

Turbulence Database from Direct Numerical Simulations

Jens Henrik Göbbert¹, Michael Gauding², Bastian Tweddell¹, Benjamin Weyers³, Jonas Boschung⁴

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH **2** Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg 3 Visual Computing Institute, Virtual Reality and Immersive Visualization Group, RWTH Aachen University 4 Institut for Combustion Technology, RWTH Aachen University

Background and Motivation

The motion of turbulent flows is **one the unsolved problems of classical physics** and is of both fundamental and practical importance. Turbulent flows exhibits many anomalies that are not well understood and of interest for a large research community. Due to this complexity turbulent flows are **difficult to attack by rigorous analytic theories**. In turbulence unknown statistical quantities emerge for which no governing equation exists.

A solution of turbulent flows can be obtained by numerical methods. **Direct Numerical Simulation (DNS)** solves the governing equations. It does not relay on turbulence models, since all relevant scales are numerically resolved. DNS allows to simulate turbulent flows at sufficiently **high Reynolds numbers** with at the same time high resolution of the fine-scales. For high Reynolds number flows it is customary to solve the Navier-Stokes equation in a periodic box by means of a **pseudo-spectral** approach.

Over the past years DNS of turbulent flows has been conducted at the supercomputer JUQUEEN. The present simulations belong to the **most comprehensive work of its kind** and are unique in the sense that the small scales are resolved with a higher accuracy compared to that reported in literature.

Motivated by the obtained results new questions arise so that a continuously analysis of the data can be possible. With the development of a data sharing concept of a highly resolved DNS results based on a turbulence database our principal intention is to simplify the access and further post-processing by different research groups world-wide.

Cloud Data Access for Highly Resolved Turbulence Simulation Data

• easy to manage

=> use established standards (Email, HTTP, SSH)

 easy to add new functionality => decouple web interface and

easy to extend on high loads

- => multiple web interfaces possible
- => multiple data access server possible
 - currently JUDAC, JURECA, JUQUEEN
- => multiple storage server possible
- => independent of storage server location

- data extraction from request management => allow domain experts to manage
- web interface and data analytics tool on their own
- easy to adopt to different scenarios
 - => combination of existing infrastructure => independent of research domain

Outlook

• on demand big data processing => forward data post-processing requests to supercomputer JURECA

: User > 1 > Website > 2 > Mail-Server > 3 > Management Server > 4 > Data Access Server **Request Pipeline** : Data Access Server > 7 > Management Server > 8 > User **Response Pipeline Data Pipeline** : Storage > 5 > Data Access Server > 6 > Data Web Server > 9 > User

Request Management

- management of **request pipeline**
- receiving new request via email
- scheduling requests depending on load on different data access server

- resource management (multiple data access server)
- extendible to different communication protocols
- monitoring pipelines

Direct Numerical Simulations

- stored in HDF5 file format
- N³ denotes the **number of grid points**, which increases rapidly with the Reynolds number (Re)
- each case contains of **multiple data sets** (M)
- stored components are **velocity field**, **passive scalar** (4 fields required for restart)
- current data base size is 87.2 TiB

	R0	R1	R2	R3	$\mathbf{R4}$	R5	R6
N^3	512^{3}	1024^{3}	1024^{3}	2048^{3}	2048^{3}	4096^{3}	4096^{3}
$\operatorname{Re}_{\lambda}$	88	119	184	215	331	529	754
file size (GB)	8	64	64	512	512	4096	4096
M	189	62	61	10	10	6	11
data size (TB)	1.5	3.88	3.81	5	5	24	44

Tab. 1: Overview of the conducted DNS.

Acknowledgements

Scientific Big Data Analytics (SBDA) project No. 006, project ID sdba006 (Goebbert et al.): The authors gratefully acknowledge the computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JURECA at Jülich Supercomputing Centre (JSC)

References

[1] Peters, N.; Boschung, J.; Gauding, M.; Goebbert, J. H.; Hill, R.; Pitsch, H. (submitted 2016). "Higher-order dissipation in the Theory of Homogeneous Isotropic Turbulence". Journal of Fluid Mechanics

[2] Gauding, M.; Goebbert, J. H.; Hasse, C.; Peters, N. (2015). "Line Segments in Homogeneous Scalar Turbulence". Physics of Fluids

[3] Gauding, M., Wick, A., Peters, N., and Pitsch, H. (2014). "Generalized Scale-by-Scale Energy Budget Equations for Large-Eddy Simulations of Scalar Turbulence at Various Schmidt Numbers". Journal of Turbulence.

[4] Gampert, M., Goebbert, J. H., Schaefer, P., Gauding, M., Peters, N., Aldudak, F., and Oberlack, M. (2011). "Extensive strain along gradient trajectories in the turbulent kinetic energy field". New Journal of Physics 13.4, p. 043012.

Contact

Jens Henrik Göbbert j.goebbert@fz-juelich.de

Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich (FZJ) D-52425 Jülich, Germany http://www.fz-juelich.de/ias/jsc

