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Introduction and Motivation

We study a general closed quantum entirety, considered to be a subsystem with Hamiltonian Hg, an environment or bath with
Hamiltonian Hy, and a Hamiltonian with overall strength A which couples S and E. The entirety S+E evolves via the time-
dependent Schrodinger equation with Hamiltonian H=H,+AHq;=Hs+H+AHgp. The dimension of the entirety is D=DsDp. We
assume that the entirety is in the canonical-thermal-state ensemble at inverse temperature f=1/T (with kz=h=1).

Methods

The reduced density matrix for S is 05 = Trg 0, with elements given by Eq.(1). Our measure of decoherence o(t) is given by a
function of the off-diagonal elements of g (in the basis where H, is diagonal) as in Eq.(2), while our measure of thermalization
0(t) is given by a function of the diagonal elements as in Eq.(3). In Eq.(3) b(t) is a fitting parameter, and the superscripts on the
energies stand for S or E.

The state [¥y), given by Eq.(5), is a random infinite-temperature (f=0) state of the entirety S+E. The coefficients 4, , are complex
Gaussian random numbers, and the normalization is given by Eq.(6). The canonical-thermal state is given by Eq.(7), and is a

normalized pure state at a finite temperature, T=1/. All such states |¥g) form the canonical-thermal-state ensemble.

The free energies for the entirety, S, and E are, respectively, F(f), Fs(B), and F:(B); ground-state degeneracies are g, ¢, 3r-

Perturbation Results

We have performed perturbation theory calculations for a general entirety, for small A. The calculations use Eq.(4), and are
performed over the entire canonical-thermal-state ensemble. The lowest order term has AH¢ =0, an uncoupled but entangled
entirety. After lengthy calculations, general expressions at long times for o are obtained, Eq.(8), to be a function of the free
energies at particular temperatures. The limit for o for infinite temperature is in Eq.(9), and for very low temperatures in Eq.(10).
A similar expression for the thermalization is presented as Eq.(11).

Computational Results

We have performed large-scale calculations with a ring of spin '2 particles, with the number of such particles N=N+Nr.
Random interactions are chosen for Hy (Q;€[-4/3,4/3]) and Hgp (A €[-4/3,4/3]) , and ferro- or antiferromagnetic (1J1=1) for Hg.
Relaxation in time is shown in Fig.1, and time-or-disorder averages in Fig.2. Dependences on different N;, N, A, and f are
shown in Figs.3-5. Comparisons with no adjustable parameters to Eq.(8) are in Figs.6,7, note different ¢. values.
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Fig. 1. Ne=4, N=22, B1]J1=0.9, A=1 with initial states of Fig. 2. No=4, Np=22, B1]1=0.9, A=1 with an initial state X, Fig. 3. Ng=4, f1]1=0.9, with different values of N and A.
UDUDY or X, with X and Y states from the appropriate showing results of averaging over time, H;, and initial Inset has N =36 results.
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Fig. 6. Ng=8 (3=9), Q=1, N=4 (terro, J=1, Fig. 7. Ng=8 (¢=9), (=1, Ny=4 (antiferro, [=-1,
gs=b). Solid red line is from Eq.(8). ¢.=1). Solid red line is from Eq.(8).
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Conclusions

We have obtained analytical results for a decoherence measure o and thermalization measure 0, within the canonical-thermal
state ensemble [1]. With minimal, reasonable assumptions we obtain Eq.(8) and Eq.(11) for o and 9§, respectively. We performed
large-scale real-time and imaginary-time Schrodinger equation simulations, elucidating and testing our results. Extremely good
agreement between the analytical and computational calculation results were obtained, for example in Figs. 6,7.
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