
Execution Performance Analysis of
the ABySS Genome Sequence Assembler

using Scalasca on the K Computer

Itaru KITAYAMA a, Brian J. N. WYLIE a,b,1, Toshiyuki MAEDA a

a RIKEN Advanced Institute for Computational Science, Kobe, Japan
b Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany

Abstract.
Performance analysis of the ABySS genome sequence assembler

(ABYSS-P) executing on the K computer with up to 8192 compute

nodes is described which identified issues that limited scalability to
less than 1024 compute nodes and required prohibitive message buffer

memory with 16384 or more compute nodes. The open-source Scalasca

toolset was employed to analyse executions, revealing the impact of mas-
sive amounts of MPI point-to-point communication used particularly for

master/worker process coordination, and inefficient parallel file opera-

tions that manifest as waiting time at later MPI collective synchronisa-
tions and communications. Initial remediation via use of collective com-

munication operations and alternate strategies for parallel file handling

show large performance and scalability improvements, with partial exe-
cutions validated on the full 82,944 compute nodes of the K computer.

Keywords. Scalasca, Score-P, Vampir, K computer, bioinformatics.
Topic area. Software and Architectures

Introduction

Understanding the performance of the MPI library through real-life applications
on petaflops machines such as the K computer and other Top500 supercomputers
is key to successful transition to foreseeable Exascale computing. MPI applications
developed and optimized for high-end servers often fail to take full advantage of
the capability that today’s supercomputers provide in part due to node-to-node
communication latencies. Evaluation of the ABYSS-P [1,2] sequence assembler on
the K computer demonstrated the issue in scaling; linear scaling stops early at 200
compute nodes and adding more nodes only resulted in moderate improvement
until 800 nodes (only 1% use of the K computer resources). Performance decrease
was observed when running with 1024 and more compute nodes, and executions
with 16384 or more compute nodes were not possible since they exceeded available
node memory.

1Corresponding author: b.wylie@fz-juelich.de



In the face of the very limited application performance scalability, a tool was

required that best suits our needs to find performance bottlenecks. The Scalasca

toolset [3] was selected as it provides profiling and tracing of MPI events to

quantify bytes transferred, elapsed time in functions or distinct application call

paths, and execution traces which can be viewed as timelines with Vampir [4].

Scalasca is used on many of the largest HPC systems, and was recently ported to

the K computer to enable large-scale application profiling for the first time.

We discovered frequent MPI point-to-point communications used to exchange

data stored in local buffers between nodes at various stages of ABYSS-P execu-

tion, and rapidly growing time for MPI point-to-point and collective communica-

tion at large scale (more than 1024 compute nodes). In the master/worker paral-

lelisation paradigm employed by ABySS, the master needs to collect all the check-

pointing messages sent from workers to transit to other processing phases. Ad-

ditional serious performance and scalability inhibitors are ultimately determined

to arise primarily from ineffective parallel file reading and writing.

1. Test Platform: The K Computer

A detailed description of the K computer can be found elsewhere [5]. The K com-

puter has 82,944 compute nodes connected through the Tofu 6D mesh/torus in-

terconnection network and attached to the Lustre-based Fujitsu Exascale Filesys-

tem (FEFS). Each compute node has SPARC64 VIIIfx 8-core processors, 16 GB

of memory, and 4 Tofu network interfaces whose maximum aggregate throughput

is 20 GB/s [5–7].

A custom Linux kernel runs on each compute node and for program develop-

ment Fujitsu Fortran, C, and C++ compilers and MPI library optimized for the

K computer are provided [8, 9].

2. Target Application: ABySS

ABySS is a parallel sequence assembler for small to large mammalian-size

genomes. ABYSS-P written in C++ is the target MPI application of this pa-

per; the program finds overlapping sequences from the distributed directed graph

across the computing nodes and stitches those sequences together to obtain long

sequences.

ABYSS-P uses the eager protocol for small, 4 kB messages in the mas-

ter/worker programming paradigm. During execution the master process (MPI

rank 0) is responsible for controlling the entire workflow and lets worker processes

transit to different processing phases. The main phases studied in this paper are

LoadSequences (each process reading data from disk and building a distributed

hash table), GenerateAdjacency (building a distributed graph), Erode, Trim, Dis-

coverBubbles and PopBubble (removing bad data for quality control), and final

NetworkAssembly (creating long sequences from the distributed graph).



0

2

4

6

8

10

12

14

M
a

x
 M

P
I 

ra
n

k
 m

e
m

o
ry

 [
G

iB
]

original

revised

72 128 256 512 1024 2048 4096 8192 16384 36864 82944
Compute nodes (MPI ranks)

0

100

200

300

400

500

600

700

T
im

e
 [

s
]

original full execution

original loading stage

revised full execution
revised loading stage

Figure 1. Original and revised ABYSS-P execution scalability on the K computer: bars of max-

imum MPI rank memory requirement, plot with time of best full execution and loading stage.

2.1. ABYSS-P Configuration

Configuration is done using GNU Autotools cross-compilation to build a
SPARC64 binary for the K computer on the x86 64 front-ends using the Fujitsu
C++ compiler FCC.

Two MCA parameters of the MPI library specific to K computer must be
set prior to launching ABYSS-P: OMPI MCA common tofu fastmode threshold=0

and OMPI MCA common tofu max fastmode procs=-1, the former needed to al-
ways exchange messages in eager mode to avoid deadlock, and the latter to re-
move the limit on the number of processes (default 1024) that can be used in
eager mode. Although the K computer compute nodes have 8 cores, the job con-
figuration is always set to allocate one process per node to allocate all the usable
14 GB of memory (i.e., excluding that required for system libraries).

Publicly-available data from the E.coli MG1655 laboratory strain sequenced
on Illumina MiSeq system [10] is used for the experiments described in this paper.
The total data read from disk is 6.1 GB, staged in to FEFS local disks.

2.2. ABYSS-P Execution Time Evaluation

Execution timings graphed as circles in Figure 1 show that the best data pro-
cessing performance of the application (90 seconds) was obtained with around
768 nodes. Adding more nodes up to 1024 did not improve the performance and
beyond that execution was slower. Memory required for MPI message buffers also
grows rapidly and become prohibitive for executions with 16384 or more nodes.
Reports of time elapsed in the key phases and user functions distinguished the
most time-consuming LoadSequences stage but were insufficient to understand



the ABYSS-P execution on the K computer, and therefore comprehensive tools
for in-depth parallel performance analysis were required.

3. Profiling and Tracing with Scalasca

The open-source Scalasca toolset was developed to support scalable performance
analysis of large-scale parallel applications using MPI and OpenMP on current
high-performance computer systems [3]. The latest version uses the community-
developed Score-P instrumentation and measurement infrastructure [11]. MPI
library interposition combined with automatic instrumentation of application
source routines and OpenMP parallel constructs is used to generate detailed call-
path profiles or event traces from application processes and threads. Event traces
are automatically analysed in parallel to identify and quantify communication
and synchronization inefficiencies, and trace visualisation tools such as Vampir
can be directed to show the severest instances.

These capabilities proved very valuable for the analysis of ABYSS-P, which
has a complex execution structure and uses MPI extensively throughout.

3.1. Methodology

Initial measurements only of MPI events already resulted in large execution traces
which hinted at distinct execution phases with very different performance char-
acteristics. Context was provided with manual source annotations of regions (i.e.,
stages) of particular interest, and found to be essential to understand the complex
fragmented nature of the ABYSS-P task-queuing and master-worker paradigm.

Enabling compiler instrumentation of user routines helped clarify the con-
text for this communication, but suffered from significant measurement overheads
both in execution dilation and trace buffer memory and file size requirements. To
produce execution traces of managable size and reduce dilation, extensive filtering
of frequently-executed short-running routines was necessary. While producing a
filter for all routines coming from standard C++ libraries is straightforward, more
care is required with user-level source routines. Generally those routines which
are purely local computation are readily identified via scoring of analysis reports
as they are not found on a call-path to MPI communication or synchronization,
however, ABySS has a number of routines which have a dual nature that are
used in deeply recursing call-paths. For example, pumpNetwork is frequently used
to process outstanding communication but may also complete computations or
busy-wait, so it provides valuable context but at the cost of high measurement
overheads.

Following this iterative process of both augmenting and refining the instru-
mentation and measurement configuration, it was possible to produce rich analy-
ses with insight into ABYSS-P parallel execution inefficiences, via summary pro-
files and traces. Initial summary measurements were scored to identify appropri-
ate measurement filters that were necessary to avoid extreme measurement di-
lation and buffer/disk requirements for subsequent trace experiments, producing
around 1 GB of event trace data per process, which were automatically analysed
in parallel by Scalasca and interactively examined with Vampir.



3.2. Analysis of ABYSS-P Execution

A variety of measurements of the original version of ABYSS-P were done on the
K computer with up to 8192 MPI processes.

Scalasca trace analysis of a 1024-node ABySS execution of five minutes on the
K computer is concisely presented in Figure 2. Expanding and selecting nodes of
the tree for metric Time from the left panel reveals that 8.0% of the total execu-
tion time [301,000 CPU seconds readable from the scale at the bottom] is used by
MPI: 1.3% [3872s] by MPI Init, 1.6% [4872s] by MPI Barrier collective synchro-
nization, 2.1% [6398s] for point-to-point communication and the remaining 3.0%
[8915s] in various collective communications (mainly MPI Allreduce). Selecting
the Point-to-point communication time metric updates panels to its right iden-
tifying that it is predominantly [3832s, 60%] for MPI Send in the LoadSequences
stage shown in the centre panel, and then the right panel shows that this time is
broadly distributed across (non-master) ranks: 3.74 ± 0.59 seconds.

Vampir timeline visualisation of the 1024-node ABySS trace in Figure 3 pro-
vides an overview of the execution phases for each process. The LoadSequences
stage (in yellow) dominates the first half of the execution and reveals eight “waves”
as sequence data is read from disk by each process and transferred when the lo-
cal buffer is full. Although there are the same number of MPI Send events and
the same amount of data transferred in each stage, only those in the first wave
are clearly distinguished. The GenerateAdjacency stage (pale blue) follows, then
Erode dominated by MPI Allreduce (orange) and NetworkAssembly containing a
period of extensive MPI Barrier (magenta) usage before the final network assem-
bly with its huge imbalance. The pumpNetwork routine which polls for available
messages is evident in all stages when point-to-point message transfers may occur,
but is often characteristically unproductive “busy-waiting.”

The Scalasca trace analysis quantified point-to-point communication Late
Sender and Late Receiver blocking time sub-metrics as a negligible 3.7s, as receiv-
ing buffers are posted early by the application. Much more serious is the blocking
time in MPI Barrier and associated with synchronising collective communication.
Figure 4 shows that MPI Allreduce which is used at various points in the Erode
stage (all of which have been selected from the call tree in the central panel)
badly affects all of the processes. A popup window reports the severest single
inefficiency instance on rank 271 with global severity of 1330 CPU seconds.

When Vampir is directed to zoom in to show the corresponding execution
interval, as seen in Figure 5, the third MPI Allreduce instance in Erode stands
out with rank 271 waiting more than 2.0 seconds for the last of its peers to be
ready to proceed. Imbalanced computation between the numerous synchronising
reductions results in low efficiency and poor scaling for this ABySS-P execution
stage.

3.3. Revised Instrumentation and Implementation of ABYSS-P

To avoid the measurement overhead arising from automatic instrumentation of
routines by the compiler, manual annotation of ABYSS-P execution stages was
employed instead, resulting in improved profiles as shown in Figure 6. Particular



Figure 2. Scalasca trace analysis of original 1024-node ABySS execution on the K computer
showing distribution of Point-to-point communication time metric (left pane) for the selected

MPI Send call-path in the LoadSequences stage (centre) for each of the processes (right pane).
Values in each panel are colour-coded using the scale along the window footer, and in the various

trees represent exclusive metric values for open nodes and inclusive values for closed nodes.

Figure 3. Vampir presentation of the same trace of original 1024-node ABySS execution on

the K computer with horizontal timeline for each MPI process showing ‘waves’ during the
LoadSequences stage followed by GenerateAdjacency, Trim/Erode, PopBubble/Discover Bubbles

and NetworkAssembly stages. The aggegrate chart in the window head is provided for navigation

when zooming, with profile of function execution times and communication matrix on left side.



Figure 4. Scalasca trace analysis of original 1024-node ABySS execution on the K computer
with severest instance of automatically identified Wait at NxN inefficiency in MPI Allreduce

during Erode stage detailed in popup window.

Figure 5. Vampir analysis zoomed on time interval for Erode stage of original 1024-node ABySS
execution on the K computer with severest MPI Allreduce inefficiency instance by rank 271

selected and details of selection in middle pane on left side. Dominance of sequence of reductions

is evident in the (zoomed) timeline view and associated execution time profile.



(a) Original (b) Improved (c) Detail of improved reading

Figure 6. Total execution time profile extracts from 8192 compute nodes of ABYSS-P with

annotated execution stages and file operations.

care was required to annotate stages of master and workers consistently, such
that they combine in the resulting profiles. Furthermore, the Waiting stage of
workers between completing one computation phase and receiving direction to
start the next was also distinguished and associated with the completed phase,
as this helped with presenting idling arising from load imbalances.

For an execution with 8192 compute nodes shown in Figure 6(a), 69% of time
(650 seconds) is attributed to coupled PopBubble and Discover Bubbles stages
which are serialised in rank order, resulting in all but one worker process idling
while each rank in turn processes its local data and then creates a file. Com-
putational load imbalances reported in ABYSS-P profiling result from the mas-
ter/worker paradigm employed and associated ineffective parallelisation of file
reading and writing, therefore additional manual annotations were incorporated
for file operations (shown in Figure 6(c)) which helped identify that these were
particularly costly and suffered from large variability.

Configuring executions on the K computer to use files in separate rank-local
directories helped reduce filesystem performance variablity, while serialisation
costs could be reduced by opening files in parallel, such that time for PopBub-
ble/Discover Bubbles was reduced more than fifty-fold to 12.6 seconds, only 4.4%
of the much quicker overall execution time in Figure 6(b). For the Assemble stage,
originally taking 14% of time (129 seconds), the benefit was a more modest 35%
since only 4.5 MB of reconstructed contigs are written while the total length of
sequences to put together varies from rank to rank, and the assignment is very
imbalanced. The line with square points in Figure 1 shows how the performance
of this revised version of ABYSS-P is improved at larger scale.

The MPI point-to-point communication used by ABYSS-P for coordination
between master and worker processes requires an eager transfer protocol us-
ing prohibitive amounts of message buffer memory for 16,384 or more compute
nodes (bars in Figure 1). A first step to avoid this substitutes Fujitsu’s efficient



MPI Reduce and MPI Alltoall collectives in the sequence Loading stage, and
has been validated with successful execution of Loading in 6.2 seconds on the
full 82,944 compute nodes of the K computer. Applying similar changes to the
remaining ABYSS-P stages is expected to permit complete executions at this
unprecedented scale, ready for processing much larger sequence datasets.

4. Related Work

Lin [12] compared the capabilities and performance of ABySS with other de novo
assembly tools, and found that long execution times and large memory require-
ments were serious constraints. ABySS execution performance with up to 128 pro-
cesses has been analysed on a Dell/AMD/Mellanox cluster comparing Ethernet
and Infiniband DDR networks [13], identifying that MPI communication over-
head increases significantly with scale for Send/Irecv and Allreduce. Georganas
et al [14] compare the performance on up to 960 cores of a Cray XC30 of their
own parallel genome assembler with ABySS, where scaling parallel file reading
and writing is identified as the key bottleneck that they avoided by implementing
their own file format.

Call-path profiling of C++ parallel applications is often prohibitive for
instrumentation-based tools [15], however, combining MPI tracing with sampling
based on interrupt timers has been demonstrated to be effective in such cases [16].

5. Conclusions

ABYSS-P executions on the K computer with 1024 or more MPI processes suf-
fered from a variety of critical performance and scalability issues, which were in-
vestigated using the Scalasca toolset. Execution traces from up to 1024 processes
were collected, automatically analysed to quantify inefficiency patterns and di-
rect Vampir timeline visualisations. Since automatic routine instrumentation by
the C++ compiler and associated filtering of measurement events proved to be
costly and awkward, subsequent measurements instead exploited manual source
instrumentation to clearly distinguish ABYSS-P execution stages and file I/O
operations, carefully matching stages executed by master and worker processes.
File handling found to constitute the most serious inefficiencies was remedied by
using rank-local directories on the K computer as well as code restructuring to
significantly reduce serialisation costs. Scalability beyond 8192 MPI processes ad-
ditionally required substituting point-to-point messages with efficient MPI collec-
tive routines for master/worker coordination, such that initial ABYSS-P execu-
tion stages (and associated Scalasca measurement experiments) have now been
possible with the full 82,944 compute nodes of the K computer.

Acknowledgments

This research was made possible by using resources of the K computer at the
RIKEN Advanced Institute for Computational Science. We are grateful for the
dedicated effort from the Operations and Computer Technologies Division that
supports the K computer and its users.



References

[1] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J. M.

Jones, and İnanç Birol. ABySS: a parallel assembler for short read sequence data. Genome
Research, 19(6):1117–1123, 2009.

[2] ABySS GitHub Repository, https://github.com/bcgsc/abyss.

[3] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd
Mohr. The Scalasca Performance Toolset Architecture. Concurrency and Computation:

Practice and Experience, 22(6):702–719, April 2010.

[4] Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl
Solchenbach. VAMPIR: Visualization and analysis of MPI resources. Supercomputer,

12:69–80, 1996.
[5] Hiroyuki Miyazaki, Yoshihiro Kusano, Naoki Shinjou, Fumiyoshi Shoji, Mitsuo Yokokawa,

and Tadashi Watanabe. Overview of the K computer System. Fujitsu Sci. Tech. J.,

48(3):255–265, 2012.
[6] Takumi Maruyama, Toshio Yoshida, Ryuji Kan, Iwao Yamazaki, Shuji Yamamura,

Noriyuki Takahashi, Mikio Hondou, and Hiroshi Okano. SPARC64 VIIIfx: A New-

Generation Octocore Processor for Petascale Computing. IEEE Micro, 30(2):30–40, 2010.
[7] Yuichiro Ajima, Tomohiro Inoue, Shinya Hiramoto, Toshiyuki Shimizu, and Yuzo Takagi.

The Tofu Interconnect. IEEE Micro., 32(1):21–31, 2012.

[8] Jun Moroo, Masahiko Yamada, and Takeharu Kato. Operating System for the K computer.
Fujitsu Sci. Tech. J., 48(3):295–301, 2012.

[9] Naoyuki Shida, Shinji Sumimoto, and Atsuya Uno. MPI Library and Low-Level Commu-

nication on the K computer. Fujitsu Sci. Tech. J., 48(3):324–330, 2012.
[10] Illumina TruSeq Data Sets,

http://www.illumina.com/truseq/tru_resources/datasets.ilmn.

[11] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Do-
minic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D. Malony, Wolf-

gang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer S.
Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. Score-P – A

joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and

Vampir. In Proc. 5th Parallel Tools Workshop, (Sept. 2011, Dresden, Germany), pages
79–91. Springer Berlin Heidelberg, 2012.

[12] Yong Lin, Jian Li, Hui Shen, Lei Zhang, Christopher J. Papasian, and HongWen Deng.

Comparative studies of de novo assembly tools for next-generation sequencing technolo-
gies. Bioinformatics, 27(15):2031–2037, 2011.

[13] HPC Advisory Council. ABySS performance benchmark and profiling, May 2010.

[14] Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and
Katherine Yellick. Parallel de Bruijn graph construction and traversal for de novo genome

assembly. In Proc. ACM/IEEE Conference on Supercomputing (SC14, New Orleans, LA,

USA), pages 437–448. IEEE Press, November 2014.
[15] Christian Iwainsky and Dieter an Mey. Comparing the usability of performance analysis

tools. In Proc. Euro-Par 2008 Workshops, volume 5415 of Lecture Notes in Computer
Science, pages 315–325. Springer, 2009.

[16] Zoltán Szebenyi, Todd Gamblin, Martin Schulz, Bronis R. de Supinski, Felix Wolf, and

Brian J. N. Wylie. Reconciling sampling and direct instrumentation for unintrusive call-
path profiling of MPI programs. In Proc. 25th Int’l Parallel & Distributed Processing

Symposium, pages 640–648. IEEE Computer Society, May 2011.


