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With the emergence of new high performance computation technology in the last

decade, the simulation of large scale neural networks which are able to reproduce

the behavior and structure of the brain has finally become an achievable target of

neuroscience. Due to the number of synaptic connections between neurons and the

complexity of biological networks, most contemporary models have manually defined or

static connectivity. However, it is expected that modeling the dynamic generation and

deletion of the links among neurons, locally and between different regions of the brain, is

crucial to unravel important mechanisms associated with learning, memory and healing.

Moreover, for many neural circuits that could potentially be modeled, activity data is

more readily and reliably available than connectivity data. Thus, a framework that enables

networks to wire themselves on the basis of specified activity targets can be of great value

in specifying network models where connectivity data is incomplete or has large error

margins. To address these issues, in the present work we present an implementation

of a model of structural plasticity in the neural network simulator NEST. In this model,

synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created

and deleted during the execution of the simulation following local homeostatic rules until

a mean level of electrical activity is reached in the network. We assess the scalability

of the implementation in order to evaluate its potential usage in the self generation of

connectivity of large scale networks. We show and discuss the results of simulations on

simple two population networks and more complex models of the cortical microcircuit

involving 8 populations and 4 layers using the new framework.

Keywords: structural plasticity, large scale neural networks, high performance computing, homeostatic growth,

self-organizing network

1. INTRODUCTION

Models of large scale neural networks are an important tool for understanding the mechanics of
the brain (De Garis et al., 2010; Helias et al., 2012; Eliasmith and Trujillo, 2014). Such models are
created based on experimental information that has been collected for years by neuroscientists and
combine mathematical methods with algorithms to reproduce observed behavior. It is known that
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the connectivity of the network plays an essential role in
defining the way function is achieved at higher levels of activity.
Nevertheless, obtaining accurate measurements of connectivity is
complex, even with the most advanced experimental techniques,
due to the resolution of sensors and difficult access to
the target areas. The dynamics of the connectivity are also
not yet well understood, although it has been shown that
synaptic plasticity is fundamental for understanding how
learning and memory work. Non invasive techniques such
as DTI imaging and fMRI scans can provide a glimpse to
the real complexity of the problem in structure and function.
Higher resolution techniques like electron microscopy (Gray,
1959), photostimulation (Dantzker and Callaway, 2000) and
electrophysiological recordings (Thomson et al., 2002) provide
more detailed connectivity information of specific regions.
Regardless, creating an exact connectivity map of even a
small region of the brain is extremely challenging (Deco
et al., 2008; Essen et al., 2012; Van Essen and Ugurbil, 2012;
Reckfort et al., 2013). This poses a significant problem for
the modeling approach, as connectivity must be specified.
For small networks, parameter scans can be carried out with
respect to the unknown or imprecisely known connection
probabilities between populations. For larger networks, which
are more costly to simulate and also potentially have many
more unknown connectivity parameters, this approach is hardly
feasible.

One way to address the issue of modeling connectivity
within a neural network is to allow a network model to
determine its own suitable connectivity to achieve target
activity patterns, e.g., experimental measurements of the
spiking frequency, which is easier to measure accurately
than connectivity. In addition to addressing the problem of
network model specification, a framework that accounts for
the appearance and disappearance of synapses on the basis
of network activity can provide insight into how connectivity
is generated during development and learning or even on
how healing after lesions takes place (De Paola et al.,
2006). It can also help understand how certain structures
arise as a result of exposition to adequate external stimuli
during critical periods in the development of the brain
(Hensch, 2005) and the mechanisms underlying experience
dependent structural synaptic plasticity (Holtmaat and Svoboda,
2009).

An appropriate model of structural plasticity that incorporates
the dynamic generation, deletion and rewiring of synapses within
a network was presented by Butz and van Ooyen (2013). In
this model, synapses are represented as connections between
pre and a post synaptic elements. The growth or diminishment
of these synaptic elements is an independent process for each
neuron. The model is based on the idea that plasticity in
cortical networks is mainly driven by the need of individual
neurons to homeostatically maintain their average electrical
activity. As a consequence, if activity is lower than a desired
set-point, neurons will form synaptic elements, and remove
them when activity becomes too high. Additionally, a minimum
level of activity is needed to form synaptic elements at all. If
activity falls below this level the neuron will remove synaptic

elements, too. Results show that small networks of hundreds or
thousands of neurons robustly grow toward a stable homeostatic
equilibrium of activity and connectivity. An important advance
on earlier work is that all cell types had different desired average
firing rates (achieved by different homeostatic set-points) and
developed connectivity accordingly. It was shown that these
local rules for structural plasticity can account for network
rewiring after a partial loss of external input (deafferentation) and
shows remarkable similarities with biological data from network
rewiring in the primary visual cortex after focal retinal lesions
(Keck et al., 2008; Yamahachi et al., 2009). Further analysis
by Butz et al. (2014) of changes in network topology revealed
that betweenness centrality could be used as an indicator of
successful brain repair, in the sense that it is related to the ability
of the neurons to restore their electrical activity by network
rewiring. It was concluded by the authors that structural plasticity
may account for network reorganization on different spatial
scales.

In this work, we provide a complete description of how
the structural plasticity model proposed by Butz and van
Ooyen (2013) could be implemented in the neuronal network
simulator NEST (Gewaltig and Diesmann, 2007) in order
to create self-organizing large scale neural networks. We
evaluate the scalability of the implementation and assess
the performance of the model on two use cases. We
demonstrate that our implementation is capable of self-
organizing the connectivity within a cortical microcircuit
model consisting of 100, 000 neurons in total, starting with
a fully disconnected setup. We also show the scenario where
partial information of the connectivity is given as initial
condition and an stable connectivity pattern is obtained in
the end.

The structural plasticity extension to NEST is included in
release 2.10.0 (Bos et al., 2015) and creates a novel possibility for
setting up large-scale neuronal networks. While supercomputers
are required for very large-scale simulation, we show that
smaller networks can also be run on a personal workstation or
laptop according to the NEST development philosophy. This is
a fundamental advantage of this implementation of structural
plasticity in terms of capacity to test different configurations, as it
provides high flexibility and portability for the neuroscientist.

The corresponding extension of the Python interface of NEST
(PyNEST) allows the user to set up their own structural plasticity
experiments for large scale networks.

The rest of this work is divided into threemajor parts. The first
describes themajor elements of the structural plasticity algorithm
and the set of tests that were designed in order to measure the
performance of an implementation of this algorithm. We also
present some use cases for the structural plasticity framework.
In the second part we provide the results of the technical
implementation in NEST and describe how the design matches
the memory and speed requirements for large scale simulations.
We also present results for the use cases described in the
previous section. In the third part, we discuss the results of the
implementation and performance tests.

Some of thismaterial has previously been presented in abstract
form (Naveau and Butz, 2014).
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2. MATERIALS AND METHODS

2.1. The Algorithm of Structural Plasticity
The original formulation of the structural plasticity algorithm
defined in Butz and van Ooyen (2013) consists of three repeating
steps which are described as follows:

(1) Update in electrical activity and intracellular calcium
concentration. The electrical activity is calculated for each
neuron on a millisecond timescale. The time-averaged level
of the neuron’s electrical activity drives changes in neuronal
morphology. Intracellular calcium concentration is updated
according to the electrical activity as follows:

dCa

dt
=

{

−Ca(t)
τ

+ β if the neuron fires

−Ca(t)
τ

otherwise
(1)

where τ is the calcium decay constant and β is the
calcium intake constant which indicates how much calcium
is accumulated each time the neuron fires. Calcium
concentration is linearly proportional to average firing rate
and thus is the measure that is used to guide the growth
dynamics of the synaptic elements.

(2) Update in synaptic elements. The detailed morphology of
the synaptic elements is abstracted, and is represented in
this formulation only by the number of possible synaptic
contacts on axons (axonal elements representing axonal
boutons: senders of synaptic activity) and on dendrites
(dendritic elements representing dendritic spines: receivers
of synaptic activity) collectively called synaptic elements.
Synaptic elements are created or deleted according to a
homeostatic rule. In general, the homeostatic rule will create
synaptic elements when the activity is lower than the desired
setpoint and delete them when the activity is higher until
the desired activity level is achieved. This homeostasis is
represented by a curve which defines how quickly new
elements are created or deleted according to the current level
of electrical activity. The original work considers two types
of growth curve, linear and Gaussian:
Linear:

dz

dt
= ν(1−

1

ǫ
Ca(t))

where ν is the growth rate and ǫ is the target level of calcium
concentration that the neuron should achieve.
Gaussian:

dz

dt
= ν

(

2 exp

(

−
Ca(t)− ξ

ζ

)

− 1

)

where ξ = (η + ǫ) /2, ζ = (ǫ − η) /2
√
ln 2 and ν is the

growth rate as before. In this Gaussian growth curve, η

represents the minimum amount of calcium concentration
that the neuron must have in order to start creating new
synaptic elements. Same as in the linear growth, ǫ represents
the target level of calcium concentration that the neuron
should achieve.
A synaptic element is formed (or deleted) when the rounded

down z value increase (or decrease) by one. Newly-formed
synaptic elements are initially vacant and available for
synapse formation.

(3) Update in connectivity. In every connectivity update,
available synaptic elements allow the formation of new
synapses and deleted synaptic elements dictate synapse
breaking. Every available synaptic element has the same
probability to be randomly chosen for a new connection.
Synaptic elements to be deleted are also chosen in a
uniformly random manner out from the pool of already
connected elements. It is important to notice that in this
algorithm when a synapse breaks due to the deletion of one
synaptic element, the counterpart remains and becomes
vacant again. This remaining counterpart can form a new
synapse at the next update in connectivity. This effect models
network rewiring by re-routing of axons or dendrites.

An important characteristic of this algorithm, is that it relies on
global communication to update the connectivity in the network,
as available compatible synaptic elements must be matched
during the simulation to create new connections. This must be
taken into consideration for the design of any implementation of
this model.

2.2. Scalability
To assess the scalability of the framework, we designed strong
and weak scaling tests of the structural plasticity implementation.
For all tests, networks with 80% excitatory and 20% inhibitory
neurons were created. The growth rate for synaptic elements
in the simulation was set to 4.0 × 10−4 elements/ms for the
excitatory elements of the inhibitory population and 1.0 ×
10−4 elements/ms for all the other elements. The set point for
desired calcium concentration in the excitatory population was
defined as 0.05 Ca2+, while in the inhibitory population it was
set to 0.2 Ca2+. The calcium concentration intake constant was
set to β = 0.001 and the calcium concentration decay constant
to τ = 10000.0 for all neurons. The post synaptic amplitude
of individual synapses was set to 1.0 mV. External input was
provided using a Poisson generator with a frequency of 104 Hz.
The post synaptic amplitude of individual synaptic input was
set to 0.01 mV. The simulation was run for 100 s, with a step
size for the numerical integration of 0.1 ms. The updates in the
network connectivity were performed every 10 ms. These values
were chosen as they proved to be one parameter combination that
allowed for stable self-organizing growth of the network toward
the homeostatic equilibrium (See Section 3.3.1 for additional
comments on the selection of this parameter set).

Weak scaling tests were performed for networks with 5000
neurons per node and settings of 1, 2, 4, 8, and 16 nodes, each
node using 28 cores. Strong scaling tests were performed with
a network of 100, 000 on the same hardware configurations
as the weak scaling tests. Only physical cores were used, no
simultaneousmultithreading was enabled. A hybrid optimization
approach was chosen, in which MPI is used for communication
between nodes and OpenMP for intra node communication.
All measurements were performed on the JUROPATEST cluster,
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which provides up to 70 nodes (T-Platforms V210s Blades),
each with 2 × Intel(R) Xeon(R) CPU E5 − 2695 v3 (Haswell)
with 14-core processors (2.30 GHz) and 128 GB DDR memory,
running with Scientific Linux release 6.5 (Carbon).

2.3. Use Cases for the Structural Plasticity
Framework
The main objective of the structural plasticity framework is to
provide the user with a tool to model the dynamic creation
and deletion of synapses between neurons of a neural network
in a scalable manner. There are several applications in which
structural plasticity can be used. In this section we detail two use
cases as examples. The first use case shows the basic functionality
of the framework and how it can be used to study the relationship
between connectivity and activity. We also show how this simple
set-up can model critical development periods in the network
connectivity. The second example is a more complicated case
with several populations, where the objective is to show how
connectivity can be self-generated in a network by using the
synaptic element growth curves as connectivity fitness rules. All
simulations were carried out with NEST version 2.8.0 extended
by our structural plasticity implementation.

2.3.1. A Simple Two Population Network
In this initial use case, we generate a network with a total of
1000 leaky integrate and fire neurons, 80% excitatory and 20%

inhibitory. For the excitatory neurons, η = 0.0, ǫ = 0.05 and
ν = 1.0×10−4elements/ms. For the inhibitory neurons, η = 0.0,
ǫ = 0.2 and ν = 1.0 × 10−4 elements/ms, except for the
excitatory elements which had ν = 4.0× 10−4 elements/ms. The
connectivity in the systemwas allowed to evolve using a Gaussian
growth curve for 3000 s, with an integration step of 0.1 ms and
a delay of the connectivity update equal to 100 integration steps.
The simulations were performed on a workstation with 8 Intel
core i7− 4770@3.4 GHz CPUs running openSUSE 13.1.

2.3.2. The Cortical Microcircuit Network
In this second use case, we create a four layer network based
on the model of the cortical microcircuit proposed by Potjans
and Diesmann (2014). Each layer contains one inhibitory and
one excitatory population of leaky integrate and fire neurons.
In the simulations presented here, the network starts with
the same number of neurons in each population as in the
previous study, but without any synaptic connections. For each
population, we define a level of desired mean electrical activity
based on experimental literature and a growth curve which
defines the dynamics of the variation in the number of pre- and
post-synaptic elements. These are Gaussian shaped curves with
two intersections with the x-axis that determine the minimum
amount of electrical activity required to form any synapse (η),
and the target mean calcium concentration for the neuron (ǫ).
The curves are illustrated in Figure 1.

FIGURE 1 | Growth curves for each synaptic element in each layer of the cortical microcircuit model. The growth curves define the rate at which synaptic

elements are created depending on the amount of calcium concentration in the cell at the moment. Red curves are for neurons in the excitatory population. Blue

curves are for neurons in the inhibitory population. Solid lines are for the excitatory synaptic elements and dotted lines represent inhibitory synaptic elements. The

vertical purple line defines the target level of calcium concentration for excitatory neurons and the vertical cyan line represents the target level of calcium concentration

for inhibitory neurons. It is important to highlight that all synaptic elements of the same neuron must have a growth curve with the same target level of calcium

concentration, otherwise equilibrium will never be reached.
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In the first example, we tune the growth rate to achieve
an stable growth regime for the network connectivity. This
means that the structural plasticity algorithm will stop creating
and deleting synaptic connections when the desired mean
activity is reached, and that this mean activity is actually
reached on average in each population. In a second example,
the growth rate provided leads to an unstable connectivity
pattern, where the target mean electrical activities are never
reached by all populations. A table containing the parameters
for both cases can be seen in Appendix in Supplementary
Material.

A third example was run to illustrate a more common
situation where there are some assumption about the
connectivity in a network and where the structural plasticity
framework can help to find a suitable balance between excitation
and inhibition in the network. Here we used the original model
of Potjans and Diesmann (2014) and enable the structural
plasticity after an initial stabilization period of 30 s.

Simulations were performed on JUROPATEST (70 nodes with
2 × 14-core processors Intel(R) Xeon(R) CPU E5 − 2695 v3
(Haswell) at 2.30 GHz and 128 GB DDR memory, running with
Scientific Linux release 6.5) and JURECA (with 260 compute
nodes with Intel Xeon E5 − 2680 v3 Haswell CPUs with 2 × 12
cores per CPU, 128GB of RAM per node and running on CentOS
7 Linux distribution).

3. RESULTS

3.1. Implementation of the Structural
Plasticity Model into NEST
The implementation of the structural plasticity algorithm
described in this work is based on the version 2.8 of the NEST
software Eppler et al. (2015). In accordance with the original
formalization described in Section 2.1, the algorithm consists of
three repeating parts which can be visualized in a general form in
Figure 2 and described as follows:

FIGURE 2 | Diagram of the implementation of the structural plasticity

model in NEST. In (1) the number of synaptic elements is calculated

depending on the electrical activity of the neuron. These calculations are

optimized using MPI and OpenMP. In (2) the structural plasticity manager

gathers the number of synaptic elements per neuron using MPI directives and

in (3) creates or deletes synapses to update the connections between neurons

using MPI and OpenMP.

1. Update in electrical activity and intracellular calcium
concentration. The Archiving_Node class, which is the general
interface for all neurons, was modified and new variables
to store the of the intracellular calcium concentration, the
calcium decay and calcium intake constants were added.
The Archiving_Node::set_spiketimemethod was also modified
to update the calcium concentration according to the first
case defined in (1), which is performed at every time the
neuron spikes. The Node class was modified by adding
the method Archiving_Node::update_synaptic_element. This
method updates the calcium concentration according to the
second case defined in (1). This method is called by the
Scheduler class when every synaptic update interval is reached.

2. Update in synaptic elements. The first step taken in order to
design and develop a framework for synaptic elements (e.g.,
axonal boutons and dendritic spines) was to redefine synapses
in such a way that they can now be described using connection
elements. This description can be applied to every available
neuron model in NEST for generating electrical activity. The
design also considers that the users can define their own
synaptic elements and their corresponding growth dynamics.
The class SynapticElement was created in order to represent
the connection points for the neurons. The class GrowthCurve
was also created in order to define the homeostatic rules
which guide the creation and deletion of synaptic elements.
Currently, the available growth dynamics are based on either
a linear or a Gaussian growth curve. The linear growth curve
uses an exact integration method to update the number of
synaptic elements, while the Gaussian growth curve uses a
forward Euler integration method. The framework can be
further extended by the user to incorporate more complex
element growth dynamics models. An example of such curves
is shown in Figure 1, where independent dynamics for each
type of element in a network of 8 populations (see use case on
cortical microcircuit) have been defined. Synaptic elements are
used as a discrete value, the actual number of available synaptic
elements is an integer truncated from the float variable used to
represent them. The Archiving_Node class now incorporates
a map data structure to store the synaptic elements. The
method Archiving_Node::update_synaptic_element takes care
of updating the number of each of the synaptic elements
in the map using the value of the calcium concentration at
the time of the call and the corresponding growth curve.
The method Archiving_Node::decay_synaptic_element_vacant
takes care of deleting a percentage of the unused or vacant
synaptic elements on every call. Both methods are called by
the Scheduler at the end of every synapse update interval.

3. Update in connectivity. To coordinate the changes in the
structure of the network, a new StructuralPlasticityManager
class was implemented. At the end of every synapse update
interval, the Scheduler calls the the newly implemented
structural plasticity connectivity manager via the Network
class. The StructuralPlasticityManager determines, for each
neuron, how many vacant synaptic elements are available
for new synapse formation and how many deleted synaptic
elements caused synapse breaking. Then it makes use of the
ConnBuilder in order to create or delete connections. For this,
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the ConnBuilder was extended to include the new methods
ConnBuilder::sp_disconnect_ and ConnBuilder::sp_connect_.
Once new synapses are formed, synaptic elements are tagged
from “vacant” to “connected.” It is important to notice that
when a synapse breaks due to the deletion of one synaptic
element, the counterpart remains and becomes vacant again.
This remaining counterpart can form a new synapse at the
next update in connectivity. This effect preserves the network
rewiring capabilities of the original formulation. A detailed
diagram of how the new calls are integrated into the normal
simulation flow of NEST can be seen in Figure 3.

An important feature that we implemented to simulate structural

plasticity in NEST is the ability to create and delete synapses

during the simulation time. Our new implementation of

the connection management overcomes the limitation of the

NEST simulator that currently models networks with a fixed

connectivity. We have implemented the dynamic creation and

deletion of synapses using the new connection framework

released in version 2.6.0. The new connection framework

improves memory usage to store connection data and reduces the

computation time needed to create a connection.
The main limitation of the structural plasticity algorithm

described by Butz and van Ooyen (2013) is that it requires

global knowledge of the synaptic elements of the entire network.

Fortunately, the MPI global communications, also used by the

NEST kernel to communicate the electrical activity between

the neurons during the simulation, do not pose a substantial

bottleneck since changes in connectivity are assumed to take

place on average around a factor of 100 times slower than
changes in electrical activity. Therefore selecting a biologically
realistic growth rate of around 10−4 elements/ms will result in
an exchange of data that is sufficiently low rate so as not to
impact the scalability of the simulator as a whole. At the end
of each connectivity update step, the number of created/deleted
synaptic elements per neuron are communicated to all MPI
processes and a global shuffle subsequently assigns the new
pairs of neurons that should be connected, and likewise chooses
existing connections for deletion. In the current implementation,
no topological constraints are taken into account while deciding
which neurons will be connected. The probability of two neurons
connecting to each other depends solely on the number of
available compatible synaptic elements between them. The actual
creation and deletion of the synapses is finally done in parallel
using the NEST connection framework. As stated before, a single
update in connectivity should not produce a major modification
of the network. That means that only a small part of the neurons
should create or delete a synaptic element between two updates
in connectivity.

It is important to highlight that the usage of global
communication is a characteristic of the technical
implementation of the algorithm and is not related to the
functionality of the model. If topology was to be taken into
account, the ability of a neuron to connect to any other would
be limited by the constraints imposed by its relative position
to others. Global communication would still be used by the
implementation, but only relevant information would be taken
into account to define the connectivity. The local homeostatic
rules only define the creation or deletion of synaptic elements

FIGURE 3 | Integration of the new structural plasticity calls into the normal simulation flow of NEST.
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per neuron. The number of available synaptic elements is
transmitted globaly and the synaptic plasticity manager takes
care of forming new synapses or deleting existing ones based on
this information.

The update of electrical activity and of the number of synaptic
elements is performed by every individual neuron and therefore
benefits from the parallel framework already implemented in
NEST. Indeed, the NEST software has already demonstrated
its high scaling properties on supercomputer, including the
JUQUEEN system (Helias et al., 2012; Kunkel et al., 2014).

Finally, the Python interface of NEST (PyNEST) was extended
to allow users to easily set up the structural plasticity parameters.
It is important to highlight that the user can enable structural
plasticity inside the simulation and then disable it when the
network has achieved a desired connectivity pattern or activity
level. The user can now also delete synapses even without
enabling structural plasticity, in a similar way as the connect
functions work in NEST.

3.1.1. Setting up a Network in NEST with Structural

Plasticity
In this section we will introduce the high level functions that are
introduced into NEST with the structural plasticity framework
using PyNEST.

In order to set up the network using structural plasticity, one
first needs to define the time at which updates in the structure of
the network should take place as follows:

nest.SetStructuralPlasticityStatus({

’structural_plasticity_update_

interval’:

update_interval,

})

The next step is to define the synapses which can be dynamically
modified by the structural plasticity manager during the
simulation. This is achieved by:

nest.SetStructuralPlasticityStatus({

’Structural_plasticity_synapses’: {

’structural_plasticity_synapse_

ex’: {

’model’: ’structural_

plasticity_synapse_ex’,

’post_synaptic_element’

: ’Den_ex’,

’pre_synaptic_element’

: ’Axon_ex’,

},

’structural_plasticity_synapse_

in’: {

’model’: ’structural_

plasticity_synapse_in’,

’post_synaptic_element’

: ’Den_in’,

’pre_synaptic_element’

: ’Axon_in’,

},

}

})

Here, two types of synapses are being defined, one for the
excitatory synapses and another one for the inhibitory synapses.
It is important to notice that in this definition, a name

A B C

FIGURE 4 | Results of the scalability tests performed with structural plasticity. (A) Efficiency as a function of the number of nodes for 5000 neurons in the

weak scaling test. The network was allowed to grow synapses following the structural plasticity rules during a simulation of 100 s of biological time. (B) Simulation time

(red curve) as a function of the number of nodes for a network of 100,000 neurons and in the strong scaling test. The blue curve indicates ideal linear scaling. (C)

Efficiency as a function of the number of nodes for a network of 100,000 neurons in the strong scaling test. The peak scaling efficiency is marked with a star.
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for the post and pre synaptic elements is also specified.
This allows the structural plasticity manager to create new
synapses of the type specified in model when synaptic elements
related to this label become available. This way of setting up
the dynamic synapses also allows the user to define static
connectivity constraints in the network. This can be achieved
by using one synapse model which is not registered for
structural plasticity to define this fixed connectivity. For the
moment, no other constraints in connectivity like indegree
or outdegree ranges can be specified. Nevertheless, thanks to
its flexible design, the model can be extended to add new
constraints.

Next step involves defining the growth curves for the synaptic
elements defined above. This is done as follows:

growth_curve_e_e = {

’growth_curve’: "gaussian",

’growth_rate’: 0.0001,

’continuous’: False,

’eta’: 0.0,

’eps’: 0.05,

}

This is an example of a Gaussian growth curve where the
minimum level of calcium concentration required to start
generating synaptic elements is η = 0.0 Ca2+, and the desired
calcium concentration is set to ǫ = 0.5 Ca2+. Finally, the
rate at which the synaptic elements will grow is ν = 1 ×

FIGURE 5 | Upper panel: Calcium concentration and numbers of connections as functions of time in a simple two population network. The cyan and

black curves show the calcium concentration measured in the inhibitory and excitatory populations, respectively. The paler horizontal lines indicate the corresponding

target levels ǫ. The blue and red dashed curves indicate the total number of connections in the inhibitory and excitatory populations, respectively. Vertical gray lines

indicate the times of the snapshots displayed in the lower panel. Lower panel (A–F): Evolution of the connectivity in the two population network visualized using

MSPViz . Images show half of the total amount of neurons in the network, where triangles represent excitatory neurons and circles inhibitory neurons. Red lines

indicate excitatory connections while blue lines indicate inhibitory connections.
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10−4 elements/ms. Independent growth curves can be created for
each synaptic element.

Now that we have defined the growth curve, we can assign this
growth curve to the synaptic elements that each neuron will be
able to grow. After that, we create the neurons and let NEST know
that these synaptic elements are linked to the neurons:

synaptic_elements = {

’Den_ex’: growth_curve_e_e,

’Den_in’: growth_curve_e_i,

’Axon_ex’: growth_curve_e_e,

}

nodes = nest.Create(’iaf_neuron’,

number_excitatory_neurons)

nest.SetStatus(nodes, ’synaptic_

elements’, synaptic_elements)

In this case we are creating the neurons pertaining to the
excitatory population. Each neuron has three types of synaptic
elements, one dendritic excitatory, one dendritic inhibitory and
one axonal excitatory.

The final step is to enable structural plasticity and simulate:

nest.EnableStructuralPlasticity()

nest.Simulate(t_sim)

A complete PyNEST example which describes how to create a
network with two populations, enable structural plasticity and
simulate the network is available as Supplementary Material for
this paper.

3.2. Scalability
While the update in electrical activity has been proven to scale
up to 109 neurons, it is important to verify that updating the
number of elements and the deletion and formation of synapses
does not restrict the expected scaling, at least in the desired
regime of up to 106 neurons. Updates in synaptic elements
and connectivity make use of MPI’s “AllGather” communication
scheme to communicate the data. This collective communication
is also used by the NEST kernel to communicate the spiking

activity between the neurons during the simulation. Although
AllGather implements communication between all processes, it is
very unlikely that a huge amount of data has to be communicated
when a reasonable growth rate of around 10−4 elements/ms
because updating the number of synaptic elements and the
connectivity are very slow processes compared to the update in
electrical activity.

3.2.1. Weak Scaling
Figure 4A shows the efficiency, defined as the speed-up divided
by the number of nodes, of the implementation as measured by
a weak scaling test with 28 OMP threads running on each node.
It is visible that, as the number of neurons increases, so does the
total number of synapses. The presence of new synapses leads to
an increase of communication between neurons, which leads to a
decrease in the efficiency of the simulation.

3.2.2. Strong Scaling for a Network of 100,000

Neurons
Figure 4B shows the computation times of the strong scaling
tests for a network of 100, 000 neurons, and Figure 4C shows the
efficiency, defined as speed-up divided by the number of nodes,
of the strong scaling test. The peak efficiency is achieved with 4
nodes and 112 cores. These results show supra-linear scaling for
this network. In Morrison et al. (2005) and Plesser et al. (2007),
supra linear scaling for biological neural networks on NEST was
demonstrated due to increasingly efficient caching.

These results show that the introduction of the new structural
plasticity framework into NEST has no impact in the scalability
of the simulation up to a network size close to that of a cortical
column if a suitably low growth rate is selected.

3.3. Performance on the Use Cases
3.3.1. A Simple Two Population Network
The upper panel of Figure 5 shows the evolution of the calcium
concentration and total number of connections for the two
population model described in 2.3.1.

The lower panel of Figure 5 shows a graphical representation
of the evolution of the connectivity in the network. During
the first 30 s of the simulation, mostly excitatory connections

FIGURE 6 | Evolution of calcium concentration in each layer of the cortical microcircuit model. Pale horizontal lines indicate the target concentration of the

corresponding population. (A) Excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange). (B) Inhibitory populations in layers II/III (brown), IV (cyan),

V (gray,) and VI (purple).
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are created (Figure 5A). This allows the calcium concentration
to increase in both populations. When the target mean
electrical activity is reached and overshoots in the excitatory
population (Figure 5B), the number of excitatory connections
starts to decrease (Figure 5C) until the desired level of calcium
concentration is achieved and stabilized in the excitatory
population. However, both pre- and post-synaptic elements in
the inhibitory population are still being created because it has
not yet reached its target mean electrical activity . It is important
to remember that neurons have no information regarding the

global status of the network and the evolution of their synaptic
elements depends solely on the predefined homeostatic local
rules. At around 40 s (Figure 5D), an increment in excitatory
connections is triggered by the enhanced levels of inhibition.
This leads to a complete rewiring of the network (Figure 5E).
The trend is preserved until the mean electrical activity in the
inhibitory population is also reached (Figure 5F).

In this network setting, the inhibitory population has a higher
level of activity than the excitatory population. It is important
to remember that the probability of two neurons connecting

FIGURE 7 | Evolution of connectivity in the microcircuit model resolved by source and target population. Panels on the left and right illustrate efferent

connections from excitatory and inhibitory populations, respectively, while the vertical arrangement indicates the layer of the source neurons. In each panel, the

numbers of connections to each of the eight population in the model are shown as a function of time. The color of the curves indicates the target population, as in

Figure 6: connections to excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange) are shown as solid curves, and connections to inhibitory

populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple) are shown as dashed curves.
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depends only on the number of available compatible synaptic
elements between them. At the start of the simulation, the
inhibitory population must offer more post-synaptic elements
for excitatory synapses than the excitatory population, otherwise
the excitatory population would reach equilibrium first and
cease to create excitatory pre-synaptic elements. As a result, not
enough excitatory synapses would be created to the inhibitory
population and it would never reach the desired level of
activity. It is important to remember that the structural plasticity
parameter space is broad and a certain amount of exploration
is required to discover combinations for each synaptic element
which take the network to equilibrium. However, there is
in general no unique combination of parameters leading
to equilibrium, and different equilibrium combinations will
typically produce different connectivity patterns. At this point,
biological constraints must be applied to choose between
them.

3.3.2. The Cortical Microcircuit Network
In the case of the cortical microcircuit model described in
2.3.2, Figure 6 shows the changes in calcium concentration,
while Figure 7 shows the evolution of connectivity among layers
as the simulation runs. In this case, parameters which lead
to stable network connectivity were chosen. Reaching stable
connectivity in the networks takes around 700 biological seconds
of simulation, which takes 24 h using 25 nodes and 24 cores per
node in the JURECA cluster to simulate. It is visible that during
the first 20–30 s of simulation, connectivity highly increases on
every layer. After the initial overshoot, a smoother approximation
toward the desired activity levels is achieved. As seen only from
the calcium concentration diagram, the evolution of the network
appears to be quite stable. Regardless, the connectivity plots show
a continuous dynamical reorganization. While neurons on some
layers might start deleting connections due to excess of activity,
the post-synaptic neurons must then create new connections in
order to compensate for missing activity in case they have not
reached their setpoint yet. This leads to a continuous search for
compensating excitation and inhibition which must satisfy the
requirements of all 8 populations. From Figure 7 it can be seen
that outgoing connections from excitatory populations on layers
IV, V, and VI are quite stable. On the other hand, layer II/III
exhibits the highest amount of reorganization, both from the
excitatory and inhibitory populations. This might be due to the
fact that their reduced target levels of activity might be easily
influenced by variations in all other layers. Inhibitory populations
on all layers in general exhibit a higher degree of reorganization
during the whole simulation.

The search space of connectivity parameters for this model
of the cortical microcircuit is large as each setup requires 64
values to be defined. If a brute force exploration would be
performed on these parameters by simulating each combination
for 1 biological second, only 1− 2 values per parameter could be
considered before more biological seconds would be simulated
than using the structural plasticity approach. When adequate
synaptic element growth curves are defined, the structural
plasticity framework allows a progressive exploration of the space
in which the dynamics of the the 8 populations are balanced

at every step, thus providing an efficient way to find stable
connectivity combinations.

Figure 8 presents a comparison between the proportional
values of connectivity among layers between the results obtained
from the simulation using structural plasticity and the original
values reported by Potjans and Diesman. The average error in
percentual connectivity is of 1.058± 1.175.

A second case was also explored, in which parameters lead
to unstable network activity are chosen. Figure 9 shows the
evolution of connectivity among layers and Figure 10 shows the
changes in calcium concentration in each layer for this scenario.
Overshoots in the connectivity, are originated by a choice of
higher rate in the creation of synaptic elements. The system
behaves as a feedback control system, with a delay which is
defined by the time between updates in connectivity and the
synaptic element creation rate. The synaptic element growth rate
determines the steepness of the growth curve, and influences
the speed at which control changes are made. The instability in
the connectivity is reflected in the calcium concentration, never
reaching the desired levels. A stable setting involves finding a
suitable balance between the speed in the creation of excitatory
and inhibitory connections related to the desired level of activity
for each layer.

To study the behavior of the structural plasticity algorithm
on partially pre-connected networks, another simulation was set
in which the initial conditions in connectivity for the structural
plasticity algorithm were those specified in the original model
of Potjans and Diesman. The network was simulated without
plasticity for an initial period of 30 s in order to allow the
calcium concentration reach an initial stable value. The evolution
of the calcium concentration in all layers after the structural
plasticity algorithm was enabled can be seen in Figures 11A,B.
The stability point is reached a lot faster than in the scenario with
no initial connections, at around 400 s. A final simulation was set

FIGURE 8 | Comparison of the normalized connectivity in the

microcircuit model between the results obtained with the structural

plasticity framework (red) and the values reported by Potjans and

Diesmann (2014) (blue). The radius of the circle represents the linearly

normalized value of the percentage of connections between layers.
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FIGURE 9 | Evolution of connectivity through time for each layer in the cortical microcircuit model with an unstable set of parameters. Panels on the left

illustrate connections incoming from excitatory populations. On the right, connections incoming from inhibitory populations. Rows show connections incoming from

layers II/III, IV, V, and VI from top to bottom, respectively. On every panel, connections to excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange)

are shown as solid curves, and connections to inhibitory populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple) are shown as dashed curves.

in which the connectivity was specified with a 10% error margin
from the original setup reported by Potjans and Diesman. The
evolution of the calcium concentration in all layers after plasticity
was enabled can be seen in Figures 11C,D. The structural
plasticity algorithm is able to find a suitable balance between
excitation and inhibition. The initial overshoot in electrical
activity is a reflection of the initial stronger reconfigurations
of the network connectivity. It is important to highlight that a
suitable growth scheme is required for the algorithm to reach this
stability. Not all setups will become stable or find a solution, this
depends on the initial conditions, the desired set points, the shape
of the growth curve and the growth rate.

4. DISCUSSION

In this paper we have described the implementation of a

framework of structural plasticity for the neural network

simulator NEST.We show that the framework is scalable and can

be used to model the dynamical creation and deletion of synapses

inside a large scale network guided by simple homeostatic rules.

This work also presents some use cases for the framework
and some of its potential applications. Researchers can now use
structural plasticity in NEST to generate the connectivity of a
network from scratch, defining homeostatic rules, in form of
synaptic element growth curves, which may vary according to
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FIGURE 10 | Evolution of calcium concentration in each layer of the cortical microcircuit model with an unstable set of parameters. (A) Shows the

calcium concentration in the excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange). (B) Shows the calcium concentration in the inhibitory

populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple).

FIGURE 11 | Evolution of calcium concentration in each layer of the cortical microcircuit model with partially pre-connected initial conditions. Pale

horizontal lines indicate the target concentration of the corresponding population. Left pannels show excitatory populations in layers II/III (red), IV (blue), V (black), and

VI (orange). Right pannels show inhibitory populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple). (A,B) Show the scenario where the network was started

with the connectivity as specified in the original work by Potjans and Diesman. (C,D) Show the same scenario but with a 10% error in the initial connectivity setup.

their needs. The shape of the growth curve defines the speed with
which new synaptic elements are created, and as a result, defines
the acceleration at which calcium is stored inside the neuron.
The relationship between the growth speed at certain level of
calcium concentration of excitatory and inhibitory elements
is fundamental to achieve stable setups under the model of
structural plasticity. As is has been shown, some parameter
combinations lead to unstable activity in the network. There

are cases where the desired average electrical activity will never
be reached by the system. In other cases the average electrical
activity will oscillate continuously or suddenly go out of bounds.
This relationship depends also on the size of the network and the
neuron model used. As a consequence, some care is required in
navigating the parameter space in order to achieve desired results.

The example of the two population network illustrates how
this framework can be used to understand the interaction
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between activity and the creation of synapses. The behavior
observed in the simulation can be used to model how inhibition
triggers critical periods of connectivity during development of
neural networks (Hensch, 2005). During this window, external
stimuli can also be used to shape the formation of the new
connections. Together with the performance measurements,
these results show that our implementation of structural plasticity
is suitable to study the development of connectivity patterns
inside a neural network in an efficient and scalable manner.

In the specific case of the cortical microcircuit presented in
this work, we are able to see some similarities and differences
between the results obtained by simulating with the structural
plasticity framework and the data reported in Potjans and
Diesmann (2014). One of the most visible differences is the
smaller amount of recurrent connections generated in the
simulation for layer 2/3. This layer has a very low target electrical
activity, which is initially almost reached by external input. This
means that very few synapses are required to reach this target.
This fact limits the creation of synapses for this layer. Note
that the results shown in this paper were obtained only by
defining target activity levels; no other connectivity constraints
were specified. A more elaborate simulation could incorporate
tailored growth curves for each layer, and implement additional
connectivity restrictions which promote recurrent connections
and other connectivity patterns that do not emerge naturally
from the current approach.

Another visible difference is that the excitatory population of
layers 5 and 6 show a higher number of connections than the
ones shown in the original work. On the other hand, connections
from and to the inhibitory population of layer 5 and layer 2/3
are well fit. Except from connections between the inhibitory and
excitatory populations of layer 4, connections from and to layer 4
are also well predicted.

In this paper we describe a framework which can be used
to study structural network dynamics. The focus of this paper
is on the technical implementation. It is not the scope of the
present work to perform a deep analysis of the biological results
that can be obtained using this framework. However, we provide
some examples of how the framework can be used, its capacities
and limitations. This implementation gives researchers flexibility
to explore complex connectivity dynamics by extending the
synaptic elements growth rules. As our implementation is
integrated into NEST, simulations using structural plasticity can
also be combined with other features available in the simulator.
For example, the user may take into account dynamic synaptic

weights by mixing this framework with synaptic plasticity. The
framework can also be further extended using the current
topology framework in NEST in order to constrain connectivity
by relative position.

We also show that the structural plasticity algorithm is able
to solve the complex balance of interaction between layers with
different levels of electrical activity when partial information of
the connectivity is available. This result is very promising, as
it shows that given the right growth rules, it would now be
possible to reconstruct connectivity inside a network without
having exact anatomical information.We therefore conclude that
our approach represents a novel and useful technique to close

the current gaps in information about the connectivity in certain
regions of the brain.
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