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Introduction and Motivation
We study a general closed quantum entirety, considered to be a subsystem with Hamiltonian HS, an environment or bath with
Hamiltonian HE, and a Hamiltonian with overall strength λ which couples S and E. The entirety S+E evolves via the time‐
dependent Schrödinger equation with Hamiltonian H=H0+λHSB=HS+HE+λHSB. The dimension of the entirety is D=DSDE. We
assume that the entirety is in the canonical‐thermal‐state ensemble at inverse temperature β=1/T (with kB=ћ=1).

Perturbation Results

Computational Results

The reduced density matrix for S is , with elements given by Eq.(1). Our measure of decoherence σ(t) is given by a
function of the off‐diagonal elements of (in the basis where HS is diagonal) as in Eq.(2), while our measure of thermalization
δ(t) is given by a function of the diagonal elements as in Eq.(3). In Eq.(3) b(t) is a fitting parameter, and the superscripts on the
energies stand for S or E.

The state , given by Eq.(5), is a random infinite‐temperature (β=0) state of the entirety S+E. The coefficients di,p are complex
Gaussian random numbers, and the normalization is given by Eq.(6). The canonical‐thermal state is given by Eq.(7), and is a

normalized pure state at a finite temperature, T=1/β. All such states form the canonical‐thermal‐state ensemble.

The free energies for the entirety, S, and E are, respectively, F(β), FS(β), and FE(β); ground‐state degeneracies are g, gS, gE.

Methods

We have performed perturbation theory calculations for a general entirety, for small λ. The calculations use Eq.(4), and are
performed over the entire canonical‐thermal‐state ensemble. The lowest order term has λHSE=0, an uncoupled but entangled
entirety. After lengthy calculations, general expressions at long times for σ are obtained, Eq.(8), to be a function of the free
energies at particular temperatures. The limit for σ for infinite temperature is in Eq.(9), and for very low temperatures in Eq.(10).
A similar expression for the thermalization is presented as Eq.(11).

We have performed large‐scale calculations with a ring of spin ½ particles, with the number of such particles N=NS+NE.
Random interactions are chosen for HE (ΩijЄ[‐4/3,4/3]) and HSE (ΔijЄ[‐4/3,4/3]) , and ferro‐ or antiferromagnetic (|J|=1) for HS.
Relaxation in time is shown in Fig.1, and time‐or‐disorder averages in Fig.2. Dependences on different NE, NS, λ, and β are
shown in Figs.3‐5. Comparisons with no adjustable parameters to Eq.(8) are in Figs.6,7, note different gS values.

Fig. 6. NE=8 (gE=9), Ω=1, NE=4 (ferro, J=1, 
gS=5). Solid red line is from Eq.(8). 

Fig. 7. NE=8 (gE=9), Ω=1, NE=4 (antiferro, J=‐1,
gS=1). Solid red line is from Eq.(8).

We have obtained analytical results for a decoherence measure σ and thermalization measure δ, within the canonical‐thermal
state ensemble [1]. With minimal, reasonable assumptions we obtain Eq.(8) and Eq.(11) for σ and δ, respectively. We performed
large‐scale real‐time and imaginary‐time Schrödinger equation simulations, elucidating and testing our results. Extremely good
agreement between the analytical and computational calculation results were obtained, for example in Figs. 6,7.
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Fig. 1. NS=4, NE=22, β|J|=0.9, λ=1 with initial states of
UDUDY or X, with X and Y states from the appropriate
canonical‐thermal‐state ensemble.

Conclusions

Fig. 2. NS=4, NE=22, β|J|=0.9, λ=1 with an initial state X,
showing results of averaging over time, HE, and initial
states from X.

Fig. 3.   NS=4, β|J|=0.9, with different values of NE and λ.  
Inset has NE=36 results.    

Reference and Acknowledgements
[1] M.A. Novotny, F. Jin, S. Yuan, S. Miyashita, H. De Raedt, and K. Michielsen, Physical Review A, vol. 92, article 032110 [46 pages] (2016).

The authors gratefully acknowledge the computing time granted by the JARA‐HPC Vergabegremium and provided on the JARA‐HPC Partition part of the supercomputer
JUQUEEN at Forschungszentrum Jülich. MAN is supported in part by US National Science Foundation grant DMR‐1206233.

Equations

Fig. 5. β|J|=0.9 and λ=1 for different
values for NS and NE. The dark khaki
line is for λ=0. Inset are NE=30 results.

Fig. 4.   NS=4, λ=1 for different values for β|J|
and NE.  Inset are NE=36 results. 


