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3D Surface Reconstruction of Plant
Seeds by Volume Carving:
Performance and Accuracies
Johanna Roussel, Felix Geiger, Andreas Fischbach, Siegfried Jahnke and Hanno Scharr *

Institute of Bio- and Geo-sciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany

We describe a method for 3D reconstruction of plant seed surfaces, focusing on small

seeds with diameters as small as 200 µm. The method considers robotized systems

allowing single seed handling in order to rotate a single seed in front of a camera. Even

though such systems feature high position repeatability, at sub-millimeter object scales,

camera pose variations have to be compensated. We do this by robustly estimating the

tool center point from each acquired image. 3D reconstruction can then be performed

by a simple shape-from-silhouette approach. In experiments we investigate runtimes,

theoretically achievable accuracy, experimentally achieved accuracy, and show as a

proof of principle that the proposed method is well sufficient for 3D seed phenotyping

purposes.

Keywords: automated seed handling, Arabidopsis, image processing, silhouette, performance analysis

1. INTRODUCTION

Making image analysis methods available for plant phenotyping applications is currently a driving
force in plant sciences (Spalding and Miller, 2013). In many such applications the absence of
suitable image processing is even a bottleneck (Minervini et al., 2015). More than 100 specialized
methods (Lobet et al., 2013) and software packages are available for image-based analysis of
different plant parts, e.g., fruit shape (Brewer et al., 2006), single or multiple leaves (Bylesjö et al.,
2008; Weight et al., 2008; Alenya et al., 2011; De Vylder et al., 2011; Wallenberg et al., 2011; Dellen
et al., 2015;Müller-Linow et al., 2015; Pape and Klukas, 2015), hypocotyl and seedlings (Koenderink
et al., 2009; Wang et al., 2009; Silva et al., 2013; Golbach et al., 2015), shoot (Augustin et al., 2015;
Santos and Rodrigues, 2015; Pound et al., 2016), rosettes (Arvidsson et al., 2011; Aksoy et al., 2015)
and many more. Such analysis tools are needed in robotic imaging platforms for high-throughput
plant phenotyping (Granier et al., 2006; Jansen et al., 2009; Hartmann et al., 2011; Nagel et al., 2012;
van der Heijden et al., 2012; Fahlgren et al., 2015), but also in affordable systems (Tsaftaris and
Noutsos, 2009; Minervini et al., 2014; Santos and Rodrigues, 2015).

Plant seed phenotyping is needed by seed banks for quality management e.g., concerning
breeding purposes, linking to germination rate or plant growth. For this, 2D scanning is a popular,
affordable technique (Herridge et al., 2011; Tanabata et al., 2012; Moore et al., 2013; Whan et al.,
2014). Several commercial software packages are available for seed investigations using flat-bed
scanners (e.g., Regent Instruments, 2000; Next Instruments, 2015). It has been applied to different
seed types, likeArabidopsis, soybean, barley, or rice. Typically parameters like width, length, or area
are calculated from the 2D images, but also more complex shape measures like Fourier descriptors
(Iwata and Ukai, 2002; Iwata et al., 2010).
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However, to the best of our knowledge, no affordable 3D
imaging technique has been presented so far designed for seed
measurements. Correspondence-based techniques (Quan et al.,
2006; Paproki et al., 2012; Pound et al., 2014, 2016; Santos
and Rodrigues, 2015) reconstructing 3D models from multiple
images, or other low-cost techniques like laser scanning or the
Kinect can be used for 3D whole plant reconstruction (Paulus
et al., 2014) or root systems in transparent gel (Fang et al., 2009).
However, such techniques are not suitable for much smaller
objects like seeds of rapeseed plants (∼2 mm diameter) or even
Arabidopsis seeds (∼0.2–0.4 mm length).

Here we investigate volume carving, a well-known shape-
from-silhouette technique (Martin and Aggarwal, 1983; Potmesil,
1987; Laurentini, 1994), for 3D seed shape reconstruction.
It is a fast, reliable, and simple but robust method, having
been used in plant phenotyping before, e.g., 3D seedling
reconstruction (Koenderink et al., 2009; Golbach et al., 2015)
or root system investigations (Clark et al., 2011; Zheng et al.,
2011; Topp et al., 2013). Depending on the selected viewpoints
it approximates the convex hull of an object or reconstructs
even valleys and saddle-points, but cannot reconstruct true
concavities. Most seeds are, however, relatively smooth, convex
objects. For the seed types investigated here (Arabidopsis, barley,
and maize, see Figure 1), true concavities seem to be of
low relevance for volume estimation. For non-smooth seeds,
like e.g., seeds of the plant parasites Phelipanche aegyptiaca,
or Orobanche cernua the proposed method may be less
suitable.

This paper is an extension of our conference publication
(Roussel et al., 2015), thus theory (Section 2 and 3), and
some experiments from Section 4 are mainly repeated from
there. We extend the theory by an accuracy check and iterative
camera position correction procedure, and the experiments by a
numerical and experimental investigation of achievable accuracy
vs. number of images in Sections 4.2 and 4.3. Further we updated
references and discussion.

FIGURE 1 | Overview of the reconstruction method. (A) Image acquisition from multiple viewing angles. (B) One of the acquired gray value images. (C) Mask

image. (D) Estimation of tool center point (TCP). (E) Estimate shape from silhouette by volume carving. (F) Surface of reconstructed volume. (G) Tool removed from

volume: seed red, tool blue.

2. RECONSTRUCTING SEED SHAPE FROM
SILHOUETTES

Aiming at relatively simple, mostly convex seed shapes, target
voxel resolutions needed to describe such shapes are comparably
low—as we will show in the experiments below, see Section 4.
Therefore, for this study, it is sufficient to apply one of the most
basic volume carving approaches.

We get the intrinsic camera matrix K (Hartley and Zisserman,
2004) and the distance between the origin of our working
volume and the camera center from calibration (cmp. Section
3.2). The origin of the working volume is selected to be the
tool center point (TCP) of the robot system handling the
seeds, i.e., rotating them in front of the camera for imaging
(cmp. Section 3.1).

We acquire N images, showing a seed under (equidistantly
spaced) rotation angles αi where i ∈ {1, . . . ,N}, see
Figure 1. Rotation is around the vertical axis through the
TCP, being parallel to the y-axis of the camera. We segment
by gray-value thresholding each image into a binary mask
Mi being one at the foreground, i.e., seed and tool tip, and
zero at background locations. Small objects like noise are
removed and small holes (e.g., the reflection of the tool)
filled.

For each image and thus segmentation mask we calculate the
homogeneous camera projection matrix Pi, from the rotation
angle αi by

Pi = K(Ri|Eti) (1)

where Ri is the rotation matrix corresponding to the given
angle αi, and translation vector Eti is calculated using the
distance of the world origin to the camera center, also known
from calibration (see e.g., Hartley and Zisserman, 2004). By
this, the world coordinate frame rotates with the object, i.e.,
the seed.
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We define an equidistantly spaced, cubic voxel grid around
the world origin, being large enough to contain the seed. The
thus defined working volume depends on the seed type. For
Arabidopsis we use (1 mm)3, for rapeseed (2.9 mm)3, and for
barley and maize (13 mm)3.

Each voxel center with homogeneous world coordinates EX is
projected to a point Exi in each maskMi by

Exi = Pi EX (2)

If EX is projected to the background region of at least one of the
N masks Mi, then this voxel does not belong to the foreground
object and its value V(EX) is set to 0, i.e.,

V(EX) =
N

∏

i= 1

Mi(Exi) (3)

Thus, if a voxel belongs to the foreground object, its value V(EX)
is set to 1.

When higher voxel resolution is desired, and thus runtimes
increase, parallelization of the carving algorithm (Brenscheidt,
2014) is feasible (see Section 4.1). Even higher resolutions
become available on current desktop computer hardware, when
hierarchically representing the voxel grid, e.g., as an octree
(Szeliski, 1993; Klodt and Cremers, 2015).

One of the main drawbacks of this simple carving algorithm
is its sensitivity to imprecise external camera calibration. When
a mask Mi is misaligned and thus does not well overlap with the
“true” object volume, the non-overlapping parts are deleted from
the volume without further testing or corrections. We therefore
apply an image-based camera pose calibration step, as described
next.

2.1. Correcting Camera Pose
Methods not adapting camera pose by estimating extrinsic
parameters from the acquired images are known to be
particularly sensitive to (extrinsic) calibration errors, thereby
requiring precise positioning of the cameras (see e.g., Yezzi
and Soatto, 2003). For relatively large objects in the multiple
centimeter-range, say 20 cm long and filling most of an image,
and typical pixel resolutions, say 2000 × 2000, a pixel covers an
object area 0.1 × 0.1 mm2. Position repeatability of industrial-
grade robotic systems, typically ≤ 20 µm and ≤ 0.05◦ (Denso
Robotics Europe, 2015), is therefore high enough for precise
reconstruction. However, for objects being few millimeter in size
or even in the sub-millimeter range additional care has to be
taken. The mathematical TCP coordinates known to the robot
control software may not coincide precisely with the physical
TCP at the tool tip, due to mechanical calibration inaccuracies,
wear and tear, or small deformations of the tool. In our case,
instead of being at a fixed location in the camera images, the TCP
moves on a more or less reproducible, elliptic trajectory of up to
200 µm diameter, varying with room temperature.

Before projecting the voxels to the mask images, we therefore
adapt projection matrices Pi. If a suitable non-changing target
moving with the TCP is visible in all images, image registration

can be done using simple normalized cross-correlation (see
Figure 2).

In our robotic application, in order to adapt projection
matrices Pi, the truncated cone shape of the gripping tool has to
be found, see Figure 3. As larger seeds may partly occlude the
tool tip, we search for a region of the tool being reliably visible
in the images. The tool enters the image vertically from below
and becomes smaller in diameter toward the true TCP, being
the center point of the very tip of the tool. As we can robustly
find the tool’s left and right edges, we apply a simple and very
fast procedure. We calculate the visible width of the tool line by
line starting at the bottom of the image, moving upwards, i.e.,
in negative y-direction. We iterate while the width decreases and
is larger than the minimum tool width (being at the tip). The
thus reached y-coordinate is taken as first estimate of the TCP
y-coordinate yTCP. A reliable estimate of the TCP’s x-coordinate
xTCP is established as the mean of all found left and right edge
x-positions. As the tool tip may be partly occluded by the seed,
yTCP needs refinement. For this the left and right tool edges
are independently tracked further until the narrowest point is
reached, i.e., the rightmost point of the left edge, and the leftmost
point of the right edge. The smallest y-value (highest point) of the
two points is taken as new yTCP.

For small seeds like Arabidopsis this procedure works reliably,
as the seeds are too small to occlude the whole tool tip in
an image. For larger seeds, we use the observation that the
TCP’s elliptic trajectory results in its y-coordinates to describe a
sinusoidal curve over the rotation angle. We therefore robustly fit
a sin-curve to the y-coordinates and correct outliers according to
the fit result.

For such small objects, the optical lens setup (cmp. Section
3) features a narrow opening angle (i.e., large zoom), like a
microscope at 1-to-1 magnification. This means lines of sight are
almost parallel and thus depth effects are negligible. This allows to
update Pi with ExTCP by simply setting the principal point (Hartley
and Zisserman, 2004) to ExTCP.

In our experiments we observed that ExTCP can be estimated
reliably with pixel accuracy, when no disturbances like small dust
particles are present. Maximum offset in locating TCP from an
unoccluded tool tip was 2 pixel.

In situations, where larger inaccuracies in locating ExTCP
occur, testing consistency of results and correcting ExTCP is
recommended. Back-projection of the reconstructed 3d object is
a simple procedure allowing to test whether or not Pi is correct
and the selected segmentation procedure is suitable. For this test,
each surface voxel of the found 3d object is projected to a mask
image M̃i, initially filled with zeros. A voxel is projected to M̃i

by projecting its corners to M̃i using Pi and filling the respective
convex hull with ones. If no errors occurred, the thus generated
foreground mask should be identical to the segmentation mask
Mi (up to ignored subpixel effects when filling the convex hull,
leading to a potentially slightly dilated mask M̃i). Measuring
overlap between the twomasks can be done using well established
measures, e.g., theOverlap Ratio Criterion= |M̃i∩Mi|/|M̃i∪Mi|
(see e.g., Everingham et al., 2010), orDice Similarity Coefficient=
2|M̃i∩Mi|/(|M̃i|+|Mi|) established by Dice (1945) and Sørensen
(1948), where | · | denotes set cardinality. These measures are

Frontiers in Plant Science | www.frontiersin.org 3 June 2016 | Volume 7 | Article 745

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Roussel et al. 3D Surface Reconstruction of Plant Seeds

FIGURE 2 | Example provided together with source code as supplemental material. Imaging is done using affordable hardware, i.e., a usual SLR camera

(Nikon D7000, AF-S Nikkor 16–85 mm 1:3.5–5.6 GED lens at f = 85 mm) and a motorized turntable (Steinmeyer DT130-360◦-SM01) for rotating the seed. As tool

keeping the seed above the turntable’s plane, we use a cut-off ball-pen-tip. A smaller tool, like in our robotic setup, allows for better seed visibility and reconstruction,

however it is not easy to build. Even though the SLR is mounted on a sturdy tripod and released by a remote control, the camera center moves from image to image.

In this setup, the base of the tool is visible in each image and can be used as target for correlation-based image registration. From the calculated image shifts,

projection matrices Pi are adapted accordingly. See provided source code for more details. (A) SLR image showing a maize seed, (B,C) cropped 760×564-image

with 293×100 target for cross correlation indicated in red, (D,E) mask image with borders of the user-defined reconstruction volume projected back into the image in

blue, (F) reconstructed seed and tool, (G) reconstructed seed with tool removed, (H,I), reconstructed seed from a more bottom and more top view.

used throughout image analysis and are common in plant
imaging as well (Minervini et al., 2014).

In case the achieved mask overlap is too small but larger than
zero, iterative procedures can be applied to increase accuracy.
Straight forward is to (1) shift the principal point in each
projection matrix Pi such that the center of mass of M̃i coincides
with the center of mass of Mi and (2) recarve, and iterate both
steps until convergence or suitably large overlap. Alternatively,
gradient descent-based algorithms optimizing camera pose may
be applied as a refinement step (e.g., Yezzi and Soatto, 2003).

2.2. Removing the Tool from the Seed
For small seeds not overlapping with the tool, the TCP lies
precisely in the world origin, i.e., the origin of the reconstructed
voxel block. Thus, voxel above the TCP contain the seed, voxel

below (which in that case we do not reconstruct) contain the tool.
In cases where seed and tool may overlap (see e.g., Figure 3), the
tool tip is also reconstructed. It can be removed from the volume
data using its known position, orientation, and physical size by
deleting the corresponding voxel volume.

Alternatively, at high voxel resolutions, where the
reconstructed volume covered by the tool may be affected by
noise, one can estimate the tool position from the reconstruction.
Summing up voxel values of horizontal planes in the bottom
region of the volume gives reliable estimates of the area of
horizontal cuts through the tool. While the areas decrease when
summing over higher and higher planes, the planes are deleted
from the data. Then, when areas no longer decrease, using these
areas, we estimate the y-position of the truncated cone using a
least squares fit and remove the thus covered volume.
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FIGURE 3 | Illustration of the extrinsic camera calibration correction. (A–C) Images of the same barley seed taken from different angles. (D) Mask image

generated from (B). (E) Steps to find the TCP: (1) find edges of gripping tool (red lines), stop when lines diverge (blue dotted line). (2) xTCP is average of middle

between found edge positions (red dotted line). (3) Trace edges further as long as they come closer to xTCP (yellow lines). (4) Top most position is yTCP. The found

TCP is indicated by a yellow cross.

FIGURE 4 | Camera setup for 3D imaging.

3. MATERIALS AND METHODS

3.1. Imaging
Depending on seed size for 3D reconstruction we use two
different setups for image acquisition. Both setups consist of
an industrial-grade c-mount camera (PointGrey Grasshopper,
GRAS-50S5M-C, Mono, 5.0 MP, Sony ICX625 CCD, 2/3", square
pixels of size µ = 3.45 µm, global shutter, 2448× 2048, 15 FPS),
35 mm high precision lens (Schneider KMP APO-XENOPLAN
35/1,9) and a white LED ring with diffusor (CCS LDR2-70-SW2)
shown in Figure 4. For small seeds (e.g., Arabidopsis, tobacco,
rapeseed) a 36 mm spacer is mounted between camera and lens.
For larger seeds (e.g., barley, maize) only a 15 mm spacer is
needed. Spacer reduce the minimumworking distance of the lens
(d = 69.9 mm for the 36 mm spacer, 128.0 mm for the other)
and thus are responsible for suitable magnification. This allows to
measure seeds in a range between≈0.2 and 12 mm. White paper
is used as background.

For image acquisition seeds are picked by a cone-shaped
vacuum nozzle and held in front of the camera at optimal

working distance using a robotic system to be described
elsewhere. The robot rotates the seed in configurable angles and
triggers the camera. We use 10◦ steps and take 36 images, if not
stated differently. Image acquisition times are mainly limited by
the robot’s rotation typically & 2.7− 5 s per 360◦, depending on
the motion type. We perform 36 stop-and-go steps resulting in
an overall acquisition time of≈ 6− 7 s.

3.2. Camera Calibration
We use the OpenCV implementation (Bradski and Kaehler,
2008) of Bouguet’s calibration method (Bouguet, 1999) and an
asymmetric 4 × 11 dot-pattern target with a total size of 5.8 ×
4.3 mm. It was printed using a professional, high resolution film
recorder, as usual office printers even on good paper do not
achieve a printing precision suitable for camera calibration at
such small spatial scales.

Using this toolbox, estimation of the focal length f is not
precise enough for our purposes. We therefore use a ball-
bearing ball (steel, precision according to DIN5401 G20) with
r0 =1.50 mm ±0.25 µm radius as calibration object, in order
to estimate the working distance d (or equivalently focal length
f from working distance d) of our system precisely. From a
mask image of the ball acquired with our system, we estimate
its area A in pixel. This allows to estimate its radius r in the
image by r = µ

√
A/π , where µ is the pixel size. From basic

geometric reasoning working distance d can be derived as d =
√

f 2 + r2 r0/r.

3.3. Software Implementation
The software framework is implemented in C++ on a
Windows 7 operating system with Visual Studio 2013.
The application programming interface Open Graphics
Library (OpenGL OpenGL.org, 2015) was used for the GPU
implementation.

As supplemental material (Roussel et al., 2016) we provide
both, a suite of Matlab (Mathworks, 2015) routines as well as a
Python implementation suitable for volume carving of not too
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small seeds using an affordable imaging setup. Such setups may
e.g., use a turntable and a consumer SLR camera. In our example
(see Figure 2) we use normalized cross-correlation for image
registration, as the bottom of the tool is always visible as a suitable
registration target.

4. EXPERIMENTS

4.1. Resolution and Runtime
The complexity of the volume carving algorithm is proportional
to the number NV of voxels and number N of images acquired.
For our equidistantly spaced cubic R × R × R grids the voxel
number is NV = R3 and thus complexity is O(R3N). In addition

time for loading (or acquiring) the images (with NP pixels) and,
for the GPU implementation, transferring the data to and from
the graphics card is needed. Complexity of this data transfer and
preprocessing of the images is O(NPN), or O(NPN) + O(R3) for
the GPU implementation.

Runtimes shown in Figure 5D have been measured on a PC
with Intel Core i5-3470 CPU, 8GB DDR3 RAM and an NVIDIA
GeForce GTX 580 GPU with 4047MB GDDR5 RAM (cmp.
Brenscheidt, 2014 for further details). We observe that for low
resolutions R of the voxel grid, runtime contributions by the
O(NPN) components dominate, as no dependence on R is visible.
For increasing R, these parts become negligible. While for the
CPU implementation a significant increase of the runtime vs.

FIGURE 5 | Performance of the proposed method. (A) Original image of a barley seed. (B) Reconstructions of the seed at different grid resolutions. (C)

Reconstructed volume vs. resolution of the voxel grid. (D) Runtimes in seconds of serial CPU and parallel GPU implementations (reproduced from Brenscheidt, 2014).

(E) Reconstructions of the seed using different numbers of images. (F) Reconstructed volume vs. number of images used.
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the 2 s runtime for smallest voxel resolutions can be noticed
at R = 256 (4 s), the parallel GPU implementation stays at
comparable runtimes even at R = 512.

When interested in a seed’s volume as a trait used for

high throughput phenotyping, rather than in subtle surface

details, voxel resolution can be selected comparably low. In
Figures 5A–C we show a barley seed and its reconstructions
together with its derived volume for different grid resolutions
R. We observe that above R = 256 the estimated volume
is approximately constant. Thus, for this phenotyping task,
runtime is limited mainly by file-IO, transfer and preprocessing.
Sophisticated speed-up mechanisms for the carving provide
rather low benefits in this application, as their main potential lies
in higher achievable volume resolutions.

Speedup using fewer images may be paid by lower accuracy
(see Section 4.2). We show reconstructions of the same barley
seed in Figure 5E and the corresponding volumes in Figure 5F.
Images are selected equidistantly. We observe that reducing
image number rapidly reduces reconstruction quality. Interesting
to note is that the reconstruction using N = 9 images is more
accurate than with N = 12 images. This is due to the fact that
for N = 12 the selected angle between images is α = 30◦, thus
180◦ is a multiple of α (the same is true forN ∈ {4, 6, 12, 18, 36},
cmp. also Figure 8 and Section 4.2). However, as the opening
angle of our lens is small, complementary information content
in masks coming from cameras looking in opposite direction
is low. We conclude that for shorter runtimes with comparable

or even higher reconstruction accuracy investigating alternative
viewing directions is promising. We do this in the next section
for the restricted possibilities of our robotic, turntable-like, single
camera acquisition system.

4.2. Accuracy vs. Number of Images
We numerically investigate the influence of the number N
of equidistantly acquired images on the accuracy of volume
estimation in an ideal turntable setting. To do so, we calculate
the volume Vnum of a sphere with radius r0 derived as cut
of tangent cones, cmp. Figures 6A,B,D: Each ideal camera is
represented by its camera center Ci, known from the selected
working distance and rotation angle. A sphere projects to a circle
on the sensor plane. A volume carving step for each image of
this sphere thus corresponds to testing for each point of the
working volume, if it lies inside or outside a cone spanned by
Ci and the outline of the projected sphere (transparent cones in
Figure 6B). The cone is independent of the focal length f of the
ideal camera, but depends on the working distance d, i.e., the
distance between each camera center and the center of the sphere.
We select r0 = 1.5 mm, as we use a highly accurate, spherical
bearing ball of this size as ground truth object in real experiments
(see Section 4.4).

As we did not find a closed form solution for the volume of an
object derived by a cut ofN cones for arbitraryN, we numerically
integrate the volume by a Monte-Carlo method:

FIGURE 6 | Setup for the numerical accuracy analysis. (A) Exemplary geometrical setup for five cameras. (B) Same configuration with transparent projection

cones touching the green sphere and colored inlier sampling points. (D) Close up of the sphere (green) and a visualization of the sampled inlier points. Red, yellow,

black, and white points indicate the four different types if surplus volumes not taken away by carving. Black lines indicate where cones touch the sphere (C) Symmetry

planes (black) for each camera and section of a spherical shell indicating the geometry of the sampling region (yellow). (E) Close up of the sampling region (yellow).

The inner sphere (green) represents the inner border of the volume, the meshed sphere the outer border. Black stripes indicate symmetry planes.
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1. We randomly select K points in a region with known volume
Vreg including the complete test volume.

2. For each point we test, if it lies in all cones spanned by the
cameras. If yes, the point lies in the volume, if no, not. The
number of all inliers is Kin.

3. The sought-for volume Vnum is then Vnum ≈ Vreg ∗ Kin/K .

The smaller Vreg can be selected, the more accurate Vnum can
be approximated with a fixed number K of sampling points.
We observe that the selected turntable camera configuration
(Figures 6A,C) is symmetric with respect to

• the plane spanned by the cone centers i.e., the equator of the
sphere,

• each plane spanned by the rotation axis and a camera center,
• each plane spanned by the rotation axis and cutting

the rotation angle between two adjacent camera
centers in half, i.e., the vertical plane between two
cameras.

Furthermore, we observe that

• the inner of the sphere lies completely in the carved volume,
i.e., we carve the sphere from the outside; and finally that

• the sought-for volume lies in a concentric sphere with a
somewhat larger radius than the carved sphere.

This allows to restrict numerical calculations to a region with
known volume Vreg being box interval in spherical coordinates
(cmp. Figure 6E, yellow region), in order to benefit optimally

from symmetries in the problem. We restrict the altitude
angle to θ ∈ [0, π/2], azimuth to φ ∈ [0, π/(2N)], and
the radius to r ∈ [r0, r1]. Radius r1 is calculated by (1)
intersecting all cones with the plane spanned by the camera
centers, yielding a pair of lines for each cone, (2) selecting
the right lines of two adjacent cones (cmp. example red lines
in Figures 6C,E) (3) calculating the intersection between these
lines, and (4) selecting r1 as radius of the point given in polar
coordinates.

This geometry is depicted in Figures 6C,E. The selection
correspond to one section of a spherical shell, cut in half by the
plane spanned by the cone centers (i.e., at the equator of the
sphere) and cut in 2N sections by the half-planes starting at the
axis of rotation symmetry (i.e., the axis through the poles of the
sphere) and each including one cone center; as well as their angle
bisector planes.

Randomly sampling points in spherical coordinates produces
higher point densities toward the origin in Euclidean coordinates
and toward the north-south-axis of the sphere. We correct
for these density differences combining two approaches. To
understand this we need to calculate the Jacobian of the spherical
coordinate transformation from Euclidean coordinates. Using
the convention

x = r sin θ cosφ (4)

y = r sin θ sinφ (5)

z = r cos θ (6)

FIGURE 7 | Error of volume vs. number N of camera positions. Top left: error when using parallel projection (telecentric lens). The other plots show errors for

different working distances d and central projection. In real experiments we use working distance d = 69.9 mm.
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we get the Jacobian J

J = det
∂(x, y, z)

∂(r, θ, φ)
(7)

= det





sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ
cos θ −r sin θ 0



 = r2 sin θ .

As long as r0 and r1 do not differ too much, as in our case, it is
sufficient to consider the radial part of J by weighing sampling
points p by their radius value rp

Vnum ≈ Vreg ∗ K̃in/K̃ (8)

where K̃in = ∑

p∈Pin r
2
p and K̃ = ∑

p∈P r
2
p . P is the set of all

sampling points and Pin ⊂ P the set of all inliers.
Density variations due to altitude θ are compensated by

transforming the sampling probability density from the uniform
distribution p(χ) (with χ ∈ [0, 1]) a random number generator
delivers to a sin(θ)-shaped distribution pθ (θ). This is achieved
by the transform θ = g(χ), where g(χ) = arccos(1 − χ). This
can be easily verified using to the transform law for densities

pθ (θ) = | d
dθ
g−1(θ)|p(g−1(θ)), where g−1 denotes the inverse

function of g.
In Figure 7 relative error E = (Vnum − V0)/V0 with

V0 = 4/3πr30 is depicted vs. the number N of images
used for reconstruction of Vnum. We observe that for parallel
projection, using an even number of cameras (or images)
yields the same result as using half the number of images.
This makes sense, as for an even number of cameras, pairs
of cameras are in an 180◦-configuration, looking at the same
object contour from different sides. This does not add additional
information to the reconstruction. However, when considering
central projection also images from an 180◦-configuration add
additional information, as cameras do not look at the same
contour.

Figure 8 shows volumes reconstructed using different camera
configurations. We observe that using N = 5 or N = 10
camera positions yields identical results for parallel projection in
Figure 8, left. However, for central projection N = 10 camera
positions yields a much better reconstruction than using N = 5
images. This is in full agreement with the plot given in Figure 7,
bottom right, where we also observe, that using odd N is not
always better than using even N with one additional camera
position. It depends on object size in relation to working distance,
which camera position configuration yields better results in
theory. We observe, that in the cases tested here, a minimum
of N = 11 or N = 12 images is needed to stay below 1%
relative error. A limit of less than 0.1% error is reached using
N = 33, N = 36, or N = 37 images. In practice, however, given
a sufficiently high N, other error sources may dominate (see next
Sections).

4.3. Accuracy Loss Due to Position
Inaccuracies
We performed experiments using synthetic images in order
to test the different error sources in our method. The images

FIGURE 8 | Reconstructed volumes for different numbers N of camera

positions. Numbers in the upper left corner of each subimage are N. Inlier

sampling points are color-coded, where hue indicates φ and brightness θ . The

underlying ground truth sphere is white. Left: reconstruction using parallel

projection (telecentric lens). Right: reconstruction using central projection with

working distance d = 20mm and sphere radius r0 =1.5 mm.

showed a perfect sphere as projection of a synthetic ball of
same size as our bearing-ball. Geometrical setup was as for the
experiments in Section 4.2, with working distance d = 69.9 mm.
We reconstructed the ball using volume carving, a voxel grid
resolution of 2563 and (12 µm)3 voxel size. Results were very
similar to the ones shown in Figure 7 for the same d, e.g., relative
error at 36 images was approximately 0.14% instead of 0.1%. We
do not show this plot.We conclude, that volume carving on a fine
enough grid comes close to the theoretical performance of the
simulation from Section 4.2, in agreement with our observations
in Figure 5C.

Estimating TCP locations in the images is critical for
reconstruction accuracy. To test the influence of a TCP wrongly
located in an image, we add a relatively large offset of 7 pixel
in y-direction to ExTCP in the first image and leave the TCP
locations in all other images untouched. The carving result is
shown in Figure 9. The volume loss due to the misaligned TCP
is in the order of 0.001 to 0.002 mm3, and thus reduces the
positive volume error due to non-carved regions (as described in
Section 4.2). For image configurations with relatively low positive
initial error, i.e., here N > 36, the error due to the TCP offset
dominates, such that overall relative error is negative. Please note
that Figure 9 shows absolute values of the relative errors due to
the log-scale.

4.4. Seed Types and Overall Accuracy
Using the proposed method we reconstructed different
seed types, namely Arabidopsis (length, i.e., longest
dimension . 0.5 mm), rapeseed (≈ 2 mm), barley (≈ 8 mm),
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and maize (≈ 11 mm). See Figure 10 to get an impression of the
usually achieved reconstruction accuracy.

Absolute accuracy is validated experimentally using two
different test objects. The first one is the ball-bearing ball we
used for working distance calibration with 3.00 mm ±0.5 µm

FIGURE 9 | Absolute value of relative error of volume vs. number N of

camera positions in a synthetic volume carving experiment, where an

offset of 7 pixel has been introduced in ExTCP of the first image.

Configuration is identical to the simulation results shown in Figure 7. Yellow

and dark green points have been repeated from there.

diameter, i.e., 0.02% diameter tolerance, and thus a precisely
known volume of 14.137 mm3 ±0.007 mm3, i.e., 0.05% volume
tolerance. Clearly, as we used this object for calibration, scaling of
the mask images exactly fit to the respective projection matrices
Pi. However, the overall performance of the system for volume
reconstruction can still be evaluated using this object, as the
volume derived has not been used for calibration and still
accumulates all errors and imperfections the method has. The
second object is an ink cartridge ball with 2.45 mm ±0.02 mm
diameter, i.e., 0.4% diameter measurement error, measured with
a digital sliding caliper, and thus a volume of 7.70 mm3±
0.19 mm3, i.e., 2.5% volume error.

In Figure 11 volume error vs. number N ∈ {27, . . . , 36} of
imaging positions is shown for the ball-bearing ball experiment.
Comparing results to Figure 7, lower left (values repeated
in Figure 11 for easy reference), we observe that negative
reconstruction errors due to positioning inaccuracies are in the
same range as the positive theoretical errors and increase with
increasing number of images. Please note that the plot shows
absolute values of relative errors, as negative errors can not be
displayed in log-scale.

Reconstructing the ball using 36 images as used for seed
reconstruction, a voxel grid resolution of 2563 and (12 µm)3

voxel size, i.e., a volume quite tightly surrounding the object,

FIGURE 10 | Reconstructed seeds shown from different angles, side-by-side with the original images (R = 256, N = 36). (A) Arabidopsis. (B) Barley.

(C) Maize. Please note the different scalings.
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FIGURE 11 | Error of volume vs. number N of camera positions in a real

experiment using a bearing ball. Configuration is identical to the simulation

results shown in Figure 7, repeated in the plot for reference.

yields a volume of 14.11 mm3 and thus a mean diameter of
2.998 mm for the bearing ball. This is a relative error of −0.19%
wrt. the specified volume, and of−0.06% wrt. the diameter, when
calculating the diameter from the measured volume, assuming a
perfect sphere. For the ink cartridge ball we measure 7.83 mm3

corresponding to a mean diameter of 2.46 mm, being well within
the measuring error of our caliper measurement.

We conclude that the overall accuracy of our method,
including camera calibration error, mechanical imperfections,
TCP finding error, imprecision due to the simple carving
approach etc. is high enough to compete with or even beat a
precise slide caliper for length measurements. Absolute values of
measurement errors of volume and lengths are in the range of few
per mill.

5. CONCLUSION AND OUTLOOK

Simple volume carving combined with a method for extrinsic
camera pose estimation from images is sufficiently accurate for
size measurements of even tiny seeds. To optimize our system
for runtime and accuracy, we investigated its performance using
different parameter settings. Surprisingly, the main performance
gain potential does currently not lie in using more sophisticated
reconstruction methods allowing for higher achievable voxel
resolutions R, e.g., achievable by the highly accurate method
presented by Klodt and Cremers (2015) and necessary for
reconstruction of more complex surfaces. Our findings allow
reducing preprocessing and transfer times by selecting a suitable
image number N and comparably low voxel resolution of 2563.

The optimal number N of acquisition positions used in a
turntable setting depends on the selected projection geometry. In

our case using N = 36 images yields a theoretical overestimation
of the reconstructed volume of a sphere by+0.1% relative error.

The method’s achievable accuracy has been tested
experimentally using a highly accurate spherical object.
Systematic errors are much lower than we expected, between
+0.06% for N = 27 and −0.19% for N = 36. This means that
volume losses due to inaccurate positioning of the object are

truly negligible for our purposes. Clearly, as seeds are not well
represented by a ball, such accuracy studies give insight in the
accuracy potential of the method—if it fails on a ball, it will also
fail on more complex shapes.

Seed-shape-specific errors are not well captured by a ball and
may vary from seed type to seed type. Alternative simple volume
measurement methods for ground truthing, e.g., Archimedes’
principle, are not accurate enough for such small objects, but
high-resolution CT may be an option.

Many factors influence the accuracy, e.g., segmentation errors,
small dust particles or camera pose errors. Most critical are
inaccuracies of ExTCP in the image, leading to parts of a seed
being erroneously carved away. To detect such errors, suitable
error estimation methods can be implemented to complement
the method proposed here, e.g., summing back-projection error.
When positioning accuracy is an issue, more elaborated, iterative,
optimization-based but also more costly to calculate methods
may be applied. However, as we have seen in our experiments,
achieved accuracies are well high enough for seed phenotyping
even without such corrections.

Overall we conclude that the presented method yields highly
accurate seed reconstructions being accurate enough when
interested in seed volume.
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