
M
em

be
r

o
f

th
e

 H
el

m
ho

ltz
 A

ss
oc

ia
tio

n

Lukas Poorthuis1,2, Klaus Goergen1,2,3, Wendy Sharples1,2, Stefan Kollet2,4

Implementation of parallel NetCDF in the ParFlow hydrological
model: A code modernisation effort as part of a big data
handling strategy

Acknowledgements
GCS/NIC project ID SBDA007 (Kollet and Goergen): The authors gratefully
acknowledge the computing time granted by the John von Neumann Institute for
Computing (NIC) and provided on the supercomputer JURECA at Jülich
Supercomputing Centre (JSC).

References Contact

(1) Simulation Laboratory Terrestrial Systems, Jülich Supercomputing Centre, Jülich Research Centre, Germany; (2) Centre for High Performance Scientific Computing in
Terrestrial Systems, Geoverbund ABC/J, Germany, (3) Meteorological Institute, University of Bonn, Germany, (4) Agrosphere(IBG-3), Jülich Research Centre, Germany

NIC Symposium 2016, 11-12 February 2016, Jülich, Germany

Lukas Poorthuis
l.poorthuis@fz-juelich.de

Lührs, S., Rohe, D., Schnurpfeil, A., Thust, K., & Frings, W. (2015) Flexible and Generic Workflow Management (in proceeding of ParCo 2015)

Jones, J. E., & Woodward, C. S. (2001). Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems.
Advances in Water Resources, 24(7), 763–774. http://doi.org/10.1016/S0309-1708(00)00075-0

Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model. Advances in Water Resources, 29(7), 945–958. http://doi.org/10.1016/j.advwatres.2005.08.006

Kollet, S. J., & Maxwell, R. M. (2008). Demonstrating fractal scaling of baseflow residence time distributions using a fully-coupled groundwater and
land surface model. Geophysical Research Letters, 35(7). http://doi.org/10.1029/2008GL033215

Overpeck, J. T., Meehl, G. A., Bony, S., & Easterling, D. R. (2011). Climate Data Challenges in the 21st Century. SCIENCE, 331(6018), 700–702.
http://doi.org/10.1126/science.1197869

Maxwell, R. M., Condon, L., & Kollet, S. (2015). A high-resolution simulation of groundwater and surface water over most of the continental US with
the integrated hydrologic model ParFlow v3. Geoscientific Model Development, 8(3), 923–937. http://doi.org/10.5194/gmd-8-923-2015

1. Background and motivation

9. Outlook

7. I/O scaling tests

Both pNetCDF and NetCDF4 provide high-performance parallel I/O.

The proper and efficient usage of the performance tuning features
constitutes the challenge of these libraries. Especially the chunking feature,
a process of storing multidimensional data in rectangular chunks to speed up
slow file access, can offer substantial performance improvements for multi-
dimensional variables.

Important considerations for the implementation and usage:
● Small write/read operations should be conducted with

independent/buffered APIs to avoid wait time across MPI processes. In
addition, the API should make one big I/O operation out of many small
ones.

● Big chunks of data should be written in a collective fashion.
● Supercomputing resources: ParFlow is run predominantly on massively

parallel HPC systems, such as JURECA or JUQUEEN.
● Limiting I/O to one data stream per node, accounts for network's topology,

i.e., how JURECA's compute nodes are connected to the centralized
storage system (here: GPFS).

JURECA configuration (02/2016)
● 1,872 nodes (45,216 cores)
● Node: 24 cores with up to 48 threads
● Main memory: 271 TB
● Peak performance: 1.8 (CPU) + 0.44 (GPU)
 PFLOPS
● Interconnect: InfiniBand non-blocking fat tree
● CPU: Intel Xeon E5-2680 v3, 2.5GHz
● RAM: 128 GB DDR4 RAM per node

3. HPC system: JSC/JURECA

4. Parallel I/O libraries,
 implementation and usage

5. Chunking with NetCDF4

8. NetCDF4 pI/O implementation into ParFlow

● Implementation of a MPI-parallel data management to only have one
 data stream per node (with several MPI tasks per node)
● Replacement of the ParFlow binary output module with a NetCDF4 I/O
 module
● ParFlow I/O optimisation with the profiling tools
● Compression of NetCDF output
● Implementation of in-situ processing in ParFlow using VisIt on JURECA
 to reduce total processing time and model output data volumes

6. Parallel I/O tests using the
JUBE2 environment

pNetCDF NetCDF4
(only HDF5 features)

File version support CDF-1, CDF-2, CDF-5 HDF5

API write/read modes nonblocking,
independent,
collective

collective,
independent

MPI I/O hints x x

buffering x x

compression x

chunking x

Tab. 1: Feature comparison between pNetCDF and NetCDF4.

State-of-the-art geoscience simulations are tending towards ever increasing
model complexity. Due to the incorporation of multi-physics, fully coupled
model systems with higher spatial resolutions, larger model domains and
simulations running for longer time periods this leads to a big data
challenge.

This data challenge is typically characterised by TB-scale data volumes,
namely I/O, where data variety, velocity and complexity are less relevant
issues.

Within the NIC Scientific Big Data Analytics project “Towards a high-
performance big data storage, handling and analysis framework for Earth
science simulations” work has concentrated on a code modernisation effort
as a best-practice example, towards “big data readiness” of geo-science
simulation codes (Overpeck et al., 2011), focusing on the massively MPI-parallel
hydrological model ParFlow. Here we present work that thus far has centered
around the optimisation of ParFlow's parallel I/O by implementing a
NetCDF4 API. NetCDFhas evolved as a quasi-standard in computational
geosciences.

In step one a standalone C-code was used to access and test the pNetCDF
and HDF5-based NetCDF4 I/O libraries, features and their parallel read and
write performance. In the ongoing step two a parallel NetCDF4 API is
implemented in ParFlow.

N4=total amount of chunks
C =arbitrary positive number

The advantages of chunking with NetCDF4 (i.e., data structure of the
NC-file during write-access) are a higher I/O performance when specific
spatial subsets or time ranges are read from a multidimensional dataset.

Choosing the correct chunk size and respecting the access patterns of 1D
and 2D data is most important.

This is the most general formula for optimal chunk sizes with an access
pattern that is uniform for 2D and 1D data within the 3D NetCDF variable
(nx*ny*nz shape):

nx/N2 by C*ny/N by (1/C)*nz/N

Depending on the kind of read accesses to be optimised, this
formula can be adapted or extended for additional dimensions.

Desired chunk
size (bytes)

Actual chunk size
(bytes)

Chunk shape
(values)

Number of chunks per
access (time series,
spatial slice)

4096 3960 33*5*6 2974, 3304

8192 7728 46*6*7 2134, 2850

16384 16384 64*8*8 1533, 1540

1048576 1032000 516*20*25 191, 196

4194304 4189920 1032*29*35 96, 100

Tab. 2: Chunk shape results (i.e., input to the NetCDF4 API) for an arbitrary 3D variable with
the dimensions 98128*277*349. A shape documents how many elements from each dimension
are used for the I/O operation, similar to a subvector.
The desired chunk size is chosen with respect to the filesystem characteristics. The actual
chunk size approximates the desired chunk size. By setting the chunk shape, e.g. 1D as well
as 2D data retrievals from the NetCDF4 file are optimized at the same time.

This scaling study was conducted with
ROMIO hints that enable collective
buffering for the MPI I/O library, disable
the built-in heuristics and set the
collective buffering cache appropriate for
the GPFS file system.

The results from the study show that both
libraries demonstrate good scaling
behaviour. However, NetCDF4 shows
more consistent read performance and
has a more linear scaling behaviour than
pNetCDF. In addition, the data format
produced by NetCDF4 is in fact
NetCDF4/HDF-5 opposed to the
NetCDF/CDF-5 format of pNetCDF. This
makes the data produced by NetCDF4
easier to handle during post-processing.
Finally, NetCDF4 supports all currently
available NetCDF file formats. Therefore,
it is logical to choose NetCDF4 as our
parallel I/O library.

Fig. 7: Both currently available ParFlow binary output
methods. Either every MPI process writes the data it
produced to one shared file or every MPI process generates
its own file (task local). The second step also needs post
processing to merge the distributed data.

Fig. 8: Desired method for NetCDF4 output. Data is gathered on every node and is written with
one I/O stream per node to one shared NetCDF4 file.

To enable I/O handling with one I/O stream per
node the data management of ParFlow has to
be extended. To gather the data, an additional
MPI communicator has to be introduced, which
only communicates on the specific hardware
node.

JUBE2 is an essential tool that allows one to execute and document
a variety of tests quickly and easily, in order to benchmark code
changes and assist with on going code development (Lührs et al., 2015).

Originally the JUBE2 framework was just used to conduct the I/O
scaling tests and was then further extended to also support the
ParFlow code base.

The currently implemented JUBE2 framework for ParFlow supports:
● Real data/idealised test cases
● Weak/strong scaling experiments
● Customisable compiler options
● Common HPC profiling tools (e.g., Score-P/Scalasca, Paraver, and

Darshan I/O profiling)

Fig. 5: JUBE2 “hello world” example and benchmark directory preservation. Every rectangle
on the right side of the figure represents a subdirectory. For every parameter set
permutation and the total amount of steps subdirectories are created that “auto-document”
stderr, stdout and the explicit parameter set for the current step or test.

execute

Fig. 3: JURECA at JSC

Fig. 4: Writing to GPFS from JURECA. Every node (I/O-client) has one lane to the GPFS.
Communication with multiple MPI processes over this one lane will cause locks in the file
system (FS) blocks which reduce I/O performance. (Courtesy: S. Lührs et al., JSC)

2. ParFlow model system

Fig. 1: Snapshot of soil moisture. Blue colors
indicate wetter conditions along e.g. river corridors.

Ground Surface

Water Table

Infiltration Front

Saturated Zone

Vadose Zone

Vegetation

Atmospheric Forcing

COSMO

CLM

ParFlow

Fig. 2: Model grid showing the underground structure of
ParFlow. Also shown is the impact of CLM and COSMO
when coupled via OASIS 3 as part of TerrSysMP.

SimLab Terrestrial Systems (SLTS)
Jülich Supercomputing Centre (JSC)
Forschungszentrum Jülich (FZJ)
D-52425 Jülich, Germany
http://www.fz-juelich.de/ias/jsc/slts

Fig. 6: Scaling plots comparing read/write performance of pNetCDF and
NetCDF4 for different JURECA node counts with pI/O test framework. One I/O
stream per node. Shown are the minimum and maximum I/O times (Whiskers),
the median (red line) and the interquartile range (blue box). Sample size is 10
realisations. Please note the different axes ranges.

pNetCDF NetCDF4

re
ad

w
ri

te

Integrated parallel watershed model, fully coupled dynamic 2D/3D
hydrological, groundwater and land surface processes. It is written in C and
FORTRAN and parallelised with MPI.

It supports:
● 3D variably saturated subsurface flow

and energy transport (Jones & Woodward,
2001)

● Integrated overland flow (Kollet & Maxwell,
2006)

● Part of fully coupled multi-physics
TerrSysMP via external OASIS-3
MCT coupler

● Usage across spatial scale from
catchment to continent (Maxwell & Kollet,
2015)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/45267867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.1029/2008GL033215
http://doi.org/10.1126/science.1197869

	PowerPoint Presentation

