orbitals. The bond-
ing is described by the overlapping tails of these orbitals. A compromise between
functions which yield good results but are not easily handled in numerical simu-
lations, such as Slater-type orbitals [91], on the one hand and numerically conve-
nient basis functions such, as Gaussians [92], which have the wrong asymptotic
behavior far from, and near the nucleus, has to be made.

• Pseudo-potentials regard an atom as a pertubation of free electron gas. The
wave functions are constructed of plane waves. A large number of basis func-
tions is needed to describe the wave function. In exchange, plane waves are

9Note that density functional theory is an exact theory until one approximates the exchange and
correlation functional.
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easily handled within numerical calculations. A shortcoming of �nite plane
wave expansions is, that they can not describe correctly the strong oscillations
in the near-nucleus region. Therefore the Pauli repulsion of the core electrons
is described by an e�ective potential that expels the valence electrons from the
core region. Thus all information on wave function and the charge density near
the nucleus is inaccessible.

• Augmented wave methods compose their basis functions out of atom-like partial
waves in the atomic regions and a set of functions, called envelope functions,
appropriate for the bonding in between. The partial solutions of the atom
and binding region were matched at the interface between them. The linear
mu�n thin orbital (LMTO) method for example uses solutions to the 1

r -potential
of the nucleus as envelope function [35]. The linear augmented plane wave
(LAPW) and the augmented spherical wave (ASW) methods use plane waves
and spherical waves respectively for this purpose. [8, 93].

A.4.2 The PAW formalism

The projector augmented wave (PAW) method [82, 90] provides a formalism to com-
bine the advantages of the pseudopotential and the augmented wave methods. It in-
troduces energy and potential independent basis sets as required by the Car-Parrinello
molecular dynamics method [46].
As mentioned above, the wavefunctions have a nodal structure in the atomic region.

The main idea of the PAW formalism is a transformation of the true wavefunction into
auxiliary wave functions, which are also smooth in the near nucleus region and equal
to the true wavefunction beyond a certain distance from the nucleus. The resulting
wave functions have a rapidly convergent plane wave expansion and can therefore be
expanded into a convenient basis set. This numerical favorable basis set is used for
the simulation. The related true wavefunction can be reconstructed from the auxiliary
one to extract the physical properties of the system. Let the transformation operator,
which transforms the auxiliary one electron wave function (denoted by |ψ̃i〉) into the
physical wave function, be T̂ :

|ψi〉 = T̂ |ψ̃i〉
〈ψi| = 〈ψ̃i|T̂ †.

Substituting this in the total energy functional (2.12), the Kohn-Sham equation for
the auxiliary wave function can be derived according to (2.21):\

T̂ †
[
−1

2
∇2

ri + Vext(r) +
∫

n(r′)
|r− r′| dr

′ +
δExc[n(r)]
δn(r)

]
T̂ |ψ̃i〉 = T̂ †T̂ |ψ̃i〉εi.

The expectation values which correspond to physical quantities can be determined
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using the physical or the auxiliary wave function:

〈Â〉 =
∑
i

fi〈ψi|Â|ψi〉 =
∑
i

fi〈ψ̃i| T̂ †ÂT̂︸ ︷︷ ︸
Ã

|ψ̃i〉 (A.7)

with the occupation number fi. The transformed operator Ã is the Operator Â in the
auxiliary-wave-function representation10.

How is the transformation de�ned? I will show this in more detail in the following.

As the auxiliary wavefunction equals the true wavefunction beyond a certain dis-
tance from the nucleus, the transformation can be written as:

T̂ = 1 +
∑
R

SR (A.8)

where SR stands for the contribution within a sphere around the nucleus R. Therefore
SR is a local term. One can express the wavefunction in the atomic region around
nucleus R in terms of partial solutions of the isolated atom11 here denoted by |φi〉:

|Ψ〉 =
∑
i

|φi〉ci for |r−RR| < rc,R (A.9)

with the so called �cuto� radius� rc,R. The local contribution SR is then de�ned in
the following way:

|φi〉 = (1 + SR) |φ̃i〉 (A.10)

⇒ SR|φ̃i〉 = |φi〉 − |φ̃i〉 (A.11)

or in more detail:

SR|Ψ̃〉 =
∑
i

SR|ψ̃i〉 =
∑
i

SR|φ̃i〉ci =
∑
i

(
|φi〉 − |φ̃i〉

)
ci, (A.12)

with i extending over the one electron orbitals of nuclei R. Equations (A.10)-(A.12)
are still limited to |r−RR| > rc,R.

Since SR should not change the auxiliary wave function |Ψ̃〉 beyond the cut-o�
radius (SR|Ψ̃〉 = 0 for |r −RR| > rc,R), the partial wave and the auxiliary partial
wave have to be identical outside the atomic region:

|φi〉 = |φ̃i〉 for |r−RR| > rc,R

The coe�cients ci are determined by projecting the wave function onto projector

10For a deeper insight concerning transformed operators and expectation values see [82, 90].
11Note that the sum extends over the one electron orbitals of the nucleus R at position RR. The

partial waves are not necessarily bound states and can be non normalizable for |r−RR| > rc,R.
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Figure A.1: The radial part of the all electron 6s wave function of gold (full line), its
auxiliary wave function (dashed line) and a projector function (chain dotted line).

functions |p̃i〉 which ful�ll the following condition:

〈p̃i|φ̃j〉 = δij .

Using projector functions that probe only the local character of a wave function (which
means 〈p̃i|Ψ̃〉 = 0 for |r−RR| > rc,R)12 allows to write (A.12) as follows

SR|Ψ̃〉 =
∑
i

SR|φ̃i〉 〈p̃i|Ψ̃〉︸ ︷︷ ︸
ci

=
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i︸ ︷︷ ︸

SR

|Ψ̃〉

without limiting it to the atomic region13. The transformation operator (A.8) there-
fore becomes:

T̂ = 1 +
∑
R

∑
i

(
|φR,i〉 − |φ̃R,i〉

)
〈p̃R,i|

and the true wavefunction can be written as:

|Ψ〉 = |Ψ̃〉+
∑
R

∑
i

(
|φR,i〉 − |φ̃R,i〉

)
〈p̃R,i|Ψ̃〉

Figure (A.1) shows the radial part of the all electron 6s wave function of gold with its
nodal structure. The smooth auxiliary wavefunction becomes equal to the real wave
function even before the projector function becomes zero.

12Otherwise partial waves (which are not limited to bound states and therefore not equal to zero out-
side the atom) of atom R could contribute neighboring atoms. This would violate the assumption
of local contributions.

13The exact derivation of the projector functions can be found in [82].
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A.4.3 Approximations in the PAW method

Actual implementations of the PAW method use three approximations. They will be
discussed in the following.

• The so called �frozen core electron approximation� treats the density and energy
of the core electrons as identical to those in the isolated atom. This approxima-
tion decreases the numerical costs and introduces only small errors, because the
core electrons do not spread out into bonding regions and therefore are not in-
�uenced much by neighboring atoms. If this approximation is used, the pseudo
partial waves |φ̃i〉 have to be orthogonal to the core electron wave functions
|φc〉. The transformation Operator T̂ † therefore transforms the wave function
|Ψ〉 into a pseudo wavefunction |Ψ̃〉 which is orthogonal to the core electron
wave functions. The true wavefunction for all electrons then has to be written
as:

|Ψ〉 = |Ψ̃〉+
∑
R

∑
i

(
|φR,i〉 − |φ̃R,i〉

)
〈p̃R,i|Ψ̃〉+

Nc∑
n=1

|φcn〉

• The auxiliary wave function |Ψ̃〉is expanded in plane waves. In numerical
simulations this expansion can not be complete. It is usually truncated at
EPW = 1

2~2G2
max = 30Ry. Higher accuracy (at the expense of computational

costs) can easily be obtained by increasing the plane wave cuto�.

• The auxiliary wave function |Ψ̃〉 is expanded in pseudo partial waves (|φ̃〉) in
the atomic region. For this expansion typically one or two partial waves per
angular momentum (l, m) and site are used14.

14It should be noted that the partial wave expansion is not variational, because the partial wave
expansion changes the total energy functional and not only the basis set[82].
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B.1 Core orthogonalisation of node-less wave functions

The following outline of the proof of (4.23):

|φn(ε)〉 =
(

1− P̂c
)
cn,n|qn(ε)〉

with

P̂c :=
n−1∑
j=1

|φj(εj)〉〈φj(εj)|

makes use of the relations:

|φi〉 := |φi(εi)〉
(1− P̂c)|φk〉 = 0 , for k ∈ c
(1− P̂c)|φk〉 = |φk〉 , for k /∈ c

|ui〉 =
i∑

j=1

|φj〉c̃j,i

Multiplication of (4.23) with (1− P̂c) leads to:

|φn(ε)〉 =
(

1− P̂c
) n−1∑
i=1

|ui〉ci,n︸ ︷︷ ︸
∗1

+
(

1− P̂c
)
|qn(ε)〉cn,n

For the relation (4.23) to hold, ∗1 needs to vanish. The sum will be equal to zero if
each summand vanishes. For i < n:(

1− P̂c
)
|ui〉ci,n

=
(

1− P̂c
) i<n∑
j=1

|φj〉c̃j,ici,n

= 0

The corresponding orthogonalization for the energy derivatives |q̇(ε)〉 can be obtained
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from (4.23) as follows:

d

dε

[
1
cn,n
|φn(ε)〉

]
=

d

dε

[(
1− P̂c

)
|qn(ε)〉

]
|φ̇n(ε)〉+ αn|φn(ε)〉 =

(
1− P̂c

)
cn,n|q̇n(ε)〉 (B.1)

with

αn =
d

dε

1
cn,n

|φn(ε)〉however corresponds to a solution of the homogeneous di�erential equation
(4.16). Any linear-combination of |φ̇n(ε)〉and |φn(ε)〉 therefore solves the inhomoge-
neous equation (4.16). The exact amount of the homogeneous solution mixed into the
inhomogeneous can usually be determined from boundary conditions. With this in
mind, we can reduce (B.1) as follows:

|φ̇n(ε)〉 =
(

1− P̂c
)
cn,n|q̇n(ε)〉.

B.2 The plane wave basis

B.2.1 Norm in plane-wave basis

We use

〈G|G′〉 =
∫
cell

〈G|r〉︸ ︷︷ ︸
e−iGr

〈r|G′〉︸ ︷︷ ︸
eiG′r

d3r = V δG,G′ (B.2)

which deviates from the usual de�nition

〈G|G′〉 = δG,G′ ,
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leading to prefactors of e±iGr. The unity operator then looks then like1

1 =
∫
cell

|r〉〈r|d3r (B.3)

1 =
∫
cell

|G〉 1
V
〈G|d3G (B.4)

1 =
∑
i

|ri〉 V∑
ri

1
〈ri| (B.5)

1 =
∑
i

|Gi〉 1
V
〈Gi| (B.6)

The factor VP
ri

1 for the discrete 1 can be shown in the following way: We know that

〈G|G′〉 has to have the same value, independent of the 1 we introduce. We are sure
about the continuous case 1 =

∫
cell

|r〉〈r|d3r, which leads to 〈G|G′〉 = V δG,G′ . Using

the discrete Fourier transformation, we can then determine the factor for the discrete
case. It's even better to start from 〈1|1〉 = V , with 〈ri|1〉 = 1.

B.2.2 Scalar products in plane waves

〈G|ψ〉 = V ψ(G) (B.7)

This can be derived in the following way:

〈r|ψ〉 =
∑
G

〈r|G〉 1
V
〈G|ψ〉 (B.8)

=
∑
G

eiGr
1
V
〈G|ψ〉︸ ︷︷ ︸
ψ(G)

(B.9)

According to equation (B.2), we choose

〈G|G′〉 =
∫
cell

〈G|r〉︸ ︷︷ ︸
e−iGr

〈r|G′〉︸ ︷︷ ︸
eiG′r

d3r = V δG,G′ . (B.10)

1Note that we always have to start from 1 =
R
|x〉 1
〈x|x〉 〈x|. For orthonormal |x〉 the fraction becomes

1
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For the total charge, the following relation holds:

〈ψ|ψ〉 =
∫
Vcell

〈ψ|r〉〈r|ψ〉d3r (B.11)

=
∑
G,G′

∫
Vcell

1
V 2
〈ψ|G〉〈G|r〉〈r|G′〉〈G′|ψ〉d3r (B.12)

=
∑
G,G′

∫
Vcell

1
V 2
〈ψ|G〉〈G|r〉〈r|G′〉〈G′|ψ〉d3r (B.13)

=
∑
G,G′

∫
Vcell

ψ∗(G)e−iGreiG
′rψ(G′)d3r (B.14)

=
∑
G,G′

ψ∗(G)ψ(G′)
∫
Vcell

e−i(G−G
′)rd3r (B.15)

=
∑
G,G′

ψ∗(G)ψ(G′)VcellδG,G′ (B.16)

=
∑
G

V ψ∗(G)ψ(G) (B.17)

For the density, we have to start from the density operator

ρ̂ = |ψ〉〈ψ| (B.18)

with

ρ(r, r′) = 〈r|ψ〉〈ψ|r′〉 (B.19)

ρ(r) = ρ(r, r′)δ(r − r′) = 〈r|ψ〉〈ψ|r〉 (B.20)

follows

ρ(r) =
1
V 2

∑
G,G′

〈r|G′〉〈G′|ψ〉〈ψ|G〉〈G|r〉 (B.21)

B.12=
∑
G,G′

ψ∗(G)ψ(G′)e−i(G−G
′)r (B.22)

This function now depends on G and G′. Because max{G − G′} = 2Gmax, we have
to use a �ner grid for the density. If we want to calculate the kinetic energy, we do
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this in G-space:

〈ψ| − 1
2
∇2|ψ〉 =

∑
G,G′

∫ ∫
1
V 2
〈ψ|G〉〈G|r〉〈r| − 1

2
∇2|r′〉〈r′|G′〉〈G′|ψ〉d3rd3r′(B.23)

=
∑
G,G′

∫
1
V 2
〈ψ|G〉e−iGr 1

2
G′2eiG

′r〈G′|ψ〉d3r (B.24)

=
∑
G,G′

1
V 2
〈ψ|G〉1

2
G′2〈G′|ψ〉

∫
e−i(G−G

′)rd3r (B.25)

=
∑
G,G′

1
V 2
〈ψ|G〉1

2
G′2〈G′|ψ〉V δG,G′ (B.26)

=
∑
G

1
V
〈ψ|G〉1

2
G2〈G|ψ〉 (B.27)

=
∑
G

V ψ∗(G)
1
2
G2ψ(G) (B.28)

Note that we can introduce a discrete 1 in G-space, if we have periodic boundary
conditions (otherwise this is not exact). But we have to use a continuous 1 for the real
space, because the complete basis in real space corresponds to the integral formulation!
Therefore, the following formulation is buggy :

〈ψ| − 1
2
∇2|ψ〉 ≈

∑
G,G′,r,r′

1
V 2

V 2

N2
r

〈ψ|G〉〈G|r〉〈r| − 1
2
∇2|r′〉〈r′|G′〉〈G′|ψ〉 (B.29)

??=
∑
G,G′,r,

1
N2
r

〈ψ|G〉e−iGr 1
2
G′2eiG

′r〈G′|ψ〉 (B.30)

=
1
2

1
N2
r

∑
G,G′

〈ψ|G〉G′2〈G′|ψ〉
∑
r

e−i(G−G
′)r

︸ ︷︷ ︸
NrδG,G′

(B.31)

=
1
2

1
Nr

∑
G

〈ψ|G〉G2〈G|ψ〉 (B.32)

If we want to be exact, we have to make the transition to the Integral!

It's even more elegant to derive this with the following argument: We know that
−1

2∇2|G〉 = 1
2G

2|G〉 (this follows from the de�nition P̂ |G〉 = p|G〉 for the momentum
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operator. For periodic boundary conditions then follows:

〈ψ| − 1
2
∇2|ψ〉 =

∑
G,G′

1
V 2
〈ψ|G〉〈G| − 1

2
∇2|G′〉〈G′|ψ〉 (B.33)

=
∑
G,G′

1
V 2
〈ψ|G〉〈G|1

2
G′2|G′〉〈G′|ψ〉 (B.34)

=
∑
G,G′

1
V 2

1
2
G′2〈ψ|G〉 〈G|G′〉︸ ︷︷ ︸

δG,G′V

〈G′|ψ〉 (B.35)

=
∑
G,G′

1
V

1
2
G2〈ψ|G〉〈G|ψ〉 (B.36)

In the same way follows:

〈G| − 1
2
∇2|ψ〉 =

∑
G′

1
V
〈G| − 1

2
∇2|G′〉〈G′|ψ〉 (B.37)

=
∑
G′

1
V
〈G|1

2
G′2|G′〉〈G′|ψ〉 (B.38)

=
∑
G′

1
V

1
2
G′2 〈G|G′〉︸ ︷︷ ︸

δG,G′V

〈G′|ψ〉 (B.39)

=
1
2
G2〈G|ψ〉 (B.40)

= V
1
2
G2ψ(G) (B.41)

From all the above written, we see, that we can write the scalar product in G-space
for periodic boundary conditions as:

〈x|y〉 =
∑
G

〈x|G〉 1
V
〈G|y〉 (B.42)

=
∑
G

x∗(G)V y(G) (B.43)

Note that we always work with x(G) in the grid representation (the values stored refer
to 1

V 〈G|x〉)
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B.2.3 Fourier transformation

We use the discrete Fourier transformation as follows:

f(r) =
Gmax∑
Gi=G1

eiGirf(Gi)

f(G) =
1∑
ri

1

rmax∑
ri=r1

e−iGrif(ri)

Note that, for continuous Fourier transformations, we have to distinguish between
transformations concerning a �nite or an in�nite part of the space:

f(r) =
∫
cell

eiGrf(G) d3G (B.44)

f(G) =
1

Vcell

∫
cell

e−iGrf(r) d3r (B.45)

(B.46)

f(r) =
1

(2π)n/2

∫
∞

eiGrf(G) dnG (B.47)

f(G) =
1

(2π)n/2

∫
∞

e−iGrf(r)dnr (B.48)

Note that I choose the prefactors of the Fourier transformation over in�nite space to
be symmetric. The following identities are noticeable:∫

eiG(r−r′) d3G = Cδ(r − r′) (B.49)∫
e−i(G−G

′)r d3r = Cδ(G−G′) (B.50)∑
i

eiGi(r−r
′) = Cδr,r′ (B.51)∑

i

e−i(G−G
′)ri = CδG,G′ (B.52)

C can be (2π)
n
2 or Vcell, depending on the integration limits in the continuous case -

or
∑rmax

i=1 1, the number of r-components, in the discrete case.

A closer look at the prefactors:

The factor 2π comes from ∆G = 2π
L during transition to in�nite integrals. One can
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test the prefactor 1
Vcell

by inserting ψ(r) in the expression for the kinetic energy:

Ekin = −1
2

∫
cell

ψ∗(r)∇2ψ(r) dr (B.53)

= −1
2

∫
cell

Gmax∑
Gi=G1

e−iGirψ∗(Gi)∇2
Gmax∑
G′i=G1

eiG
′
irψ(G′i) dr (B.54)

=
1
2

Gmax∑
Gi=G1

Gmax∑
G′i=G1

∫
cell

e−iGirf∗(Gi)G
′2
i e

iG′irf(G′i) dr (B.55)

=
1
2

Gmax∑
Gi=G1

Gmax∑
G′i=G1

ψ∗(Gi)G
′2
iψ(G′i)

∫
cell

e−iGireiG
′
ir dr (B.56)

=
1
2

Gmax∑
Gi=G1

Gmax∑
G′i=G1

ψ∗(Gi)G
′2
iψ(G′i)

∫
cell

e−i(Gi−G
′
i)r dr (B.57)

=
1
2

Gmax∑
Gi=G1

Gmax∑
G′i=G1

ψ∗(Gi)G
′2
iψ(G′i)VcellδG,G′ (B.58)

=
1
2
Vcell

Gmax∑
Gi=G1

G2
i|ψ(Gi)|2 (B.59)

FFT scaling:

The costs for a fast Fourier Transformation scale with n log n, with n being the
number of G-Vectors (G-Points). Therefore, a FFT for atomic wave functions is
impossible, because we need a plane-wave cuto� of about 1000 Ry instead of 30 Ry.
The number of G-vectors (scaling with about E

3
2 is immense.)

B.2.4 Bessel transformation

B.2.4.1 Some formulas

Expanding a plane-wave into spherical harmonics and spherical Bessel functions of
�rst kind

eiGr = 4π
∑
`,m

i`j`(|G||r|)Y ∗lm(G)Ylm(r) (B.60)

e−iGr = 4π
∑
`,m

(
i`
)∗
j`(|G||r|)Ylm(G)Y ∗lm(r) (B.61)
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Formulas related to spherical harmonics

P`(cos γ) =
4π

2`+ 1

∑̀
m=−`

Y ∗lm(G)Ylm(G
′
) (B.62)

cos γ =
G ·G′
|G||G′ | (B.63)

Ylm(G) = (−1)m
√

2`+ 1
4π

(`−m)!
(`+m)!

sinmθG ×

dm

d(cos θG)m
P`(cos θG)eimφG (B.64)

B.2.4.2 From radial grids to a plane-wave representation

This section deals with transforming a function given in terms of radial part times
spherical harmonics

f(r) =
∑
`m

f`m(|r|)Y`m(r)

into G space

f(r) =
∫
d3Gf(G)eiGr.

Mind that we are using a continuous set of G vectors, since we do not require periodic
boundary conditions at this point. Using the prerequisites introduced so far we thus
write
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f(G) =
1

(2π)3

∫
∞
d3rf(r)e−iGr

=
4π

(2π)3

∫
∞
d3r

[∑
`m

f`m(|r|)Y`m(r)

]∑
`′m′

(−i)`
′
j`′ (|G||r|)Y`′m′ (G)Y ∗

`′m′
(r)


=

4π
(2π)3

∑
`′m′

(−i)`
′
[∫
∞
d3r

∑
`m

f`m(|r|)j`′ (|G||r|)Y`m(r)Y ∗
`′m′

(r)

]
Y`′m′ (G)

=
4π

(2π)3

∑
`′m′

(−i)`
′
[∑

`m

∫
∞
dΩY`m(r)Y ∗

`′m′
(r)︸ ︷︷ ︸

δ
``
′ δ
mm
′∫

∞
d|r|r2f`m(|r|)j`′ (|G||r|)

]
Y`′m′ (G)

=
4π

(2π)3

∑
`′m′

(−i)`
′
[∫ ∞

0
d|r|r2f`′m′ (|r|)j`′ (|G||r|)

]
Y`′m′ (G)

The expression for a periodic function and thus discrete G vectors is obtained by
multiplying with

(2π)3

V
.

The �nal expression for periodic boundary conditions is thus

f(G) =
4π
V

∑
`′m′

(−i)`
′
[∫ ∞

0
d|r|r2f`′m′ (|r|)j`′ (|G||r|)

]
︸ ︷︷ ︸
BESSELTRANSFORM=f

`
′
m
′ (|G|)

Y`′m′ (G).

In all applications in the SESM context we always transform functions which can
be expressed in terms of a single radial times spherical harmonics expression. The
sum over `

′
and m

′
is thus removed. We store the Bessel-transformed function with

the prefactor 4π
V f`′m′ (|G|) on a radial G grid and apply

∑
`′m′

(−i)`′Y`′m′ (G) when we

need f(G). We actually use a matrix with one index referring to the g components
(ig → ng) and the second index corresponding to the lmx (s, px, py, pz,. . . ). Y`′m′ (G)
means that we just depend on the angle of the vector G. Therefore we can use the
same PAW routine getylm as for Y`′m′ (r). The expression in square brackets is
called spherical Bessel transform of order ` and is calculated on radial grids [94]. The
corresponding subroutine in the PAW library is besseltransform.
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B.3 Spherical harmonics expansion

B.3.1 Some facts about spherical harmonics

The spherical harmonics have some noticeable properties:

L̂2Ylm(r) = l(l + 1)Ylm(r)
L̂zYlm(r) = mYlm(r)

∮
Y ∗lm(r)Yl′m′(r) dA = r2︸︷︷︸

=1 if r=e

δl,l′δm,m′ (B.65)

f(r) =
∑
l,m

Rlm(|r|) · Ylm(r)

⇒ Rlm(|r|) =
∮
|r|=|r′|

1
|r|2 f(r′)Y ∗lm(r′) dA′ (B.66)

=
∫
f(r′)Y ∗lm(r′)

δ(|r| − |r′|)
|r|2 d3r′ (B.67)

There exist cubic spherical harmonics Ȳlm =
√

2R[Yl|m|] and Ȳl,−m =
√

2I[Yl|m|] that
are only real or imaginary and ful�ll the above relations except the second one. One
should at least remember Y00 = 1√

4π
. This comes from∮

Y ∗lmYlmdA =
∫ ∫

1
4π

r2sinθdθdφ

= r2 1
4π

4π

B.3.2 Clebsch and Gaunt coe�cients, selection rules

When working in the spherical harmonics basis, so called Gaunt-integrals occur:

〈L′′|L|L′〉 :=
∫
Y ∗L′′YLYL′dΩ. (B.68)

For real spherical harmonics (
∫
ȲL′′ ȲLȲL′dΩ), this integral can be solved analytically,

applying the Wigner Eckart theorem [95]. The more general integral (B.68) can also
be solved analytically [96, 97] and is parametrized by so called Gaunt coe�cients:

cL′′,L,L′ =
∫
Y ∗L′′YLYL′dΩ (B.69)
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The product of two spherical harmonics is parametrized by Clebsch-Gordon coe�-
cients2:

YLYL′ =
∑
L′′

cL′′,L,L′Yl′′m′′ (B.70)

Both sets of coe�cients satisfy the selection rule:

m3 = m1 +m2

|l1 − l2| ≤ l3 ≤ |l1 + l2| (B.71)

Note however, that the m speci�c selection rule only holds for complex spherical
harmonics.

B.3.3 Spherical harmonics and Fourier transformation

We start from the usual spherical harmonics expansion and project onto a speci�c
spherical harmonic3:

f(r) =
∑
`m

f`m(|r|)Y`m(r)∫
Y ∗`′m′(r)f(r)dA =

∑
`m

f`m(|r|)
∫
Y ∗`′m′(r)Y`m(r)dA︸ ︷︷ ︸
|r|2δ``′δmm′∫

Y ∗`′m′(r)f(r)dA = |r|2f`m(|r|)

Now we use the Fourier transform and the spherical harmonic expansion for plane
waves 4:

|r|2f`m(|r|) =
∫
Y ∗`′m′(r)

∫
f(G)eiGrd3GdA

|r|2f`m(|r|) =
∫
Y ∗`′m′(r)

∫
f(G)4π

∑
`m

ilj`(|G||r|)Y ∗`m(G)Y`m(r)d3GdA

|r|2f`m(|r|) = 4π
∫
f(G)

∑
`m

ilj`(|G||r|)Y ∗`m(G)
∫
Y ∗`′m′(r)Y`m(r)dA︸ ︷︷ ︸
|r|2δ``′δmm′

d3G

f`m(|r|) = 4π
∫
il f(G) j`(|G||r|)Y ∗`m(G)d3G

2Both relations also hold for real spherical harmonics.
3Note that dA = r2dΩ. We can get f`m(|r|)out of the integral, because it is not angular dependent.
4Note that we can get the

R
dA inside, because j` does not depend on the angle, but just on the

length of r.
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For numerical reasons, we are using the following steps in the code:

• determine Y ∗`m(G) as a vector containing all lmx Y (lmx)

• take the product i`f(G)Y ∗`m(G), store the result in a matrix xbar(lmx, ng)

• sort that matrix for |G| and add the contributions with same |G| up

• take
∑
|G|
xbar(lmx, ng) · j`(|G||r|)

• multiply by 4π

In that way, we split the
∫

d3G (which has to be replaced by
∑
G

for a grid represen-

tation) in such a way, that we need the minimal amount of calls for j`, the spher-
ical Bessel-function of �rst kind. The calculation of the latter is done according to
Abramowitz and Stegun, formula 10.1.2 for ` < 8 and formula 10.1.8 and 10.1.9 for
` > 8, and is numerically demanding (�nd the code in numeric$bessel).
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B.4 Spherical harmonics re-expansion

B.4.1 General expressions

We use the following de�nitions and relations5

Ỹl,m(θ, φ) = Pl,m(cos θ)eimφ (B.72)

Pl,m(x) =
1

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l

Yl,m = (−1)m
√

(2l + 1)(l −m)!
4π(l +m)!

Ỹl,m (B.73)

P̄l,m(x) = (−1)m
√

(2l + 1)(l −m)!
4π(l +m)!

Pl,m(x) (B.74)

∫
Y ∗l,mYl′,m′dΩ = δl,l′δm,m′∫
Y ∗l,mYl′,m′dA = r2δl,l′δm,m′

Sl,m(x) = (−1)m(l −m)!
1
|x|l+1

Ỹl,m(x) (B.75)

Rl,m(x) = (−1)m
1

(l +m)!
|x|lỸl,m(x) (B.76)

The inverse distance 1
|r−∆| can be expanded in spherical harmonics6 [98, 99]

1
|r−∆| =

∑
L

R∗L(∆)SL(r) for |∆| ≤ |r| (B.77)

We make further use of Van Gelderens expression7 (26) :

Sl,m(x + y) =
∑
L′

(−1)l
′+m′−mRl′−l,m−m′(y)Sl′,m′(x)

5Note that dA = r2drdΩ = r2 sin θdrdθdφ.
6Van Gelderen writes |∆| < |r|, this has to be an error. In other publications we �nd ≤. We do
not follow Van Gelderen here.

7Note that we have l′ − l and m−m′.
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We can use this to write

Sl,m(r) = Sl,m(r−∆ + ∆)

=
∑
L′

(−1)l
′+m′−mRl′−l,m−m′(∆)Sl′,m′(r−∆) (B.78)

In addition we use Van Gelderens shift expression for the normalized spherical har-
monics:

YL(x− y) =
1

|x− y|l
∑
L′

(−1)l
′

√
4π(2l+1)

(2l−2l′+1)(2l′+1)

√
(l−m)!(l+m)!

(l′−m′)!(l′+m′)!√
(l − l′ −m+m′)!(l − l′ +m−m′)!

|y|l′YL′(y)|x|l−l′Yl−l′,m−m′(x) (B.79)

B.4.2 Transformation in 3D

We have a function expanded in spherical harmonics8 around the origin

f(r) =
∑
L

fL(|r|)YL(r) (B.80)

and want to have the expansion shifted to a new center ∆:

f(r) =
∑
L

fL(|r−∆|)YL(r−∆) .

We start with (B.80) and multiply by 1:

f(r) =
∑
L

fL(|r|) 1
|r−∆| |r−∆|YL(r)

Using the expansion (B.77) and the substitution (B.78) leads to:

f(r)
(B.77)

=
∑
LL′

fL(|r|)R∗L′(∆)SL′(r)|r−∆|YL(r)

(B.78)
=

∑
LL′L′′

fL(|r|)R∗L′(∆)(−1)l
′′+m′′−m′Rl′′−l′,m′−m′′(∆)

×Sl′′,m′′(r−∆)|r−∆|YL(r)∑
L′′

[∑
LL′

(−1)l
′′+m′′−m′fL(|r|)R∗l′,m′(∆)Rl′′−l′,m′−m′′(∆)YL(r)|r−∆|

]
= ×Sl′′,m′′(r−∆) (B.81)

8With
P
L

=
P
l

lP
m=−l

.
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The expression in brackets de�nes the expansion coe�cients for the expansion with
center ∆.

B.4.3 Transition to normalized spherical harmonics

We can express (B.81) in terms of normalized spherical harmonics:

f(r)
(B.75)

=
∑
LL′L′′

(−1)l
′′+m′′−m′fL(|r|)R∗L′(∆)Rl′′−l′,m′−m′′(∆)

YL(r)|r−∆|(−1)m
′′
(l′′ −m′′)! 1

|r−∆|l′′+1
Ỹl′′,m′′(r−∆)

=
∑
LL′L′′

(−1)l
′′+m′′−m′fL(|r|)R∗L′(∆)Rl′′−l′,m′−m′′(∆)

YL(r)(l′′ −m′′)!
(

(2l′′ + 1)(l′′ −m′′)!
4π(l′′ +m′′)!

)− 1
2 |r−∆|
|r−∆|l′′+1

Yl′′,m′′(r−∆)

=
∑
LL′L′′

(−1)l
′′+m′′−m′(

(2l′′+1)(l′′−m′′)!
4π(l′′+m′′)!

) 1
2

fL(|r|)R∗L′(∆)Rl′′−l′,m′−m′′(∆)

YL(r)(l′′ −m′′)! 1
|r−∆|l′′ Yl′′,m′′(r−∆)

=
∑
L′′

∑
LL′

(−1)l
′′+m′′−m′(

(2l′′+1)(l′′−m′′)!
4π(l′′+m′′)!

) 1
2

fL(|r|)R∗L′(∆)Rl′′−l′,m′−m′′(∆)

YL(r)(l′′ −m′′)! 1
|r−∆|l′′ Yl′′,m′′(r−∆)

B.4.4 Alternative transformation expression

We start with (B.80):

f(r) =
∑
L

fL(|r|)YL(r)

and rewrite YL(r) = YL(r−∆ + ∆) using (B.79):

f(r) =
∑
L

fL(|r|) 1
|r|l

∑
L′

(−1)l
′

√
4π(2l+1)

(2l−2l′+1)(2l′+1)

√
(l−m)!(l+m)!

(l′−m′)!(l′+m′)!√
(l − l′ −m+m′)!(l − l′ +m−m′)!

×|∆|l′YL′(∆)|r−∆|l−l′Yl−l′,m−m′(r−∆)
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We can now expand the radial part 1
|r|l fL(|r|) around the new center ∆:

1
|r|l fL(|r|) =

∑
L′′

gL,L′′(|r−∆|)YL′′(r−∆)∫
1
|r|l fL(|r|)Y ∗L′′′(r−∆)dΩ =

∑
L′′

gL,L′′(|r−∆|)
∫
Y ∗L′′′(r−∆)YL′′(r−∆)dΩ∫

1
|r|l fL(|r|)Y ∗L′′(r−∆)dΩ = gL,L′′(|r−∆|)

and get:

f(r) =
∑
L

∑
L′′

gL,L′′(|r−∆|)YL′′(r−∆)
∑
L′

(−1)l
′

×
√

4π(2l+1)
(2l−2l′+1)(2l′+1)

√
(l−m)!(l+m)!

(l′−m′)!(l′+m′)!√
(l − l′ −m+m′)!(l − l′ +m−m′)!

×|∆|l′YL′(∆)|r−∆|l−l′Yl−l′,m−m′(r−∆)

=
∑
L

∑
L′′

gL,L′′(|r−∆|)
∑
L′

(−1)l
′

√
4π(2l+1)

(2l−2l′+1)(2l′+1)

√
(l−m)!(l+m)!

(l′−m′)!(l′+m′)!√
(l − l′ −m+m′)!(l − l′ +m−m′)!

×|∆|l′YL′(∆)|r−∆|l−l′YL′′(r−∆)Yl−l′,m−m′(r−∆)
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Let's try to get rid of the l − l′:

=
∑
L′′′

∑
L′

∑
L′′

g(|r−∆|) (−1)l
′

√
4π(2l′+l′′′+1)

(2l′′′+1)(2l′+1)

√
(l′+l′′′−m′−m′′′)!(l′+l′′′+m′+m′′′)!

(l′−m′)!(l′+m′)!√
(l′′′ −m′′′)!(l′′′ +m′′′)!

×|∆|l′YL′(∆)|r−∆|l′′′YL′′(r−∆)Yl′′′,m′′′(r−∆)

=
∑
L′′′

∑
L′

∑
L′′

g(|r−∆|) (−1)l
′

√
4π(2l′+l′′′+1)

(2l′′′+1)(2l′+1)

√
(l′+l′′′−m′−m′′′)!(l′+l′′′+m′+m′′′)!

(l′−m′)!(l′+m′)!√
(l′′′ −m′′′)!(l′′′ +m′′′)!

×|∆|l′YL′(∆)|r−∆|l′′′
∑
L′′′′

cL′′,L′′′,L′′′′YL′′′′(r−∆)

=
∑
L′′′′

∑
L′

∑
L′′

∑
L′′′

g(|r−∆|) (−1)l
′

√
4π(2l′+l′′′+1)

(2l′′′+1)(2l′+1)

√
(l′+l′′′−m′−m′′′)!(l′+l′′′+m′+m′′′)!

(l′−m′)!(l′+m′)!√
(l′′′ −m′′′)!(l′′′ +m′′′)!

×|∆|l′YL′(∆)|r−∆|l′′′cL′′,L′′′,L′′′′ YL′′′′(r−∆)

Note however, that these expressions are explicit, but numerically inconvenient. For
numerical implementations, the rotate - expand - rotate algorithm discussed in the
following subsection is preferable.

B.4.5 Rotate - expand - rotate algorithm

The explicit transformations in 3D, derived above are numerically demanding. For
numerical implementations, it is preferable to divide the transformation in three steps.
In a �rst step, we rotate the spherical harmonics such, that the connecting vector
between old and new center lie on the z-axis. In a second step we expand the rotated
expansion in the new center and �nally, we rotate the result back. The advantage
is that in step two, we can exploit that all components for which m 6= 0 do not
contribute and that the integration along dφ can be carried out analytically (this will
be explained in the following).
Recursion formulas for the determination of rotation matrices for real spherical

harmonics can be found in [100]. This is common knowledge, we therefore will not go
into detail here9.
In the following, we suppose the (rotated) spherical harmonics expansion of a given

9The numerical implementation of the rotation is based on the routine rotateylm of the PAW
library.
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function in 3D to be located at R = (0, 0, R):

f(r) =
∑
L

fL(|r−R|)YL(r−R)

The new expansion center shall be located in the origin:∑
L

fL(|r−R|)YL(r−R) =
∑
L′

gL′(|r|)YL′(r).

We can access the radial part of the new expansion for a given distance |r|, by
projection onto Y ∗L′(r) and surface integration at constant |r|, which we denote by
dΩr: ∑

L

∫
fL(|r−R|)Y ∗L′(r)YL(r−R)dΩr =

∑
L′

gL′(|r|)
∫
Y ∗L′(r)YL′(r)dΩr︸ ︷︷ ︸

B.65
= δL,L′∑

L

∫
fL(|r−R|)Y ∗L′(r)YL(r−R)dΩr = gL′(|r|) (B.82)

Note that the distance |r−R| changes during integration over Ω. We can now switch
to spherical coordinates centered at R (|r − R|, α, φ) and the origin (|r|, θ, φ). We
can now exploit, that the expansion center of the original and �nal expansion is only
shifted along z. Applying the law of cosine, the following relations

|r−R| =
√
R2 + r2 − 2rR cos θ

α = arccos

(
rcosθ −R√

R2 + r2 − 2rR cos θ

)
︸ ︷︷ ︸

:=h(θ)

,

with r = |r| and R = |R| hold. Insertion in (B.82) leads to:

gL′(|r|) =
∑
L

π∫
0

2π∫
0

fL(
√
R2 + r2 − 2rR cos θ)Y ∗L′(θ, φ)YL(h(θ), φ)dφsinθdθ

=
∑
L

2πδm,m′
π∫

0

fL(
√
R2 + r2 − 2rR cos θ)P̄L′(cosθ)P̄L(cos(h(θ)))sinθdθ.

(B.83)

In the second line we used that fL is constant for φ integration, and that the product
Y ∗L′YL only contributes for equal magnetic quantum numbers. The latter follows from
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the de�nition of the spherical harmonics (B.72):

2π∫
0

Y ∗L′(θ, φ)YL(h(θ), φ)dφ = P̄L′(cosθ)P̄L(cos(h(θ)))

2π∫
0

e(m−m′)iφdφ

= P̄L′(cosθ)P̄L(cos(h(θ)))2πδm,m′

We perform the θ integration on an equispaced grid with 300 grid points. Further
reduction of numerical costs may be achieved by application of Gaussian quadrature
(choosing optimized grid points and integration weights) with spherical harmonics as
generating functions [86].

B.5 Numerical integration of Schrödinger's equation

B.5.1 Logarithmic grid

The spherical harmonics basis set, with its decomposition in radial function times
spherical harmonics:

f(r) =
∑
l,m

fl,m(|r|)Yl,m(r),

is the natural basis of isolated atoms. In numerical implementations, the radial
functions thereby are usually held on logarithmic radial grids:

r(x) = r1e
(x−1)α, x = 1 . . . nr

r(x+ 1) = r(x)eα

with typical values of nr = 250, r1 = 1.056 · 10−4a0 and α = 1/20, respectively. This
allows a high resolution near the nucleus, where the potential and wave functions are
steep, and a description of the smooth long-range behavior with a limited number of
mesh-points.
When switching to logarithmic radial grids, the integration limits, integration vari-

ables and derivatives can be expressed in terms of grid points (x) as follows:

x =
ln r

r1

α
+ 1

dr = αr(x)dx

∂

∂r
=

∂

αr(x)∂x

∂2

∂r2
= − 1

αr(x)2

∂

∂x
+

1
α2r(x)2

∂2

∂x2
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B.5.2 Schrödinger's equation in spherical harmonics

We expand an arbitrary basis set |Φ〉 in spherical harmonics:

〈r|Φ〉 =
∑
l,m

ϕlm(|r|) · Ylm(r)



172 B Derivations

and insert this in the inhomogeneous Schrödinger equation(
1
2
P̂ 2 + V̂loc − ε

)
|Φ〉 = |I〉∫ ∫

|r′〉〈r′|
(

1
2
P̂ 2 + V̂loc − ε

)
|r〉〈r|Φ〉dr′dr =

∫
|r〉〈r|I〉dr

∫
|r〉
−1

2
∇2 +

∑
l,m

Vlm(|r|) · Ylm(r)− ε


∑
l′,m′

ϕl′m′(|r|) · Yl′m′(r)dΩ =
∫
|r〉
∑
l,m

Ilm(|r|) · Ylm(r)dΩ

both sides · 〈Yl′′′m′′′ , |r||

∫
Y ∗l′′′m′′′(r)

−1
2
∇2 +

∑
l,m

Vlm(|r|) · Ylm(r)− ε


∑
l′,m′

ϕl′m′(|r|) · Yl′m′(r)dΩ =
∑
l,m

Ilm(|r|)∫
Y ∗l′′′m′′′(r) · Ylm(r)dΩ︸ ︷︷ ︸

δl,l′′′δm,m′′′∫
Y ∗l′′′m′′′(r)

(
−1

2
∇2

r − ε
)∑
l′,m′

ϕl′m′(|r|) · Yl′m′(r)dΩ

+
∑
l′,m′

∑
l,m

∫
Y ∗l′′′m′′′(r)Yl′m′(r)Ylm(r)dΩVlm(|r|)ϕl′m′(|r|) = Il′′′m′′′(|r|)

∫
Y ∗l′′′m′′′(r)

1
2
· (−∇2

r

)︸ ︷︷ ︸
=− 1

r
∂2
r r+

1
r2
L̂2

−ε


∑
l′,m′

ϕl′m′(|r|) · Yl′m′(r)dΩ

+
∑
l′,m′

∑
l,m

cl′′′m′′′l′m′lm︸ ︷︷ ︸
Gaunt coefficient

Vlm(|r|)ϕl′m′(|r|) = Il′′′m′′′(|r|)

∑
l′,m′

∫
Y ∗l′′′m′′′(r)Yl′m′(r)

(
− 1

2r
∂2
r r +

l′(l′ + 1)
2r2

− ε
)
ϕl′m′(|r|) · dΩ

+
∑
l′,m′

∑
l,m

cl′′′m′′′l′m′lmVlm(|r|)ϕl′m′(|r|) = Il′′′m′′′(|r|)

(
− 1

2r
∂2
r r +

l′′′(l′′′ + 1)
2r2

− ε
)
ϕl′′′m′′′(|r|)

+
∑
l′,m′

∑
l,m

cl′′′m′′′l′m′lmVlm(|r|)ϕl′m′(|r|) = Il′′′m′′′(|r|)

1
r

(
−1

2
∂2
r +

l′′′(l′′′ + 1)
2r2

− ε
)
rϕl′′′m′′′(|r|)

+
∑
l′,m′

∑
l,m

cl′′′m′′′l′m′lmVlm(|r|)ϕl′m′(|r|) = Il′′′m′′′(|r|)

(
−1

2
∂2
r +

l(l + 1)
2r2

− ε
)
rϕlm(|r|)

+
∑
l′,m′

∑
l′′,m′′

clml′m′l′′m′′Vl′m′(|r|)rϕl′′m′′(|r|) = rIlm(|r|)
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with r = |r|. 〈Yl′′′m′′′ , |r||is a bra, that projects on the sphere surface and then
onto a spherical harmonic. In real space this corresponds to a multiplication with
Y ∗l′′m′′(r

′)δ(|r| − |r′|) and projects onto the radial part for a given r.

We now rewrite10 1
r∂

2
r r = 1

r∂r(1 + ∂r) = 1
r (2∂r + r∂2

r ) = 2
r∂r + ∂2

r . This expression
is more convenient for the numerical integration than the usual approach where we
get r to the right side.[

−1
r
∂r − 1

2
∂2
r +

l(l + 1)
2r2

− ε
]
ψlm(|r|)

+
∑

l′m′,l′′,m′′

clm,l′m′,l′′m′′Vl′m′(|r|)ψl′′m′′(|r|) = Ilm(|r|)

What is the meaning of this equation? We started from Schrödinger's equation includ-
ing a non-spherical potential. This potential does not allow to decouple the solutions
with respect to their angular momentum. A solution in a non-spherical potential has
(at least in principle) contributions from all angular momenta. Therefore, we need
to write the solution as spherical harmonics expansion ψ(r) =

∑
lm

ψlm(|r|)Ylm(r). In

order to determine a solution to the non-spherical Schrödinger equation, we need to
solve the above equation for all present lm channels at the same time (we have a
coupled system of di�erential equations)! But before we focus on this aspect, we'll
discuss how to solve one of those equations by numerical integration using Verlet's
algorithm.

B.5.3 Discretized Schrödinger's equation

First, we switch to the logarithmic grid as discussed above:[
− 1

2αr(x)2
∂x − 1

2α2r(x)2
∂2
x +

l(l + 1)
2r(x)2

− ε
]
ψlm(x)

+
∑

l′m′,l′′,m′′

clm,l′m′,l′′m′′Vl′m′(x)ψl′′m′′(x) = Ilm(x) (B.84)

Now we can discretize the equation using Verlet's di�erential operators

∂xf(x) =
f(x+ ∆)− f(x−∆)

2∆

∂2
xf(x) =

f(x+ ∆)− 2f(x) + f(x−∆)
∆2

10We simply use the product rule for derivation: 1
r
∂2
rrf(r) = 1

r
∂r(∂rrf(r)) = 1

r
∂r(f(r)∂rr +

r∂rf(r)) = 1
r
∂r(1 + r∂r)f(r) and so on.
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with ∆ = 1 because we work in the equispaced index space.

−ψlm(x+ 1)− ψlm(x− 1)
4αr(x)2

− ψlm(x+ 1)− 2ψlm(x) + ψlm(x− 1)
2α2r(x)2

+
l(l + 1)
2r(x)2

ψlm(x)

−εψlm(x) +
∑

l′m′,l′′,m′′

clm,l′m′,l′′m′′Vl′m′(x)ψl′′m′′(x)

= Ilm(x)

We solve this for ψ(x + 1) and ψ(x − 1) in order to be able to integrate from inside
out and vice versa.

ψlm(x+ 1) = −4α2r(x)2

α+ 2

0@Ilm(x)−
X

l′m′,l′′,m′′

clm,l′m′,l′′m′′Vl′m′(x)ψl′′m′′(x)

− l(l + 1)

2r(x)2
ψlm(x) + εψlm(x)

«
+

4

α+ 2
ψlm(x) +

α− 2

α+ 2
ψlm(x− 1)

ψlm(x− 1) =
4α2r(x)2

α− 2

0@Ilm(x)−
X

l′m′,l′′,m′′

clm,l′m′,l′′m′′Vl′m′(x)ψl′′m′′(x)

− l(l + 1)

2r(x)2
ψlm(x) + εψlm(x)

«
+
α+ 2

α− 2
ψlm(x+ 1)− 4

α− 2
ψlm(x)

Spherical potentials

For strictly spherical potentials11, the lm channels do not mix. We have∑
l′m′,l′′,m′′

clm,l′m′,l′′m′′Vl′m′(x)ψl′′m′′(x)→ Vl′m′=1(x)ψlm(x)

and the discretized equations become decoupled with respect to the angular momenta:

ψlm(x+ 1) = −4α2r(x)2

α+ 2

(
Ilm(x)− Vs(x)ψlm(x)− l(l + 1)

2r(x)2
ψlm(x) + εψlm(x)

)
+

4
α+ 2

ψlm(x) +
α− 2
α+ 2

ψlm(x− 1)

ψlm(x− 1) =
4α2r(x)2

α− 2

(
Ilm(x)− Vs(x)ψlm(x)− l(l + 1)

2r(x)2
ψlm(x) + εψlm(x)

)
+
α+ 2
α− 2

ψlm(x+ 1)− 4
α− 2

ψlm(x)

11Do not forget the factor 1√
4π
: V (r) = V (r) = Vs(r)

1√
4π
!
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Choosing the correct boundary conditions and an approximated energy εapp, this
equations allow to integrate Schrödinger's equation from inside out (x = 1 → x =
xmax) and outside in (x = xmax → x = 1). The two solutions usually are matched
at the classical return point. For εapp not being the energy of the exact solution, this
leads to a kink at the matching point, which is proportional to the deviation in energy.
A better estimate of the exact energy can therefore be obtained from the miss-match
in the logarithmic derivatives at the matching point for at least two di�erent energies.

Non-spherical potentials

For non-spherical potentials, the angular momenta do not decouple. It is therefore
necessary to solve all equations step by step in parallel. The basic approach thereby
is similar to the spherical case: all equations are solved in parallel from outside in
and inside out (note the mixing of angular momenta for a given channel only depends
on the information of all other angular momenta channels from the previous mesh
points). Matching inside and outside solutions at the classical return-point however
leads to a matrix equation in ε.





C Publication

Due to copyright issues, the publication Dynamical dimer method for the determi-

nation of transition states with ab initio molecular dynamics, J. Chem. Phys. 128,
044107 (2008) is not included in this version of the thesis.





D Symbols and Constants

D.1 Symbols used

Γ Transition Rate
ε Dielectric constant
λ Lagrange Multiplier
ρ Density
τ Average Lifetime
φ̃ Auxiliary Partial Wave Function
φc Core Electron Wave Function
ψ Single Particle Wave Function
ψ̃ Auxiliary Single Particle Wave Function
Ψ Total Wave Function
Ψ̃ Auxiliary Total Wave Function
a0 Bohr Radius
AIMD Ab Initio Molecular Dynamic
ASW Augmented Spherical Wave
au atomic units
CI Con�guration Interaction (methods)
CP Car Parrinello
d constraint dimer distance
DFT Density Functional Theory
E Energy
EPW Plane Wave Cuto� Energy
ETF THOMAS-FERMI energy for atoms
fi Occupation Number
F Force Vector
F̄ Velocity Dependent Force Vector
G Constraint Function
Gmax Maximum Value of the Wave Vector for Plane Wave Expansions
GGA General Gradient Approximation
Ĥ Hamiltonian operator
H Hamiltonian
H Hessian matrix
I Flux



180 D Symbols and Constants

I Matrix that projects out the direction parallel to the dimer
J Exchange Interaction in the LEPS Potential
k Boltzmann's constant
l angular momentum
L Lagrange Function
LDA Local Density Approximation
LEPS London-Eyring-Polanyi-Sato
LMTO Linear Mu�n Thin Orbital
LAPW Linear Augmented Plane Wave
LSDA Local Spin Density Approximation
me Mass of the electron
mni Mass of the nuclei i
m Mass Matrix
M 1

2m−m
1
2 I m

1
2

M̄ij Mij +Mji

Mo Fictitious Mass-factor for the rotational Velocity of the Dimer
M‖ Fictitious Mass-factor for the parallel Velocity of the Dimer
M⊥ Fictitious Mass-factor for the perpendicular Velocity of the Dimer
MPI Message Passing Interface
MPICH MPI implementation of the University of Chicago
n Number of electrons in a given system
N Number of nuclei in a given system
p̃R Projector Function for atom R in PAW
PAW Projector Augmented Wave
Q Coulomb Interaction in the LEPS Potential
r Space coordinate of the electrons
R Space coordinate of the nuclei
R+ Space Coordinate at the next Time-step
R− Space Coordinate at the last Time-step
RTS Space Coordinate of the Transition State
rc,R Cuto� radius for atom R
SR Local contribution around nuclei R in PAW
s Spin coordinate of the electrons
SN2 Substitution Nucleophilic Bipolar
SCF Self Consistent Field
SI International system (for units)
T̂ Transformation Operator in the PAW method
TTF THOMAS-FERMI kinetic energy
T̂e Kinetic energy operator for the electrons
T̂n Kinetic energy operator for the nuclei
V Volume
vo Rotational Velocity of the Dimer
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v‖ Parallel Velocity of the Dimer
v⊥ Perpendicular Velocity of the Dimer
Veff E�ective Potential
V̂ee Electron-electron interaction potential operator
V̂en Electron-nuclei interaction potential operator
V̂ext External-potential operator
V̂nn Nuclei-nuclei interaction potential operator
x Coordinate (space and spin) of the electrons in DFT
x m

1
2 R in Dimer Calculations

Z Nuclear charge in au

D.2 Physical Constants

a0 = 0.529177Å
cvac = 2.99792 · 108 m

s

ε0 = 8.85419 · 10−12 C2

Jm
~ = 1.05457 · 10−34 Js
h = 6.62608 · 10−34 Js

k = 1.30866 · 10−23 J
K

me = 9.10939 · 10−31 kg
mp = 1.67262 · 10−27 kg
mn = 1.67493 · 10−27 kg
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