
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Parallelization of the AVL FIRE Benchmark
with SVM-Fortran

Michael Gerndt

KFA-ZAM-IB-9520

September 1995
(Stand 13.09.95)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/45267539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Parallelization of the AVL FIRE Benchmarkwith SVM-FortranMichael GerndtCentral Institute for Applied MathematicsResearch Centre J�ulich (KFA)52425 J�ulich, Germanym.gerndt@kfa-juelich.deAbstractThis article outlines the parallelization of an irregular grid application with SVM-Fortran. It describes the di�erent optimizations and their e�ectiveness. The paral-lelization was much simpli�ed by the performance analysis tool OPAL, a source codebased tool for requesting and analyzing runtime performance data. Although sharedmemory parallelization is easier than distributed memory parallelization, understand-ing and eliminating the overhead from page faults is impossible without such a tool.It relates the page faults to the arrays and to the location in the source code. An areawhich is not supported by OPAL but where supporting tools are highly desirable, isthe performance degradation due to low utilization of the on-chip cache.Keywords: distributed memory multiprocessors, shared virtual memory, parallel pro-gramming tools, programming environments, parallel applications1 IntroductionThis paper outlines the parallelization of the AVL FIRE benchmark developed at AVLGraz, Austria. The target system is the Intel Paragon. The parallelization was doneusing the SVM-Fortran programming environment which is based on an implementation ofShared Virtual Memory [Li 86]. Although the parallelization was facilitated by the sharedmemory programming model of SVM-Fortran, some optimization had to be performed totake into account the physical distribution of the memory.The FIRE code is a general purpose computational 
uid dynamics program package. Itwas developed specially for computing compressible and incompressible turbulent 
uid
ows as encountered in engineering environments.The benchmark consists of the solver of the resulting linear equation system. The com-putational domain is discretized with a �nite volume approach. The matrices which haveto be solved are extremely sparse and have a large and strongly varying bandwidth.The techniques described in this paper do not handle the irregularity of the grid in a specialway. Instead, the techniques are useful for tuning arbitrary SVM-Fortran applications.The performance results are given for the large problem domain (DRALL) which consistsof 47312 grid nodes (10 MB of shared memory).1



2 Programming SVM on the Intel ParagonThe programming environment we are using on the Intel Paragon is based on SVM. Theimplementation of the global address space via the paging support of the MACH kernel wasdone at the Intel European Supercomputer Development Center. Details on the AdvancedShared Virtual Memory system (ASVM) can be found in [Zeis 93]. Due to the memorymanagement overhead on the Intel Paragon, the page fault times are quite high. Pagefaults requiring communication with other processors typically take 1.5 ms up to 2.5 ms.On top of the ASVM, KFA implemented a language extension of Fortran77, SVM-Fortran.SVM-Fortran supports shared memory parallel programming via directives. In addition toparallel loops and parallel sections, the user can de�ne the work distribution explicitly. Forthis purpose, we adapted the template concept of HPF and extended it to make it more
exible. For example, templates can be created dynamically and redistributed at runtimedepending on runtime information. Templates direct the distribution of loop iterationsonto processors. A detailed description of SVM-Fortran can be found in [BeGe 95], anintroduction in [GeBe 95].SVM-Fortran is supported by two performance analysis tools. TheOPtimizer and LocalityAnalyzer OPAL is a source code based tool which supports collection and analysis ofperformance data [GKO 95]. The data are presented by annotating the source code viaa separate performance column in the main display or in a separate window if detaileddata for individual variables are requested by clicking on a parallel code section. Theother tool is the PARallel Visualization Environment PARvis [NaAr 94] which is a tracevisualization tool originally developed at KFA for message passing programs. In addition,it supports views onto data provided by SVM systems and is currently adapted to SVM-Fortran traces.Both tools allow to analyze data generated by the Shared virtual memory ApplicationMonitor SAM [Oz 95, GKO 95]. SAM requires to compile the program once for per-formance analysis. At runtime, it reads a trace request �le which specify the requiredinformation and performs an instrumentation according to these requests. This featureallows to reduce the tracing overhead and the amount of trace data signi�cantly. Thewhole performance analysis for SVM-Fortran is implemented in an incremental way. Theuser speci�es trace requests interactively with the help of OPAL. He clicks on a parallelloop and requests the default set of information (start and stop events for the loop, pagefault sums, and synchronization time) or requests individual trace events for page faultsof a speci�c array.The whole environment is used for about half a year for parallelizing applications. Thisarticle outlines some lessons learned from working on the AVL FIRE benchmark. All theoptimizations neccessary to obtained good performance for this code are useful for all typesof applications. Additional optimzations, like those described in [ToAb 94] taking intoaccount the connections among elements of the �nite element grid, have to be investigatedin the future. 2



3 Code StructureThe code consists of four phases:1. reading the data set2. initializing data structures3. solving the system of equations4. writing the computation time of the solver and the mega
op rateDue to the shared memory programmingmodel, the input/output need not be transformedat all. The initialization step was parallelized in the same way as the solver and thus needsnot be discussed in detail. The interesting part of the program is the solver which usesthe truncated Krylov subspace method Orthomin. The outer loop of this algorithm isexecuted 355 times for this input data set. Two typical code sections in the body of thisloop are outlined in Figure 1.The compute loop is the most time consuming part of the solver. It takes 37.8 seconds outof 67.5 seconds, the sequential execution time for the whole solver on the Intel Paragon.This execution time corresponds to 7.3 MFlops resulting from compiling the code with-O4 and -Mvect. All the measurements were done with this optimization level.4 Initial ParallelizationIn a �rst step, the code was parallelized with the pdo-directive and the use of reductionvariables where it was necessary. For example, the compute loop was annotated with thedirective CSVM$ PDO, which results in the default block-scheduling strategy. The updatestep required the use of reduction variables.occ=0csvm$ pdo(reduction(occ))do nc=nintci,nintcfocc=occ+adxor1(nc)*direc2(nc)enddooc1=occ/cnorm(1)csvm$ pdodo nc=nintci,nintcfdirec2(nc)=direc2(nc)-oc1*adxor1(nc)enddoThe reduction is implemented by computing partial sums in each processor, combiningthese sums by calling the gdsum function, and copying the resulting global sum to theshared variable in the master processor.The performance numbers for this version are shown in Table 1. The left columns presentthe measurements for the whole solver and the right columns the performance number for3



// compute stepdo nc=nintci,nintcfdirec2(nc)=bp(nc)*direc1(nc)- bs(nc)*direc1(lcc(1,nc))- be(nc)*direc1(lcc(2,nc))...- bh(nc)*direc1(lcc(6,nc))enddo// update stepif (nor1.eq.1) thenoc1=0occ=0do nc=nintci,nintcfocc=occ+adxor1(nc)*direc2(nc)enddooc1=occ/cnorm(1)do nc=nintci,nintcfdirec2(nc)=direc2(nc)-oc1*adxor1(nc)enddodo nc=nintci,nintcfdirec1(nc)=direc1(nc)-oc1*dxor1(nc)enddoendif Figure 1: Code example from AVL FIRE benchmark
4



the compute loop only. All times are given in seconds. The values for the page faults andthe synchronization are mean values across the processors.procs time MFlops page faults sync time time of page faults sync timecompute compute compute1 112.5 4.4 { { 42.0 { {2 100.1 4.9 7025 2.6 31.0 1340 0.34 78.1 6.3 8747 12.0 20.1 1520 3.48 72.9 6.7 9772 14.3 15.6 1775 3.016 79.7 6.2 9785 19.0 13.7 1877 3.0Table 1: Performance of initial parallel versionThis initial parallelization shows very poor performance. The maximum performance isobtained with 8 processors and this is still worse than the performance of the sequentialcode (67.5 seconds). The compute loop behaves pretty good compared to the overall per-formance. The single node performance is almost a factor two lower than the performanceof the sequential code.The main reason for this performance is the high number of page faults. This resultsmainly from false-sharing. For example in the loop:csvm$ pdodo nc=nintci,nintcfdirec2(nc)=direc2(nc)-oc1*adxor1(nc)enddoa few pages are accessed by two processors. The accesses result in double page faults sincean array element is read before it is written. The little computation in each iterationof such a loop leads to page thrashing depending on the timing of the processors. Thisthrashing does not happen in every execution and thus measuring the performance of thecode is very di�cult.In the compute loop we do have almost the same situation, but here we never saw pagethrashing since an iteration consists of a lot of operations. A processor executes the lastiterations of his block of iterations when the neighboring processor already has executedthe �rst iterations of its block and thus no thrashing occurs.In the next section we describe an optimization to reduce the number of page faults.5 Aligning Loop Iterations and Arrays on PagesThere are two possible optimizations. First, the assignment can be handled as a reductionoperation although it is not really a reduction. The compiler would generate a privatecopy of direc2 for each processor and the individual copies would be combined by themaster processor. The drawbacks are the high memory requirement and the distributionof pages of direc2 after the loop. Since the master processor performs the assignment to5



the shared array, all pages will be located in his memory and will have to be distributedto the other processors when executing the next parallel loop accessing this array.We used another optimization which is based on a special scheduling strategy. The arraysare aligned at page boundaries and the loop iterations are distributed among the processorssuch that a processor executes all iterations accessing the same page. We used the templateconcept and the general block distribution scheme to implement this optimization. Thework distribution is determined by the following directives:csvm$ processors:: p(numprocs())integer blocks(16)csvm$ template:: nodes(:)csvm$ shared,align::direc2call xreadcsvm$ create:: nodes(nintci:nintcf)call comp_dist(nintci,nintcf,1,numproc(),8,blocks)csvm$ redistribute (general_block(blocks)) onto p:: nodesThe template is created dynamically according to the size of the grid. Subroutine comp distcomputes the template distribution. Each array element of blocks determines the lengthof the block assigned to the appropriate processor. The subroutine takes into account theshape of the template, the shape of the processor arrangement, and the data type of thearray.The parallel loops are adapted to the distribution via prede�ned scheduling:csvm$ pdo(loops(nc),strategy(on_home(nodes(nc))))do nc=nintci,nintcfdirec2(nc)=direc2(nc)-oc1*adxor1(nc)enddoThis optimization results in the performance shown in Table 2. The performance for 8 and16 processors is better than in the previous version since the number of page faults in eachprocessor was signi�cantly reduced. The execution time of the single node version andon smaller processor numbers is worse since the alignment of arrays at page boundariesreduces the utilization of the on-chip cache.6 Reduction of Synchronization, Optimizing Control Flow,Privatizing ScalarsThere are several other overheads limiting the speedup. The current version contains alot of barrier operations due to the semantics of the parallel loops. Almost all barriers canbe eliminated since no dependences exist across processors except reductions. Only onebarrier, prior to the compute step, has to remain. In addition, the emulation of the control6



procs time MFlops page faults sync time time of page faults sync timecompute compute compute1 197.8 2.5 { { 121.4 { {2 119.8 4.1 3320 5.9 69.4 1002 3.34 72.5 6.8 3135 7.8 38.8 1014 3.88 49.8 9.9 3198 7.9 22.8 1100 2.816 45.1 10.9 2992 9.8 15.3 1139 2.4Table 2: Performance of aligned parallel version
ow in exclusive mode is expensive. By transforming the whole solver into a replicatedregion the 
ow of control is determined in each processor independently.csvm$ replicated_region(private(oc1,occ,help))...csvm$ barriercsvm$ pdo(loops(nc),strategy(on_home(nodes(nc))),nobarrier)do nc=nintci,nintcfdirec2(nc)=bp(nc)*direc1(nc)- bs(nc)*direc1(lcc(1,nc))...enddo// update stepif (nor1.eq.1) thenoc1=0occ=0csvm$ pdo(loops(nc),strategy(on_home(nodes(nc)))csvm$* reduction(occ),nobarrier)do nc=nintci,nintcfocc=occ+adxor1(nc)*direc2(nc)enddooc1=occ/cnorm(1)...endifcsvm$ replicated_region_endIn addition, scalars were privatized such that page faults due to the implementation ofreductions were eliminated.The performance numbers shown in Table 3 show the much better speedup due to theseoptimizations. 7



procs time MFlops page faults sync time time of page faults sync timecompute compute compute1 185.4 2.7 { { 122.4 { {2 107.6 4.6 2631 1.3 67.7 979 {4 59.3 8.3 2353 0.8 34.5 1003 {8 37.1 13.2 2362 1.0 20.0 1095 {16 24.9 19.7 2129 0.6 12.9 1137 {Table 3: Performance after single node optimization7 Optimizing Cache PerformanceMost of the execution time is spent in the compute loop. Due to the cache performance,the speedup of this loop is not optimal. We optimized the cache behaviour by reducingthe alignment. The arrays storing the coe�cients and the index patterns are only readand thus are not critical to false-sharing. The alignment of these arrays was eliminatedresulting in the performance shown in Table 4.procs time MFlops page faults sync time time of page faults sync timecompute compute compute1 104.3 4.7 { { 43.0 { {2 63.2 7.8 2702 0.5 26.7 979 {4 38.1 12.9 2362 0.7 14.7 1006 {8 25.8 19.0 2383 0.6 9.9 1100 {16 18.3 26.8 2147 0.7 7.8 1142 {Table 4: Performance after cache optimization8 Prefetching and Monitoring OverheadIn the compute loop, the processors read few pages of the neighbouring processors. There-fore, write permission to these pages is reduced to read-only in the other processors andthey have to upgrade the permission again when executing subsequent loops. To reducethe page fault time for these accesses, we tried to exploit the new implementation ofprefetching.
8



We �rst tried the following block prefetch:csvm$ pdo(loops(nc),strategy(on_home(nodes(nc))),nobarrier)do nc=nintci,nintcfdirec2(nc)=bp(nc)*direc1(nc)- bs(nc)*direc1(lcc(1,nc))...enddocall prefetch(direc1(first),direc1(last),WRITE)First and last are the indices of the �rst written array element and the last written arrayelement. The pages with read-only permission are prefetched with write permission. Dueto the overhead of the block-prefetch, the execution time on 16 processors was increasedfrom 18.3 seconds to 22.5 seconds.We also tried a version where only those pages are prefetched which are on the boundariesof the accessed array section. This implementation is faster than the block prefetch routinesince the state of the intermediate pages need not be checked.csvm$ pdo(loops(nc),strategy(on_home(nodes(nc))),nobarrier)do nc=nintci,nintcfdirec2(nc)=bp(nc)*direc1(nc)- bs(nc)*direc1(lcc(1,nc))...enddocall prefetch(direc1(first),direc1(first+1024),direc1(last-1024),direc1(last),WRITE,1)The execution time of this version was 19.8 seconds and thus similar to the version with-out prefetching (18.3 seconds). In general, the reason for the worse performance withprefetching is the additional overhead and the lack of computation between the prefetchand the code accessing the missing pages.We also tested the monitoring overhead since all the measurements were done with moni-toring support to obtain the performance number for the whole program and the computeloop. The execution time of the program without monitoring on 16 processors was 18.2seconds and on 8 processors 24.8 seconds. The overhead due to the monitoring is near tothe accuracy of the measurements and thus not signi�cant.
9



9 ConclusionsAll the optimizations performed during the parallelization are relevant to all types of ap-plications. The performance of the AVL FIRE benchmark after the di�erent optimizationsis summarized in Table 4. Up to now, special optimizations for handling the sparsity ofthe matrix and thus, to reduce the number of page faults in the compute loop, have notbeen performed. It took quite some e�ort to apply the standard optimizations.procs initial aligned synchronization, cache opt.,version version privatization �nal version1 4.4 2.5 2.7 4.72 4.9 4.1 4.6 7.84 6.3 6.8 8.3 12.98 6.7 9.9 13.2 19.016 6.2 10.9 19.7 26.8Table 5: Performance after di�erent optimizations (MFlops)The performance analysis tool OPAL was absolutly necessary in the parallelization process.It was only possible to understand the performance bottlenecks of the code by using thistool showing the page faults and the synchronization overhead. During the parallelization,the tool was extended in three ways:1. Analyzing the synchronization timeThe standard instrumentation request now includes the time for synchronizations.The information can be inspected via the summary, loop analysis dialog, and theinformation column.2. Translation of page faults to array elementsA request for individual page faults now consists also of the variable mapping re-quest. During the inspection of page faults in the loop analysis dialog, the mappinginformation for the loaded procedure is updated via the variable mapping events.The faulting address is searched in the symbol table. If a variable is found and thesymbol is a �xed size array, the name and the indices are shown.3. Overhead computationWhen analyzing the overhead of the parallel execution, the individual sums of thepage fault time and the synchronization time are misleading. The overhead is thesum of both values in each processor which may be di�erent from the sum of themean values of both times across all processes. Therefore, a new analysis was in-tegrated that computes the overhead (sum of page fault time and synchronizationtime) in each processor. The maximum overhead can be inspected via the perfor-mance column or the individual overhead in each processor via the popup menu.After identifying page faults for an array such as direc1, it is important to understandwhere the page faults occur and where the pages or the permissions are lost. This is10



supported quite well in OPAL since all paging information for an individual array canbe requested. When analyzing the performance information, the page faults and theinvalidations or permission reductions for the pages can be inspected and the correspondingprocessor identi�ed. If the information is generated for multiple arrays, the inspection viathe loop analysis dialog can be restricted to individual arrays.A problem with using OPAL is to remember the instrumentation. This problem gets worsewhen multiple trace �les are available. Some support has to be integrated into OPAL toshow the requests and to restrict the analysis features to those applicable to the requestedinformation. For example, the shared variable list in the loop analysis dialog should berestricted to those variables for which the performance information was generated.Similar to the parallelization and optimization of the crystal growth program[GeBe 95],the performance is in
uenced very much by the cache performance which is reduced byaligning arrays to eliminate false-sharing. Appropriate support in OPAL for detectingsuch situations would be extremely useful. Currently, the only hint for such an e�ect is anincreased execution time together with a decreased overhead when applying the describedoptimization.The remaining page faults due to accesses in the compute loop were di�cult to understand.The structure of the code is a little complicated since the control 
ow is di�erent in eachiteration of the outer loop. In one iteration the write upgrades happen in a code sectionwith an update step, in the next iteration they happen in an update step in a di�erent codesection, and in the third iteration they happen in the loop before the compute loop. Thiscomplex cyclical situation can only be understood when analyzing the dynamic behaviourof the code and thus will best be analyzed by using PARvis. The analysis would befacilitated by an abstract visualization of the control 
ow.References[BeGe 95] R. Berrendorf, M. Gerndt, SVM-Fortran Reference Manual Version 1.4, In-ternal Report KFA-ZAM-IB-9510, Central Institute for Applied Mathematics,Research Centre J�ulich, 1995[GKO 95] M. Gerndt, A. Krumme, S. �Ozmen, Performance Analysis for SVM-Fortranwith OPAL, Submitted for publication to International Conference on Par-allel and Distributed Processing Techniques and Applications (PDPTA'95),Georgia, 1995[GeBe 95] M. Gerndt, R. Berrendorf , Parallelizing Applications with SVM-Fortran, Pro-ceedings of the HPCN'95, Mailand, LNCS 919, pp. 793 - 798, 1995[Li 86] Kai Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, Ph.D.Dissertation, Yale University 1986, Technical Report YALEU/DCS/RR-492[NaAr 94] W.E. Nagel, A. Arnold, Performance Visualization of Parallel Programs - ThePARvis Environment -, Proceedings 1994 Intel Supercomputing Users Group(ISUG), pp. 24-31, 1994 11



[Oz 95] S. �Ozmen, SAM: Performance-Analyse-Monitor f�ur SVM-Fortran, DiplomaThesis, RWTH Aachen, 1995[ToAb 94] K.A. Tomko, S.G. Abraham, Data and Program Restructuring of IrregularApplications for Cache-Coherent Multiprocessors, Proceedings ICS94, Manch-ester, pp. 214-225, 1994[Zeis 93] S. Zeisset, Evaluation and Enhancement of the Paragon Multiprocessor'sShared Virtual Memory System, Diploma Thesis, Technische Universit�atM�unchen, 1993

12


