Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fir Angewandte M athematik
D-52425 Julich, Tel. (02461) 61-6402

Interner Bericht

Programming Shared Virtual Memory
on the Intel Paragon™ Supercomputer

R. Berrendorf, M. Gerndt
M. Mairandres*

KFA-ZAM-1B-9509

April 1995
(Stand 13.04.95)

(*) European Supercomputer Devel opment Center
Intel SSD
85622 Feldkirchen b. M., Germany


https://core.ac.uk/display/45267547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Programming Shared Virtual Memory
on the Intel Paragon”™ Supercomputer

R. Berrendorf, M. Gerndt
Central Institute for Applied Mathematics
Research Centre Jilich (KFA)
52425 Julich, Germany
{r.berrendorf,m.gerndt } @kfa-juelich.de

M. Mairandres
European Supercomputer Development Center
Intel SSD
85622 Feldkirchen b. M., Germany

martin@esdc.intel.com

Abstract

Programming distributed memory systems forces the user to handle the problem
of data locality. With message passing the user has not only to map the application
to the different processors in a way that optimizes data locality but also has to ex-
plicitly program access to remote data. Shared virtual memory (SVM) systems free
him from the second task; nevertheless, he is still responsible to optimize data locality
by selecting a well-suited work distribution. We describe a programming environment
that is based on the Advanced Shared Virtual Memory system, a SVM implemen-
tation for the Paragon”™™ Supercomputer, and on SVM-Fortran, a shared memory
parallel programming language with language constructs for work distribution. Pro-
gramming tools integrate program text and dynamic performance data to help the
user in optimizing data locality.

Keywords: distributed memory multiprocessors, shared virtual memory, parallel pro-
gramming tools, programming environments, parallel applications

1 Introduction

Programming distributed memory parallel computers with message passing is often con-
sidered to be a difficult task. Several approaches are being pursued such as HPF, shared
virtual memory (SVM), or Linda to facilitate this task. Common to these approaches is
the emulation of a global address space by software, either by the compiler, the operating
system, or the language runtime system.

Shared virtual memory systems provide a global address space on the basis of the virtual
addressing mechanisms in the operating system. Several research prototypes of SVM [1, 2]
demonstrated the feasibility of that concept, but were not designed to support real-world
scientific applications on state-of-the-art parallel systems.



The programming environment we are describing in this article is intended to support
scientific programs utilizing SVM on the Intel Paragon™ Supercomputer. It is based
on the Advanced Shared Virtual Memory (ASVM) system, a prototype developed by the
Intel European Supercomputer Development Center (ESDC). On top of ASVM, KFA is
providing SVM-Fortran with a source-to-source compiler, a source code based optimizer
and locality analyzer OPAL, and a trace visualization tool PARvis.

The key issues in providing an easy to use programming interface for SVM are: an efficient
and scalable SVM implementation, fast barrier synchronization on processor sets, efficient
monitoring support integrated into the SVM system, a language design oriented at the
applications’ needs, and analysis and optimization tools integrating program text and
runtime performance information.

Section 2 presents the design concepts of ASVM and Section 3 introduces the language
features of SVM-Fortran. In Section 4 we present the components of the programming en-
vironment and discuss their relationship. Early performance results of ASVM, of the code
generated by the compiler and of an application are presented in Section 5. Subsequently,
we discuss related work and future research issues.

2 ASVM on the Paragon™ Supercomputer

The programming environment we are describing in this article is implemented on the
Intel Paragon™™ Supercomputer, a distributed memory multicomputer that can accom-
modate more than thousand heterogeneous nodes connected in a two-dimensional rectan-
gular mesh. Nodes are designed around Intel’s i860 XP RISC processor. Multiprocessor
(MP) nodes have three 75-MFLOPS Intel i860 XP processors — two to execute application
code and a third processor for use as either a message coprocessor or as an application
processor. General-purpose (GP) nodes have two i860 XP processors, one dedicated to
applications and the other to messaging. An expansion port allows the addition of an
I/O or networking interface. Nodes communicate by passing messages over an internal
interconnect network providing high bandwidth and low latency.

The Paragon”™ Supercomputer’s operating system [17, 18] is fully and transparently
distributed across the system’s nodes. A microkernel based on Mach 3.0 [19] resides on
each node and implements core operating system functions. On top of the microkernel,
an OSF/1 AD [20] server is running, providing full Unix semantics and a single system
image. Apart from a single file name space and a single process space that spawn node
boundaries, the single system image offers SVM functionality.

The SVM functionality is implemented in the Advanced Shared Virtual Memory system.
ASVM is currently the prototype of a new SVM system for the Paragon”™ Supercomputer
that substitutes the XMM layer [21] of the originally employed version of Mach. Our SVM
system is integrated into the Mach microkernel and has interfaces to the local virtual
memory system of every node on one side and to user or system level pagers on the other
side. Similar to global shared memory, ASVM provides regions of virtual memory that
can be shared among all nodes of a Paragon™ Supercomputer. Actually, these memory
regions are distributed between the nodes. In order to manage the SVM regions, ASVM
uses page fault mechanisms similarly to standard virtual memory management.



ASVM supports strong coherency, i.e. if a processor reads from a location in a shared
address range it always gets the value written in the last write operation to that location
executed by any processor. This is achieved by keeping either only one copy of a page with
write access or several copies of the page on different nodes having read-only access. When
a read-only page is to be written on a node, all other copies of the page are invalidated
first and then the node is granted write access to the page.

ASVM was developed with special focus on high performance and scalability to support
real-world scientific applications. In order to accomplish this objective ASVM has some
special features:

e cache-based, distributed, multi-level management of SVM pages

A SVM system always has to know the location and status of all SVM pages. ASVM’s
strategy for management of SVM pages combines previously known methods and
some new features into a cache-based, distributed, and multi-level page manage-
ment protocol that was specifically designed for high scalability and efficiency. The
basic idea is to keep only the recently used management information for different
management strategies in a sort of cache and thus ensuring scalability by restrict-
ing the memory requirements of ASVM to a fixed amount of the node’s memory,
independent of the number of nodes and the size of the SVM regions. If one of the
management strategies fails due to missing information in the cache, ASVM falls
back to another strategy. The final management strategy is inefficient but always
finds the required information about a page.

e integration into the Mach microkernel
Most existing SVM systems on top of Mach are implemented on user level, i.e. ex-
ternal pagers. ASVM, however, is part of the Mach microkernel, thereby avoiding
additional communication and task switches and improving performance consider-
ably.

e special SVM transport service
Messages for SVM management are sent via a special SVM transport service that is
tuned to the size of SVM messages and directly uses the communication processor
on every node of the Paragon”™ Supercomputer. The result is further improvement
of performance.

e paging to other nodes
If a node runs out of memory it first tries to send SVM pages to other nodes that
are selected according to a certain strategy. Only if these nodes are also short on
memory the pages are sent to disk. Sending pages to other nodes obviously is much
faster than paging them to disk and avoids a possible bottleneck at the disk in case
of heavy paging activity of the system.

For tuning of application programs as well as tuning of the ASVM system itself, ASVM
provides extensive monitoring support. Since ASVM is integrated into the Mach micro-
kernel all necessary monitoring information is available. Monitoring is supported on the
levels of single applications and whole nodes. Especially on the application level, selective
instrumentation (e.g. restriction to an arbitrary address region) and versatile counters can



be used to keep the amount of monitoring data rather small. A more detailed description
of monitoring support is given in Section 4.3.

3 SVM-Fortran

SVM-Fortran [4] is a shared memory parallel Fortran77 extension targeted mainly towards
data parallel applications on shared virtual memory systems and distributed shared mem-
ory systems which provide hardware support for a global address space on top of physically
distributed memory. It is based on HPF [5], Fortran-S [6], and KSR Fortran [7]. The main
application area is broader than that of HPF and Vienna Fortran. SVM-Fortran supports
coarse-grained functional parallelism where the parallel task itself can be data parallel.

The execution model of SVM-Fortran is an extension of the Single-Program-Multiple-
Data (SPMD) model [8] which is well-known for its low-overhead parallel execution and
is best-suited for hierarchical memory machines. Processors are allocated to the parallel
application when it is started and are available until program termination.

SVM-Fortran supports nested parallelism. At program start, the entire computation forms
a single task. A taskis some computational work. Tasks can be dynamically decomposed
into subtasks, e.g. via a parallel section or a parallel loop construct, i.e. each section and
each loop iteration is an independent task. A task is either assigned to a single processor
or to a set of processors which execute the task cooperatively. The set of processors
executing a task is called the task’s active processor set (APS). The active processors
execute the task either in exzclusive mode or in replicated mode. In exclusive mode only
one processor, the APS leader, performs the actual computation, whereas in replicated
mode all processors execute the same code. The default execution mode is exclusive mode
which facilitates incremental parallelization of applications.

SVM-Fortran provides the standard features of shared memory parallel Fortran languages,
i.e. shared and private data, multi-dimensional parallel loops and parallel sections, classical
synchronization operations as well as SVM-specific synchronization such as variable locking
and atomic update.

SVM-Fortran provides specific features to determine the distribution of tasks onto proces-
sors. Similar to Fortran-S and KSR Fortran, loop annotations can be used to determine

a static or dynamic work distribution scheme. Examples are direct scheduling, such as
BLOCK and CYCLIC, as well as dynamic scheduling, e.g. self-scheduling.

Data locality is not a problem to be solved on the level of individual do-loops but is a global
problem. Therefore, SVM-Fortran borrowed the concepts of processors arrangements and
templates from HPF as tools to specify scheduling decisions globally via template dis-
tributions. Template distributions determine the work distribution for parallel loops in
predefined scheduling and semi-dynamic scheduling. In predefined scheduling, loop itera-
tions are assigned to processors according to the distribution of the appropriate template
element. In semi-dynamic scheduling, templates are distributed according to dynamic
scheduling decisions. Thus, the result of a dynamic scheduling decision can be applied to
subsequent loops to exploit data locality.

Templates can be handled very flexible. They can be dynamically created, distributed and
redistributed at any point in the program, and passed via the subroutine interface. SVM-



Fortran supports standard distributions like BLOCK, CYCLIC, and GENERAL_BLOCK,
indirect distributions and linked distributions. The programmer can specify for each tem-
plate element the target processor by an arbitrary integer expression within an indirect
distribution. Linked distribution is a form of alignment where a distribution is described
via the distribution of another template.

The example in Figure 1 illustrates the work distribution features of SVM-Fortran. The
first loop uses direct scheduling. The block scheduling strategy gives a good load balance
but no data locality since the iteration space is only a quarter of the problem domain.

In the second loop, data locality is optimized since predefined scheduling ensures that
iterations are performed by the same processor as for loops running over the entire domain.

Creatable templates, such as T2, can be used if the iteration space is runtime dependent.
The REDISTRIBUTE-directive allows to specify a distribution for such templates and
can be used for dynamic load balancing.

The last parallel loop illustrates the use of semi-dynamic scheduling. When the loop is
executed, the template’s distribution is determined according to the dynamic scheduling
decision. Unless the distribution is reset via the UNDEF-directive, subsequent executions
of the parallel loop reuse the schedule to maintain data locality.

4 Integrated Programming Environment

Parallelization of real-world scientific applications requires the integration of the language,
the SVM implementation, as well as of programming tools into a homogeneous program-
ming environment.

For example, the programmer needs information about remote accesses to be able to
optimize data locality. The very basic information about non-local behaviour is the in-
dividual page fault resulting from an access to a virtual address currently not residing
in the node’s memory. Such information has to be gathered in the kernel together with
the faulting address and instruction. The information has to be presented in the form of
program variables and source locations so that the user can easily understand it. Specific
information is required from the compiler, the language runtime system, the kernel, and
the program text to relate runtime data to the source text.

The following sections outline the components of the programming environment and de-
scribe their interaction.

4.1 SVM-Fortran Compiler

The SVM-Fortran compiler is a source-to-source compiler generating Fortran77 code with
calls to a special runtime library.

At the beginning of the program, a shared segment is requested from the ASVM and
shared common blocks are allocated from the shared segment. Shared variables need to
be allocated at the beginning of every subprogram as several processor sets can execute
independently a subprogram. For each processor set a private copy of these shared data
has to be allocated. In contrast to shared data, private data needs no special handling as



SUBROUTINE G(....,T,N,...)

CSVM$ TEMPLATE: T(N) ! fixed size template
CSVM$ TEMPLATE: T1(N,N) ! automatic template
CSVM$ TEMPLATE: T2(:,:) ! creatable template
CSVM$ PROCESSORS:: P(2,NUMPROC()/2) RESHAPE:: P1(NUMPROC())
CSVM$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: T1
M= N/2
CSVM$ PDO(LOOPS(1,]),PROCESSORS(P),STRATEGY(BLOCK,BLOCK))
DO I=1,M
DO J=1,M
ENDDO
ENDDO

CSVM$ PDO(LOOPS(I,J),STRATEGY(ON_HOME(T1(L,J))))
DO I=1,M
DO J=1,M

ENDDO
ENDDO

CSVM$ CREATE:: T2(M,M)
CSVM$ REDISTRIBUTE (BLOCK,BLOCK) ONTO P :: T2

CSVM$ UNDEF: T

15 CONTINUE
CSVM$ PDO (LOOPS(I),PROCESSORS(P1),
CSVM$* STRATEGY(DISTRIBUTE_ONCE(T(I),GRAB(SELF_GUIDED))))
DO I=1,M
ENDDO
IF (...) THEN
CSVM$ UNDEF:: T
ENDIF
GOTO 15

Figure 1: SVM-Fortran example program



DIMENSION A(N)
CSVM$ PDO(LOOPS(I), STRATEGY(ALIGNED(A(I))))
DO I=1,N
A(T) = ..

ENDDO

Figure 2: Aligned Scheduling

it is mapped to the local memory of each processor.

As already mentioned, tasks can be executed either in exclusive or replicated mode. In
exclusive mode it is necessary to suspend all but one processor and to reactivate those
processors on parallel constructs. The suspended processors are waiting in a dispatcher
loop for continuation messages of the APS leader.

An important issue for the compiler is the scheduling of parallel loops. For direct schedul-
ing —e.g. block or cyclic distribution of loop iterations — code is generated which efficiently
handles these special cases. For predefined and semi-dynamic scheduling with templates
it is in general unknown at compile time which distribution strategy will be used at run
time, e.g. how the template elements, and thus the loop iterations, are distributed to the
processors. Therefore, for those loops a more general code is generated which is able to
handle all work distribution strategies.

Task scheduling is not only implemented by the compiler and the language runtime sys-
tem. Scheduling strategies such as aligned scheduling, which are applied to dynamically
optimize data locality, require monitoring data. With aligned scheduling, loop iterations
are assigned to the processors according to the current page distribution. In the example
in Figure 2, ASVM page state information (Section 4.3) is used to determine the owner!
of the page where A(I) is located.

SVM-Fortran provides three different types of synchronization. Barrier synchronization
is the most important method as the semantics of our language requests that at certain
points in the computation all processors in a processor set have to reach a point until
one of them can continue. Barrier synchronization is done with a hierarchical algorithm
based on message passing. As we support nested parallelism, only processors in the active
processor set are involved in this operation. The other two synchronization methods
are critical sections and page locks. To implement critical sections we use the underlaying
SVM-mechanisms to obtain and set the lock for the critical section. As the implementation
of page locks in the ASVM is not finished yet, currently we use a sub-optimal solution
based on critical sections.

The compiler performs optimizations on different levels. The most important ones are:

e barrier removal: As barriers are expensive an important optimization is the removal
of barriers where program semantics is not changed.

'In ASVM every page has a processor which owns the page, usually the processor which has written to
that page lately.



visualization and interaction
trace request program trace
specification analysis analysis
4 x\
4 \ 3\
performance Srogram
. J
| SAM |
| ASVM | | SVMF runtime system |

Figure 3: Performance analysis with OPAL

e avoidance of processor set computation: The overhead induced with the administra-
tion of processor sets can be reduced or even neglected for some common situations.

In addition to optimizations performed in the compiler, optimizations can be performed
by an optimization tool taking monitoring information of individual program runs into
account. This is a future extension of OPAL described in the next section.

4.2 OPAL: Optimizer and Locality Analyzer

OPAL is a performance analysis and optimization tool that integrates program text and
monitoring information to support the user in optimizing data locality [9]. Figure 3
illustrates the performance analysis features of OPAL and its interfaces to the other com-
ponents of the programming environment.

OPAL interacts with the monitoring subsystem via a performance analysis data base. The
overall performance analysis process is incremental, i.e. starting from a coarse overview
of the runtime behaviour, more detailed information for specific code regions is gathered
in subsequent program runs.

The concept of incremental performance analysis was chosen to reduce the amount of mon-
itoring data and thus to get around the performance impact on the application. Central
to this concept is a hierarchically structured trace format and an efficient implementation
of selective tracing.

The trace format provides events of different granularity. For example, on the coarsest
level page fault sums are available. More information is provided by the page travel event
that includes for each other process a counter for the page faults serviced by this process.
On the finest level, events are generated for individual page faults.

Selective tracing is implemented via a trace request file. The program is compiled for
performance analysis only once. This step inserts hooks to the SVM-Fortran Application
Monitor (SAM). When the program is started, SAM reads the trace request file which
includes trace requests such as



LOCAL foo.PDO_LABEL(150): RPF A, WPF A

specifying that read and write page fault events should be generated for array A during
execution of the parallel loop with label 150 in subroutine FOO.

SAM translates program symbols like labels and variables with the help of the program
information file generated by the SVM-Fortran compiler into runtime values. According
to the trace requests SAM collects the information from the appropriate runtime data
structures and requests SVM-specific information like page fault information from the
ASVM. The ASVM provides a very flexible interface which supports the collection of data
for arbitrary address regions.

All stages of the performance analysis process are supported by OPAL. In the current
version the user can interactively generate trace requests for individual program regions.
In contrast to trace visualization tools, OPAL presents gathered information based on
the source code similar to profiling tools, e.g. page fault sums and execution times are
presented as annotations to the source code. In addition, page faults are not presented in
form of time line charts but for individual loops the faulting references and the faulting
array elements can be inspected.

Requesting and analyzing information based on the program text is a natural approach for
performance analysis. Of course, performance analysis can also benefit from visualization
techniques. We plan to interface the graphical visualization tool PARvis [10] developed
at KFA that includes state-of-the-art visualization techniques and allows trace analysis of
different granularity via sophisticated zooming and flexible scrolling techniques.

4.3 Kernel Monitoring Support

Monitoring support is required for tuning of application programs as well as tuning of the
ASVM system itself. On demand, ASVM provides extensive monitoring information in a
raw form that has to be processed by appropriate tools to be easily understandable.

Major requirements for monitoring support are low perturbation of the application pro-
gram, little memory consumption, and an efficient and easy to use interface. ASVM’s
monitoring system meets these requirements by providing selective instrumentation, in-
formation on different levels of granularity, and memory mapped monitoring data.

Monitoring support of ASVM consists of two major parts. First, coarse grained informa-
tion on system level. A number of counters are implemented on each node, counting all
SVM messages and the hits and misses of the ASVM caches. From these counters statistics
about the system load (e.g. page faults and message traffic) caused by the ASVM system
can be derived. Overhead of the counters is negligible and behaviour of the application
program is not influenced because the counters are always switched on. Only one page
of physical memory that is mapped into the address space of each task is required. The
counters are read by a simple memory access.

The second major part of monitoring support of ASVM is fine grained information on
application level. This part is more extensive and can be divided into three groups:

e Counters
Counters for read or write page faults sum up the number of page faults on a specified



region of shared virtual memory and the time ASVM needs to supply the page.
Additionally, page travel counters sum up the number of pages that were received
from other nodes, defining a separate counter for every node.

e Traces

Specific trace records store information for read or write page faults, for page inval-
idation messages, or when the access permission for a page is reduced from writable
to readable. Data collected in traces is more detailed than counters and reflects the
chronological order of the traced events. The disadvantage of detailed traces is the
enormous consumption of memory. In order to keep the traces as small as possible
and to allow user interaction, selective instrumentation is provided. Moreover, when
a trace event occurs, a part of the user address space can be copied into the trace
buffer. This feature allows to assign a trace event to the value of the selected user
data (e.g. a loop counter) when the event occurred. A special function is provided
for generating a consistent copy of the trace buffer.

e Page State Information
For each page of a given virtual address range the state of the page (e.g. read
only, owned, writable, paged out, locked) is provided. Besides performance moni-
toring, this information can also be used for tuning of applications, e.g. it is used to
implement aligned scheduling (Section 4.1).

All monitoring data (i.e. counters, trace buffers, trace definitions, and page state infor-
mation) is mapped into the address space of the application task and thus can be easily
accessed by the application program or a monitoring library linked with the application.
Counters and traces can be restricted to a specified region of shared virtual memory and
a code region of the application program. They can be specified for a single thread or all
threads of a task. The monitored regions of shared virtual memory may overlap and the
boundaries of the regions need not be aligned with page boundaries. Thus, counters and
traces can be defined for single variables or for a procedure or even a single statement that
is executed by a selected thread.

This flexibility enables selective monitoring and keeps memory consumption and pertur-
bation of the application program small. The overhead increases proportionally to the
amount of monitoring support defined and thus is adjustable by the user. As long as no
monitoring is defined, there is virtually no overhead.

5 Early Performance Results

First measurements show that basic SVM operations (e.g. obtaining a page for read or
write access, or invalidation of pages) on the ASVM system are about two to ten times
faster compared to external server implementations on the Paragon”™™ Supercomputer
[16]. The main reasons for this difference are the features of ASVM described in Section
2. We expect to improve these results by further tuning of ASVM. The final paper will
contain basic performance data.

In Table 1 we give performance numbers for the implementation of template operations.
The numbers given in the table are independent of the number of processors since each

10



operation is performed independently on each processor. Performance ranges for template
operations show execution times for 1-dimensional to 7-dimensional templates. If the
operation requires a synchronization and the barrier cannot be eliminated by the compiler
the execution time of the barrier has to be added to the execution time.

operation execution time (in psec)
create template (1-7 dimensions) 12.8-14.0
destroy template (1-7 dimensions) 10.9-14.1
undefine template (1-7 dimensions) 12.6-18.7
distribute a template by block (1-7 dimensions) 176-259

Table 1: Execution time of template operations

Table 2 shows the loop overhead for a sequential loop and for parallel loops scheduled
with direct scheduling and predefined scheduling using a block distribution. Again, these
numbers do not include the barrier overhead. Although predefined schdeuling is more
expensive than direct scheduling the loop overhead is rather small. As irregular distribu-
tions are stored as a list of blocks of template elements assigned to the processor, this very
flexible distribution format can be handled with similar efficiency.

loop type loop overhead (in psec)
sequential do 0.2
direct scheduling of PDO (block distr.) 0.8
predefined scheduling of PDO (block distr.) 29.6

Table 2: Loop overhead

Barriers are implemented with an O(logn) algorithm using message passing. As the
communication startup time on the Paragon™ Supercomputer dominates the execution
time of barriers, barriers limit the overall application performance. For applications with a
large number of small parallel loops it can be the most important performance bottleneck.
As already pointed out, we try to eliminate as many barriers as possible in the optimization
phase of our compiler.

One of the codes ported with the help of SVM-Fortran is a Crystal Growth Simulation
[22]. It is an application developed at KFA for the optimization of the silicon production
process. For the quality of the silicon crystal a constant convection in the melt is very
important. The convection results from the heating, the rotation of the crucible, and the
rotation of the crystal. The convection is modeled by a set of partial differential equations
and determined by an explicit finite difference scheme. The selected work distribution
assigns a part of the crucible to each processor. Due to the finite difference scheme page
faults occur mainly for accessing objects at the boundary of a neighbouring domain. Table
3 shows the performance results. Due to the size of the domain the code could not be
executed on less than four processors without paging to disc.

This example shows good speedups up to 16 processors. For more processors the problem

11



procs || time | speedup | barrier time | page faults | page fault time
(sec) (sec) per processor (sec)
4 104.8 1.0 5.9 822 2.5
8 56.2 1.9 6.1 948 3.4
16 31.2 3.4 6.0 1018 3.4
32 20.4 5.1 6.2 1075 4.0
64 16.2 6.5 6.4 1136 4.1

Table 3: Performance of Crystal Growth Simulation

size of 42 x 92 x 202 (60 MB shared data) is too small. The main performance losses are
the barrier synchronization and also the service time for page faults.

6 Related Work

The most well-known approach for providing a global address space on distributed memory
systems is HPF which relies on compiler technology to generate explicit message passing.
Although promising results are available for regular grid applications, considerable prob-
lems exist in compiling irregular grid applications. In such applications, the access patterns
are unknown at compile time and expensive runtime techniques have to be applied.

The MYOAN /Fortran-S project at INRIA/IRISA [14] is a research project with similar
goals than ours. MYOAN uses the external pager interface of MACH to implement SVM
on the Paragon™ Supercomputer in software. Fortran-S is a Fortran77 extension which
supports a SPMD execution model. Previously it was developed for KOAN, a SVM
implementation on the Intel iPSC/2, and had a great influence on the design of SVM-
Fortran. In addition to features also available in Fortran-S, SVM-Fortran provides nested
parallelism, dynamic loop scheduling, work distribution templates, and the two execution
modes.

An implementation of an external server called MaX which is similar to MYOAN is done
at the Technical University Miinchen [15].

There are some research projects ongoing as well as commercial products available which
implement a single address space on a distributed memory computer using dedicated
hardware. Among them are Flash at Stanford [11], Alewife at MIT [12], SPP1000 of
Convex Computer Corp. [13], and KSR-1 of Kendall Square Research [7].

7 Status and Future Work

Currently, the SVM-Fortran compiler and ASVM are stable prototypes which have been
used to implement several application codes. Performance analysis for these applications
is done with a very early version of OPAL.

In the near future, ASVM will be tuned and enhancements like prefetching will be inte-
grated. The performance analysis tools OPAL and PARvis will be extended to support full

12



SVM-Fortran and will be based on SAM for gathering performance data. Extensive tests
with large scientific applications will increase stability of the programming environment
and will give insight in the performance bottlenecks and potential optimizations.

In the long run, the programming environment will be ported to DSM systems providing
a global address space supported by hardware. On these machines, access to remote data
will be much faster than on SVM systems, but will be still considerably slower than access
to local memory. Thus, locality analysis and optimization will remain the key issues for
efficient programming.

Performance analysis is currently done by visualization either based on the source code or
graphically. Future analysis tools should automatically identify performance bottlenecks
and therfore need a knowledge base about types of potential performance bugs.

Optimizations developed for codes running on SVM systems will be of similar importance
for DSM systems. Currently, optimizations such as shared to private coercion and se-
lection of a well-suited work distribution are carried out manually. In the future, such
optimizations have to be triggered and performed automatically. Static program informa-
tion is not sufficient to select such optimizations since their outcome frequently depends
on runtime properties. Therefore, we have to implement an automatic optimization cycle
on top of trace-based performance analysis tools and optimizing transformation systems.

References

[1] F. Bodin, T. Priol, Qverview of the Koan Programming Environment for the iPSC/2
and Performance FEvaluation of the BECAUSE Test Program 2.5.1, Proc. of BE-
CAUSE European Workshop, 1992, Sophia-Antipolis

[2] K. Li, IVY: A Shared Virtual Memory System for Parallel Computing, Proceedings
of 1988 International Conference on Parallel Processing, Vol 11, pp. 94-101, 1988

[3] K. Li, Shared Virtual Memory System on Loosely Coupled Multiprocessors, Ph.D.
Thesis, Yale University, Technical Report YALEU-RR-492, 1986

[4] R. Berrendorf, M. Gerndt, W. Nagel, J. Priimmer, SVM-Fortran, Interner Bericht
KFA-ZAM-IB-9322, Zentralinstitut fiir Angewandte Mathematik, Forschungszentrum
Jilich, 1993

[6] HPFF, High Performance Fortran Language Specification, High Performance Fortran
Forum, May 1993, Version 1.0, Rice University Houston Texas

[6] F. Bodin, L. Kervella, T. Priol, Fortran-S: A Fortran Interface for Shared Virtual
Memory Architectures, Proceedings of Supercomputing 93, Portland, 1993

[7] Kendall Square Research, Technical Summary, Waltham, Massachusetts, 1992

. Darema-Rogers, V.A. Norton, G.F. Plister, Using a Single- Program-Muliiple- Data

8] F.D Rog V.A.N G.F. Pfi Usi Single-P Multiple-D
Computational Model for parallel Ezecution of Scientific Applications, Research Re-
port RC 11552 (#51726) 11/19/85, IBM Watson Research Center Yorktown Heights,
1985

13



[9] M. Gerndt, Performance Analysis Environment for SVM-Fortran Programs, In-
terner Bericht KFA-ZAM-1B-9417, Zentralinstitut fiir Angewandte Mathematik,
Forschungszentrum Jiilich, 1994

[10] W.E. Nagel, A. Arnold, Performance Visualization of Parallel Programs - The PARuvis
Environment - , Caltech Technical Report, CCSF-47, +1994

[11] J. Kuskin et al., The Stanford FLASH Multiprocessor, Proc. 21st Int. Symposium on
Computer Architecture, pp. 302-313, 1994

[12] A. Agarwal et al., The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor, MIT /LCS Memo TM-454, MIT, 1991

[13] Convex Computer Corp., An QOuverview of the Ezemplar Series SPP1000 System,
Richardson, Texas, 1994

[14] G. Cabillic, T. Priol, I. Puaut, MYOAN: an Implementation of the KOAN Shared Vir-
tual Memory on the Intel Paragon, Internal publication 812, IRISA, Rennes, France,
1994

[15] R.G. Hackenberg, MaX — Investigating Shared Virtual Memory, Proceedings of HPCN
Europe, LNCS 797, pp. 308-315, 1994

[16] J. Reinhold, Funktionalititserweiterung des MaX-SVM-Servers, Diploma Thesis,
Technische Universitat Miinchen, Institut fiir Informatik, 1994

[17] Paragon OSF/1 Operating System, Specification Sheet, Order No. 206/10-92/RJ/GA,
Intel Corporation Supercomputer Systems Division, 1992

[18] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso,
M. Leibensperger, M. Barnett, F. Rabii, D. Netterwala, An OSF/1 Uniz for Massively
Parallel Multicomputers, Proceedings of the Winter 1993 USENIX Conference

[19] D. Golub, R. Dean, A. Forin, R. Rashid, Uniz as an Application Program, Proceedings
of the Summer 1990 USENIX Conference

[20] Guide to OSF/1: A Technical Synopsis, O’Reilly & Associates, Inc., 1991

[21] A. Forin, J. Barrera, M. Young, R. Rashid, Design, Implementation, and Performance
Evaluation of a Distributed Shared Memory Server for Mach, Carnegie-Mellon Uni-
versity, CMU-CS-88-165, 1988

[22] M. Mihelcic, H. Wenzl, K. Wingerath, Flow in Czochralski Crystal Growth Melts,
Report No. 2697, Research Centre Jiilich, ISSN 0366-0885, 1992

14



