Decoherence and Thermalization at Finite Temperatures for Quantum Systems

Mark A. Novotny ${ }^{1}$, Fenping Jin ${ }^{2}$, Shengjun Yuan ${ }^{3}$, Seiji Miyashita ${ }^{4}$, Hans De Raedt ${ }^{5}$, and Kristel Michielsen ${ }^{2,6}$

${ }^{1}$ Mississippi State University, ${ }^{2}$ Jülich Supercomputing Centre, ${ }^{3}$ Radboud University, ${ }^{4}$ University of Tokyo, ${ }^{5}$ University of Groningen, ${ }^{6}$ RWTH Aachen University

Introduction and Motivation

We study a general closed quantum entirety, considered to be a subsystem with Hamiltonian H_{S}, an environment or bath with Hamiltonian H_{E}, and a Hamiltonian with overall strength λ which couples S and E. The entirety $S+E$ evolves via the timedependent Schrödinger equation with Hamiltonian $H=H_{0}+\lambda H_{S B}=H_{S}+H_{E}+\lambda H_{S B}$. The dimension of the entirety is $D=D_{S} D_{E}$. We assume that the entirety is in the canonical-thermal-state ensemble at inverse temperature $\beta=1 / T$ (with $k_{B}=\hbar=1$).

Methods

The reduced density matrix for S is $\tilde{\varrho}_{S}=\operatorname{Tr}_{E} \varrho$, with elements given by Eq.(1). Our measure of decoherence $\sigma(t)$ is given by a function of the off-diagonal elements of $\tilde{\varrho}_{S}$ (in the basis where H_{S} is diagonal) as in Eq.(2), while our measure of thermalization $\delta(t)$ is given by a function of the diagonal elements as in Eq.(3). In Eq.(3) $b(t)$ is a fitting parameter, and the superscripts on the energies stand for S or E.
The state $\left|\Psi_{0}\right\rangle$, given by Eq.(5), is a random infinite-temperature ($\beta=0$) state of the entirety $S+E$. The coefficients $d_{i, p}$ are complex Gaussian random numbers, and the normalization is given by Eq.(6). The canonical-thermal state is given by Eq.(7), and is a normalized pure state at a finite temperature, $T=1 / \beta$. All such states $\left|\Psi_{\beta}\right\rangle$ form the canonical-thermal-state ensemble.
The free energies for the entirety, S, and E are, respectively, $F(\beta), F_{S}(\beta)$, and $F_{E}(\beta)$; ground-state degeneracies are g, g_{S}, g_{E}.

Perturbation Results

We have performed perturbation theory calculations for a general entirety, for small λ. The calculations use Eq.(4), and are performed over the entire canonical-thermal-state ensemble. The lowest order term has $\lambda H_{S E}=0$, an uncoupled but entangled entirety. After lengthy calculations, general expressions at long times for σ are obtained, Eq.(8), to be a function of the free energies at particular temperatures. The limit for σ for infinite temperature is in Eq.(9), and for very low temperatures in Eq.(10). A similar expression for the thermalization is presented as Eq.(11).

Computational Results

We have performed large-scale calculations with a ring of spin $1 / 2$ particles, with the number of such particles $N=N_{S}+N_{E}$. Random interactions are chosen for $H_{E}\left(\Omega_{i j} \in[-4 / 3,4 / 3]\right)$ and $H_{S E}\left(\Delta_{i j} \in[-4 / 3,4 / 3]\right)$, and ferro- or antiferromagnetic ($|J|=1$) for H_{S}. Relaxation in time is shown in Fig.1, and time-or-disorder averages in Fig.2. Dependences on different N_{E}, N_{S}, λ, and β are shown in Figs.3-5. Comparisons with no adjustable parameters to Eq.(8) are in Figs.6,7, note different g_{S} values.

Fig. 1. $N_{S}=4, N_{E}=22, \beta|j|=0.9, \lambda=1$ with initial states of UDUDY or X, with X and Y states from the appropriate canonical-thermal-state ensemble.

Fig. 4. $N_{S}=4, \lambda=1$ for different values for $\beta|J|$ and N_{E}. Inset are $N_{E}=36$ results

Fig. 6. $N_{E}=8\left(g_{E}=9\right), \Omega=1, N_{E}=4$ (ferro, $J=1$, $\left.g_{s}=5\right)$. Solid red line is from Eq.(8).

Fig. 2. $N_{S}=4, N_{E}=22, \beta|J|=0.9, \lambda=1$ with an initial state X, showing results of averaging over time, H_{E}, and initial states from \boldsymbol{X}.

Fig. 5. $\beta|J|=0.9$ and $\lambda=1$ for different values for N_{S} and N_{E}. The dark khaki line is for $\lambda=0$. Inset are $N_{E}=30$ results.

Fig. 7. $N_{E}=8\left(g_{E}=9\right), \Omega=1, N_{E}=4$ (antiferro, $J=-1$, $g_{S}=1$). Solid red line is from Eq.(8).

Conclusions

We have obtained analytical results for a decoherence measure σ and thermalization measure δ, within the canonical-thermal state ensemble [1]. With minimal, reasonable assumptions we obtain Eq.(8) and Eq.(11) for σ and δ, respectively. We performed large-scale real-time and imaginary-time Schrödinger equation simulations, elucidating and testing our results. Extremely good agreement between the analytical and computational calculation results were obtained, for example in Figs. 6,7.

Reference and Acknowledgements

