
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Programming Shared Virtual Memory
on the Intel ParagonTM Supercomputer

R. Berrendorf, M. Gerndt
M. Mairandres*

KFA-ZAM-IB-9509

April 1995
(Stand 13.04.95)

(*) European Supercomputer Development Center
Intel SSD
85622 Feldkirchen b. M., Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/45267547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Programming Shared Virtual Memoryon the Intel ParagonTM SupercomputerR. Berrendorf, M. GerndtCentral Institute for Applied MathematicsResearch Centre J�ulich (KFA)52425 J�ulich, Germanyfr.berrendorf,m.gerndtg@kfa-juelich.deM. MairandresEuropean Supercomputer Development CenterIntel SSD85622 Feldkirchen b. M., Germanymartin@esdc.intel.comAbstractProgramming distributed memory systems forces the user to handle the problemof data locality. With message passing the user has not only to map the applicationto the di�erent processors in a way that optimizes data locality but also has to ex-plicitly program access to remote data. Shared virtual memory (SVM) systems freehim from the second task; nevertheless, he is still responsible to optimize data localityby selecting a well-suited work distribution. We describe a programming environmentthat is based on the Advanced Shared Virtual Memory system, a SVM implemen-tation for the ParagonTM Supercomputer, and on SVM-Fortran, a shared memoryparallel programming language with language constructs for work distribution. Pro-gramming tools integrate program text and dynamic performance data to help theuser in optimizing data locality.Keywords: distributed memory multiprocessors, shared virtual memory, parallel pro-gramming tools, programming environments, parallel applications1 IntroductionProgramming distributed memory parallel computers with message passing is often con-sidered to be a di�cult task. Several approaches are being pursued such as HPF, sharedvirtual memory (SVM), or Linda to facilitate this task. Common to these approaches isthe emulation of a global address space by software, either by the compiler, the operatingsystem, or the language runtime system.Shared virtual memory systems provide a global address space on the basis of the virtualaddressing mechanisms in the operating system. Several research prototypes of SVM [1, 2]demonstrated the feasibility of that concept, but were not designed to support real-worldscienti�c applications on state-of-the-art parallel systems.1

The programming environment we are describing in this article is intended to supportscienti�c programs utilizing SVM on the Intel ParagonTM Supercomputer. It is basedon the Advanced Shared Virtual Memory (ASVM) system, a prototype developed by theIntel European Supercomputer Development Center (ESDC). On top of ASVM, KFA isproviding SVM-Fortran with a source-to-source compiler, a source code based optimizerand locality analyzer OPAL, and a trace visualization tool PARvis.The key issues in providing an easy to use programming interface for SVM are: an e�cientand scalable SVM implementation, fast barrier synchronization on processor sets, e�cientmonitoring support integrated into the SVM system, a language design oriented at theapplications' needs, and analysis and optimization tools integrating program text andruntime performance information.Section 2 presents the design concepts of ASVM and Section 3 introduces the languagefeatures of SVM-Fortran. In Section 4 we present the components of the programming en-vironment and discuss their relationship. Early performance results of ASVM, of the codegenerated by the compiler and of an application are presented in Section 5. Subsequently,we discuss related work and future research issues.2 ASVM on the ParagonTM SupercomputerThe programming environment we are describing in this article is implemented on theIntel ParagonTM Supercomputer, a distributed memory multicomputer that can accom-modate more than thousand heterogeneous nodes connected in a two-dimensional rectan-gular mesh. Nodes are designed around Intel's i860 XP RISC processor. Multiprocessor(MP) nodes have three 75-MFLOPS Intel i860 XP processors | two to execute applicationcode and a third processor for use as either a message coprocessor or as an applicationprocessor. General-purpose (GP) nodes have two i860 XP processors, one dedicated toapplications and the other to messaging. An expansion port allows the addition of anI/O or networking interface. Nodes communicate by passing messages over an internalinterconnect network providing high bandwidth and low latency.The ParagonTM Supercomputer's operating system [17, 18] is fully and transparentlydistributed across the system's nodes. A microkernel based on Mach 3.0 [19] resides oneach node and implements core operating system functions. On top of the microkernel,an OSF/1 AD [20] server is running, providing full Unix semantics and a single systemimage. Apart from a single �le name space and a single process space that spawn nodeboundaries, the single system image o�ers SVM functionality.The SVM functionality is implemented in the Advanced Shared Virtual Memory system.ASVM is currently the prototype of a new SVM system for the ParagonTM Supercomputerthat substitutes the XMM layer [21] of the originally employed version of Mach. Our SVMsystem is integrated into the Mach microkernel and has interfaces to the local virtualmemory system of every node on one side and to user or system level pagers on the otherside. Similar to global shared memory, ASVM provides regions of virtual memory thatcan be shared among all nodes of a ParagonTM Supercomputer. Actually, these memoryregions are distributed between the nodes. In order to manage the SVM regions, ASVMuses page fault mechanisms similarly to standard virtual memory management.2

ASVM supports strong coherency, i.e. if a processor reads from a location in a sharedaddress range it always gets the value written in the last write operation to that locationexecuted by any processor. This is achieved by keeping either only one copy of a page withwrite access or several copies of the page on di�erent nodes having read-only access. Whena read-only page is to be written on a node, all other copies of the page are invalidated�rst and then the node is granted write access to the page.ASVM was developed with special focus on high performance and scalability to supportreal-world scienti�c applications. In order to accomplish this objective ASVM has somespecial features:� cache-based, distributed, multi-level management of SVM pagesA SVM system always has to know the location and status of all SVM pages. ASVM'sstrategy for management of SVM pages combines previously known methods andsome new features into a cache-based, distributed, and multi-level page manage-ment protocol that was speci�cally designed for high scalability and e�ciency. Thebasic idea is to keep only the recently used management information for di�erentmanagement strategies in a sort of cache and thus ensuring scalability by restrict-ing the memory requirements of ASVM to a �xed amount of the node's memory,independent of the number of nodes and the size of the SVM regions. If one of themanagement strategies fails due to missing information in the cache, ASVM fallsback to another strategy. The �nal management strategy is ine�cient but always�nds the required information about a page.� integration into the Mach microkernelMost existing SVM systems on top of Mach are implemented on user level, i.e. ex-ternal pagers. ASVM, however, is part of the Mach microkernel, thereby avoidingadditional communication and task switches and improving performance consider-ably.� special SVM transport serviceMessages for SVM management are sent via a special SVM transport service that istuned to the size of SVM messages and directly uses the communication processoron every node of the ParagonTM Supercomputer. The result is further improvementof performance.� paging to other nodesIf a node runs out of memory it �rst tries to send SVM pages to other nodes thatare selected according to a certain strategy. Only if these nodes are also short onmemory the pages are sent to disk. Sending pages to other nodes obviously is muchfaster than paging them to disk and avoids a possible bottleneck at the disk in caseof heavy paging activity of the system.For tuning of application programs as well as tuning of the ASVM system itself, ASVMprovides extensive monitoring support. Since ASVM is integrated into the Mach micro-kernel all necessary monitoring information is available. Monitoring is supported on thelevels of single applications and whole nodes. Especially on the application level, selectiveinstrumentation (e.g. restriction to an arbitrary address region) and versatile counters can3

be used to keep the amount of monitoring data rather small. A more detailed descriptionof monitoring support is given in Section 4.3.3 SVM-FortranSVM-Fortran [4] is a shared memory parallel Fortran77 extension targeted mainly towardsdata parallel applications on shared virtual memory systems and distributed shared mem-ory systems which provide hardware support for a global address space on top of physicallydistributed memory. It is based on HPF [5], Fortran-S [6], and KSR Fortran [7]. The mainapplication area is broader than that of HPF and Vienna Fortran. SVM-Fortran supportscoarse-grained functional parallelism where the parallel task itself can be data parallel.The execution model of SVM-Fortran is an extension of the Single-Program-Multiple-Data (SPMD) model [8] which is well-known for its low-overhead parallel execution andis best-suited for hierarchical memory machines. Processors are allocated to the parallelapplication when it is started and are available until program termination.SVM-Fortran supports nested parallelism. At program start, the entire computation formsa single task. A task is some computational work. Tasks can be dynamically decomposedinto subtasks, e.g. via a parallel section or a parallel loop construct, i.e. each section andeach loop iteration is an independent task. A task is either assigned to a single processoror to a set of processors which execute the task cooperatively. The set of processorsexecuting a task is called the task's active processor set (APS). The active processorsexecute the task either in exclusive mode or in replicated mode. In exclusive mode onlyone processor, the APS leader, performs the actual computation, whereas in replicatedmode all processors execute the same code. The default execution mode is exclusive modewhich facilitates incremental parallelization of applications.SVM-Fortran provides the standard features of shared memory parallel Fortran languages,i.e. shared and private data, multi-dimensional parallel loops and parallel sections, classicalsynchronization operations as well as SVM-speci�c synchronization such as variable lockingand atomic update.SVM-Fortran provides speci�c features to determine the distribution of tasks onto proces-sors. Similar to Fortran-S and KSR Fortran, loop annotations can be used to determinea static or dynamic work distribution scheme. Examples are direct scheduling, such asBLOCK and CYCLIC, as well as dynamic scheduling, e.g. self-scheduling.Data locality is not a problem to be solved on the level of individual do-loops but is a globalproblem. Therefore, SVM-Fortran borrowed the concepts of processors arrangements andtemplates from HPF as tools to specify scheduling decisions globally via template dis-tributions. Template distributions determine the work distribution for parallel loops inprede�ned scheduling and semi-dynamic scheduling. In prede�ned scheduling, loop itera-tions are assigned to processors according to the distribution of the appropriate templateelement. In semi-dynamic scheduling, templates are distributed according to dynamicscheduling decisions. Thus, the result of a dynamic scheduling decision can be applied tosubsequent loops to exploit data locality.Templates can be handled very
exible. They can be dynamically created, distributed andredistributed at any point in the program, and passed via the subroutine interface. SVM-4

Fortran supports standard distributions like BLOCK, CYCLIC, and GENERAL BLOCK,indirect distributions and linked distributions. The programmer can specify for each tem-plate element the target processor by an arbitrary integer expression within an indirectdistribution. Linked distribution is a form of alignment where a distribution is describedvia the distribution of another template.The example in Figure 1 illustrates the work distribution features of SVM-Fortran. The�rst loop uses direct scheduling. The block scheduling strategy gives a good load balancebut no data locality since the iteration space is only a quarter of the problem domain.In the second loop, data locality is optimized since prede�ned scheduling ensures thatiterations are performed by the same processor as for loops running over the entire domain.Creatable templates, such as T2, can be used if the iteration space is runtime dependent.The REDISTRIBUTE-directive allows to specify a distribution for such templates andcan be used for dynamic load balancing.The last parallel loop illustrates the use of semi-dynamic scheduling. When the loop isexecuted, the template's distribution is determined according to the dynamic schedulingdecision. Unless the distribution is reset via the UNDEF-directive, subsequent executionsof the parallel loop reuse the schedule to maintain data locality.4 Integrated Programming EnvironmentParallelization of real-world scienti�c applications requires the integration of the language,the SVM implementation, as well as of programming tools into a homogeneous program-ming environment.For example, the programmer needs information about remote accesses to be able tooptimize data locality. The very basic information about non-local behaviour is the in-dividual page fault resulting from an access to a virtual address currently not residingin the node's memory. Such information has to be gathered in the kernel together withthe faulting address and instruction. The information has to be presented in the form ofprogram variables and source locations so that the user can easily understand it. Speci�cinformation is required from the compiler, the language runtime system, the kernel, andthe program text to relate runtime data to the source text.The following sections outline the components of the programming environment and de-scribe their interaction.4.1 SVM-Fortran CompilerThe SVM-Fortran compiler is a source-to-source compiler generating Fortran77 code withcalls to a special runtime library.At the beginning of the program, a shared segment is requested from the ASVM andshared common blocks are allocated from the shared segment. Shared variables need tobe allocated at the beginning of every subprogram as several processor sets can executeindependently a subprogram. For each processor set a private copy of these shared datahas to be allocated. In contrast to shared data, private data needs no special handling as5

SUBROUTINE G(....,T,N,...)CSVM$ TEMPLATE:: T(N) ! �xed size templateCSVM$ TEMPLATE:: T1(N,N) ! automatic templateCSVM$ TEMPLATE:: T2(:,:) ! creatable templateCSVM$ PROCESSORS:: P(2,NUMPROC()/2) RESHAPE:: P1(NUMPROC())CSVM$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: T1...M= N/2CSVM$ PDO(LOOPS(I,J),PROCESSORS(P),STRATEGY(BLOCK,BLOCK))DO I=1,MDO J=1,M...ENDDOENDDOCSVM$ PDO(LOOPS(I,J),STRATEGY(ON HOME(T1(I,J))))DO I=1,MDO J=1,M...ENDDOENDDOCSVM$ CREATE:: T2(M,M)CSVM$ REDISTRIBUTE (BLOCK,BLOCK) ONTO P :: T2...CSVM$ UNDEF:: T15 CONTINUE...CSVM$ PDO (LOOPS(I),PROCESSORS(P1),CSVM$* STRATEGY(DISTRIBUTE ONCE(T(I),GRAB(SELF GUIDED))))DO I=1,M...ENDDO...IF (...) THENCSVM$ UNDEF:: TENDIFGOTO 15Figure 1: SVM-Fortran example program6

DIMENSION A(N)CSVM$ PDO(LOOPS(I), STRATEGY(ALIGNED(A(I))))DO I=1,NA(I) =ENDDO Figure 2: Aligned Schedulingit is mapped to the local memory of each processor.As already mentioned, tasks can be executed either in exclusive or replicated mode. Inexclusive mode it is necessary to suspend all but one processor and to reactivate thoseprocessors on parallel constructs. The suspended processors are waiting in a dispatcherloop for continuation messages of the APS leader.An important issue for the compiler is the scheduling of parallel loops. For direct schedul-ing { e.g. block or cyclic distribution of loop iterations { code is generated which e�cientlyhandles these special cases. For prede�ned and semi-dynamic scheduling with templatesit is in general unknown at compile time which distribution strategy will be used at runtime, e.g. how the template elements, and thus the loop iterations, are distributed to theprocessors. Therefore, for those loops a more general code is generated which is able tohandle all work distribution strategies.Task scheduling is not only implemented by the compiler and the language runtime sys-tem. Scheduling strategies such as aligned scheduling, which are applied to dynamicallyoptimize data locality, require monitoring data. With aligned scheduling, loop iterationsare assigned to the processors according to the current page distribution. In the examplein Figure 2, ASVM page state information (Section 4.3) is used to determine the owner1of the page where A(I) is located.SVM-Fortran provides three di�erent types of synchronization. Barrier synchronizationis the most important method as the semantics of our language requests that at certainpoints in the computation all processors in a processor set have to reach a point untilone of them can continue. Barrier synchronization is done with a hierarchical algorithmbased on message passing. As we support nested parallelism, only processors in the activeprocessor set are involved in this operation. The other two synchronization methodsare critical sections and page locks. To implement critical sections we use the underlayingSVM-mechanisms to obtain and set the lock for the critical section. As the implementationof page locks in the ASVM is not �nished yet, currently we use a sub-optimal solutionbased on critical sections.The compiler performs optimizations on di�erent levels. The most important ones are:� barrier removal: As barriers are expensive an important optimization is the removalof barriers where program semantics is not changed.1In ASVM every page has a processor which owns the page, usually the processor which has written tothat page lately. 7

OPAL

visualization and interaction

trace request
specification

program
analysis

trace
analysis

SAM

ASVM SVMF runtime system

trace request
file

SVMF source
code

program
information file trace file

performance
analysis

data baseFigure 3: Performance analysis with OPAL� avoidance of processor set computation: The overhead induced with the administra-tion of processor sets can be reduced or even neglected for some common situations.In addition to optimizations performed in the compiler, optimizations can be performedby an optimization tool taking monitoring information of individual program runs intoaccount. This is a future extension of OPAL described in the next section.4.2 OPAL: Optimizer and Locality AnalyzerOPAL is a performance analysis and optimization tool that integrates program text andmonitoring information to support the user in optimizing data locality [9]. Figure 3illustrates the performance analysis features of OPAL and its interfaces to the other com-ponents of the programming environment.OPAL interacts with the monitoring subsystem via a performance analysis data base. Theoverall performance analysis process is incremental, i.e. starting from a coarse overviewof the runtime behaviour, more detailed information for speci�c code regions is gatheredin subsequent program runs.The concept of incremental performance analysis was chosen to reduce the amount of mon-itoring data and thus to get around the performance impact on the application. Centralto this concept is a hierarchically structured trace format and an e�cient implementationof selective tracing.The trace format provides events of di�erent granularity. For example, on the coarsestlevel page fault sums are available. More information is provided by the page travel eventthat includes for each other process a counter for the page faults serviced by this process.On the �nest level, events are generated for individual page faults.Selective tracing is implemented via a trace request �le. The program is compiled forperformance analysis only once. This step inserts hooks to the SVM-Fortran ApplicationMonitor (SAM). When the program is started, SAM reads the trace request �le whichincludes trace requests such as 8

LOCAL foo.PDO LABEL(150): RPF A, WPF Aspecifying that read and write page fault events should be generated for array A duringexecution of the parallel loop with label 150 in subroutine FOO.SAM translates program symbols like labels and variables with the help of the programinformation �le generated by the SVM-Fortran compiler into runtime values. Accordingto the trace requests SAM collects the information from the appropriate runtime datastructures and requests SVM-speci�c information like page fault information from theASVM. The ASVM provides a very
exible interface which supports the collection of datafor arbitrary address regions.All stages of the performance analysis process are supported by OPAL. In the currentversion the user can interactively generate trace requests for individual program regions.In contrast to trace visualization tools, OPAL presents gathered information based onthe source code similar to pro�ling tools, e.g. page fault sums and execution times arepresented as annotations to the source code. In addition, page faults are not presented inform of time line charts but for individual loops the faulting references and the faultingarray elements can be inspected.Requesting and analyzing information based on the program text is a natural approach forperformance analysis. Of course, performance analysis can also bene�t from visualizationtechniques. We plan to interface the graphical visualization tool PARvis [10] developedat KFA that includes state-of-the-art visualization techniques and allows trace analysis ofdi�erent granularity via sophisticated zooming and
exible scrolling techniques.4.3 Kernel Monitoring SupportMonitoring support is required for tuning of application programs as well as tuning of theASVM system itself. On demand, ASVM provides extensive monitoring information in araw form that has to be processed by appropriate tools to be easily understandable.Major requirements for monitoring support are low perturbation of the application pro-gram, little memory consumption, and an e�cient and easy to use interface. ASVM'smonitoring system meets these requirements by providing selective instrumentation, in-formation on di�erent levels of granularity, and memory mapped monitoring data.Monitoring support of ASVM consists of two major parts. First, coarse grained informa-tion on system level. A number of counters are implemented on each node, counting allSVM messages and the hits and misses of the ASVM caches. From these counters statisticsabout the system load (e.g. page faults and message tra�c) caused by the ASVM systemcan be derived. Overhead of the counters is negligible and behaviour of the applicationprogram is not in
uenced because the counters are always switched on. Only one pageof physical memory that is mapped into the address space of each task is required. Thecounters are read by a simple memory access.The second major part of monitoring support of ASVM is �ne grained information onapplication level. This part is more extensive and can be divided into three groups:� CountersCounters for read or write page faults sum up the number of page faults on a speci�ed9

region of shared virtual memory and the time ASVM needs to supply the page.Additionally, page travel counters sum up the number of pages that were receivedfrom other nodes, de�ning a separate counter for every node.� TracesSpeci�c trace records store information for read or write page faults, for page inval-idation messages, or when the access permission for a page is reduced from writableto readable. Data collected in traces is more detailed than counters and re
ects thechronological order of the traced events. The disadvantage of detailed traces is theenormous consumption of memory. In order to keep the traces as small as possibleand to allow user interaction, selective instrumentation is provided. Moreover, whena trace event occurs, a part of the user address space can be copied into the tracebu�er. This feature allows to assign a trace event to the value of the selected userdata (e.g. a loop counter) when the event occurred. A special function is providedfor generating a consistent copy of the trace bu�er.� Page State InformationFor each page of a given virtual address range the state of the page (e.g. readonly, owned, writable, paged out, locked) is provided. Besides performance moni-toring, this information can also be used for tuning of applications, e.g. it is used toimplement aligned scheduling (Section 4.1).All monitoring data (i.e. counters, trace bu�ers, trace de�nitions, and page state infor-mation) is mapped into the address space of the application task and thus can be easilyaccessed by the application program or a monitoring library linked with the application.Counters and traces can be restricted to a speci�ed region of shared virtual memory anda code region of the application program. They can be speci�ed for a single thread or allthreads of a task. The monitored regions of shared virtual memory may overlap and theboundaries of the regions need not be aligned with page boundaries. Thus, counters andtraces can be de�ned for single variables or for a procedure or even a single statement thatis executed by a selected thread.This
exibility enables selective monitoring and keeps memory consumption and pertur-bation of the application program small. The overhead increases proportionally to theamount of monitoring support de�ned and thus is adjustable by the user. As long as nomonitoring is de�ned, there is virtually no overhead.5 Early Performance ResultsFirst measurements show that basic SVM operations (e.g. obtaining a page for read orwrite access, or invalidation of pages) on the ASVM system are about two to ten timesfaster compared to external server implementations on the ParagonTM Supercomputer[16]. The main reasons for this di�erence are the features of ASVM described in Section2. We expect to improve these results by further tuning of ASVM. The �nal paper willcontain basic performance data.In Table 1 we give performance numbers for the implementation of template operations.The numbers given in the table are independent of the number of processors since each10

operation is performed independently on each processor. Performance ranges for templateoperations show execution times for 1-dimensional to 7-dimensional templates. If theoperation requires a synchronization and the barrier cannot be eliminated by the compilerthe execution time of the barrier has to be added to the execution time.operation execution time (in �sec)create template (1-7 dimensions) 12.8-14.0destroy template (1-7 dimensions) 10.9-14.1unde�ne template (1-7 dimensions) 12.6-18.7distribute a template by block (1-7 dimensions) 176-259Table 1: Execution time of template operationsTable 2 shows the loop overhead for a sequential loop and for parallel loops scheduledwith direct scheduling and prede�ned scheduling using a block distribution. Again, thesenumbers do not include the barrier overhead. Although prede�ned schdeuling is moreexpensive than direct scheduling the loop overhead is rather small. As irregular distribu-tions are stored as a list of blocks of template elements assigned to the processor, this very
exible distribution format can be handled with similar e�ciency.loop type loop overhead (in �sec)sequential do 0.2direct scheduling of PDO (block distr.) 0.8prede�ned scheduling of PDO (block distr.) 29.6Table 2: Loop overheadBarriers are implemented with an O(logn) algorithm using message passing. As thecommunication startup time on the ParagonTM Supercomputer dominates the executiontime of barriers, barriers limit the overall application performance. For applications with alarge number of small parallel loops it can be the most important performance bottleneck.As already pointed out, we try to eliminate as many barriers as possible in the optimizationphase of our compiler.One of the codes ported with the help of SVM-Fortran is a Crystal Growth Simulation[22]. It is an application developed at KFA for the optimization of the silicon productionprocess. For the quality of the silicon crystal a constant convection in the melt is veryimportant. The convection results from the heating, the rotation of the crucible, and therotation of the crystal. The convection is modeled by a set of partial di�erential equationsand determined by an explicit �nite di�erence scheme. The selected work distributionassigns a part of the crucible to each processor. Due to the �nite di�erence scheme pagefaults occur mainly for accessing objects at the boundary of a neighbouring domain. Table3 shows the performance results. Due to the size of the domain the code could not beexecuted on less than four processors without paging to disc.This example shows good speedups up to 16 processors. For more processors the problem11

procs time speedup barrier time page faults page fault time(sec) (sec) per processor (sec)4 104.8 1.0 5.9 822 2.58 56.2 1.9 6.1 948 3.416 31.2 3.4 6.0 1018 3.432 20.4 5.1 6.2 1075 4.064 16.2 6.5 6.4 1136 4.1Table 3: Performance of Crystal Growth Simulationsize of 42� 92� 202 (60 MB shared data) is too small. The main performance losses arethe barrier synchronization and also the service time for page faults.6 Related WorkThe most well-known approach for providing a global address space on distributed memorysystems is HPF which relies on compiler technology to generate explicit message passing.Although promising results are available for regular grid applications, considerable prob-lems exist in compiling irregular grid applications. In such applications, the access patternsare unknown at compile time and expensive runtime techniques have to be applied.The MYOAN/Fortran-S project at INRIA/IRISA [14] is a research project with similargoals than ours. MYOAN uses the external pager interface of MACH to implement SVMon the ParagonTM Supercomputer in software. Fortran-S is a Fortran77 extension whichsupports a SPMD execution model. Previously it was developed for KOAN, a SVMimplementation on the Intel iPSC/2, and had a great in
uence on the design of SVM-Fortran. In addition to features also available in Fortran-S, SVM-Fortran provides nestedparallelism, dynamic loop scheduling, work distribution templates, and the two executionmodes.An implementation of an external server called MaX which is similar to MYOAN is doneat the Technical University M�unchen [15].There are some research projects ongoing as well as commercial products available whichimplement a single address space on a distributed memory computer using dedicatedhardware. Among them are Flash at Stanford [11], Alewife at MIT [12], SPP1000 ofConvex Computer Corp. [13], and KSR-1 of Kendall Square Research [7].7 Status and Future WorkCurrently, the SVM-Fortran compiler and ASVM are stable prototypes which have beenused to implement several application codes. Performance analysis for these applicationsis done with a very early version of OPAL.In the near future, ASVM will be tuned and enhancements like prefetching will be inte-grated. The performance analysis tools OPAL and PARvis will be extended to support full12

SVM-Fortran and will be based on SAM for gathering performance data. Extensive testswith large scienti�c applications will increase stability of the programming environmentand will give insight in the performance bottlenecks and potential optimizations.In the long run, the programming environment will be ported to DSM systems providinga global address space supported by hardware. On these machines, access to remote datawill be much faster than on SVM systems, but will be still considerably slower than accessto local memory. Thus, locality analysis and optimization will remain the key issues fore�cient programming.Performance analysis is currently done by visualization either based on the source code orgraphically. Future analysis tools should automatically identify performance bottlenecksand therfore need a knowledge base about types of potential performance bugs.Optimizations developed for codes running on SVM systems will be of similar importancefor DSM systems. Currently, optimizations such as shared to private coercion and se-lection of a well-suited work distribution are carried out manually. In the future, suchoptimizations have to be triggered and performed automatically. Static program informa-tion is not su�cient to select such optimizations since their outcome frequently dependson runtime properties. Therefore, we have to implement an automatic optimization cycleon top of trace-based performance analysis tools and optimizing transformation systems.References[1] F. Bodin, T. Priol, Overview of the Koan Programming Environment for the iPSC/2and Performance Evaluation of the BECAUSE Test Program 2.5.1, Proc. of BE-CAUSE European Workshop, 1992, Sophia-Antipolis[2] K. Li, IVY: A Shared Virtual Memory System for Parallel Computing, Proceedingsof 1988 International Conference on Parallel Processing, Vol II, pp. 94-101, 1988[3] K. Li, Shared Virtual Memory System on Loosely Coupled Multiprocessors, Ph.D.Thesis, Yale University, Technical Report YALEU-RR-492, 1986[4] R. Berrendorf, M. Gerndt, W. Nagel, J. Pr�ummer, SVM-Fortran, Interner BerichtKFA-ZAM-IB-9322, Zentralinstitut f�ur Angewandte Mathematik, ForschungszentrumJ�ulich, 1993[5] HPFF, High Performance Fortran Language Speci�cation, High Performance FortranForum, May 1993, Version 1.0, Rice University Houston Texas[6] F. Bodin, L. Kervella, T. Priol, Fortran-S: A Fortran Interface for Shared VirtualMemory Architectures, Proceedings of Supercomputing 93, Portland, 1993[7] Kendall Square Research, Technical Summary, Waltham, Massachusetts, 1992[8] F. Darema-Rogers, V.A. Norton, G.F. P�ster, Using a Single-Program-Multiple-DataComputational Model for parallel Execution of Scienti�c Applications, Research Re-port RC 11552 (#51726) 11/19/85, IBM Watson Research Center Yorktown Heights,1985 13

[9] M. Gerndt, Performance Analysis Environment for SVM-Fortran Programs, In-terner Bericht KFA-ZAM-IB-9417, Zentralinstitut f�ur Angewandte Mathematik,Forschungszentrum J�ulich, 1994[10] W.E. Nagel, A. Arnold, Performance Visualization of Parallel Programs - The PARvisEnvironment - , Caltech Technical Report, CCSF-47, +1994[11] J. Kuskin et al., The Stanford FLASH Multiprocessor, Proc. 21st Int. Symposium onComputer Architecture, pp. 302-313, 1994[12] A. Agarwal et al., The MIT Alewife Machine: A Large-Scale Distributed-MemoryMultiprocessor, MIT/LCS Memo TM-454, MIT, 1991[13] Convex Computer Corp., An Overview of the Exemplar Series SPP1000 System,Richardson, Texas, 1994[14] G. Cabillic, T. Priol, I. Puaut,MYOAN: an Implementation of the KOAN Shared Vir-tual Memory on the Intel Paragon, Internal publication 812, IRISA, Rennes, France,1994[15] R.G. Hackenberg,MaX { Investigating Shared Virtual Memory, Proceedings of HPCNEurope, LNCS 797, pp. 308-315, 1994[16] J. Reinhold, Funktionalit�atserweiterung des MaX-SVM-Servers, Diploma Thesis,Technische Universit�at M�unchen, Institut f�ur Informatik, 1994[17] Paragon OSF/1 Operating System, Speci�cation Sheet, Order No. 206/10-92/RJ/GA,Intel Corporation Supercomputer Systems Division, 1992[18] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso,M. Leibensperger, M. Barnett, F. Rabii, D. Netterwala,An OSF/1 Unix for MassivelyParallel Multicomputers, Proceedings of the Winter 1993 USENIX Conference[19] D. Golub, R. Dean, A. Forin, R. Rashid, Unix as an Application Program, Proceedingsof the Summer 1990 USENIX Conference[20] Guide to OSF/1: A Technical Synopsis, O'Reilly & Associates, Inc., 1991[21] A. Forin, J. Barrera, M. Young, R. Rashid, Design, Implementation, and PerformanceEvaluation of a Distributed Shared Memory Server for Mach, Carnegie-Mellon Uni-versity, CMU-CS-88-165, 1988[22] M. Mihelcic, H. Wenzl, K. Wingerath, Flow in Czochralski Crystal Growth Melts,Report No. 2697, Research Centre J�ulich, ISSN 0366-0885, 1992
14

