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SUMMITRY 

The aim of this thesis is to generalise Bayesian Forecasting 

processes to models where normality assumptions are, not appropriate. 

In particular I develop models. that can change their minds and I 

utilise Catastrophe Theory in their description. 

Under. squared-error loss types of criteria the estimates 

will be smoothed out, so for model description and-prediction I need 

to use bounded loss functions. Unfortunately the induced types of 

estimators have not been investigated very fully and so two chapters 

of the thesis represent an attempt to develop theory up to a necessar 

level to be used on. Times Series models of the above kind. 

An introduction to Catastrophe Theory is then given. 

Catastrophe Theory is basically a classification of Cm-potential 

functions and since the expected loss function is in fact itself 

a potential function, I can use the classification on them. Chapters 

6 and 7 relate the topologies of the posterior distribution and loss 

function to'the topologies of the posterior expected loss hence a 

Bayes classification of posterior distributions is possible. 

In Chapter 8,1 relate these results to the forecasting of 

non-stationary time series obtaining. ' models which are very much 

akin to the simple weighted moving average processes under which 

lies this firm mathematical foundation. From this i can generate 

pleasing models which adjust in a "Catastrophic" way to changes 

in the underlying process generating the data. 
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1). Introduction to, Thesis 

y: ay. I take the earliest opportunity-to apologise for the 

style in which this thesis is written. I write in the first person 

singular for-three quite inadequate reasons. The first is that I 

find the passive tense difficult to, read, the second is that the 

word "we" is a 
. 
trifle regal for me, to feel comfortable using it 

and the-third, is that for a scientist who believes only in subjective 

reality it expresses his basic philosophy succinctly and frequently. 

The reason I-have included this note is that I feel it 

important to outline the layout of the rest of the thesis so that 

the reader knows which parts are the most important. 

Chapters 6,7 and 8 represent the core of results obtained 

and-are the central chapters of the thesis. Chapters 6 and 7 deal 

with Bayes estimation problems relating the topology of the posterior 

distribution to the topology of the posterior expected loss. Chapter 

8 gives a generalisation of the Steady Model defined in Harrison and 

Stevens (1) for general distributions. 

Chapter 4 and 5 give an introduction to Catastrophe Theory 

and examples-of its uses in getting to understand the topology of 

well known likelihoods, posterior distributions and expected loss 

functions. These two chapters therefore make much less-intense 

reading than the rest of the thesis. 

Chapter 2 is at the beginning of this. wvork because its 

subject matter is extremely important conceptually to the mood of 

the rest of the thesis. I use a stability rather than an axiomatic 

approach to show that to act sensibly in a Bayesian framework I must 

work with bounded likelihoods and loss functions. Having come to 

the latter conclusion, which I must remark-is not new, though it 

is a point never emphasised by theoretical Bayesians, I realised 

that most of the usual estimation procedures used by practical 
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Bayesians are bad. It was therefore necessary to develop a theory 

around bounded loss. This is what Chapter 3 is all about. 

Thus Chapters 2 and 3 are reference chapters and only the 

results--therein contained are of importance to-the rest of the thesis. 

Finally may I point out that there-is a summary at the end 

of each chapter which can be used by the reader to get an idea of 

the'main`points covered in them. 
. 

ýý", ' 
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2. A DISCUSSION OF'BAYESIAN INFERENCE 

2.1. Introduction 

Before using any inferential procedure ` it' is important to 

understand how and when-that procedure can be used. In the following 

chapter'the author explores when it is likely that a Bayesian 

analysis will give reasonable and coherent results (the word "coherent' 

being used in the non-technical sense). There are two ways in-which 

such an exploration can begin. 

(i) An axiomatic base 

(ii) Identification of various "counterexamples" to 

the system. 

The axiomatic basis for Bayesian statistics is well documented " 

(See, for example, De Groot (1), De Finetti (1), Raiffa (1)). 1 

must admit to feeling that although these axioms give a good feel 

for what one is doing when making inference about distributions, the 

implications of seemingly innocuous assumptions can often be much 

more than one would suppose. It follows that they may induce a type 

of structure that is clearly undesirable. 

Rather than get lost in these obscurities (to which I will 

refer throughout), I would like to start with the conclusion of the 

axiomatic systems and criticise the building rather than the bricks. 

The concluding statement from the axiomatic systems is: 

"I can express all my prior opinions about a particular 

parameter 6 e3R in terms of a probability distribution P(8), my 

prior belief that 0 lies in a Borel set A being represented by the 

number P(A)". 

Now there is a gap here, an-inferential step, that many seem 

to have missed. How am I to express my prior beliefs in terms of 

the measure P, that. is, do 'I substitute what L conceive heuristically 

as my subjective probability distribution for 0 or something else? 



'4. 

If there is to be any meaning to Bayes inference I obviously must 

do the former. For this link to be made I feel that it is at least 

necessary. (but by no means sufficient) that the following two criteril 

are met. 

Criteria 

1). If 2 prior distributions P1(8), P2(0) are "close", - then'their 

posterior distributions P1(0), P2(6) are close 

A 
i. e. M. : P(O) -> P(O) is continuous. 

2). If 2 priors P1(8) P2(9) are--"close" then their associated 

decisions (or estimates) dl, d2 respectively must be "close" 

i. e. 11 : Pk(6) -ý dk is a continuous map. 

If these-criteria did'not hold, then prior probabilities 

would lose their intuitive meaning since the exact form of the prior 

would have to be known for any sense to come from the inference. But 

how can one be sure of the-exact form? Obviously one could not 

since the intuitive, subjective idea of probability is necessarily 

fuzzy. 

Of course, in the. usual statistical tradition (see Wilkinson 

(1)) I have not specified what I mean precisely by the above two 

criteria. Firstly the word "close" must be defined. This is done 

by; introducing a topology onto the distribution functions which is 

related to the class of probability measures in some direct sense. 

2.2. A choice of topologies on F. (the class of distribution functi 

Clearly there are many topologies that one could use to give 

this idea of. closeness. Perhaps the weakest such topology is 

generated by the Levy metric. 
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Definitions 

Define the distance in Levy metric PL(F, G) between two 

distribution- functions F and G to be the infimum of all h>0 

such that 

F(O-h) -hs G(O) s F(6+h) + h. for all 0c 1R. 

The usefulness of this topology-is that 

w 
Fn -*F properly (i. e. properly in distribution) iff PL(Fn*F)-O 

(See Moran (1)). 

Although this_1s, a useful property for our purposes it 

should be noted that it linearly varies its measure of distance 

as the parameter 8 is transformed linearly. 

The uniform metric p0(F, G) is defined by 

po(F, G) = Sup IF-GI 
0 eJR 

The variation metric pV(F, G) is defined by 

pv(F, G) = Sup fgý UdF -f UdGýI' } 

{uEC0: Mull =1} 

Lemma 2.1.. 

(i), The Levy metric is-at least as weak " as "the Uniform metric 

(ii) The Uniform metric is at least as weak as the Variation metric 

Proof. (i) is an obvious consequence of the fact that the L4vy 

metric convergence is equivalent to convergence in distribution. 

(ii) Let X, Y has distribution functions 'P and G respectively 

Then p0(F, G) = Sup I" (X(_coe](X)) - ý.. iX(_ýeý(Y))ý 
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where X[a, b](X) _ {1 Xe [a, b] 

to otherwise 

and p (F, G) -{uECup II ulI 
U( ) -- ]E U(Y) I 

0 

which since COIF is dense-in F under the usual metric 

= Sup IIE U(X) -1E U(Y) l 

{u measurable: 11u1l = 1} 

po(F, G). Q 

In fact this weakness is strict. Consider these two counterexamples. 

Counterexample 1. 

Let F {O if xsÖ and Fn = {O if xsn 

11 
otherwise . 

{1 
otherwise 

Then pL(F, Ff)-' 0asn. ->yet po(F, Fn)=1 for all n. 

Counterexample 2. 

It can be shown that if F and G are absolutely continuous 

CX) 

pv(F, G) =f if(x) g(x)Jdx (See Feller (1)). 
00 

Let F be distributed rectangularly on [0,1] and Gm(x) defined by 

m 
GG(x) 

mE. J(m)(x) 
n=1 

where 3(m) _{1xE _1 
.+Z, `z) 

{m 
{ 
{OxE (-co, n-1I 
{m 
{ increasing elsewhere 

is continuous and differentiable. (For the specific construction 

of such functions see Bröcker (1)). 
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Then GG is an absolutely continuous distribution on (0,1] and 

po(F, Gm) sm yet it'is easily checked that 

m 
If(x) - gm(x)I dx > for all m>M 

where U is a suitably large constant. 

Hencelp (F, G )+0 and inf p (F, Gin) > as in +m. 
0m m>M ° 

Now I shall introduce-a little notation. 

Let Ti '>' t. signify that p. induces a weaker topology 

Ti than p does TJ. 

T signify that the induced topologies are 

equivalent. 

Then the above comments can be summarised by 

Weak convergence '=-', T L. '>' To '>' Tv 

°`' I. shall now proceed as follows. If loan show an inferential 

procedure to satisfy Criteria 1 and 2 with respect to weak topologies 

(in particular the'ones induced by pL) then I'will provisionally 

accept it. If, however, no matter how strong the topology which I 

put on the distribution fucntions Criteria 1 and 2 are still not 

satisfied I will reject the inference as fatuous if used in this 

general setting. 

To show that*any counterexamples are zot extrodinary in some 

sense I will assume that to reject an inference a Cn(IR) counterexamplel 

(i. e. an nx differentiable distribution where n is an arbitrary 

integer). 
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2.3. Topologies "on FCC'(---) 

Let T(n) be the topology induced by the basis B(n)(F, e) where 

B(n)(F, c) _ {G E FICn(-°°, (_): Sup(IDnF(9)-DrG(8), < E} 
6 EE 

and Tn be the topology induced by the basis Bn(F, e), where 

B (F, e) = {G -u F1Cn -Sup'{max-I Di F(O)-D1G(@)f < e} n (-ý'ý)" ý0 1t Osisn 

So, for example Tý1ý close says that the p. d. f. of G are uniformly 

close to F 

t3 close'says that the distribution functions, 

p. d. f and its derivative, of G are uniformly 

close to F, 

, and so on. 

Clearly as n becomes large, the topology Tn becomes extremely 

strong and hence should satisfy anyone. 

Using the notation of the previous section the following-diagram 

is true in FjCnCO) 

weak convergence '. ' TL ý_ý To t>r Tv '>' TP) 1_1 r1t>t t2'>* '>, TJ 

To prove this, -it is necessary to show 

(i) Convergence in To 'weak convergence in FICn(O2CO) 

(ii) Convergence in TMý Convergence in variation, 

since all other "inequalities" have either been proved-already or 

are trivial. 
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Lemma 2.2. 

(i) Convergence in To---=; > weak convergence in FICn(_CO. 
*(*) 

(ii) Convergence-in T(12 Convergence in variation. 

Proof: (i) Note that since F(e) is a continuous distribution 

function it-is--uniformly continuous oniR.. 

Hence Sup JF(O) - F(8+6)1 <n(S) where n(8) ;0 as 161 }O 
0 OR 

So Sup *{F(e-e) +e< Fn(8) < F(9+E) - E} can be arranged in the 
6 eJR 

form 

= Sup {t1(e) < Fn(e) - F(6) < T2(e)}: where T1(e) T2(£) -º 0 

ea 
as c -ý 0 

convergence weakly convergence in L4vy metric, so from the 

definition of the Levy metric 

PL(Fn(0), F(S)) -Oe}O 

T1(E), T2(E) + 

=ý p0(e)(Fn(A), F(e)) }0 as required 

(ii) Let GE B(1)(F, S) 

Then f(x)-g(x)Idx sJ f(x)-g(x)ldx + 1Ixj>S(x)dx + J 

_00 iXl<a'i 
f 

g(x)dx 

xl'a 
Note that 

lIlxl>a-f(x)dx 
=J1 f(x)dx + 

!! lIlxl>s(f(x)-g(x))dx. 

2.3.1 1 

Hence (2.3.1) becomes 
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s2 {I 
< 

If(x) - g(x)ldx +1+ 
f ýx( S 

<2 S' + i(S) where n(S) =1- T(S-, + F(-5-1) 0 

as 69O. 

The result follows. 0 

The'reader will be pleased to hear that I can make some 

comments on Bayesian inference now. 

2.4. Restricti6ns'on prior to posterior analysis 0 

Restriction 1. The Likelihood function 2. (8x) is measurable. 

Comment. This is in fact an extremely mild condition on ß, in fact 

it is difficult to construct a'problem when this is not the case. 

However it does emphasise one point, namely that the family of 

sample distributions that have been chosen to represent the 

experiment have to be "sensible" in some way. 

Restriction 2. The likelihood function must be bounded. 

Comment. This is a restriction that does not seem to be commonly 

realised and often "occurs" in practice. To demonstrate why this 

does not satisfy Criteria 1 suppose Z (O t) +w as 6+0 and is 

continuous on (O, k) where k>O. 1 can without loss of generality 

consider 

R1(e t) = 1. (9 jx) I (O, k) since I can assume that it is 

appropriate to put prior measure zero on 6 outside this range. For 

construction purposes transform the interval (O, k) smoothly to 

(-m, Co) 
. 
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I now have a likelihood 2(6) x) on]R such that: 

R(OIx) ; (D as 6+ _co 

Q(0Ix) is defined and finite elsewhere. 

Consider the distribution funcfion F1(OIa): f1(OJa) a n(a, 1) aa 3R. 

Then Sup (Sup (max IDkF1(8ýa)ý)) 
amt O¬]R 1sksn 

= Sup (max ID'Fl(0IO)J) Mn EIR 
O Jt 1sksn 

2.4.1. 
"i 

since Dkf(OIO) = Pk(9) exp {-JO 2} 
where Pk(0) is a polynomial. 

Now suppose I have chosen a prior F(8) and let G(O) be defined by 

G(Ola, a) = (1'c`)F(O) + OF1(61a) 

Then it is easy to check, using the above comment (2.4.1) that for 

each c>0 there is an A such that if a<A, ae IR 

G(9 a, a) E Bn(F, c), provided Sup (max_ Dk(F(x))) sM 
xQR 1sksn 

However, if G and F represent the posterior distributions using 

respective priors G and, ', 

G(O) (1-a) F*(6) +a F1(91a) 
e. 

where F*(61a) _JR, (elx)dF(A) 

F1(e1a) =J L(olx)dFl(ela) 

- 00 henc 

Ae 
(1-a)F*(-)F(e) + aF1(-Ia)F1(Ota) 

G(g) 
(1-a)F*(ý) + aF1(cola) 

* A 

_ (1-a*) F(6) +a F1(8Ia) 
-1 

where a= [1 + (a-1-1)F*(°°)(F (ýýa))-1] 

2.4.2. 

2.4.3. 

2.4.4. 

2.4.5. 

2.4.6. 

2.4.7. 
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providing it exists. Since R is unbounded at -o, as a -> - 

F*(oja) -} m. It follows that for each fixed a there is an R(a) 

such that for all a< R(a) 

(a-1-1)F*(ý) 
<1i. e. a> 2' 2.4.8. 

F*(ýý a) 

Finally note that F(a) }0 as a- -- whereas 

F1(a a) =J for all ae IR 2.4.9. 

, 
Hence there is an R1 (depending on a and hence e) such that 

if 

a< R1(e) 

IG(ala) - F(a)j = la* F1(ala) - (1-a*)F(a)I > 
1. 

., 2.4.10. 

Hence for all priors F and all e >0 there is aG such that 

GE Bn(F, e) and yet 

1 G Bo(F, n) if n< 3" 

In words this means that any prior distribution I choose must'be 

specified exactly, otherwise the posterior distribution and hence 

my consequent inference will be more or less arbitrary. Hence 

Criteria 1 is not met. 0 

It follows that in general I cannot make sensible inference 

in a Bayesian setting (or for that matter m. l. e. approach see 

Edwards (1)) using unbounded likelihoods. The difficulty is only. 

an apparent one, however, for the following reasons. In any experiment 

(and here, I. echo Bartlett et al (1)) I;, can only take-a measurement 

within a tolerance governed by my measuring instrument. So rather 

than take an observation xI take an observation x±c. Hence I will, 

in general, observe a set., uf_ positive measure rather than a point. ' It 

will-follow that-the corresponding likelihood will then be bounded, 

so this criteria is always met in good modelling. 
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Since the form of the tolerance region (x -e) taken 4 äre often 

communicated by the scaling in which the observations are given'. I 

feel-that the 'invariance principle applied to the scaling in the' 

sample distribution of the data is a bad Criteriönfor discrimination 

between inferences. - 

Restriction 3 

My; prior F must be such that J £(9lx)dF(8) # o. 

Comment 

This means that apriori I must have the Prob (k(8! x) > 0) >0 

Even a Bayesian is going to be confused if'every value of e he thinks 

a priori is possible his data tells him is not and values of 6 he 

diened impossible-his data tells him. have positive likelihood. 

This highlights indirectly an important deficiency' of 

Bayesian analysis. If one remembers that A is just a label for 

a particular family F(A) of sampling distributions then on putting 

a prior on 6 we automatically put zero measure on all other sampling 

distributions. So I cannot see when my data (whilst not rejecting 

as above) seems to contradict the family. 

For example suppose that I 'assume that the random variable X 

is normally 'distributed with mean p and unit variance and I have 

prior on 0 which is normal mean 10 variance 1. If I now take 1,999 

observations of which 

999 have value 10.0000 

1000 have value -10.000. 

Then my posterior distribution (which I quote "contains all the 

posterior-information") says 6 is normally distributed mean 0 

variance 0.0005. 
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But what rubbish is this! I am almost positive' that the points 

have come from a n(O, 1) distribution! This is obviously ridiculous, 

but without sidestepping the formalism-there is no way out of the 

problem. The-more-data points I have the more information there 

is contradicting my-prior choice of distribution functions, but I 

cannot adapt to-more likely ones since I have put measure zero on 

them. 

Ofýcourse this problem arises from the fact that I am not 

putting a prior "distribution" across function space in a sensible 

way. At the moment I am researching into-more sensible methods 

but it should be noted that the inferential procedures I'have found 

so far, contradict De Groots 5th axiom (1), that_is, that I-oän compare 

the chance of each distribution function being right with a uniform 

distribution on [0,1]. For interesting analagous problems see 

Ferguson (1), Leonard (4). 

Henceforth write F(6) as the posterior distribution of 0 

given data 

Restriction 4 

Let T(. Z(Ofx)) be the set of discontinuities of Z. Then 

T(. Z(O! x)) must have measure zero with respect to the prior 

distribution F. 

Comment 

First I will give an example of the restriction. 

Example 

Let £(OIx) = 10 on cA [0,1) 

1 otherwise 

The prior T(8) is a rectangular distribution on [0,1] and the 

prior -Fn(0) defined by 
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Fn(e) _ "{ 
0x<O 

{m/n x [m, m+1) 0 -s ms ni-1) 

{1 otherwise 

Then pL(F, Fn) =n -ý 0 as n -ý 

But F(O) is a rectangular distribution on [0,1] 
AA 

Fn(6)is {0 x. < i if pL(F, Fn) =1 for all n. 
{ 
{1 xz1 

Hence if I have a , family of sampling distributions labelled, 

by 0, I must arrange the family in such a way that the priors are 

ordered in a natural continuous way with respect to their labels, 

i. e. the closeness of distribution functions is mimicked by 

closeness in 0. This is a topic that I will go into more detail 

about in a later section. 

Having now discussed the restrictions'I can show that under 

them Criteria 1 is satisfied. 

Preservation under L6vy norm 

Lemma 2.3. If (i)-Q(0jx) is measurable 

(ii) 0n 
w 

'0 and P(T(R(0jx)) =0 (where T is 

defined above) 

then 2(0n) w R(8) 

Proof [See Billingsey (13)] Q 

Lemma 2.4. If R, (Gfx) is bounded above, then 

x(ed w` Z(e) -: ý, iE(9, (0 )) -> IE(Q(O)) 
Proof [See Billingsey (1)] Q 
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t? 'ß'`01 .1--. ' 

Theorem Let Pn -ý P in L6vy metric, and ! t(O) be a likelihood, 

=then provided (i) k(O) is-bounded and measurable 

(ii) P(T(2)) =. O 
00 

(iii) 
f 

_-L(e)dP(G) 
> 0, 

then Pn P in Levy metric. . 

Proof. As a consequence of Lemmas fand 2 and assumption (iii) 

J R(8) dPn(0) +f2, (0) dP(8) = P*(6) >02.4.11. 
3p. 3R 

where convergence is in Levy metric 

Also for each t 

pn(t) _i 
CO 

X(-°°, t] £(0)dZ (0) -> I 
: 

X(--, tln(e)dP(e) = P*(t) 2.4.12,00 
n. 11 CO as n -ºco 

at all continuity points-of P, by replacing ß(8) by X(-, t) £(A) 

and using Lemmas 2.3 and 2.4. 

,. P(t) 
But P (t) =n, P(t) = 

P* t) 
, which by (2.4.11) and (2.4.12) 

n P*n(-) P*(°°) 
. 

gives that Pn(t) + P(t) at. all points of continuity of P(t) 

(Since P*(-) > 0) 

The result follows. 0 

-To conclude this section, consider-the following theorem. 

Theorem 2.5. Suppose that (i) 2, (6) is bounded above by U and is 

measurable 

(ii) I Z(O)dF(g) >0 
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Then Fn -F in Tv topology implies Fn ;F in zv topology in the 

class absolutely continuous priors. 

Proof Firstly, as in the, previous theorem, by premise (ii). it 

is sufficient to prove that - 

Fn-, -ý- F Fn -} F* using the notation" above. 

Well, since k(O) is measurable f* = £f and fn = Rfn are Lebesgue 

measurable as a consequence of the D. C. T, it follows, that F and 

Fn, are absolutely continuous. 

00 

So P(F*Fn) = 
J- JL(O)f(e) - £(e) f-(e)IdO 

. oo 

sMJ 1ß('o)-ßn(e)Ide 

_ Mpv(F, Ff). The result follows 

by a comment in the 

previous section 

0 

So ifI work in the class of all absolutely continuous distribution 

functions, in fact Restriction 4 isýno longer needed provided the 

p; -metric-is used. Perhaps the moral of"this story is-that when 

dealing with Bayesian inference, -the Levy topology is"a little too 

weak'and that it might be more sensible to restrict oneself to 

absolutely continuous priors when"considering continuous phenomena. 

MMy personal feelings are that Restriction 4 is much more difficult 

to justify than the restrictions imposed above. 

Note that there is-still a need for a natural, ordering of 

parametrisation of the family of sample distributions since 2 

likelihoods £l' and £2 equal a. s. will give the same inference. The 

set of measure zero on which they are different may contain the 

"true" sample distribution so anomalies (which I will not at this 

stage go into) could arise. 
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2.5. Stability of Bayes Estimates 

The reader will be familiar with the way a Bayes decision/ 

estimate d is made. Without loss of generality I can assume that 

my utility is linear (by absorbing it into the loss function 

(see Chapter 3) so my- Bayes decision corresponds to the infimum of 

the expected loss (with--respect to prior F and loss function. L) 

written E(L, F, d) (where L and'F may be omitted if no confusion 

arises. ) 

Since my concern is estimation rather than general decision 

making I will assume I have a loss function of the form: L(d-A). 

Unbounded loss functions 

Definition An unbounded loss, function L(d-e) has. the property that 

Sup L(d-8) _ for all dEI.. 
6ES 

where S is the extended support of the posterior distribution F 

(i. e. the smallest: 
-open 

interval containing all points such that 

f(6) >0 (see Chapter 3)) 

Until now I think that it is safe, to.. say that the bulk of 

Bayes estimation have corresponded to such loss functions. The-, fact 

that this is theoretically absurd is apparent when one sees that I 

am taking the infimum of a function E(F, d) which may or may not occur 

depending on the particular convention I employ to obtain F. I will 

elucidate this point. 

Claim 

The rate of convergence to zero of the tails of my 

likelihood should not make a significant difference to any 

inference I make. 
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Justification 

Suppose that I` have a family 'of sample distributions G 

parametrised by -O and have observed a measurable' set' 

T= (x -6, x+ e).. 

Following the same sort of argument as for Criteria 1, 

the family 

G= {G8(x) ;6e ]R} 

of sample distributions cannot be specified precisely, each must 

be considered as a representative of itself. and distributions "close" 

to it in any practical situation. Again I must define "close" 

so I shall use the strong definition in the section preceding this, 

since I am looking for counterexamples. 

Now consider an alternative family of sample distributions 

G* defined by 

ß* _{ (1-a )GB(x) + aF1(s a) a .ý],, 
0sas 1} 

where F1(xja) is a normal distribution with mean'a and variance 1. 

In an exactly analogous way to the example in Restriction 2 in the 

previous section, it can be, shown: that for all C>0 there. is an 

Asuch that for all Osa: A and a, A ¬]R 

GE G*- GE B(G0(x), c)"- 

porovided Sup { max D1 G0(x)} sH for some ME 3R., 
xcS(G0) 15iSn 

In particular putting a=x where x is defined above, the likelihood 

induced by G(O, a, a), £, (9) is-such that 

L* (0 ) -º a as 10 1 -} ' provided that the 

original family with likelihood £( g) has the property A, (e) ., 0 

as tel -} 110 .I leave the reader to check that small perturbations 

of the likelihood do not affect the continuity arguments of the' 
previous section. 
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The point of this claim is to show that perturbations of 

my prior distributions in the tail under Tn topology can induce 

the same perturbations in the tails of, the posterior distribution 

if the problem is changed an indissemable amount, since by wiggling 

my family of sample distriubtions a bit I can make the likelihood 

constant in the tails. Hence without loss of generality I can 

consider perturbations of the posterior distribution rather than 

the prior, when-the perturbations are in the tail of the posterior. 

I can now return to the original problem, - that of constructing 

counterexamples to using unbounded loss functions. 

Lemma: 2.6. 

Suppose that a function L(9) as 8+ and finite 

elsewhere in ]R, 0. Then there exists a distribution function F such 

that F2 E FICnsuch that 

00 

1 L(O)'-dF2(0) _ co , where Sup {max DiF2 
n 

(9)} ýM 

-00 t 1sisn 

Proof- 

Since L(6) } o, there*exists points t1. -.. tn such that 

L(A) >2 

L(A) > 24 

L(9) > 2j 

Let F2(6) _ 
Co 1 

Ji(6) E2 
i1 

'0E A1= 
e EA2= 

(ti-1, t1+1] 

[t2-1, t2+11. 

e E, A [t-1, t+1] 

where Ai nA it je IN. 

where J1(0) 

function wi- 

(ti-l, t1+1) 

Sup'{max D 
15isn 

is some chosen Cý distributio 

th p. d. f. having support in 

and such that 

J1(6)} s Mn for at J.. 
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Then (i) T(0) is a Cc* distribution function 

(ii) I L(8)dF(O) >21+ 22.1 + .., = CO 

Now suppose I do a Bayesian analysis using a loss 

function L(d-O) and a posterior distribution F, giving rise to 

a Bayes decision d, the minima of expected loss, its associated 

expected loss being E(L, F, d ). Perturbing"F slightly in Pn 

topology by replacing it by 

G= (1-a)F + aF2 where F2 is defined in the 

preceeding lemma, 

I see that the associated expected loss no longer exists at d 

i. e. this is in fact a worst decision. So my posterior decision 

depends crucially on the (usually conjugate) form I have chosen to 

approximate it. This is obviously unacceptable. 

Consider this even more stunning counterexample when I use 

convex loss functions (advocated by De Groot (2)) and including 

the squared error loss currently in vogue. 

Let (6-d) =S and suppose L(s) is differentiable and 

L'(s) is strictly monotone. 

Lemma 2.7. 

If L is defined as above and E(L, F, d) exists for all d EiR, 

then it has exactly one minima, provided F'(0) # 0,0 eIR. 

Proof 

It is obviously sufficient to prove that E(L, F, d) has exactly 

one stationary point since E(L, F, d) as d+ -so this 

stationary point must be a minima. 
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1e11 E'(P, L, d) - E' (F, L, O) = L'(s)dF(s+d) - L'(s)dF(s) 
]R 1R. 

_ 
J(L'(s)_L'(s_d))dF(s) 

3R 

which is strictly monotone in d since L'(s) is strictly monotone 

in its argument (by definition). Hence E'(F, L, d) is strictly 

monotone. It follows that it will cut the axis d=0 at most 

once. 11 

Theorem 2.8. 

Let L(8-d) be a convex loss function with its derivative 

L'(s) continuous and my original posterior distribution function F 

is-such that 

Sup, { max ID F(A)J} sM where f(6) ý0 on]R. 
8 1t Osksr 

Then for all c(small) >0 A'(large) >0 and nEN there is a 

posterior distribution function G such that 

Pn(F, G) <e and Id(F) - d(G)t > A* 

where d(F), and d(G) are the Bayes decisions corresponding to F 

and 0,, respectively. 

Proof. Define F1(a, O) as n(a, 1) and 

(1-a)F(O) + aP(a, O). Then it has 

previously been shown that for e >O, there is an a>0 such that 

for all aa< a* and ae IR 

Pn(G(a, a), F)-< e. 
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Let E(d, G)-represent the expected loss with respect to decision d 

and distribution function L. Then d(G) such that E'(d(G), G) =0 

gives the (unique by Lemma 2.7) Bayes decision. 

Well, E'(ýG(a, a)) 
j, 

L? (s) ((1-a) I(s+d)+af1(a''s+d))ds =0 

implies E'(d, F) =a E'(d, F1(a)). 
1-a 

Fix an arbitary d E1R. Then it is easily checked that 

E'(d, F1(a)) as a 

E' (d, F1(a) -ý -ý as a -ý -ý since L' is 

increasing and unbounded. 

It follows that for all de 1R there is an a(d) E iR such that 

E'(d, F) =a E'(d, F(a)), i. e. such that d is the 
1-a 

unique Bayes decision with respect to G(a, a(d), 6). 
. 

The result is now clear. 0 

.I hope that the reader is now satisfied that such contortions 

of a proper Bayesian analysis are just not on. The question remains 

"Is Criteria 2 satisfied by a proper Bayesian analysis? " (i. e. one 

where bounded loss functions are used). The answer is almost. First 

a definition. 

Definition 

A decision d(F) is said to be ; table within J with respect to 

topology induced by the metric p if'for all n>0 there is an e>0 

such that, 
A 

p(F, G)< e( C(G) - d(G) I<n 

where C is some point in J. 
A 

Call a decision simply stable if J= {d(F)} 
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Theorem 2.9. 

Suppose (i) L(s) =L (s) +L (s) 

where L(s) -= {L(s), s>0L ; (s) _ {L(s) s<0 
{{ 
{ 0, otherwise, - 

{ 0, otherwise 

and such that L+'} are right continuous increasing} and bounded by M 

L- } left decreasing} M2 

(ii) J L+ (e-d)dF(6) and 
JmL(8_d)dF(O) 

are continuous. 

then E(L, Fn, d) -ý E(L, F, d) uniformly---'as' pL(Fn, F) 0 

Proof 

E(L, G, d) =f 
IR 

+JL (6-d)dG(8) 
fIR 

gt 

= M11 JH(d_O)dG(O) - 1121 
JH 

(d-e)dG(6) 

where k+and`H^ are distribution functions. Each of the above integrals 

is therefore a convolution. 

E(L, G, d) = M1' UG1)(d) 

where UG1) and UG2 are the 

It is a well known result t: 

PL(F, Fn) "' 0 

Hence 

+ M21 U(2)(d) 

convolutions mentioned above. 

hat (See Feller (1)) 

pL(UGi), U('))+ 0i=1,2: 
n 

so provided U(1) and U(2) are continuous by Lemma 2.2. 

pL(F, Fn) -} 0 po(U(i), U(i)-}0 i=1,2. 
n 

So in particular 

E(L, Fn, d)-+ E(L, F,, d)^, uniformly as. pL(Fn, F) -º 0. cl 

týz 
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Comments 

The conditions on this theorem need some discussion. Firstly 

if F is continuous (see Feller (1) p. 147) condition (ii) is auto- 

matically satisfied and even ii L+ and L are not respectively right. 

and left continuous the proof holds. So inthis case the theorem is 

true for-all bounded loss functions of the form L(s). Secondly 

if I allow F to be discontinuous and L continuous"in S, the conditions 

of the theorem are also met. So unless my loss function and 

distribution function are very discontinuous the theorem holds. 

Finally note that if pL(Lf, L) -)- 0, E(Ln, F, d) ; E(L, F, d) 

by symmetry of the convolution operator. Putting these two results 

together gives the following Corollary. 

Corollary 2.9.1. 

If the conditions of Theorem 2.9 are met for all Ln and 

Max {PL(Ln, L), PL(Fn, F)} } 0, then . 

E(Ln, Fn, d) } E(L, F, d) uniformly. 0 

Thus if Loss functions and distributions are close, so is 

the expected loss function. This is the most important result for 

Bayesians. However the Bayes estimate is one step away from this, 

since I am interested in the infimum of such functions. 

Theorem 2.10 

Let D be the set of minima of expected loss with respect to 

the originally chosen posterior distribution E(L, F, d). Suppose 

there is no sequence dD such that 

lim E(L, F, d) } E(L, F, d(F)) 
Jý00 

and lim' d d(F) where d(F) is a Bayes decision. 
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Since E(L, Fnd) }, E(L, F, d) uniformly 

inf E(L, F , d) ; inf E(L, F, d) (since E -> 0 by definition) 
dot nd 

FýR 

Then if E(L, Fn, d) - E(L, F, d) uniformly d(F) is stable within J 

where 

Proof 

J= set of original Bayes decisions. 

Suppose to the contrary there exists a. sequence of distributions 

such that 

E(L, Fn, d) ; E(L, F-, d) and yet 

lim Id(Fn)'-- d(F)l >c where d(F) EJ and d(Fn) is a 

Bayes decision w. r. t. E(L, Fnd). 

. 
Hence. E(L, F,, d(Fn)) ; E(L, F, d) 

hypothesis. 0 

as, n -> co -contradicting -the 

Since this condition is extremely weak (since it is on the 

posterior I end up with) I have-in fact proved that condition 2 

is satisfied provided I use a bounded loss function in the Bayesian 

setting. 

A related piece of work has subsequently emerged from Kadane 

& Chuang (1) dealing in a weaker sort of way with general loss 

functions of the form L(d, O). -They seem however to completely miss 

the point that the infimum of an expected loss function has no 

meaning if that expected loss function-does 'not exist. 

2.6. A preview of the Kernel of the Thesis 

The reader may be wondering what this has to do with Catastrophe 

Theory and Time Series. The answer is that Catastrophe Theory is a 

classification theorem about families of potential functions 

THE EXPECTED LOSS FUNCTION IS A POTENTIAL FUNCTION 

`, a 
-` 
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since the behaviour (or decisions). are governed by its minima. -Thus- 

theorems classifying minima of potentials are-applicable. 

Now if-convex loss functions are used, Lemma 2.7 shows: that 

only one minima can arise on the expected loss function. Since 

Catastrophe Theory is'a classification in terms of the number of 

minima, it would be redundant. But I have shown that such abortions 

of. Bayesian analysis admit ridiculous and unacceptable results. I 

must work with bounded loss functions so Catastrophe Theory is 

applicable. 

Now consider the last theorem, but this time, rather than 

interpret F as the original posterior distribution let it represent 

the "best" representation of my posterior beliefs. Suppose the 

corresponding expected loss function E(L, F, d) is smooth and has 2 

minima and 1 maxima where the 2 minima ml, m2 are each Bayes decision 

with respect to F. - 

E( 

Fig. 2.1. 

If F1 and F2 are 2 perturbations of F, i. e. 2 approximations of the 

"best" representation of my posterior beliefs, then no matter how good 

my approximations, the Bayes decision d(F1), d(F2) of F1 and FZ 

respectively could be very different and unique (e. g. d(F1) near ml 

near m2) Hence a bifurcation (classified in Catastrophe Theory) is 

observed. 

1 ý' 
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A 

Certainly in a one-off situation such as F (with two 

identical minima) would be an extreme oddity. (see for example Morse 

Theory). But suppose {F} is in fact a parametrised family 

{F(t) :t c]R} where t might for example represent time. Then one 

often finds that the family {E(L, F(t), d) :te 3R) goes through 

evolution 
@ pictured below,. as t increases. 

E(L, F(t), d) 

d, ý 
d(F(t_) ) 

E(L, F(t1), d) 

d 

E(L, r(t3), d)' 

d t1 < t2 < t3 

d(F(t3)) 

Fig. 2.2. 

--, 1- 

ul1 t V2' 1 uýl t V2ý! 
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The-Bayes decision. thus experiences a jump from a point in 

a neighbourhood of d(F(t1)) to a point, near d(F(t3)). Hence, 

Catastrophes occur (in a Bayesian sense) readily in: 

Time Series 

Sequential Analysis 

I Removal of nuisance parameters and many other 

fields. The first of these is the most striking and so'I shall 

concentrate on it in. this thesis., 

nx Differentiability of the expected loss follows if either: 

(i) L is nX differentiable w. r. 
_t. 

d and bounded, in some 

sense (see Burrill (1) for details), 

(ii) the-distribution function used is sufficiently-smooth. 

Since such loss functions/distributions functions will be 

dense (under PL metric) in the space of all bounded loss functions/F, 

the last theorem and the previous Corollary mean that without loss 

of generality I can make assumptions. of smoothness of E(d). 

Since no-one has yet developed Bayesian inference with bounded 

loss functions far enough I must devote a chapter to these problems 

(Chapter 3) before going on to using Catastrophe Theory on them. 

For this I need the concept of natural parametrisation. 

2.7. Natural Parametrisations 

It does not seem to be widely realised that Bayesian inference 

using a loss function L is. invariant under transformations of the 

parameter, even though the posterior moments/mode are not, since 

E(d) = 
fIR 

L(9, d)dF(6) does not depend on the parametrisation-of 6. 
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The transformation is just absorbed into-the loss function. Therefore 

the most sensible way in which to define a "natural" parametrisation 

is by specifying the loss structure and-then changing the parametrisatio 

of 6 and d such that L-is in-a simple form. In most problems of an 

inferential nature it is possible to convert the original loss function I 

into the form L(6-d) by an appropriate choice of parametrisation of 0. 

Note that this implies that before I make a-Bayes estimate I 

must say what it is I am looking for. (i. e. fix L(O-d). This seems 

sensible but in an inferential setting. the appropriate loss function 

may at first seem difficult to find: many statist. icians, (inclu ding 

Bayesians) don't like to state explicitly what they are looking for, 

for fear that their results may seem subjective. The following 

suggestions are for those at a loss choosing their right parametrisat 

- i. e. when the loss structure is not immediately obvious to them. 

Definition 

Call a parametrisation 6 of a family F0 of sample distributions 

p-continuous if 

P(0, (x), Fe+n(x)) < k(n) where k(n) >0}0 as n+0. 

How often there exists a p-continuous parametrisatiön of such a family 

of distribution functions is a moot point and requires further research. 

Certainly if this condition is met, then problems outlined in 

Restriction 4 etc, are bypassed. I will take this one step further. 
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Definition 

Call a parametrisation 0 of a family of sample distributions F0 

p-natural if 

p(F0(x), Fe+n(x)) - k(n) where k(n) > 0, 
k(TI) -' 0 as I tl I =a O. 

and' .k 
is locally about 0 1-1. 

If such a parametrisation exists, then it is easily seen that 

it -is natural with respect to the metric p in the sense that it 

measures a -function of the p-distance between distribution functions 

of the same family. Hence the loss-function depends only on the 

distance (i. e. p-distance) on t between the chosen sample distribution 

and. the actual sample distribution. The last, condition of the 

definition ensures that for positive n,, k will separate-the 

distributions that are close to the chosen Fe. 

A question now arises: How many "natural" parametrisations 

are there for a particular family of distributions? ' 

Theorem 2.11 

A p-natural parametrisation is unique up to linear trans- 

formations of the said parametrisation. 

Proof 

Clearly from the definition, if 6 is a natural parametrisation 

then ae +b will be. 

Conversely suppose both 6 and J(e)-are p-natural paramterisation' 

i. e. 

P(Fei(x), Fe2(x)) = k1(01 - 02) 

-a(Fei -(X), -- F--)('X))= = k2(J(g1) - J(e2)) 

and assume without loss of generality. J(8) = O. 

2.7.1. 

2.7.1. 



By definition, on some neighbourhood (O, c), (say) k2 will have 

an inverse, so putting k3 = k21 kl (1) and (2) can be written 

k3(2X) =-J(a+µ) - J(u-X) where X= (81-82) 

_u= (el+e2) 

or k3(2X) = J(y+x) - J(y) where x= 2), 

y= u-A. 

for sufficiently small A (wx) 

Putting y=0 in (4) 

32. 

2.7.3. 

2.7.4. 

b3(2A) = J(x) - J(O) = J(x) by assumption. 

Hence J(y+x) = J(x) + J(y), so that J is a linear function of 8.0 

So I have at least found that such a definition gives me a unique 

parametrisation (up to linear transformation). * It should be noted 

that a function k defined above has properties induced by the 

metric namely 

(i) k is symmetric about 0 

(ii) k is'concave downwards' 

(i. e. k(x) + k(y) s k(x+y)) x, y a 1R 

so it looks something like Fig. 2.3. 

n 

Fig. 2.3. The function k(n). 
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Before I can proceed any further I must choose a particular 

metric. This, as I have said before, will depend very much on the 

situation I am parametrising (i. e. my loss structure). The simplest 

metric to consider is, the po-topology for which the following theorem 

gives many results for po-natural parametrisation. 

Theorem 2.12 

. 
Let Fx (.. 1 0) be a family of continuous distribution functions 

of XE Ix s iR , with parameter` 8EI : 53R. Suppose: 

(i) There exists a transformation T: X -ý Y such that 

Po(Fy(.: 161), Fy("Ie2)) = r[(P0(FX("ýel), Fx("ý82))I 

for each Al 02 E1 where r is increasing in some [O, c) neighbourhood 

of 0 with r(O) = 0. 

(ii) That F(yle+h) = Fy(y-hle) for each AE Ie 

(iii)That for each 6E Ie Fy(y16) is strictly increasing on an 

open interval (possibly infinite) Iy and constant on Iy. 

Then 6. is itself a po-natural parametrisation 

Proof 

po(FX(. 1A+h), FX(. 10) 

= r[po(FX(. -I O+h), Fy(. IA))] by (1) 

= r[P0(Fy(YIO), Fy(Y-hIO))] by (ii) 

which is {a function of h only 
{ 
{ increasing in h for small h>0 by (iii) and the 

{ definition or r 

So 0 is apo-natural parametrisation. Q 

Notes 

1). If T is a monotone function of x, then condition (i) of the 

theorem is satisfied fatuously from the definition of the a 
distribution function. 
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2) If each F(. 18) 0eI has a symmetric p. d. f. about a common 

point (w. 1. o. g. 0) then if T is some even function then again 

condition (i) of the theorem is satisfied since 

Po(F("I9), (F("162) - Sup IF(xle1) - F(x182)1 - SUP I F(xJel)-F(xJ62) 

So since T is 1-1. on x>0 the argument. above, applies. 

Examples 

1). If the family is of the form F(8-x), then 0 is already in 

its po-natural parametrisation (e. g. normal mean, t-distribution 

mode etc. ) 

2). If the family is symmetrical and of the form F(uG) put 

T(x) = QnIu-xj. It is then easily seen, using note 2, that 

2. n 0 satisfies condition (ii) of the theorem and so (modulo 

condition (iii)) gives a po-natural parametrisation. (e. g. normal 

variance V has a po-natural parametrisation kn V or a In v+b 

:- -ý for any cons-tantg=a, and : b) 

Although the search for such parametrisations is obviously 

very interesting it is a bit off'the track of the thesis so I will 

leave most further classification for my further research. 

Summary 

I have shown that to use Bayesian inference successfully I 

must have: 

i) A reasonable set of sample distributions to distinguish between 

(Restriction 1) 

ii) One of these sample distributions is the "right" one (Restriction 2) 
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iii) The likelihood function 

iv) The sample distribution 

(Restriction 4) 

V). I must use bounded loss 

I have noted that with 

Catastrophes. In the last se, 

a sensible ordering of sample 

must be bounded (Restriction 2) 

must be ordered in a sensible way 

functions to get my estimates. 

(v) I must-admit the possibilities of 

ction I have suggested a way'in which 

distributions (iv) can be found. 
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3. SOME PROPERTIES OF ESTIMATES MADE UNDER BOUNDED LOSS 

3.1. Introduction 

In this section I will give a classification of Bayes decisions 

made when using bounded loss functions, the classification being 

slanted towards decisions which are estimates of a parameter. The 

idea is ultimately to use this on Time Series data to make sequential 

decisions. 

Although many theorists (e. g. De Groot (1) have emphasised- ' 

that the axiamatic systems forming the basis of Bayesian statistics 

imply. the use of-bounded loss, it has not been until recently that 

any serious work has gone into looking at the properties of the 

induced estimates (see Lindley (1) and (2)). On the other hand 

estimates using, for example, quadratic loss functions have almost 

exhaustively been looked at (e. g. Chao (1) and De Groot and Rao (2)). 

In the last chapter. it was pointed out the sort of pitfalls 

around when unbounded loss structures are used. In any real life 

situation resourses always, have an upper bound anyway. 

Of course, there are some difficulties which arise from 

thinking of estimates as decisions. Perhaps the most poignient is 

the fact that the peraonaZ utility function of the decision maker 

must be specified before an optimality criteria is well defined. 

Utility Functions 

Suppose that I have found my posterior distribution P(O) of 0 

and that I have a loss function L(e, d) with an associated decision 

deD the decision space. The loss function will represent my 

rational assessment of losses incurred from certain decisions d when 

the-true value of the parameteres'8. (Hence my loss function correspond 

to De Groot's gain function (De Groot (1)). 
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The posterior P(e) then induces a posterior distribution for 

the random variable L(e, d) where d is fixed, for each d¬D. Call 

the distribution associated with L(g, d) Pd . (t'). 

p. d. f. 

Loss L=ý, 
,. 

Fig. 3.1. 

The axiomatic system then states that to make a "sensible" 

choice for deD. I must pick a d* ED such thät with respect to 

some strictly decreasing function of L, U(2), d* maximises 

{J U(Z) dPd(i) :de D). 

]R>O 

Equivalently I must pick a d* such that there is a strictly increasing 

reparamentisation of L, A(L) such that 

E(A(L), d) J A(L)dPd): dED}. is minimised. 
1R> O 

' is called the Utility fu'netionand A= -U I will call the Anxiety 

function (Note'the invariance of optimal decisions under linear 

increasing transformations of A (or U), so without loss of generality 

assume A(O) = 0). 
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The-scepticäl`critic-may- 'assert that this-'-statement about -= a_ rest 

cho-ice- -- says very little. For example if L(8, d) is of the form 

L1(O-d) where L1 is symmetric about (6-d) and increasing on IR ý 

I can find for any other fixed L2(e-d), - symetric and increasing 

on IR >0 an anxiety function A such that 

LZ(8-d) = 'A(L1(9-d)) 

Hence unless -I can give A (or U) a concrete meaning, then 

the class of all loss functions symmetric in 8-d and increasing in 

R>0 give the same class of optimal decisions, so it does not matter 

what the form of the loss function is. 

Now unlike the-loss function L, A is a far more subjective 

quantity to L. Whereas L represents the rational assessment of the 

situation. as perceived by the decision maker, A augments the. 

situation to fit the optimism, pessimism, fears, expectations in 

fact the total emotional state of mind of this person. 

There are 2 major misconceptions about the nature of Utility/ 

Anxiety functions in the literature that firstly need to be removed 

before I can proceed. 

(i) The "sensible" - non emotional utility/anxiety function 

i6 the linear one. - 

The consequence of this wrongly inferred statement is that it 

is commonly assumed that to be rational, I must choose a decision whicr3 

minimises my expected loss C rather than my expected. anxiety). A 

study of the build up of the axiamatic system C in e. g. De Groot (1)) 

should satisfy the reader that this is in fact a completely erroneous 

deduction. This hoped-for correspondence is just a case of wishful 

thinking. Anyway all Bayes decision '(including those made under 

linear utility functions) contain an emotional element about them. 
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(ii) The utility/anxiety function is independent of the 

amount of information I think I have. 

Suppose-that I have a data set {X1 and I am making inference 

about a parameter e using a loss function L. The estimate I make 

will correspond to the Bayes decision obtained from using some anxiety 

functions A which the reader will remember is supposed to summarise, 

in part, the optimism and expectations of the decision maker. If I 

then increase the data set to include another much larger set of data 

{'y} is it reasonable to assume that the optimism of the decision maker 

will be the same - as , it was before? ; I; --think-that it is' extremely 

hopeful to expect this and so feel that-the-statement above is usually 

wrong -. a point perhaps missed by many"Bayesions when criticizing the 

Classical approach to inference. 

With those difficulties in mind, it seems a good starting point I 

in the classification of Bayes estimates to look at loss functions 

whose corresponding Bayes estimates are independent of the choice of 

Anxiety function. 

Theorem 3.1. 

If a loss function, can. only take two values for, all 0 and, d, 

then the associated Bayes decision in invariant under choice of 

Anxiety, function. 

Proof: Any increasing transformation of1.2 points is equal to an 

increasing linear transformation of those two points, and the Bayes 

decision is invariant under increasing linear transformations of the 

Anxiety function. Q 
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3.2. The Step Loss function and its properties 

If I am estimating and I have found a "natural" parametrisation 

(see §2) 1 can-restrict my class of loss function to those'which 

satisfy : 

(Ll) Sup L(O. d) =1 In-ß L(O, d) =0 
d¬D8 H dED, -6¬H. 

(Since is bounded the above assumption loses no-generality) 

(L2) L(O, d) = L(A-d) = L(d-O) 

(L3) "L is increasing in l9-di 

Note that for any increasing A continuous in [0,1] A(L(O-d)) also 

satisfies (L2) and (L3) and can be normalised so. that (Li) can hold. 

One Anxiety function invariant class of loss functions is the 

step loss functions. 

Definition The step Zoss function with guage b is defined: 

Sb(6 -d) =--O f' e-dV4 s b7 

1 'otherwise 

-Hence a misestimate by an amount less than b incurs no 

loss-(i. e., the estimate is adequate) but misestimation by more than 

an amount b: incurs maximum loss (i. e. the estimate is then inadequate). 

The reader may note the closeness between this loss function: and 

confidence limits. 

In what follows I shall assume that the posterior distribution 

for 6, F(O) is twice differentiable, though most results, in this 

section will carry through. It will be shown in the next section 

that these step-loss functions alone " determine- the., elass of testimates 

obtained from all loss functions satisfying. (L1) (L2) (L3). First 

some properties of Sb. 
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(0-d) dF(O) = F(d-b) +1 F(d+b). Notation Let Eb(d) = 
f3R 

Sb 

The turning points d* of Eb(d) all satisfy 

f(d*-b) = f(d*+b) (3.2.1). 

So in particular, all minima including the Bayes decision, will 

satisfy, this equation. The next lemma will show that usually 

equation (3.2.1) has a unique solution which is the Bayes decision. 

So the Bayes estimate under any step loss function-can be obtained 

in closed form for most of the standard distributions. A table giving 

some of these solutions is given in Section 3.5 of this chapter. 

Definitions 

Let the support of the continuous p. d. f. f(O) of a distribution 

function F(O) be the closure of the set of points e such that f(9) > O. 

'Let the extended support S(F) be defined by the interval 

(k1IR-2 ) where ... 

kl = inf"{Support of F) 
, 

k2'= sup'{Support of P) 
, 

Call a distribution function F(6) oniR property unimodal (or 

just. unimodal if no confusion can arise) if fl(8) =0 has exactly one 

solution, in S(F) and f(O) is continuous in ]R. 

4(b)-, the generalised"Zocation. of.. 8 given posterior distribution 

F(O) of 0 is defined to be the set of points in S(F) satisfying the 

equation 

ß(4(b1-b). = f(c(b) + b) b s-J(k2-k1) .. 

where k1 and: k2 are defined above. Q 

In general, for each b, fi(b) is the set of points which contains 

(but not necessarily properly) all sensible estimates of 0 under step 

loss guage b. It can be thought of a mapping 

It> O +S (F) 

b $(b) 



42. 

It will be seen that this map is central to the whole 

discussion. 

First a look-at some of the properties of fi (b) when F(9) is unimodal 

(properly). 

Lemma 3.2.1. 

If G(O) = F(P(O+m)), P >-O, mEB, where F is, a2x different- 

iable function, then for every d1' 4G(b) there exists a d2' 6 ý, (Pb) 

such that 

d1 = P-1 d2 +m 

Proof: If d1 E ýG(b) then 

g(dl-b) = g(d1+b) 

i. e. f(P(dl-b+m)) = f(P(d1+b+m)) 

Hence, P(m+dI) = d2 for some d2 E 4F(Pb) . ,, 
0 

It follows that for the next Theorem I can assume without 

loss of generality that the mode of a properly unimodal distribution 

function F(A) is at zero, since all the stated properties will carry 

over by linear transformation of F(0). 

Theorem 3.2. - 

If F(O), the posterior - distribution. of e is 2x differentiable 

on S(F) and unimodal with zero mode then: 

(i) 4(b) is a differentiable function'on (O, j(k2_k1)) 

[Hence in particular the set fi(b) is a single point 

for each b] 

(ii) fi(b) E (-b, b) 

[Hence in particular lim 4(b) =0= mode of F(6)] 
b-*O 

(iii) 14 ' (b) I<1. bE (O, J (k2-k1) ) 
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(iv) If f(O) is symmetric about 0 then 

4(b) =0 for all be (0, J(k2-k1)) 

(v) If F(8)' has support ["kl, -) 4(b) >bek for all b'E ]R >0 

[Hence fi(b) + -CO as b 

Proof 

(i) Write F= (range of f(O) :0E (k1k2))° 

Since f is unimodal, f'(0) >0 for 0E (k1, O) and fl(()) <0 for 

0c (O, k2) I can therefore define function 

gl :F -'- (k1, O) by g1(. ) (3.2.2) 

g2 F -ý (O, k2) g2(. ) [f(. ) I(O, k2)] (3.2.3) 

where g1 and g2 are differentiable with 

gl(y) >0 and g2(y) <0yEF (3.2.4) 

Let 

g3 :F -' (0, j(k2-kl) be 'defined by g3(. ) '(g2(")-gi(. )) 

(3.2.5) 

g4 F- S(P) g4(. )` _ 1(g1(. )+g2(. )) - 
(3.2.6) 

Then g3. g4 are also both differentiable functions and 

g3(y)-< 0yeF by (3.2.4) and (3.2.5) 

So g31: (0,1(k 2-kl) -º F is again a differentiable function (3.2.7) 

The result now follows from checking that 

cp(b) = g4(g31 (b)) Q 

(ii) 

Since f is strictly decreasing on (O, k2) d-b zt 0} f(d-b) > f(d+b) 

f is strictly increasing on (kl, O) so d+b s0} f(d+b > f(d-b) 

for be (O, J(k2-k1))" 

The result follows. 
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(iii) Since g31 is strictly decreasing. 

f(b1) - b1) > f(ý(b2) - b2) b1 < b2 bl, b2 E (O, J(k2-k1)) 

£($(b1) + b1) > f(1(b2) + b2) 

But ý(b b<0 for all bE (O, J(k2-k1)) 

c(b)+b>O 

and f'(6) >0, O' E (k; , O) 
1 

ßt(e) <0 6'a (O, k2) 

and so ß(b1) - b1 > ß(b2) - b2 

ý(b1) + b1 < ý(b2) + b2 

9b2) - ý(b1 < b2 - b1 

94(b2) - 4(b1) >-(b2-bl) 

The result now follows from the fact that ý is differentiable DI 

(iv) If f(6) is symmetrical about 0, then f(-b) = f(b) for all 

b'E (O, j(k2-k1)). This together with property (i) gives the result. 

(v) Because f(O) =00< k1 and positive elsewhere, to satisfy 

f(ý(b) --b) = f(ý(b) + b), q(b) > b+kl 0 

3.3. A Classification of Bayes Decisions using Step loss functions 

In this section I will assume my loss function satisfies L1, 

L2 and L3 of Section 3.2 and that the anxiety function has been 

absorbed into L(O, d) (so that I can assume A linear). The Bayes 

decision will then be the absolute minima of expected loss. A power- 

ful theorem can now be obtained relating the Bayes decisions with 

respect to L(O, d) to Bayes decisions under step loss, hence underlying 

the importance of the 4(b) map. 

Lemma 3.3.1 

Let L(O-d) satisfy L1, L2 and L3 of Section 3.2 and suppose 

the posterior distribution F(O) of the parameter 0 is absolutely 

continuous. 

Then EL(d) = 
fjR 

>0 
Eb(d)dG(b) 

where G is a probability measure on IR >0 and ELCd) is the expected 

loss with respect to F(O) and L(6-d).. 
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k 

Proof 

Let Y have distribution function G(s) _ {L*(s) s>0 
{ 
{O otherwise 

where L (s) is the right continuous version of L(s). Then -Y 

has associated distribution function H(s) = I- G(-s). 3.3.1. 

Thus 
f3R 

L(d-O)dF(O) 

_ (1=H(d-6))dF(A) + G(d-O)dF(O) sinne F(O). 'is absolutely 
ZR ]R 

continuous. By reversing these two convolution formulae 

=1-j F(d+b)dH(-b) +f F(d-b) dG(b), 

which on resubstituting via (3.3.1) and rearranging 

=I (1 - F(d+b) + F(d-b)) dG(b) 
! JR>0 

=1 Eb(d) dG(. b) as required Q 

>0 

Lemma: 2. Let F(e) be the'differentiable posterior distribution. of 

0. Then 

(i) EL (d) <0 

(ii) EL(d) >0 

(iii) EL(d) s0 

(iv) EL(d) ý0 

kl <d< inf q (b) 

Sup fi (b) <d< k2 

kl sds (ki+k2) 

J(kl+k2) ds k2 

b< (k2-k1) 

b< (k2-k1) 

b J(k2-k1) 

bz (k2-k1) 

Proof (i) and (ii) are a consequence of the fact that Eb(d) +1 as 

jd1-'° (ii) and (iv) follow directly from noting that for b? j(k2-k1), 

Eb(d) =1= F(d+b) d< k2 -b 

0 jd-4(k2+k1)ýs b- J(k2-k1) 

F(d-b) d>b+ k1 Q 
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Theorem 3.3. If loss function L(s) satisfying L1, -L2, L3 is chosen 

with the additional property that 

L(s) _ {O ss b1 where bl < ß(k2 -k1) 

{a(s) b1 <s< b2 0< a(s) <1 
{1 

sZ b2 

where s= O-d, then all the stationary points d of EL(d)'(which 

of course include all the Bayes decisions) with respect to posterior 

distribution F(6) (with S(F)-=-(kl, k2) in S(F) satisfy 

d* [dl, d2] 

where d1 = inf{ý((blb2))} 

d2 = sup{ý((bl, b2))} 

b2 = inf { j(k2-k1) , ̀b2 } 

Proof 

E2(d) =I 

b2 lb 

(b2 
where E1(d)= 'j 

11 b1 

Eb(d) dG(b) where G is defined in Lemma 1.3.2.2. 

Eb(d) dG(b) b, the restriction on L(s) 
3.3.3. above, 

E1(d) + E2(d) 

, 
Eb(d) dG(b) and E2(d) = {0 if b2 = b2 

{ 
{ b2 

{r Eb(d)dG(b) 

otherwise 

By (i} and (ii) of Lemma 2, 

3.3.4_; 

3.3.5. 

EL(d) <0d< dl be (b1, b2) 3.3.6: 

EL(d) >0d> d2 be (b1., b2) 3.3.7. 

Also by the definition of G and the properties of L given above, 

G(b) ascribes positive weight to (bl, b2) 
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Hence Ei(d) 0< k1 <d< d1}. by commuting the integration 
} 

E2(d) 0> k2 >d> d2} and differentiation operations. 3.3.9. 

Note that if J(k2-kl) = b* then J(k2+k1) E [dl, d2] since 

" lim 4(b) = J(k1+k2) 

b} (k2-k1) 

3.3.10 

So by (iii) and (iv) of Lemma 2, by interchanging differentiation 

and integration I have that 

EZ(d) O k1 <d< d1 

E2(d) Z0 k2 >d> d2 

3.3.11 

Hence combining (3.3.8), (3.3.9), (3.3.10), (3.3.12) with (3.3.4) 

I have that 

EL (d) <0 kl <d< dl 

E2 (d) >0 :' k2 >d< d2 

The result follows. 0 

3.3.13, 

Corollary 3.3.2 

Any, Bayes. decision with respect to a loss function L satisfying 

conditions L1, L2, L3, and such that there is an c>0 such that 

L(U(k2-k1)-E) >0 must lie in an interval [dx, d2] 

where di = inf {ý((0, J(k2-k1)))} 

d2 = sup {ý((0, J(k2-kl)))) 

0 

Suppose then that I know that nothing is lost if I misestimate 

by a quantity less than bl z0 and that my estimates are as bad as 

one another if they. are out by more than a quantity b2. Then under 

linear anxiety function, any sensible estimate must lie in the 

interval 

[dl(bl, b2), d2(blb2)] defined in the theorem. 
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Notes 

1). The above set is in fact invariant under changes of Anxiety 

function A (assuming A is strictly increasing in L) since 

L constant on 

' A(L)constant on 

Therefore the above set 

the decision maker. 

2). A partial converse 

this case it can-easily 

(O, bl) and (b2, co) 

(O, bl) and (b2, a) 

does not depend on the emotional state of 

is true if I assume F(O) is unimodal. In 

be shown that for all dE [dl, d2] and 

c>0 there exists an Anxiety function A such that 

Id* - d*l <E where dl is. a. Bayes decision with respect 

to anxiety A(L) 

So the interval-[d 1(b1, b2), d2(b1, b2)] is a--very natural'one to 

look at. It would be difficult to shrink the-interval further whilst 

still keeping the invariance property above. 

3). The term'keneralised location map" for 4(b) relates to the fact 

that the location interval [d1, d2] depends, on 4(b) only. 

4). If fi(b) is strictly increasing (decreasing on be (O, w), the 

argument above can be refined, to allow only estimates in the open 

interval 

(d1, d2)- 

3.4'. A new representation of a posterior distribution function 

Suppose that my known anxiety function and loss function are 

combined in the usual way to get the function L(9-d) satisfying 

conditions L1, L2 and U. If, in addition, I add the mild constraint 

that 1-L(s) is integrable and a random variable X has p. d. f. fx(x) 

satisfying 
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fx(s) cc 1- L(s), then 1- E2(d) « fz(d) I 

where fZ(z) is the p. d. f. of the random variable Z=X+0 where 

parameter 0 has associated posterior distribution F(6). Using, for 

example, characteristic functions, it is trivial to show that with 

fz(z) and fx(x)_I can retrieve F(8). So, by the above, if I 

communicate the functions E2(d) and L(s) I can also get back to F(O). 

Hence by retaining the loss function and anxiety function satisfying 

in combination L1, L2, L3 and the integrability condition, together 

with the expected anxiety, means that I keep all the posterior 

information that I have summarised in the posterior distribution 

of my parameter. 

It is amusing to note that this is not the case with the 

unbounded squared error loss, since then E(d), the associated 

expected loss satisfies 

E(d) = Var(. 8) :+ (d - 3E(6))2 

i. e. E(d) only communicates the posterior mean and variance, so 

loses most of the information in F(6). 

It would now be more satisfactory if it were possible to 

remove the inherent dependence on anxiety function in. the above, 

to obtain a 'depersonalised' representation of my posterior information 

It was shown in the previous section that 4(b) synthesises all anxiety 

function invariant information about the posterior Zocation of the 

parameter 8. In an exactly analogous way 

*(b) {Eb(r(b)) : r(b) E f(b)} 

where Eb(d) is defined in Section 3.2 can be thought of as an invariant 

spread map. The next theorem shows that communicating the pair 

(4(b), iP(b)) rather than the posterior mean and variance retains all 

the posterior information in F(O). Hence by breaking up the posterior 
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distribution of 6 in this way I isolate the factors associated with 

location from those associated with spread whilst retaining the whole 

of the information. 

Lemma 3.4.1. 

Let F(e) be a distribution function 2x differentiable on IR 

with extended support S(F) and F= range of f(8). Then 

(i) 

(ii) 

if A ='{y E F: there exists an xe S(F): f(x) =y and 

f'(x) = 01 then Ac is dense in F. 

for all c' e S(F) such that {f `(c) >0 there is another point 
{ 
{ f' (c) <0ý, {c 

). such that {f' (c) s0 and f (c) =f (C 
{ 

f, (c) Z0 

Proof ( i. ) 

Let D=UD. c*S(F) be'the set of all points 
iEI 

xe S(F): fl(x) =0 

where Di's iaI represent the disjoint non-empty closed 

intervals comprising the set D 3.4.2. 

Note that f(x) = f(y) x, y e Di since f is differentiable, 

so let fie'F be defined by 

fi = {f(x) :xE Di} 3.4.3. 

Let C= Cc = 
lEI* 

C 3.4.4. 

where Ci i'E I represent the disjoint non-empty open intervals 

comprising the set C 

Obviously I* countably infinite I countably infinite. 3.4.5. 

But every non-empty open set contains a rational. Hence I* is 

countably infinite by (3.4.3) and (3.4.5), A consists of a 

countably infinite number of points. But F is an interval of 

non-zero length 

Hence Ac is dense in FQ 
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Proof (ii) 

Suppose fl(c) > 0. Then in particular f(c), > 0. Let y>0, 

then there exists an c>0 such that IT <c implies 

f(c+y) > f(c) 3.4.6. 

if f(c+y) > f(c) for_ all y ja 1ß>0 f is not a p. d. f. Hence by 

Rolles Theorem there is ay E>0 such that 

f(c+Y) = f(c). 

Finally let y=i nf * {y' E ]a>0 : f(c+y) = f(c)). If f'(c+y) >0 

then there is an c such that 

f(c+y* -c*) < ß(c). 3.4.7. 

(3.4.6) and (3.4.7) together with Rolles theorem implies that 

there is az c< z< c+y such that 

f(z) = f(c) contradicting the definition of y 

Hence putting c* = c+y* gives the result. 

An analogous argument proves the result for f'(c) <0 

Theorem 3.4. 

Let «(b), 't(b)) consist of pairs (r(b), Eb(r(b)))where 

r(b) E'4(b). Thep (ý(b), j(b)) determine their distribution 

function F(6), which is 2x differentiable on]R, uniquely. 

Proof 

Choose an 

(i) f'(r(B)-B) 

(ii) f'(r(B)+B) 

Then since f' is 

f'(. x) >0 

f'(x) <0 

r(B) 

>0 

<0 

cont 

XE 

X. E 

E ý(B) such that 

for some fixed B>0. 

inuous, there is some e>0 such that 

A1 where Al = (r(B)-B)-e, r(B)-B+c) 

A2 A2 = CrCB)+B -e, r(b)+B+e) 

11 

3.4.8. 

3.4.9. 



52 

Now choose a properly unimodal p. d. f. h(x) such that 

h(x) a f(x) x'E A1u A2 3.4.10. 

For h(x), TheoremT3=2*(. t) states that Ch (B) is a function of B 

with derivative Iýh(B)I < 1. It follows that there is a -d >0 

such that for any njn <S 

ýh(B+n) - (B+n )' E Al 

ýh(B+n) + (B+n) E A2 

So for all b'E (B-6, B+S) there is an r(b) E q(b) such that 

3.4.11. 

r(b) _ h(b). 

Hence at BI can define the derivative of r(B) by Ch(B). So I 

can now differentiate EB(r(B)). 

-j E'B(r(B)) = i[f(r(B)+B)+f(r(B)-B)+r'(B)(f(r(B)+B)-f(r(B)-B))] 

= f(r(B)+B) = f(r(B)-B). 3.4.12. 

since f(r(B')+B) = f(r(B)-B) by definition. 

Hence all point ca S(F) which can be written 

c= r(b) +b where f(c) <0 f(c-2b) >0 

or c= r(b) -b where f(c) >0 f(c+2b) <0 

for some b EIR>O and r(b) E fi(b) have'f(c) defined by (3.4.12). 

By combining Lemmas (i) and (ii) it is easily seen that elements 

of a set of points c S(F) whose range is dense in F has this 

property. Thus since the p. d. f. f(6) is continuous it can be 

reconstructed using limiting arguments on this dense set. 

This completes the proof. 0 
Note: If F(A) is properly unimodal, the only point whose image is 

not accessible by equation (3.4.12) is the mode. 
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Hence no information is lost by summarising the posterior 

distribution F(O) by the pair (q (b); In fact if there is more 

than one stationary point of Eb(d) for some value of b, there is 

duplication of information in this pair. (It is fairly obvious 

that not all the local stationary points of 4(b) are needed for 

the construction (3.4.12) in the last Theorem. I feel it may be 

possible to characterise F(8) in terms of 

(i) all possible Bayes decisions with respect to step loss, 

(ii) their associated loss, 

but this is for further research. 

A partial converse of the above result is possible for properly 

unimodal distribution functions. By this I mean that from a pair of 

functions (r(b), q(b)) obeying certain conditions, I can construct 

a properly unimodal distribution function F(8) with associated pair 

($(b), ýI(b) = (r(b), q(b)) 

Conditions on r(b) 

-Clearly by Theorem 1(i) I need that 

(1) jr'(b)j <1 b¬ (O, B) where B is possibly infinite 

(This is in fact all I need) 

Conditions on q (b) 

From equation (3.4.12) it was shown that q(b) 2f(d+b) 

Hence I certainly need the following conditions. 

(2) q(b) <0b (0, B) 

(3) q'(b) >0b (OMB) 

(4) lim q(b) =0 (for the continuity of f(O) on1R) 
b->B 

(5) lim q'(b) =0 (since F(A)*must be property unimodal) 
b-ºO 

B 
(6) 

fo 

. q(b)db =0 (by the derivation of (3.4.12)). 
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r(b) 

b 

Fig. 3.2. 

q(b) 

b 

Theorem 3.5 

Suppose the pair r(b) and q(b) satisfy conditions Cl ... C6. 

Then there exists a unique properly unimodal (distribution function 

F(8) 2x differentiable oniR such that 

f(r(b)+b) = f(r(b)-b) { -jd(b) b [0, B) 
{ 
{0 otherwise 

Proof. The function r(b)+b is differentiable and strictly 

increasing on (O, B) by C1 and so invertible, 

6 
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Let t1(x) : (r(O), r(B)+B) - (O, B) 

be defined by b11(x) = r(b)+b. 

Then ti(x) > 0. xe (r-(-O), r(B)+B). 3.4.13. 

Let f(x) = ; jq(t1(x))" xa (r(0), r(B)+B) 

Then f(x) >0 by C2 

lim f(x) =0 by C4. 

x}r(B)+B 

Also fl(x) _ -Jq'(ti(x)) ti(x) 

So lim fl(x) =0 by C5. 
Xý0 

fl(x) <0xa (r(0), r(B)+B) by C4 and. 

3.4.13. 

Similarly, since r(b)-b is strictly decreasing on (0, B), and 

differentiable by C1, it is also invertible. 

Let t2: (r(B)-B, r(O)) -} (0, B) be defined by 

t2jx) = r(b)+b. 

Then t2(x) < 0.3.4.14. 

Let f(x) = -jq(t2(x)) r(B)-B <_ x50 

Then f(x) >0x (r(B)-B=O) by. C2 

lim f(x) =0 by C4 

x+r(B)-B 

Also f'(x) = -Jgt(t2(x) t2t(x) 

So-lim fl(x) =O by C5 
x-}O 

ft(x) >0x6 (r(B)-B, O) by C4 and 3.4.14. 
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Let f(r(O)) = lim f(x) 
x+O 

f(x) =. O xQ (r(B)-B, r(B)+B)C 

Thus if f integrates to 1 it will be a differentiable properly 

unimodal p. d. f. with mode r(0). and f(b), ßß(b)) _ (r(b), g2(b)) 

withextended support (M1I2) where M1 = r(B)-B 

.2 r(B)+B. 

Well, 
äi2 

f°fcxdx 
ýý2 

-2 f(Nt 
f(x)dx =+ fx) dx 

0 j0 2 
q(tx)dx +I q(t2(x))dx 

., 1 
! 

B 
_ q(b) (r(b)+b)° db q(b)(r(b)-b)'db' 

0 

ro 

BB 
_f0I q(b) (r'(b)+1)db -0 q(b)(r'(b)-1)db. 

B 
=2f q(b)db. 

0 

_ 22 by C60 

The. result follows. 0 

Thus lt is possible to construct a 
'prior 

for a particular 

decision maker by getting him to specify his action and its 

associated loss under these step loss functions, which are, as 

mentioned before, utility invariant. From this approach it is 

also possible to construct personal utilities. For related work 

see (Becker et al (1), Davidson et al (1)). However there is 

now good evidence to suggest that people in fact behave incoherently 

(Festinger (1) and (2))o Some analytic reasons for this phenomena 

will be made clearer in a later section. 
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Of more importance in the statistical'setting is the natural 

way I can use the preceding results in the analysis of Time Series. 

Recently Bayesian Forecasting techniques (Harrison & Stevens (1)) 

have been very useful to generate models and formalise processes- 

occurring in Time Series, However, most Time Series models either 

assume normality of observations or use the moment type of approach 

of Kalman Filtering (Box-Jenkins'(1) Kalman (1)). Working for some 

time on the problem of generalising the Bayesian-Forecasting 

approach to processes other than normal, I found that it is very 

easy to specify the model in terms of the decision space. This 

was then shown to be equivalent to a generalisation of the'usual 

sample space model - the equivalence catalysing very interesting 

and simple results. In particular mixtures of processes (causing 

"jumps") can easily be formalised in this way. The subject is 

developed in depth in Chapter 8. The subsequent part of this 

chapter contains many results useful for such an analysis whist 

at the same time generating interesting results for time independent 

processes. 

3,5. 'Examples of'Standard fi(b) functions 

The vast proportion of standard distributions are symmetrical 

and unimodal and the only possible choice of location for these, 

under some symmetric criteria, would appear to be their mode, The 

proof of Theorem 1(iv) confirms this conjecture i. e. fi(b) p 

for all b6 ]R>0 

where p is the mode. 

$ 
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Also if a p. d. f. f(O) is strictly decreasing on its extended 

support S(F) it is trivial to show (by working directly from Eb(d)) 

that 

fi(b) =. p, + b where p= inf S(F) 

This means. -for example, that 

fi(b) =b for the exponential distribution 

f(8) - exp(-A8) _ 

and O(b) =0+b for the Paneto distribution where the Paneto is 

given in the form f(6) -ý{8-(a+l) 9> 60 
{ 
{0 otherwise 

where 00 > O. 

Table 1 lists some of the more common properly unimodal 

distribution functions under common parametrisations, and their 

corresponding fi(b) functions. (The working for these examples 

is omitted since it is like finding the mode of a p. d. f.:, i. e. 

elementary manipulation). 

Sometimes explicit solutions are not possible, but this is 

not very much of a disadvantage since numerical solutions can 

easily be worked out using a pocket calculator, and the corresponding 

intervals found. 
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Variance Estimation for a normal distribution 

Squared-error admissibility was in vogue a while ago before 

James and Stein (1) showed some rather paradoxical results using the 

concept as a criteria for judgement. To add wood to the fire, it 

has long been known that the M. V. U. E. S2 of variance V of a normal 

distribution is squared-error inadmissible. But: 

(i) The sensible parametrisation for V is kn V (as shown in 

Chapter 2) and with a "vdtgue" prior of conjugate form the 

decision region for all symmetric loss functions is 
% 

vE (n-1 S2, o) (transform from Table 1) 

which certainly contains the M. V. U. E. 

(ii) If I have a symmetric loss function on the variance itself, 

the decision region is 

V (n-1 S2 ) E n+l 

which again contains the M. V. U. E. 

In fact it could be argued that under this Bayes criteria 

that S2 is a better estimate than the Z. L. E. which'lies on the 

boundary of region (i) and certainly better for estimates of the 

form 
n+k S2 where 1<k<4, which have been proposed as 

2 
alternatives to S. Of course prior information usually will not 

be vague so these results must be taken with a pinch of salt, but 

I think that the example illustrates how misconceived the concept 

of inadmissibility is, and how it can discard out of hand estimations 

which are quite. acceptable. 
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Comparison of lognormal and gamma distributions 

It has been well-known that under certain situations, gamma 

distributions can be, approximated by the lognormal, Bartlett et al- (1) 

and this has been used widely in Bayesian statistics (e. g. Leonard(3)). 

It is a moot point however how. this approximation should be made. 

In Fig 3.3,1 have graphs of the functions fi(b) of the Gamma 

and lognormal when they have the same mode. Differences in estimates 

under particular loss structures can then be compared. The estimates 

will be most notably different when b=2.13m where m is the mode 

1 oy.. 6ý'''ý' 

ßi1 

Fig. 3.3. 

The above comparison suggests that in a Bayesian estimation 

situation, an approximation minimising the distance between these 

two 4(b) functions could be utilised. 

"s7vn m t"s. n 21rn 2. <-% b 
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3.6. Expanding families of distribution'functions 

The first thing that an observant reader will see is that 

in many-cases the mode is intrinsic to the generalised location map 

for many of the standard families. The following theorem gives-the 

reason for this. 

Theorem '3.6. 

Suppose f1(e), f2(O) are p. d. f. s of 6. Then- 

ýfl(b) _ (b) for all bQ (O, 'g(k2-k1) 

if and only if: f' there exists a 1-1 transformation T such that 

f2(0) = T(f1(e)). 

where notation is borrowed from Chapter 8 

Proof 

The sufficiency is obvious since it is then clear that 

f1(d+b) = f1(d-b) f2(d+b) = f2(d-b). 

Conversely if T is not monotonic then there exist points S1, S2 such 

that 

f1(S1)" f1(S2) and S1 < S2 (say). 

fz(S1) = f2(S2 

or visa-versa. Putting b= J(S2-S1) and d J(S + S2r), 

this becomes 

f1(d-b) & f1(d+b) 

f2(d-b) = f2(d+b) 

or fl(b), 
$ f2 (b) 

Hence the theorem is--proved. Q 
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Notes 

1) For all symmetric unimodal pairs of p. d. f. s (f1(O), f2(6)) there 

is always such a 1-1 transformation T linking them. 

2) Typical examples of the equivalences are the following: 

Ci) f1(0) exp -h(_e)) 

f2(0) (1 + ch(6))-«9 

where h(6) >0 for all 06 S(F1) and v, c 0 

Since f2 = (1 -c inf1)-v which is a 1-1 transformation 

(ii) f2(0) a f1(0) where v>0. 

The above theorem provokes the following definitions. 

Definitions 

Call F)_. (f (e() : g' e A) an expanding family' of p. d. f. s 

if for every f F(c) there exists a subset 

Ffý cF such that: 

(i) For every .f -a F 
f*, . 

4f(, b) = ýf*(b) for all b (O, 1(k2-k1)). 

(ii) There exists a reparametrisation R'of the family F(a) 

R: A-B= (B1, B2,... Bn) 

(ßlý""""". ßn) such that 

Ff* n {f(e>>, ): ß1 ` B1). 

Call a family F(a) a linear expanding family if for every 

f* a F(P) Ff*'_Pf* 

where Pf* = {f(e): f(6) _ (f (O))r, r %1R >01. 

Exa mples. The following examples can be checked from Table 1: 
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Linear 'expanding 'p. d. 'f .s 

Normal 

t-distribution with unknown degrees of freedom 

Gamma 

Inverted-Gamma 

Beta. 

Expanding 'fa: milies 

All unimodal symmetric families with one "spread" variable 

Log-normal 

Log-F 

Inverse-Logistic transformation of the Beta. 

Obviously not all families'are expanding, for example the usual 

parametrisation of the F distribution is'not. 

The definition of expanding families is'used in the expression 

of increased uncertainty with time which is explained in Chapter 8. 

3.7. A link with the prior likelihood approach. 

Suppose instead of a Bayesian approach in which I end up with 

posterior p. d. f. f(O), I use a prior likelihood approach (Edwards. (1)). 

Then the prior likelihood (assumed of the same form as the prior p. d. f) 

and sample likelihood are combined in exactly the same way to give a 

posterior likelihood function of 0 

2(0) « f(0). 

Then, because ý, (b) does not use the measure underlying the Bayes 

posterior (i. e. I am not integrating f(0)) it could equally be 

considered as a map of I(8). Consider ýf(b) in this light for a 

moment. 

Firstly the intervals obtained from ýf(b) are measure invariant. 

Also Theorem 3.6 can be restated in the following way. 
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If for every pair (01,02) 6 S(F) the pair of posterior 

likelihoods (11,. t 2) has the property 

X1(61) s2 (02) 4j X2(61) s X2(62), 

then 11 and k2 have the same "location" or f(b) function. In fact 

I could choose to define ¢(b) functions in terms of these equivalence 

classes. In a sense this definition would be more appealing because 

of the invariance to the transformation of the parameter. Certainly 

it emphasises the strong similarity between proper Bayesian analysis 

and likelihood analysis which just does not come over if I immediately 

turn to the conventional loss functions. 

I can summarise the sentiment in the following: 

(i) If I only have information about the ordering induced by the 

posterior likelihood then the only invariate "location" 

variables I can communicate are the stationary points of the 

likelihood (which, of course include the M. L. E). 

(ii) If in addition I have a "natural" (up to linear transformations) 

scaling on 0 (induced for example by some loss structure), 

then I have all the information I need for making location 

estimates on 0 in terms of the fi(b) function. 

(iii) It is not until I need to guage how "good" my actual estimates 

are (ip(b)) that I need to integrate i. e. use a measure. This 

is when I need the actual numerical values of the posterior 

likelihood/distribution (up to linear transformations) rather 

than just the ordering induced by them. 

I shä11 now return to the main theme. 

r 
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3.8. On to Bimodal distributions - The 'symmetri*c product 

Bimodal distributions are hardly touched upon in most 

statistical inference, often because they tend to cause acute 

embarrassment for many criteria of judgement (e. g, m. 1. e. squared- 

error loss, inadmissibility) being used today. Hence there is a 

tendency to assume that they do not exist, sufficiency and other 

concepts are created to cloud the issue. 

The following lemma and theorem give. the reason for the 

importance of a sample mean and a good interpretation of it. 

Lemma' 3'. 7.1. 

. Suppose X1, *.. Xn are independent random variables with. 

differentiable, unimodal, symmetric sampling p. d. f. 's fi(xI6) 

where 0 is a location parameters and 1si5n. 

Then if a uniform prior on [ml-k, m2+k] is used for 6 

where m1 = min xi m2 = max xi 

15isn lsisn 

any local minima of expected loss with respect to step loss Sb lies 

in [ml, m2l, b s J(m2-m1+2k) 

Proof Any local minima d*has to satisfy the equation 

n 
E(P. nfi(d-xi-b) - £nfi(d-xi+b)) =0b< J(m2-m1+2k) 

i=1 

Suppose d> m2. Then for 1sisn d--xi >0 so 

knfi(d-xi-b) - Qnfi(d-xi+b) >015isn 

since each fi is symmetric 

and unimodal. 

Hence adding the equations 
n 
E2nfi (d-xi-b) - Zn fi (d-xi+b) >0 

i=1 

Hence d cannot be a local minima of expected loss. A similar 

argument proves the case for d< ml.. 13 
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This tees up to the following theorem. 

Theorem 3.7. Suppose X1... Xn are independent random variables where 

xi has sampling p. d. f. fi(xe) on IR 1sisn, fi(xj6) is symmetric 

and unimodal-1 sisn, and where 0 is a location parameter for each 

of the Xi's. 

If (i) Ii(O-x) _ In fi(x18) is 1x differentiable with respect 

to 6 everywhere on :R 

(ii) For all M1 < M2 e IR 

Ii(x+kiIO) 
ri(x) n 

E I! '(x+k. (B) 
j=1 JJ 

-º R1 as x -. co for all 

kl, k2 E [Mi, M2] 

(iii) a uniform prior on [-2b, 2b] on 0 is used, then 4(b) 

satisfies 
n 

fi(b) -ýE Rixiasb - 
i=1 

n 
Note: From the definition E Ri = 1. ]. 

i=1 

Proof d= O(b) must satisfy, by the symmetry of I, 

nn 
E I(b-y) -E' I(b+y, )=0 

i=1 1 i=M i 

where yi = d-xi. By Lemma 7.1 it was shown that 

min xi s d.: 5 max xi so 
1sisn 1s1sn 

lyil sm where m= max xi - min xi 
1sisn 1sisn 

By the first mean value theorem 

nnn 
E Ii(b-yi) -E Ii(b+yi) =E 2Yi Ii( b+6i Yi) 

i=1 i=1 i=Z 

3.8.1. 

3.8.2. 

3.8.3. 

where 18ij <1 1sisn 
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n 
Note that 

iZlI! 
(b+O. yi) 0>bm since each fi is 

properly unimodal 3.8.4. 

So dividing (3.8.3) by (3.8.4) and implementing equation (3.8.1) 

d must satisfy. 
nn 
E 2y. I! (b+8iyi) ( E- I! (b+9ýY. )) =0 

i=1 i=1 

But by using condition (ii) and statement (3.8.2) this becomes 
n 
E (x-d) Ri+t(b) =0where t(b)-ý0asb-}ý 

i=1 
n 

Hence d= fi(b) -ýE Rixi as b 
i=1 

The importance of the result of course hinges on how often condition 

(ii) is met and the value of the limit in particular cases. The 

following corollories give two important examples. 

Corollary 3.7.1. If fi(x16) = f(xl6) i=1... a then if 

(i) I is a polynomial or 

(ii) f is an inverse polynomial 

then fi(b)-ýxas b-ý . 

Proof It is easy to check that condition (ii) of Theorem 3.7 is 

satisfied by showing 
I'(x+k1Ie) 

-ý 1 as x -ý . I'(x+k210) 

(In both cases this is a ratio of 2 polynomials the highest order 

top and bottom terms dominating] 

It follows that Ri= 1/n 1s1sn in both (i) and (ii) and 

hence that 

fi(b) }XD 
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Corollary 3. '7.2. 

If fi(xIO) - f(Hi(x-A)) i=1... n, then 

(i) If I= kn f(xlO) is a polynomiäl of degree m, Ri = Hi (E Iim)-1 
j-1 

ý. 
1 sinn 

(ii) If f is an inverse polynomiä. l of degree m)R1 = 1/n 1sisn. 

Proof 

Using the result in Corollary 7.1 it is sufficient-to prove 

in case 

(i) HI Hx 
+ Hm as x 

II(X) 

in case (ii) 

m 
where IE Iixi 

i=O 

HI'(Hx) Hg'(Hx) 
. 

g(x) 1 as x 
Il(x) g(Hx) g'(x) 

m 
where f-1(x) = g(x) =E gixi. 

i=0 

This is again easily seen since highest terms in each expansion 

dominate 

It(Hx) 
}H 

Im Hm-1 xm-1 Hm In (i) H, 
I' (x) M. xm-1 

11 = 

) ýý Hm gg(Hx)m-i gmxm 
In Cii) H_ -ý ] 

g' Cx) g(Hx) in xM-1 gm gm(Hx) mQ 

Corollary 3: '?. 3. If fi(xIA) (defined above) has a tail steeper 

in degree than. f (xi 6) zs1 : r- n, in cases (i ) and (ii) of 

Corollary 30702. 

ý (b) -> x1 as b -ý . 

Proof. Use the dominance of highest terms as'in Corollary 3,7,1, 

but on ri(. x) (defined in Theorem 3.7) directly. Q 
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It can now be seen how the sample mean can be an important 

quantity even. when bounded loss functions are used. When X1,... X 

are independent identically distributed . random: variables each with 

symmetric unimodal sampling p. d. f. s and a vague prior is used, the 

holy fi(b) function tends to aQ long as the tails of the sampling 

p. d. f. 's are not too steep. (See Corollary 7.1). Note, however, 

that is more of a landmark than-a decision. 

Often it is found that s(b) is an increasing iucntion of bo 

In this case (and many others) all Bayes decisions under symmetric 

bounded loss must lie in (m, x) where m is the highest posterior 

mode. So x need not be a bounded-Bayes decision at all, it often 

marks an end point of an interval outside which estimates are poor, 

unless of course it is sensible to use a strong prior distribution. 

Note itself is outside this interval. 

The effects on posterior decisions of different forms of 

prior distribution is for further research. However in the final 

Corollary 7.3 it is seen that the value of the random variable X 

which has the steepest tail dominates the decision when a vague 

prior is used so that 

4(b) +x as bo 

In for example David [1], he shows that the analysis of the 

posterior distribution of a location parameter 8 using a prior p. d. f. 

fo(e-u) with location u is equivalent to the analysis using a uniform 

prior on 0 and assuming an extra random variable X0 with p. d. f. 

fo(x-A) has taken an observed value V. So by the above comment, if 

the tail of fo is too steep, 

(b)''u as b+c 

6 
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This may be sensible or it may not, depending on the strength 

of particular pieces of information. Conversely if the tail of the 

prior is less steep than that of one of the sampling distributions 

of the random variables being observed, the prior location gets 

ignored as b}. This in fact, is a special case of the analysis 

in the above reference. 

Notice that using the notation above, if fý =f and conditions 

of Corollary 7.1 hold, then 

fi(b) + nx+u as b 
n+1 

Corollary, 7.2 emphasises the difference in asympototic 

behaviour between distributions in the exponential family and those 

distributions like the t with inverse polynomial tails (note in 

particular the difference between the tail behaviour of fi(b) for 

the normal distribution and for the t-distribution with high degrees 

of freedom). 

The author feels that much of what is done using asymptotic 

approximations, characteristic functions etcetera, uses properties 

of the sampling distribution in their tails. In most cases it is 

unethical to assume that these are known precisely. Clearly x often 

crops up as a limit because of the above intimate link with the 

tails as shown above. 

3.9. Convex Utilities (Assume L1, L2 and L3 hold). 

It is natural to ask (following comments in 3.1) whether 

fuller use of a particular loss structure can be used to find where 

its corresponding Bayes estimates might lie. To answer this question 

one first has to consider the types of utilities that might be 

employed by a decision maker making an estimate. One that springs to 

mind might be the convex (inward) utility function which is pictured 

in Fig. 3.4. 
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Utility 1 
U. 

Loss 
O1 

Fig. 304. 

i. e. those utilities u such that 

(i) u is twice differentiable 

(ii) u"(L) Z0 for all Q 

This is-obviously an optimistic class of utilities and constraint 

the decision maker never to "cut his losses" for example. Each 

utility in the class takes at least as much note of small errors 

in estimation as it does large. 

Assuming this type of utility, therefore, a more restrictive 

class of loss functions can be considered, the "convex inward" 

systems loss function shown in Fig. 3.5. 

L(s) 

s=d-O 

Fig. 3.5. 
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A typical example of such a loss function that the author 

has seen-used is 

1- exp-I d- ei. 

_ 
As before the class of corresponding expected utilities 

for a fixed posterior distribution under these two restrictions 

can be summarised in'terms of a linear utility u, and "convex 

inward" loss function L*, by defining 

L*(s) _ (1 - u(L(s)) 

where U and L are the original utility and loss function respectively. 

So I lose nothing in-the analysis by forgetting-the utility function 

and just working with expected, loss. 

As in the first part of the Chapter a "basis" for this class 

can now. be constructed. This is done with what are called ramp loss 

functions. 

Definition 

The Generalised Ramp loss function Rb 
a(s) 

is defined by 

Rb c(Sý 
0 

"! 
sI <b 

K( IsI -b) bs Isl sc 

1 C< is[ 

where s= d-6 

k= (c-b)-1 

.. ý. . 
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R (cl 

Fig. 3.6. 

Theorem '3.8. 

The expected loss function ER(d) with respect to loss function 

RsC(0-d) and differentiable posterior distribution F(9), has minima 
__b 

all satisfying the equation 

F(d+c)-F(d+b) = F(d-b) - F(d-c). 

Proof 

-b c 
ER(d) = 1-F(d+c) + F(d-c) +k (j--(s+b)f(s+d)ds +J (s-b)f(s+d)ds) 

Cb 

which on rearranging and changing the arguments-of the integrals 

becomes 
(cO -b 

=1- F(d+c) + F(d-c) + kJ s(f(d+s+b)-f(d-s-b))ds 

Integrating by parts and rearranging this becomes: 

c-b 
=1-kf (F(d+s+b) + F(d-s-b))ds. 

,, 
0 

Hence the stationary points are given by 

c 
(f(d+s) + f(d-s))ds =0 

The result follows. p 

-c -b 0bc 
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Definition 

Define the simple ramp loss function (or simply the ramp 

loss function) to be the generalised ramp loss function with b=0, 

The minima of expected loss then satisfy the simpler equation 

F(d*+c) - F(d*) = F(d*) - F(d*=c) 3.9,1, 

d 

Fig. 3.7, Note that the local: stationary points of ER(d) are 

given when Area A1= Area Ala 

Now the basis Lemma. Let ER(b)(d) denote the expected loss with 

respect to the simple ramp loss function Rb(6-d) 

Lemma: '3', '9'a 1a 

Suppose L"(s) s0a. so Then EL(d) can be expressed in the 

form 

EL(d) =J ER(b)(d) a(b)db where a(b) is a p. d. f. 

Proof. It has been shown in-Lemma 3 31. that in general 

ELd) =J Eb(d) L'(b)db where L'(b) is a p. d. f. 3.9.2, 
ý 

d -c dd +c 
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(bO rbO 
Also JEc (d)dc =J [1-F(d+c) - F(d-c)]dc which on integrating by 

parts gives 

b 
= bEb(d) + 

(blcldF(d+c) 
3.9.3. 

= bER(b)(d). 

Hence integrating (3.9.2) by parts and using (3.9.3) 1 get 

EL(d) =b ER(b)(d) Li(b)10_ 
JER()(d)bL"(b)db. 

Since L'(b) is a p, d. fa bL'(b) }O when b -* 0 or b}w, so 

EL(d) =J EE(b)(d) a(b)db 
>O 

where a(b) = -b L"(b). 

It is easy to check that (b) Z0 and 
fý>O 

a(b)db = 1. 

The result now follows. 0 

Let ýE(b) = set of stationary points of ER(b)(d) for d6S, 

where S is defined in the previous section. 

The following Theorem ensues. 

Theorem 3o9. 

Suppose L(s) is bounded by 1 symmetric and 2x 
. 
differentiable 

a's such that 

(i) L'(s) is decreasing s>0 

(ii) L(b) =1b>k (where k could be ) 

Then all Bayes decisions with respect to L lie in the interval {dl, -d2] 

where dl = inf'{4R(O, k)} 

d2 sup {Y O, k)} 
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Proof'. Using Lemma 3.9.1. I can substitute ER(b) for E(b) in 

Theorem 3.3 andthe argument can be reproduced exactly (Note that 

I have no end point difficulties this time). 0 

The problem now is that the 4R(b) functions are a little 

bit more difficult to find explicitly, since they are functions of 

the distribution function (see Lemma (3.9.1) rather than the p. d. f 

(as fi(b) was). -Most commonly used distributions are represented 

in p. d. f. form, so the set 0R(O, k] may be difficult to obtain 

explicitly. 

This next. theorem partially removes these difficulties, 

Theorem '3010 

Let F(6) be a properly unimodal distribution with 0f(b) a 

non-decreasing function of b, Let 

b r- 1ft, 
ý,. 01 

symmetric loss functions such that 

be some family of bounded 

Lb(s) _ {k(b) L*(s) 

{ c(b) 

L(s) < c(b) 

otherwise 

where c is strictly increasing in b, k(b) a function of b only and 

L*(s) some symmetric loss function (not necessarily bounded). 

Then Inf [E(Lb, F, d)] 
dal 

where I is any closed interval containing a local minima s increasing 

in bo 

Proof. First note that without loss of generality I can assume that 

k(b) =1 since k(b) will not affect the positions of the minima of 

E(Lb, F, d). 
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w 

-b2 =b1 
1 

bl *. b2 

Suppose 0< b1 < b2e Then 

Lb (s) _ Lb (s) + f(b1, b2)(s) 
2 

where L(b1, b2)(s) = Lb (s) - Lb (s) is itself a bounded loss 
21 

function pictured above. 

So E(Lb 
2 , 

F, d) = E(Lb , Fad) + E(L(bi, b2), F, d) 
1 

By Theorem 3.9 and using the fact that ýf(b) is non-decreasing, 

E(I, b , F, d) has all its stationary points in S in 
1 

(ßß(O), 4f(b1)) 

A 
and E(L(bl, b2), F, d) has all its stationary points in S in 

(4 (b1), cbf(b2)) 

So in particular E(L(b1, b2), F, d) will be decreasing on (4f(O), 0f(b))o 

The result follows Q 

Note also that the same argument can be used to prove that ä. il local 

maxima are decreasing in b 

Corollary 

Under the conditions of the theorem, the Bayes decision is 

increasing in b0 
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Note 

Just because f is unimodal does-not mean that E(L, F, d) is 

going to have one minima for all bounded symmetric loss functions 

L(s). Exact conditions for when this-is the case are given in 

Chapter 6, 

The trajectory of the Bayes decision could very well look 

like Fig. 3.8. 

(b) 

minima 

of 
E(Lb, F, d) 

:ý Bayes decision 

d1(b 

Bay ;s decision 

b 

Fig. 3.8. 

The reason I have included the previous theorem so soon is that it 

gives rise to the next corollary for which I need the following 

Theorem. 

Theorem 3,11. 

Suppose M is the median and in the mode of a properly unimodal 

distribution function F. Then 

(i) max R(1 -M as b+ cc 

(ii)-min {ýR(b)} }m as b0 

Proof Without loss of generality suppose m=0. 
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(i) (b) is the set of points given by the equation 

F(4R(b)+b) - F(gR(b)-b) - 2F(4R(b)) =03.9.4. 

which can be rewritten as 

1- 2F(ýR(b)) =-R(b) " where 3.9.5. 

R(b) = 1-F(4R(b)+b)-F(ýR(b)-b). 

Suppose there exists a sequence (ýR(b)) in'{ýR(b)} such that 

ýR(b) -ý- asb -* - 

Then ]"R(b)+b) - F(ýR(b)) --O as b -> which by (3,9.4) 

gives 

F(ýR(b)-b) - F(ýR(b) -+ 0 

ie. F(4R(b)-b) 1 

Henoe: for all b> B(say) R 
(b)-b >O 

(since then F(4R(b)+b)-F(ýR(b)) < F(ýR(b)) - F(cR(b)-b). 

An analogous argument shows that there is no sequence in 
e(b)} such 

that ýR(b) - 03 as b}ý. 

So forýall. b' I{ýR(b)}I s M. Hence R(b) -0 as b; co 

So by (3.9.5) 

1- 2F(4(b)) ;0 ie. 

F(i(b)) ; as b-, so lim ýR(b) is the unique median. 
b; ý 

(ii) 'OR(b)) s [-b, b] because if there is a qR(b) e {OR(b)} 

such that ýR(b) >b then 

F"R(b)+b) - F($R(b)) <F (ýR(b)) - F(4R(b) - b) 

and if ýR(b) < :. b 

F(ýR(b)+b) - F($R(b)) > F(cR(b)) - F(4R(b)-b). 

The result follows. 11 
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Corollary '3 0'1'1', 1 

If the loss function L used in convex downwards and F has 

a non-decreasing fi(b) function, then any Bayes decision with respect 

to Land F lies in the interval 

[m, M] where m-. = mode of F 

M =-median of "F, 

Proof 

Since the ramp loss functions*{Rb(s), bG Il3ý,. o} define a 

family of loss'functions satisfying the conditions of Theorem 3.10, 

where L is the absolute loss function, min {ýR(b)} and max'(ýR(b))} 

are non-decreasing in b. 

It follows by Theorem 3.11 
' that the Bayes decision lies in 

[lim min*{ýR(b)} lim max {$R(b)}]. 
b}0 b; - 

Lemma this implies any Bayes decision lies in 

[m, M] as required 

By the previous 

0 

Finally it should be noted that related work on some aspects 

of decision theory 

was given by Wald 

related work I can 

to this chapter is 

on Bayes decisions 

loss functions are 

of the same flavour but of a different emphasis 

(1) and Blackwell and Girshick (1). The only 

find in recent statistical literature pertinent 

a paper by Baran (1) who investigates the effects 

of convex utilities when absolute or squared error 

used. 

Another good reason for using Step loss functions is given 

by Savage (1) where he shows that heuristic optimal decisions do not 

correspond with theoretical ones when the loss space has more than 

two elements. 



82. 

Summary 

Some general properties of estimates made using bounded 

loss functions and distributions that are possibly multimodal 

have been listed and a characterisation of general posterior 

distributions-carried out. A few examples for standard distributions 

are presented. Finally I-give some refinements of the aforementioned 

results under a convex utility hypothesis. 
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4. CATASTROPM THEORY IN STATISTICS 

4.1. Introduction 

In the first part of this chapter I will give a very brief 

introduction to the parts of Catastrophe Theory pertinent to statistics 

illustrating the principles with a couple of examples in the second 

half. 

I do not pretend that these first few pages give the reader 

more than a glimpse of what Catastrophe Theory, is all about, so I 

shall give a set of references so that a fuller appreciation. by the 

reader might be possible. 

The best layman's introduction I have seen is a book by Poston 

and Stewart (1) and the non technical paper Isnard and Zeeman 

(1) could be usefully looked at, though many of the applications 

of the theory could at best be described as hopeful. A full proof of 

the Classification Theorem was first given by Mather (1). Other 

proofs are given by Trotman and Zeeman (1) and a less general 

but easier proof is in Bröcker (1). The classic bock on the whole 

subject is written by Thom (1). It was he who conjectured the 

Classification Theorem in the first place. Unfortunately this is not 

the most readable of expositions. 

There have been numerous applications of Catastrophe Theory 

made in the last few years; sadly many of them are less than adequate 

and others are blatently wrong. The best examples are in either the 

field of engineering or biology. For examples of the latter see 

Zeeman (2) and (3). On the sociological side the only papers I have 

seen that I 
, 
have found at all convincing are Zeeman (4) and (5). It 

is from the latter that I take the statement of the Classification 

Theorem. 
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The Classif"i'cat'iön Theorem 

Catastrophe Theory is a classification of potential functions, 

the classification being given by the following theorem. 

Let C and X be manifolds, dim C. s 5 and VE C"O(C x X). 

Suppose that V is generic in the sense that the related map 

C+C, (X). 

is transverse to the orbits of the group 

Diff(X) x DiffQR) acting on C"O(X). . 

("Most" C functions V are generic, genericity being open dense in 

00 Witney C -topology). 

Let - M" cCxX be given by 

DVO 
x 

and let X: M+C be induced'by the projection CxX-C. 

Thom's Classification Theorem 

(a) M is a manifold of the same dimension as C. 

(b) Any singularity of x is equivalent to an elementary 

catastrophe 

(c) X is stable under small perturbations of V. 

The number of elementary catastrophes depends upon the 

dimension of C (and not on X) 

Dim, C 123456 

Elementary 
Catastrophes 

125 7'' 11 (ýj 

Hence provided dim Cs5I can classify what a Potential 

function V will look like locally, provided V is "nice" (i. e. Coo 

0' 

and generic). The proof of the above theorem is extremely arduous 

taking up some: 6O sides of writing. 
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Following the notation of the theorem, X is commonly called 

the behaviour space and C the control space C the latter is a misnomer 

for applications I have in mind). 

In statistics the above classification can be used in (at 

least) two very distinct ways which I shall call Type I and Type II 

classifications. 

Type I Classification - Classification of expected loss functions 

Type II Classification -Classification of processes acting on the 

Sample Space.. 

Type I Models 

These are the easiest models to deal with. It has already 

been mentioned that expected loss functions are potential. functions, 

so I can use the Classification Theorem directly on them., In this 

case: 

X is the decision space. 

C will depend on (a) The model being used [and hence 

the form of the prior distribution, 

likelihood and the loss functions]' 

(b) All the parameters of the model 

(including. the loss function] 

(c) The data set. 

The effect in X on the decision d under local changes in 

particular EC will be classified provided the expected loss function 

is Coo and generic '(the former of these conditions being satisfied 

for example if the loss function L(8-d) is Cm. ) This means in 

particular that if k moves smoothly with time, the different types of 

sharp changes or catastrophes-in E(d) that occur will be catalogued 

by the theorem. 
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It cannot be strongly enough emphasised that-the classification 

above is local and not global. In many cases however E(d) will in 

fact experience these local properties globally. This I shall look 

at in more detail in Chapters 6 and 7. 

Type II Models 

These-models are a little more delicate to describe. Argue 

thus: 

Perhaps one of the most used methods in Statistical Analysis 

is Linear Regression, and the reason for its usefulness is clear. 

Many functional relationships are linear at least locally since they 

have a Taylor series expansion which converges and in many cases this 

local approximation is an adequate global description. 

The question then is: How do I generalise this methodology? 

A possibility is polynomial regression but it is often found that a 

piecewise linear model is at least as adequate and I'am back where I 

started. However, add the postulate that the relationship is induced 

by a potential function and Catastrophe Theory gives a wider class of 

"shapes" of relationships within which to expand the number of possible 

models. 'Just as in the linear case I will project the local Taylor 

series approximation into the global and hope for the best. What is 

interesting is that these relationships cannot be approximated 

linearly so I begin to move away from the much loved linear regression 

model. 

I shall usually work with a random variable taking values on 

a Canonical Catastrophe manifold (I will define "canonical"later). 

In addition it will be noted that 
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X is the range of the random variable in question 

C will depend on (a) The form of the model [prior 

and likelihood]" 

(b) The parameters of the model 

(c) The data points. 

Because of their greater simplicity I will spend most of 

the thesis analysing Type I models. However Chapter 7 shows that 

there are big links between the two-types in fact. Type II models 

will be-discussed in"some of the remainder of this chapter and 

briefly in the last chapter. 

In both the applications of Catastrophe Theory cited above 

it would seem sensible to limit the classification to those models 

where X, the Behaviour space, is the one dimensional manifold ]R 

as a first step (In fact I get no further than this in this 

exposition). Furthermore for Type I models I always choose an 

absolute minimumof expected loss and so canonical forms which 

evolve no new absolute minima are of less interest (but see §4.3 

later). On these two counts I will not make any mention of 

Umbilics that might appear in Statistics in this thesis. A list 

of the classified Catastrophes is given below for q54. 
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Codim Name Canonical Form 

3 
1 Fold V(x) =x 

13 
- ax 

2 Cusp (Dual Cusp) _ V(x) = h4/4 
- 

bx2/2 
ax 

(V(x) = -(x4/4 - 
bx2/2 

- ax)) 

3 Swallowtail V(x) = x5/5 
- 

cx3/3 
- 

bx2/2 
- ax 

3 Hyperbolic Umbilic V(x) ="x3 + y3 + cxy - bx - ay 

3 Elliptic Umbilic V(x) = x3 - xy2 + c(x2+y2)-bx-ay 

4 Butterfly V(x) =x 
/6-dx /4-cx 3 /3 bx 2 /2-ax 

(Dual Butterfly) 6432 
(V(x)= -(X 

/6-dx /4-cx /3-bx /2-ax)) 

4 Parabolic Umbilic V(x) = x2y+y4+dx2+cy2 _ bx - ay 

The Umbilics also have "duals" that I have not included. 

Note that the duals are not geometrically different-but there is 

an interchange of maxima and minima. 

The Fold, Cusp, Swallowtail and Butterfly are the main 

Catastrophes of interest so I 
. 

Will briefly describe these in turn 

below. It must be remembered however that these manifolds can be 

pulled and stretched (see the statement of the theorem) and still 

remain equivalent in the terms of the theorem. The Canon'caZ Form 

is the simplest element in each of the equivalence classes. 

Heuristically the Canonical forms can be thought of as a truncated 

Taylor series of each member in the equivalence class the truncation 

taken at a point where it does not affect the geometrical form. For 

an exact exposition see Thom (1) or Poston and Stewart (1). 
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The Fold Catastrophe 

3 
X =IR C =IR V(x, a) =3- ax 

c=a 

My is given by x2 -a=0 (See Fig. 4.1). 

x 
(", p- _ 

0 

I" 

a 
al 0 a2 

Fig. 4.1. 

V(x, a3) V(x, O) V(x, al) 

Fig. 4.2. 

The position of the maxima and minima of V(x) are given 

in Fig. 4.1 and some illustrative potential functions given in 

Fig. 4.2. Notice that no minima (except -°) exists for as0, 

and hence no point of equilibrium. 
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The Cuso Catastrophe 

X=Re=RxR V(x, a) = x4.4 
- 

bx212 
- ax 

My is given by x3 - bx -a=0. 

X 

D 

Fig. 4.3. The Cusp Manifold 

a 

Fig. 4.4. The Bifurcation Set 



91. 

The Cusp Catastrophe is the most well known and useful 

of all the Catastrophe, My given by the graph in Fig. 4.3. Of 

main interest is the number of minima (and maxima) of V(x)'for 

particular values of the pair (a, b). If I solve 

V'(x) =0 with 

V"(x) =0 (differentiation being with respect 

to x). 

I obtain the FoZd points, which as projection on to the Control 

Space gives the cusp graph in Fig. 4.4. Notice that in the shaded 

region B (called the Bifurcation set) that is bounded by the 

projection of the fold lines there exist 2 minima (and one maxima) 

of V(x) and outside B in (BC)o there exists exactly one stationary 

point, a minimum. The point x=a=b=0, the solution of 

v' (x) = Vif (x) = V", (x) =o 

is called the Cusp point 

Note that along the fold lines there exists 1 turning point 

and one minin nexcept at the cusp point where there is, just 1 minimum 

V(x) is often used to represent two conflicting regimes, the regimes 

being modelled by the different "parts" of the manifold. 

For the Dual Cusp put V*(x) = -V(x), V(x) defined above. 

This just makes all the maxima minima and vice versa. B then contains 

1 local minima and (Bc)° none. However since this has no conflict 

of regimes it tends to be of less interest. For both cusps 

a is called the normal factor 

b is called the splitting factor. 
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The difficulty in analysing the "higher" catastrophes is 

one of trying to picture the geometry (I do not have enough dimensions 

to draw them). I circumvent the problem temporarily for the case of- 

the Swallowtail Catastrophe by just, drawing the projection of the 

fold points onto the Control space (now 3-dimensional)-as I did 

for the Cusp and hence get a representation of regions containing 

certain classes of maxima and minima. 

The Swallowtail Catastrophe 

X= IR c= IR3 V (_x) ,)= 5x5 - 
3x3 

- 
2x? 

- ax 

k= (a, b, c) 

My is given by x4 - cx2 - bx -a=0 

G 

Fig. 4.5. The*Swallowtail Contröl Space* 

Very roughly speaking the Swallowtail Catastrophe is a 

Fold Catastrophe with a "kink" in it. The projection of the Fold 

surfaces on to the control space partition it into the 3 regions 

marked on Fig. 4.5. 



93. 

V(x, q, ) Q B10 the potential function has no turning 

points (as in the Fold with a< 0) 

V(x, P) a B2° the potential function-has 2 local 

maxima and 2 local minima 

V(x, p) B3° the potential function has 1 local 

maxima and 1 local minima. 

Hence for c<0, this behaves like a Fold Catastrophe. For c>0 

and a, b small in absolute size. V(x, p) will look like Fig. 4.6. 

V 

X 

Fig. 4.6. A Swallowtail potential 

The Butterfly Catastrophe 

Perhaps the most interesting of the Catastrophes is the 

Butterfly Catastrophe. The difficulty of seeing this geometrically 

is now acute, however, since even the Control space is 4-dimensional. 

x= IlR C= gt4 V(x, k) = 
x6/6 

- 
dx4/4 

- 
cx3/3 

- 
bx2/2 

- ax 

_ (a, b, c, d) 

which has manifold My of stationary points given by 

x5-dx3-cx2-bx-a=0. 
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In this case (a) 

(b) 

(c) 

(d) 

I represent the co 

lack of dimensions 

C 
d 

C 

d 

is called 

is called 

is called 

is called 

ntrol spac, 

hence. 

the 

the 

the 

the 

a in 

C = O C > O 

d < O d < O 

c= 

d> 

normal factor 

splitting, factor 

bias factor 

butterfly factor. 

stochastic form to make up. for the 

C 

d 

Fig. 4.7. The'Butterfly Catastrophe's projected 
Fold points 

Intuitively it is fairly easily seen how these shapes evolve 

into one another for varying c and d. The most interesting potential 

arises from c=0, d}0 (see'Fig. 4.7) where 5. distinct regions 

are defined, the central one mark B containing 3 minima and 2 maxima 

and hence a minima-which could be described as a Compromise minima 

being between two other regimes. ' 
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The Dual Butterfly is of less interest, the potential 

function being the wrong way up for most models. 

For a much fuller exposition of, the above geometry and 

others-read Woodcock and Poston'(1) and Thom (1). 

Catastrophes with Boundaries 

In addition to these Catastrophes there are some others of 

great importance that have not been publicised though as yet nothing 

has been published on them; namely Catastrophes with Boundaries. 

This is a cause of great embarrassment to me since I want-, to use 

the concepts therein contained without giving a thorough exposition 

of the subject. Basically the idea is not to restrict the Behaviour 

space X to be open. I restrict the Behaviour space to a compact 

interval, (the astute reader will recognize I would like such 

intervals for sake of integrability), För example let 

X= Iq, rl. 

x 

Fig. 4.8. The Restricted Behaviour Space 
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In Fig. 4.8 V(x) has a local minima at q. This must, 

therefore be included in any analysis of behaviour that subsequent. ly 

occurs. V(x) in Fig. 4.8 has 2 minima and 1 maxima and so will 

behave more like a Cusp than a Fold in its evaluation. Obviously 

the Dual Catastrophes regain their importance too. Most examples 

of Fold and Swallowtail that I give will, in fact, be these 

catastrophes with boundaries. 

4.2. Rules in Catastrophe Theory. 

Because Catastrophes have been given a local classification, 

the discipline of Catastrophe Theory is best placed in a dynamic 

setting where local perturbations are natural phenomena. Hence I 

assume that the Controls--go through a (mostly) smooth path with time 

inducing a corresponding movement in the Behaviour space 

. i. e. Vt(x, k) = V(x, c(t)). 

The theory is still not complete enough for any application 

however, since I have not yet specified which minirUnof V(x) to 

choose for my Behaviour point when more than one minimünexists. A 

method of making such a choice is called a RuZe. 

The Delay Rule 

Choose that*{minima x*(t) of Vt(x, k) such that 
{turning point 

(i) x*(t) is continuous in t if possible 

(ii) If t= t* is a point where it is not possible for x*(t), to 

be continuous then x*(t*) will be a turning point of Vt 
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In this case define x*(t) to be left-continuous and 

x(t*) = lim x(t) 
t+t*, t>t* 

to be the minima adjacent to x*(t*). 

The Delay Rule, for example, describes the trajectory of a 

marble on a. smooth surface under the influence of gravity. It is 

the main Rule used so far in modelling Catastrophes. Because of 

(i) in the definition given only the Controls k at time t it may not 

be possible to determine the appropriate behaviour x*(t). For 

example, in the Cusp Catastrophe, if'the Controls k lie in B(see 

Fig. 4.4) then depending on the trajectory through C beforehand' 

X*(t) will either lie on the top or the bottom sheet of the manifold 

M. 0r v 
Hence this particular rule is necessarily stochastic having 

a "memory". Thus it generates many interesting models and would 

seem pertinent to the study of Type II models described above. 

Its usefulness lies in the fact that it depends solely on 

My and not the potential function V and so I can concentrate solely 

on My in any analysis. Note that it is also a "local" rule and so 

fits in with the local classification of Thom's theorem. I will 

illustrate the Delay Rule with an example. 

The Type II model on the Cusp Catastrophe with Delay Rule 

Let-)O be the Behaviour variable, and a the normal factors 

with b>0 the splitting factor and suppose for simplicity that 6 

is deterministically linked with a and b 
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b 

a 

Fig. 4.9. A path on the control space of the Cusp Catastrophe 

Suppose the control factors ý= (a, b) undergo the smooth. 

evolution ý(t). Under the Delay Rule 6 will make a smooth trajectory 

6= Mj(a, b) - (say) 

until I-reach the point labelled 02 in Fig. 4.9 where suddenly e will 

follow another smooth model 

0= M2(a, b) (say) 

having gone through a large rise in value. 0 continues then to be 

governed by M2 until it reaches a point 6 )shown above where it drops. 

down onto model M1 again. Everytime it meets and crosses the projectec 

fold line Fx from the top model M2 or the fold line F., from the bottom 

smooth model M1(a, b). 0 changes models. 

Formally this can be described by the equation 

6t = Xt(a, b) M11(a, b) + (1 - Xt) It2(a, b) 

where Xt =1 if Xt_ =1 and (a, b) AuB 

or if Xt_1= 0 and (a, b) EB 

0 otherwise 0 

where xt- 1im Xt and A and B are marked on Fig. 4.9. 
1 t>tlilt-t1 



99.1 

Now since M1 and M2 are smooth they can be approximated 

piecewise linearly. This provides the follcs ing illustration. 

Example 

Let bit be given by +£ 
t1) 

4.2.1. 

Let bit be given by + 
t2) 

where et1ý, et? 
ý 

are identically distributed, independant random 

variables. 

Note then that 8s = Vs if and only if Xs+1 =1 and similarly 

Os = ýs if and only if Xs+1 = O. 

Without loss of generality assume Xt =1 and 

Xt-r (a, b) =0 

Xt-r+j (a, b) =1 for all j EIN 1'< jsr. ' 

Then 4.2.1 gives that 

r-1 
et {et-r + et2) if ý(t) (A u B)c 

{ t=0 
{ 
{ 

{et-1 + otherwise 

Suppose I assume now that in addition the error terms are 

normally distributed, the resultant series will then look like 

Fig. 4.10. Typically I could let 6t represent the "level" of the 

process in a Bayesian Forecasting Setting (Harrison and Stevens 

(1)). Priory would then be put on ýo and 4o and I would 

do the usual Bayes update. I have here something akin to the Kalman 

Filter Multiprocess Model but with more structure on the mixing 

parameters. The continuous time analogue can be phrased in the same 

way. 
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Hence I have -vith the Delay Rule acting on the different 

Catastrophes a host of Type II models which are very different to 

the normal Time Series models at present employed. It is quite 

clear that I could spend the rest of the thesis analysing estimation 

problems'and the like arising from these models and do some case 

studies. I have preferred however in this exposition to consider 

theoretical aspects of Type I models so there is not space to include 

such a study. This is something I shall return to at a later date, 

though I touch upon these models again in the last chapter. 

Finally two words of warning for anyone wanting to dabble 

in these models. The first is that such Time Series models get very 

complicated very quickly. I 
, 

hope that Statistical techniques will 

be used only on sensibly constructed and explainable models and that 

the data is-not just "fitted". (As in polynomial regression, the 

number of possible models is so large that something will be a "good 

fit"! ). 

N,, -\A I 

I 

t1 

Fig. 4.10. Typical Times Series Venerated by Cüsp 
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Secondly traditional methods of testing between connections 

between variables are not adequate for these models. For example 

suppose I have a Hysteresis Loop (i. e. the path on the controls 

marked out in Fig. 4.9. but-with b remaining constant). Then even 

if I have a deterministic relationship between the behaviour 

variable 0 and the normal factor a, the points will be distributed 

as in Fig. 4.11. 

at 

Fig. 4.11. 'The Hysteresis Loop 

To argue that because there is little correlation between, 

6 and a and thus no connection (as someone in fact has) is 

obviously misguided. 

Maxwell's Rule 

Another rule that has been used is called Maxwell's Rule. 

Here simply I have that 

Behaviour x*(t) = inf Vt(x, c). 

This is of course the Bayes decision rule for Type I models 

above where the Potential function V(x) is-the expected loss. 

Unlike the Delay Rule it is independent of the sequence at 

decisions leading up to it and therefore basically non sequential. 
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It is also easily seen that it is dependent not only on the manifold 

My but also the actual Potential ßunctions'V generating it. 

It is basically a global rule in the sense that I need to 

know the whole of the Potential function rather than just its local 

form (as in the Delay Rule) before I can choose the correct 

Behaviour point. Note however that for local linear models 

Maxwell's Rule and the Delay Rule are the same, since only one 

stable behaviour point exists at any one time. For non-linear 

models they give in a sense two extremes of behaviour and are 

important as limiting cases for other rules. 

4.3. Ba ems Statistical Rules 

Other rules can come into play for Type I models which make 

them stochastic in nature. The simplest way of incorporating some 

form of time dependence into the Bayesian Inference framework is 

to put a cost on the changing of a decision. 

Cost of Change Rules 

"Change" must be well defined and the most simple way of 

doing it is in the following way 

Let the Step Cost of Change Function C(dt-dt- be defined by 

C(dt-dt-n) =O 

k 

dt-dt_ýI < byl 

otherwise 

where n>0 and dt_n was the chosen Bayes decision at time 

Hence if I make decisions on a set whose points are n apart 

then changing a decision by less than bn incurs no loss, whereas 

changing the decision by more than bn incurs a loss of k. units. 
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Let Et(d) represent the expected loss at time t if there 

was no cost in changing a decision and let Gt(d) be the total 

expected loss associated with. the model, then 

Gt(d) _ Et(d) dc (dt-n bn, dt_n + bn) 

k+ Et(d) otherwise 

Hence it adapts Et(d) as shown in Fig. 4.12. 

rG (d) 

.tý tI 

** dt *dn dt_Ti -bTl d +n t_TI b 

Fig. 4.12., The Expected Loss function with Cost on Change 

Suppose I use the convention in Chapter 2 that 

0s Et(d) s1 

and fix. {Et(d) : t' E ]R Z 01. Then as k -º- 1 and b -' - it can 

bn -}O 

easily be seen that if Et(d) moves smoothly with time d*(t) will 

follow the trajectory of the local minima d*(O) Whilst this minima 

i 

exists. If it disappears, then since b is very large it will "almost" 

instantaneously latch on to the adjacent minima. Hence I have that 
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when k-1 

b-ýoo , rl b -; O 

k+O 

bn-}0o 

Step Cost of Change Rule 

Step Cost of Change Rule 

Delay Rule 

-- Maxwell's Rule. 

Thus Delay Rules and Maxwell's Rule can be seen as limiting 

cases of Cost of Change Rules. For moderate values of k. and bn 

I obtain a Delay Rule in the neighbourhood of the Cusp point, in 

the case of the Cusp Catastrophe, gradually becoming a Maxwell Rule 

as I get further away from this Cusp point. -(See Fig. 4.13). 

b 

'_- behaves as a delay rule with these 
as threshold points. 

a 

Fig. 4.13. Cost of Change effect on Control space of Cusp 

It should in passing be noticed that in many cases the Cost 

of Change function would not be Markov in the sense that the cost of 

change would have to be offset by future long term benefits of change. 

This would have the effect of averaging weighted future expected loss 

functions. I will not go into this here. 

An Illustration: Judgement Under Stress 

Here I will follow the content of, a paper by Zeeman (6). In 

an experiment by Drew, Colquham and Long (1), subjects were 

given a small dose of alcohol and asked to drive'at what they thought 

.I 
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would be normal speed on a simulator. The effect of the alcohol 

on their speed was plotted against an introversion/extroversion 

scale and the-graph on Fig. 4.13a was obtained. 
nJ 
8 

r 
2 
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r 0 
Wi. 
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"`fu"'-`'1ä 4o b osoýý"l00 
Fig. 4.13a. SERNREUTER SCAlt 

" EX11tAYERSION INTROVERSYýt1- 

Zeeman argues that one takes cues as one drives to help 

estimate the speed of the car, but if one's integrative capacity 

decreases, for example because of alcohol intake, the middle cues 

are missed out. Hence instead of obtaining a unimodal distribution 

representing one's understanding of speed one tends, to a bimodal 

mixture of an overestimation distribution and an underestimation 

distribution centred at Sn +B and Sn -B respectively Csay) where 

Sn represents the actual speed, and B>O. 

ß (e) 
ßl(9) = probability density 

2 function normally 
het f 2(6) = probability density ; 

function when inte- 
grative capacity 
goes down. 

Estimated speed 

-w 

. =p 
O 

O 

O 
0 

O 
O 

" 

0 Op O` ýrliý 
O 

.a r. r 

p 0O O 

0 p 
OO 

O O 

s 

Fig. 4.14. Estimated Speed 
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Increasing ones speed towards the second mode and away from 

the true speed, the proportion of overestimation cues to under- 

estimation cues increases and vice-versa decreasing one's speed, the- 

proportion goes down. 

For the sake of simplicity I am now going to assume that the 

probability density f2(8) is a mixture of two normal distributions 

with equal variances, and the loss function being used is the con- 

jugate one. (see Lindley (1). These assumptions are in no way 

crucial to-the argument given below (see Chapter (6), but they do 

make the analysis easier. In addition I will assume that the dis- 

tribution for each individual is the same and each of the subjects 

acts as if he is a Bayesian, i. e. minimises his expected loss. The 

difference in decision making between the introvert and extrovert can 

now be studied. 

It could be said that the extrovert makes estimates using a 

large value of his k parameter in his loss function, taking an 

expansive view of things, hence he tends to compromise between the 

modes in Fig. 4.14 and choose an estimate in the region of the time 

speed. The introvert on the other hand will tend to work with a 

loss function with a small k value. In this case the expected loss 

will go bimodal. (See Figs. 4.15 and 4.16). CFor precise result 

see Chapter 7, Theorem 7.1). 

'L(s) = Loss incurred from misestimation S* 

introvert loss 
function 

extrovert loss 
function 

s= distance 
from time value 
to decision d. 

Fig. 4.15. Loss functions of ub1pnts 
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E(e)(d) 

ON'E()(d) 

., I 

d1 SA d2 

Fig. 4.16. ' Expected loss functions of Subjects 

where E(e)(d) = expected loss for extrovert 

E(lý(d) = expected loss for introvert 

SA = actual speed. 

d 

If I now refer to Fig. '4.16 and look at the case when the 

driver is travelling at the true speed it is seen that the extrovert 

estimates correctly. The introvert, however has two equally favourable 

decisions as to the speed he is travelling at dl and d2 (both wrong). 

He will therefore accelerate to dF or decelerate to d1. Then the 

proportion of low speed cues, in the former case, will go up. However, 

there is a cost to change in this model, he cannot. reach d1 immediately., 

and will lose face if he changes his mind suddenly. Suppose he imposes 

the Step Cost of Change and takes a very short term view of things. 

If the Step Cost of Change has a form close to that tending to a 

Delay Rule, then the introvert will follow the decision d2 as he 

accelerates. 

Of course this will have the effect of'reducing the number of 

overestimation cues and increasing the number of underestimation cues 

until. the ratio of the mixture variables is such that the local minima 
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at d2-disappears. The Delay Catastrophe then occurs and the subject 

immediately breaks towards the only remaining minima of-expected loss 

d1. 

This illustrates how Bayesian decision theory can logically 

model Zeeman's geometry into an application in Psychology without 

handwaving arguments that usually are banded about. 

Note that the step cost of change model is just a simple 

examfle of cost of change models in general which seem well worth 

developing into a theory, though I have not yet done this. The 

obvious next extension is to allow C(dt-dt- to be any'function 

increasing in Id 
- dt_t . In this case C'(x) #0 would imply that 

the behaviour would take discrete jumps, even though the phenomena 

considered was in all senses a continuous one. 

Model Breakdowns and the Delay Rule 

Nearly always models are only local descriptions of global 

phenomena. Typically a random variable e(N) depending on factors 

t will be well modelled only if ýt are fairly constant through time. 

If on the other hand the St jump about the relationship imposed by 

my approximating model relating 9t to tit will no longer be valid. 

Model drivi 
the system 

"Time" posterior 
tribution of 0t 

Fig. 4.17. 

My own loca 
model 

s- My personal posterior 
distribution of 0t 

Delay Rule 

Suppose 0t is now a random variable on E. 
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Suppose then that F(6t) is my posterior distribution arising 

from the locally approximating model given above. It follows that 

replacing r(et) by G(Ot) is likely to give a better summary of my 

posterior beliefs where G(et) is defined by 

g(et) f(dt_n_a) 

. 
{f(e) 
{f (dt_n+a) 
{ 
{O 

-C s6 dt-TI -a 

dt-n -a 565 dt_n +a 

d* +a <9sC t-n 
otherwise 

where C is a very large positive number 

dt_n is the previous decision made. 

Thus if 0EA= Edt- a, dt-+a] I am sufficiently sure of my 

approximating model whereas if 0 lies outside AI feel completely 

ignorant about 6t. Note that a similar type of approximation is given 

in a different context by Leonard (2). 

Now let H(6t) be the true distribution of et at time t. (See 

Fig. 4.17). If I am right about my assessment of. when my approximatin¬' 

model is reasonable then 

l(gt) « g(et) when 8tcA. 

but different (in general) otherwise. For simplicity suppose I use 

the simple Step loss function Sh(6-d) where b <. a. It can then be 

seen that provided C is large enough. 

Eb(G, d) a{ EbCH, d) dEB 

{ T(d-d* )d Be 
t 

where T(r) is increasing in'In and 

E_ (d* 
_n 

- (a-b), dt-n + (a-b)) 
t 

The result is seen in Fig. 4.18. 
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4 

Fig. 4.18. The true expected loss and an approximation 

It is quite-clear that here again I have an analogous example 

to the cost of change rule. As max(a, b) ;0 so I will tend to a 

delay rule. I find * it fascinating that 'there is this kind of link 

between cost of change and model uncertainty models. Obviously the 

topic needs more research, but even with a more complicated model, 

for uncertainty and other loss functions I would expect similar 

phenomena. 

I note in passing that. I can make similar arguments for the 

case when the Zoss function 'is only partially known, but I do not 

include this for want of space. 

Summary 

In this chapter I have outlined some of the principles of 

Catastrophe Theory. I then showed two very distinct ways of 

incorporating the theory into statistics giving_two examples of these 

types of approach. Catastrophe Rules are explained and new ones 

introduced for my own purposes. 

d 
t-n 
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50''SOME COMMON CATASTROPHES OCCURRING IN STATISTICS 

In the following chapter I will introduce the reader to a 

Catastrophe Theory approach to analysis of problems he will be 

familiar with in the field of St-atistical Inference, This list is 

by no means exhaustive and is meant to emphasise the fact that 

examining the geometric-rather than algebraic aspects of likelihood, 

posterior distributions, and posterior expected loss functions can 

-'elucidate problems that otherwise may seem very obscure. 

The first catastrophes I want to examine are those induced 

by common likelihood functions, (i, e, occur due to the family of 

sample distributions that are chosen) 

5.1. Bivariate Normal (means and variances known) 

I can without loss of generality, assume that random variables 

X, Y each have means equal to zero and unit variances, but with unknown 

covariance : p. 

Then the joint sample distribution i(x, y) is given by 

(x, y) a exp -e{(1-p2)-1(x2-2pxy+y2)} 5.1.1. 
(1_p2)1 

which has log likelihood kernel t(p) given by: 

IZ(p) 
= J[-9n(1-p2) - (1-p`)2(S. 2-2pSXy+Sy2 ) 5.1.2. 

xnX22nXy 

where S2 =Ei S2 
ny 

=Eis=E 
X i=1 ny i=1 n xy i=1 n 

Differentiating and rearranging (5.1.2) it is easily shown that the 

stationary points of £(p)-in-(-1,1) are given by the equation 

P(1-P2) + (1+p2) SXy - p(S2 + S9) = 0.5.1.3. 

Putting r=p-3S, I can write this in the form: 

r3-br -a=05.1.4. 
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where b=1+ 3(Sxy)2 Sx Sy 

a=2? Sx (-2(Sxy)2 -9 (2 + S2 + S2)) 
Y 

which is of course a cusp catastrophe with 

a= normal factor 

b= splitting factor. 

Suppose now -bAWt xl.. oxn sue' it is found that Sxy ='O 

y1°.. yn 

so that the analysis is simply that a=0 

b= 1-S2 - S2 
x. y 

r=p. 

Case 1 

112. 

5.1.5. 

5.1.6. 

5.1.7. 

5.1.8. 

5.1.9. 

If S2 + Sy <1 then b>0 and equation (5.104) is now 

p3 _ (1 _ (S2 + Sy) p=0 which has solutions 

at 0 and ± (1 - (S2 + S2) . It is easily checked that the point 

p=0 is then a local minima of Z(p) hence a "worst" estimate 

of the log likelihood (See Fig. 5.1). 

�(P) 

-1 _(1_s; +s; )- Y 
(1-SX+S-)`p 1 

Fig. 
. 
5.1. 
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As SX 
2+ Sy become larger, the maxima of Z(p) tend to zero 

from both sides, until at the point SX + Sy = 1, they merge to give 

a unique maxima at 0. 

Case 2 

S2 + Sy > 1, this maxima remains fixed at zero, Note that 

as n -º S2 + S2 -* 2 so in the limit the value p=0 will become 

the unique M. L. E. 

Thus there is a cusp at (S2 + Sy, SXy) _ (1,0) and the 

description above can be. summarised by a section of the cusp 

catastrophe where holding a=0 (See Fig. 5.2), 

M(Y, (a)) 

b 

Fig. 5.2. Where MCZ(p)) gives the stationary points of i(p) 

b=1-(S2+ Sy) 

Notice that by local approximations at the cusp point I can use the 

new controls: 

a Sxy 

b* = 1-(SX + Sy) 

Thus, and this approximation is a fairly good one, on the control 

space I can represent the likelihood of p by the summarised form 

of Fig. 5.3. 
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S 
xy 

Fig. 5.3. 

It follows. that one would expect similar kinds of behaviour 

for all SXy in a fairly large neighbourhood of of the, only difference 

being that the symmetry is lost. 

The bimodality is not surprising since for if 

{x1 
{ ... xn 

{y1 ... yn 

have very close values, (all near zero) one would expect some 

dependence between X and Y, but the form of the dependence will 

not be clear. 

The problem is not so obscure as it looks in the sense that 

there are many situations where the variance of X and Y are known 

fairly precisely, but their covariance structure is unknown. Hence 

in a Bayesian analysis with sharp priors on the variance one would 

expect the same sort of problems to-arise. 

This is the first simple example where control variables 

have been expressed in terms of the sufficient statistics, and 

characterisations of the graphs of minima of the likelihood have 

been used to summarise the data. 
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i 

5.2. Simple Heirachical Normal. Model 

Let. {X1 
ooe Xn be random variables such that 

{ 
{el o00 On 

X1l6i ti n(Ai, 1) 
.1sinn 

ei V ti n(O, V) 1 ýs. 1sn 

2n Vii? 2n x2 
Putting S_ =ES=E, the log-likelihood kernel of ® i=1 nx i=1 n 

0. and V1sisn given X1 1sisn 1(0, V) is given by: 

2 -1 
n Xiei 

[S(1+V )-2En+ in V] 
i=1 

which has stationary points V= {o S2 s4 

{ 
{O and (SX - 2)±(SX _. 2)2_4) 

2 

*1 0i = (1+V 1) 
xi 

s2 >4 
x 

The one sufficient statistic for V. S2 thus gives a fold catastrophe x 

M(2. (V)) 

SZ-1 

S2 
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Although this type of model is in vogue at the moment, there 

are many criticisms of identifiability to consider. Leaving these 

aside it should be noted that the likelihood function is also 

unbounded and hence I 
. 
cannot do a sensible Bayes analysis on it 

(See Chapter 2). 

This is easily rectified by putting a lower bound on V. So 

let V be restricted to the range [e, co] where e>0. M(2. (V)) then 

looks like Fig. 5.4. 

KIM) 

; YAM4 

SZ , 
x 

Fig. 5.4. 

This is a fold catastrophe with boundary, and behaves very 

much like the-cusp catastrophe. 

In a Bayesian analysis therefore one msut be prepared to get 

at least a2 modal distribution across the n+l dimensional joint 

posterior distribution. The odd topology can of course be dodged 

by integrating out the 011s but usually the 61Is are the quantities 

of interest, so I want to estimate the n+1-tuple Q, V), so marginalisati( 

in a loss function approach is not really justified. 
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- It happens-that Catastrophes occur in a very large proportion 

of non-trivial likelihood functions on the advent of particular forms 

of data, topical examples are those arising in Time Series which are 

often grotesque. However I purposely leave these out of this 

exposition since their meaning is often not as clear as the 

archetypes above. 

For more interesting Catastrophes arise in a Bayesian setting 

where the likelihoods concerned look very simple, but in which the 

posterior distribution goes bimodal. This occurs typically in 2 

distinct types of situation: 

(i) Specifying alternatives (Mixed models). 

(ii) Contradiction of prior information by data 

(Product models). 

Many models of the form (i) have been studied in detail by 

Dickey (1) and (2) and general theorems for this case will be left 

to the next chapter. Models of type (ii) occur when prior/likelihood 

has flat tails and have been studied by David (1).. Elucidating the. 

latter category is the following example. . 

5,3v The Normal Sample distribution-Student t prior distribution model 

I can assume that without loss of generality the t-prior is 

normalised and that only one observation is taken. Hence let 

X, ti n(6 W) 

where 0 has p. d. fo f(O) « (v+8 2)' ýv 1} 
5.3,1, 

Then the log-posterior kernel 2(O) is given by 

k(e) = -J(v+1) Qn(v+62) -i W-1 (e-x) 2 5.3.2. 

Differentiating and rearranging the formula for the 

stationary points is given by: 
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3- bý -a=05.3.3. 

where *=9- 3x 

a=- 3(k-2)x + 2/27 x3 

b= 12 
- (k+1)v 

k= W(1+v-1) 

This is thus a Canonical Cusp Catastrophe with 

a= normal factor 

b= splitting factor 

Note, in passing, that a represents the assymetry in the situation, 

whilst b is a function of the distance between the observation and 

prior estimate and. hence the "split" of the information, as expected. 

The Bifurcation set is given by 

27 a2 s 4b 3 

which on rearranging reduces to 

t(z) = 4z2 + (k2-20k-8)z + 4(k+l) 2s05.3.4. 

2 
x>0 

where z= 
v 

Since t(z) is a nose down parabola (4), will have no solutions if 

t(z) has no roots. For t(z) to have real roots I must have that 

(k2 - 20k - 8)2 Z 43(k+1)3 5.3.5. 

which on rearranging gives 

k(k - 8) 
3Z05.3,6. 

i. e. kZ85.3.7. 

If this is the case then k2 - 20k -8<0 so t(z) 0 

has 2 solutions in [O, -). 

Hence this means that, translating into the original 

notation, bimodality will occur for some values of x iff 

Wz *8v 
v+l 
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In this case bimodality of the posterior of 0 will occur 

for values of x lying in two open intervals symmetric about the zero 

point (i. e. the prior estimate of 0). In fact moving x on ]R I can 

induce a flow on the control space which is given in Fig. 5.5. Note 

that as jxi } control values tend to the bifurcation lines. 

The same phenomena of course is true from t-sample distribution 

and normal prior or for. "vague prior" and likelihood made up of 2 

observations, are from a t-distribution and are. -from a normal 

distribution. Again I will refer the reader to David (1) for a 

fuller discussion of this. 

b 

Fig. 5.5. Solid lines shows path of controls as x>0 increasing 

Dotted line shows path of controls as x<0 decreases 
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" 5.4. ' The Stiident* prior and sample distribution 

To start with assume that I take one observation x, from 

a random variable X which has Student-t p. d. f. 

1 '(v2+1) 
f2 CxIB) a (_v2 + YT2 (e-4) 5e4o1e 

Let the prior p, dýf, of 0, fl(0) also be t-distributed 

1 2-ß(u1+1) fite) (VI +W (0-XO) ) 5.4.2. 

The log-posterior kernel is then: 

- Cvl+1) ßn(vi+Wl1(6-x0)2) - l(v2+1) Ln(v2+W2(@-x1)2) 
. 

5.4.3. 

which has stationary points defined by the equation: 

(v1+1)wi1 (e-xo)(v2+w21(e-x1)2)+(v2+1)w21(e-xI)(vl+w1 1(e-xo)2) 

=o 5.4.4. 

So again this gives the Canonical Cusp Catastrophe since'this is 

a cubic. If for simplicity I assume v= v1 = v2, then I can 

rearrange (5.4.4) in the form 

*3-bý -a=0 

where j, =6-x 
4v (`Y2-Wl) (xo-xl ) 

b=S2_ v 

EX0+x1) 

w= 3(W1+W2) 

S2 =iE (xo-x)2. 
i=0,1 

5.4.5. 

With the extra symmetry of this model over the previous one 

9 

it is very easy to see that the splitting factor b represents the 

symmetrical "split" in the model'whilst the normal factor a incapsulatýj 

all assymetrical components of the model. 
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Notice the difference between the normal product and the 

t-product above. Whilst the former never experiences a split the 

latter always has some observation which will make the posterior 

distribution go bimodal. Notice also that for VI1 = W2 and v>1 

the posterior mean of O, x goes from being a unique posterior mode 

to-the unique antimode as the distance between observation and 

prior. estimate increases. 

Fig. 5.6. 

a 

Trajectory across control space as xo-x1 increases 

wýb 
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Higher order catastrophes occur when I take more than one 

observation. For simplicity assume W1 = W2. If I observe a new 

value x2 of the random variable, X, then log-posterior kernel then 

becomes 

-J(v+1)(Qn(r+(6-x0)2)+Rn(r+(8-x1)2)+Rn(r+(A-x2)2) 5.4.6. 

where r= vW 

which has stationary values on the manifold given by the equation: 

(6-x0)(r+(8-x1)2)(r+(8-x2)2)+(8-x1)(r+(9-xo)2)(r±(e-x2)ß) 

+(e-x2)(r+(e-xo)2)(r+(e-x1)2) =o 5.4.7. 

This quintic is of course an example of a Canonical Butterfly 

Catastrophe. 

(The Butterfly Catastrophe is also obtained with assumptions 

{ w1 w2 w3 but the algebra is more messy) 
{ 
{ v1 v2 v3 

With some rearrangement this can be reduced to. 

dß, 
3 

- cß, 
2 

-b-a=O. 

where P=0-x 

12 
X -' 

iEO 
Xi 

d= 2(S2-vW) 

C= 3u 

b= -(v2`V2+T) <0 

a= -u(1+i52). 
2 

i . -x)2 S2 =3 EO (x 
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T= 
o)(x-x1]2+[(x-xo)(x-x2)12+[(x-x1)(x-x2)]2) 

u- (xl-x)(x2-x)(x3-x). 

Hence the Butterfly Factor d varies with S2 the bias and 

normal factors c and a respectively with a statistic u defined 

above, which synthesises all the assymmetry in the model, and-the 

splitting factor b is a function of the rather odd statistic T. 

It is instructive to check how I move over the control space for 

12 x3. variance changes in xxand 

It should be noted that with symmetry (i. e. u= 0), the. 

statistic T will become a fourth sample moment and S2 is a second 

sample moment, of course. So now order moments seem to be useful 

summary statistics in this situation. 

Of course, the most interesting classification is in terms 

of the posterior expected loss, since as mentioned in Chapter 4 the 

use of Catastrophe Theory is in classifying potential functions. I 

will go into this classification generally in Chapters 6 and 7 but 

for the purposes of these examples, examination of properties with 

respect to step loss functions seems the most simple choice. 

Definition 

The asymmetric step Loss function L(B, A, ( -d)) is defined by 

L(B, A, ( -d)) = 
{o IO-aI sB 

(6-d) >B where Az 1, B>0. 

{A (e-d) < -B 
I will call B the gunge of the loss function and A the 

asymetry constant.. 
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If F(O) is the posterior distribution it is easily seen 

that 

E(F, B, A, d) =A F(d-B) - (1 - F(d+B)) 5.5.1. 

where E(F, B, A, d) is the expected loss with respect to L(B, A, (9-d)) 

and F(O). Hence the stationary points d of (5.5.1) satisfy 

A f(d*-B) = f(d*+B). 5.5.2. 

5.5. The t-distribution under_asymmetric step loss 

The t-distribution occurs widely as a posterior distribution 

in Bayesian analysis. The most common occurrence the unknown mean 

and variance/normal sample distribution conjugate analysis (De Groot, (1; 

for which the posterior marginal distribution for the mean is a 

Student-t. 
-(r+l) 

Suppose f(O) - (r + 02) 2 
where r>0. 

Then using (5.5.2) and rearranging the equation, the 

stationary points under L(B, A, (9-d)), are given by: 

ý2 -a=05.5.3. 

where =ä+c 

a= c2 +r+ B2 

A2(r+l)-1+1 
c= B[ 1] 

A2(r+1)_ -1 

Hence again I have the CanonicaZ Fold Catastrophe. 

Fig. 5.7. gives the evolution of E(d) for different. values of a. 
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d 

Fig. 5.7. 

For a<0, the Bayes decision is at -w indicating that with 

a large amount of uncertainty r the optimal decision is to cut losses 

and go for a-loss of 1 unit. As a increases to become positive there 

will be a point when the Bayes decision maker suddenly decides that 

it is worth while making a guess and hence a Catastrophe occurs., 

Notice that this sort of phenomena is not a property of this particular 

loss function and smooth ones will give exactly the same sort of 

qualitative behaviour provided they are asymmetric. 

This illustrates another point about the partitioning of 

distribution functions by their 4(b) functions as described in 

Chapter 3. Once I allow for asymmetrical loss functions, qualitative 

behaviour inside each member of the partition will change radically 

from one another. For example the Student-t and usual distribution 

have the same fi(b) function, but whereas the t-distribution gives 

a fold catastrophe with asymmetric step loss, the. normal gives a 

linear function for its stationary points. 
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It is amusing to note that the Bayes decision does not 

exist for a<0, hence the necessity for the compactness of the 

decision space in Chapter 2. If I insist on a lower bound for my 

decision I of course obtain the Fold Catastrophe with Boundary 

which as mentioned before, -behaves very much like the Cusp Catastrophe. 

Referring back to equation (5.3.3) it is now obvious that 

the possibility of a Fold Catastrophe depends solely on the degrees 

of freedom for any specific step loss function, and as these increase 

so the decision will stabilise. Hence if F(6) represents the 

-marginal posterior distribution of the mean of a normal sampling 

distribution, the possibility of a Fold Catastrophe depends on the 

number of observations I have taken. If, these are small in number, 

and their sample variance is large, then I am likely to choose the 

'cut-loss' decision at -ý. If the sample variance is small and the 

number of observations large then I am likely to be prepared to 

make a 'proper' decision. Equation (5.5.3) thus sums up the way in 

which the topology of E(d) behaves for changes in the sufficient 

statistics of this specific problem. 

5.6. The t-product under step loss 

Suppose prior on mean A has p. d. f. fo(0) given by 

f0(0) a (VW0 + (6-x0) 
2) 

and an observation xl is taken from a random variable X having 

p. d. f. f1(e) given by 

2 +1) 
fl(6) (VW1 + (O-X1) ) 

Using equation (5.5.2), the stationary points of expected asymmetric 

loss are given by the manifold. 
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(vWo+(9-B-xo)2)(VW1+(O-B-x1)2)=A*(VW0+(B-B-x0)2)(VW1+(8+B-x1)2) 
2 

where A* =A v+l 

Notice for A>1 this is arquantic in 0 and hence an example of the 

SwaZZowtait Catastrophe. 

If A=1 however, then it is easily seen that the quartic 

term vanishes which after some rearrangement can be written 

3-biP 
- a=0 

where a= . Iv (W1-Wo)(xo-xi) 

22 b=S -tiYv - B. 

J(XO+xl) 

S2 =E (x0-x)2 
i=O, 1 

W= (W+W 

which is exactly the same form as equation (5.4.5) except that a 

quantity B2 has been subtracted from the splitting factor b. Hence 

the topology of this potential function is very similar to the topology 

of the posterior distribution. 

a 

ion) 

b1 
1 

B=0, posterior distribution 

Fig. 5.8. 
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Summary 

Examples of some canonical forms of Catastrophes occurring 

in Statistics have been given. It has been shown that Catastrophes 

representing conflict between prior, sample information and 

requirements (i. e. loss structure) can simply illucidated using 

the t-distribution. 
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6. A CLASSIFICATION OF EXPECTED LOSS ARISING FROM GENERAL 

DISTRIBUTION FUNCTIONS 

Introduction 

In this chapter I succeed at least partially in classifying 

the sorts of forms of Catastrophes in the topology of expected loss 

arising from certain combinations of a general distribution function 

with bounded symmetric loss. 

The first step is obviously to look at the topology of 

expected loss arising from unimodal distributions. The closest 

associated work I can find was done by Ibraginov (1) way back in 

1956, "where here he was concerned with the problem of when the 

sum of two independent unimodal random variables was again unimodal. 

I however cannot proceed by the analogy outlined in Chapter 3 

because I have-an extra symmetry condition on L(8-d), but 
. 
the work 

in Chapter 3 now comes in very useful and Lemma 3.3.1 makes the 

results quite simple to prove. 

In the second part of the chapter I tentatively start a 

classification of multimodal distributions under step loss functions. 

6.1. Topology of Bayes decisions arising from unimodal distributions 

It would be tempting to speculate following Theorem 3.2(i) 

that unimodal distributions with bounded'symmetric loss functions 

gave rise to expected loss functions with only one minima. This 

however is surprisingly not the case. 

Unless otherwise stated I will use the following notation: 

All distributions F(O) will be assumed properly unimodal, 

twice differentiable with mode at zero. Parameter 0 and decision 

d will be in the same space ]R. 



130. 

The loss function L will be bounded above by 1, symmetric 

in (6-d) and satisfying the condition in Theorem 3.3, (i. e. with 

respect to F(O) there is no decision d1 such that the associated 

expected loss E(d1) = 0). 

Let Eb(d) =1- F(d+b)'+ F(d-b) 

(the expected loss with respect to posterior distribution 

F(6) and Sb(6-d), the step-loss with guage b defined in Chapter 3) 

S(F) be the extended support of F (defined in Chapter 3) 

Let [d1(f), d2(f)] s S(F) be the interval obtained in Theorem 

containing all turning point of expected loss in S(F) with respect 

to posterior distribution F(O) and loss functions of the form 

described above. 

Let EL(d) = expected loss with respect to (A-d) and F(9) 

(L will be omitted if no confusion is likely 

to arise). 

t(e) = fß(6) [f(6)]-1 (Fisher's Score). 

This first theorem gives sufficient conditions on F(8) 

for one minima of expected loss only to appear when a loss function 

of the above form is used. 

Theorem 6.1. 

If 't(@) is strictly decreasing on [d1(F), d2(F)] and 

T(8) > T(d1) 0< d1(F) for all 0E (S(F))o then 

T(A) < T(d2) 6> d2(F) 

EL(d) has exactly one minima regardless of the loss function of the 

above form which is chosen. 

Proof 

By Lemma 3-13-1 I can write 

E(d) =I Eb(d) dG(b) 
1 ja>0 
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where G(b) is the distribution function oniR>0 defined in the 

above Lemma. It is now sufficient to prove that for any L(O-d) 

of the above form E(d) has no maxima or turning point on S(F) 

Well, suppose d is a maxima or turning point then it 

certainly must satisfy 

El(d) = 1jR>(f(d*-b) - f(d*+b))dG(b) =0 and 
O 

E"(d*)= 1' (f'd*-b) - ß'(d*+b))dG(b) 
>O 

( 
>O 

T(d*-b)f(d-b) - T(d*+b)f(d+b))dG(b) 5 0. 

So in particular 

E"(d*) - T(d*)E'(d*) 

= jj, ([z(d*-b) - z(d*)]f(d*-b)-[T(d*+b)-T(d*)]f(d*+b))dG(b)sC 

But under the conditions of the theorem and the constraints put on 

L(6-d), the Antegrand is always non negative and positive for some 

values of b of measure >0 with respect to G(b). 

Hence EL(d)'has exactly one turning point, a minima, as 

S(F). 0 

it is interesting to see that the conditions of the theorem 

depend on the derivative of Edward's support function (Edwards (1)), 

being monotonic decreasing with 0. 

Examples of distributions, satisfying the conditions of Theorem 

1) All Symmetric distributions that are unimodal 

This is because d1 = d2 = point of symmetry and T(9) >. O 

for all 0<i -the point of symmetry and t(8) <00 >u 
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2) Gamma distribution 

The Gamma probability density function 

f0) «ý" ga-1 exp g>0ß>0, aZ1 

has r(O) given by 

T(6) = (a-1)8-x -ß which satisfies the conditions of the 

theorem. 

3) Beta distribution 

The Beta probability density function 

f(e) «, s z10< 6< 1 

has T(9) given by 

T(8) _ (a-1)6-1 -(ß-1)(1-6-1) which again satisfies the 

conditions of the theorem. 

Note that in the-proof of the above theorem I have used the 

fact that a sufficient condition to ensure E(d) has exactly one 

minima in S(F) is that there exists aKE IR such that for all 

b EIR>0 and de [dl(F), d2(F)l 

Ej (d) + kEL(d) > 0. 6.1.1. 

Obviously the smaller the interval [d1(F), d2(F)] (heuristically 

the more symmetric ß(A) is) the easier it is to satisfy the above 

equation. Sometimes the following Corollary is easier to prove 

for specific cases and utilises (6.1.1) when k=0. Remember I 

have assumed F(O) have mode at zero. 

Corollary 6.1.1. 

Let d1 =0 and 61 be the first postive root of f"(O) =0 
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If (i) d2 < 81 

(ii) f'(d2-b) > f'(d2+b) 0<b< d2 

(iii) f"(6) =0 has at most two solutions in (d2,2d2) 

then E(d) has exactly one minima on S(F) 

Proof. 

(ii) implies that f'(d2-b)-fs(d2+b) >0 for all bE ZR>0 since 

fe(e)>0 e<0 
f'(6) >00>0 since f(e) is unimodal with 

mode at 0. 

By condition (iii) f'(d-b)-f'(d+b) will take its minimum value 

dE [O, d2] when d= d2. 

Hence E"(d) >0 for all bE LR>0 de [O, d2(f)j p 

Now I begin a search for catastrophes on properly unimodal 

distributions f(6). A necessary condition is that I obtain 2 minima 

of expected loss and hence at least are local maxima on S(F). With 

the differentiability assumption this means that I need to find a 

d*. E S(F) with the property 

BIN 0 

E"(d )<0" 

This provokes the following theorem. 

Theorem 6.2. 

Suppose there exists bl, b2 E ]i. ý0 and adE S(F) with the 

following properties: 
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(i) 'EI 
b 

(d*) >0 
1 

(ii) Eb(d*) <0 

and there exists ak EIR such that 

(iii) Eb (d*) + kEb (d*) <0 
11 

(iv) Ej (d )+ kEb (d*) s O. 
22 

Then there exists a loss function L(6-d) 

L(O-d) = aS (8-d) + (1-a)S (6-d) 0<a<1 bl b2 

such that d is a local maxima of expected loss. 

Proof 

By (i) and (ii) I can choose an a, 0<a<1 such that 

EI(d*) = aEb (d*) + (1-a)EL (d*) =06.1.2 L. 12 

Also 

EL(d*) = aEb (d*) + (1-a)E" (d*) <0 
12 

by (iii), (iv) and (6.1.2), 

which has the following Corollary. 

11 

Corollary 6.2.1. 

Suppose f(6) has extended support [R co) where R<0 and 

T(6) -> o as e -ý 

Then F(A) has a maxima of expected. loss with respect to some loss 

functions of the form used in the previous theorem on S(F). 

Proof 

All I need to do is to show that the four conditions of 

the previous theorem are satisfied. 
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Since f(O) has extended support [R, -) [dl(F), d2(F)] < [0-). 

Let ds (0, -), then if 0< bl <d, 

EL (d*) = f(d*-b1) - f(d+bl) >0 

since f'(d )<0, so condition (i) of Theorem 6.2. is 

satisfied. 

{ f'(d*+b '(d*-b ) 
E" (d*) + kE' (d*) = 2b { 2)-f 1+ 

b1 b1 1{ 2b1 

kf(d*+b1)-f(d*-b1) } 
2b1 } 

So. if there is a k=k such that 

6.1.3. 

f"(d )+k f'(d )>0, then equation (6.1.3) implies that 

for small bl condition (iii) of Theorem (6.2) is satisfied. 

Well, let d be any number between the first and the second (if 

it exists, otherwise co) solution of 

f"(d )=0. 

Then f"(d )>0. 

It follows that there exists a small positive k= k* such that 

f"(d*)+k*f'(d*) >0 and so condition (iii) of Theorem 

(6.2) holds. 

Obviously if b2 is chosen such that 

* 
b2> d -R 

then 

EL 
2 

(d*) = -f(d*+b2) <0 

so (ii) of Theorem (6.2) is satisfied. 
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Finally 

Ell (d*) + k*Eb (d*) = -(f'(d*+b2) - k*f(d+b2)) 
22 

= -f(d*+b2) (T(d*+b2) + k*) 

<-O for large enough b2, since 

T(x) -º 0 and k>0. Hence (iv) of Theorem (6.2) is satisfied. 

Hence the Corollary is proved. 0 

Transform F(9) linearly so that it lies on the range [O, -) and the 

following standard distributions on ]R:, O provide examples of this- 

corollary holding. 

Exam les of distributions satisfying the conditions of Theorem (6.2) 

1). All distributions with inverse polynomial tails properly, 

unimodal with support (O, co) 

So for example'the'F-distribution and Inverted Gamma 

are prime examples. 

2). Lognormal distribution. 0 

It is also clear that the above Corollary generalises to distributions 

on ]R. For example. 

Corollary 6.2.2. 

Suppose F(O) is properly unimodal mode 0 with. extended 

support S(F) = JR and 
t 

(i) The right hand tail of f(O) is an inverse polynomial 

(ii) The left hand tail of f(6) is an inverse polynomial of 

higher order or exponential of any order. 

or vice-versa. Then there exists a loss function L(8-d) of the 

prescribed form such that EL(d) has at least one local maxima. 
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Prooý 

(i) and (ii) imply that [d1(F), d2(F)] 2 (0, o') so the arguments 

to prove Conditions (i) and (iii)-are proved in exactly-the same 

way as in Corollary (6.2.1), bychoosing b1 small. 

Clearly-EL 
2 

(d*) ==f(d-b2)-f(d+b2) >0 for large enough b2 

so (ii) of Theorem (6.2) is satisfied. 

Finally 

Ell (d*) + k*EL (d*) = -f(d*+b2) [k'+ T(d*+b2) 
22 

where 
f(d -b2) 

ip(b2) _ [T(d -b) t kJ 2 £(d*+b2) 

Clearly under conditions (i) and (ii) above V(b2) }0 as b2 ; CO , 

hence for large enough b2 

- EI' (d*) + k*EI (d*) < 0. 
12 

Hence condition (iv) of Theorem (6.2) is again satisfied. 

The result follows. o 
So I have found in many common distributions a loss function 

such that the expected loss has at least 2 minima. A question remains: 

Is the class of all such loss fucntions for any fixed distriubtion 

function pathologicil in some sense? The evidence strongly suggests 

that they are not. " For example rather than the loss function in 

Theorem (6.2) 1 could instead use a loss function of the form 

L(O-d) =a1 Sb (6-d)dG(b)+(1- c) I 
Sb (6-d)dG2(b) 

>G ý 

where 0<a<1 and G1(b), G2(b) are C"O distribution functions with 

non zero weight respectively in 
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b where c is small 

bE (M, co) where M is large 

It is easy to check again that Theorem (6.2) would still 

hold. In fact it is not difficult to see heuristically that I 

could extend this class much further by allowing positive loss 

in the region (E, M) which is small compared with the weight on 

(O, e) u (M, co). Hence for fixed distribution fucntions satisfying 

the conditions of Corollary (6.2.1) all loss functions looking 

something like Fig. 6.1. (not unreasonable? ) are likely to cause 

non uniqueness of minima problems. 

S 

Fig. 6.1. A loss function causing bifurcation 

Another approach to tackling this problem of classification 

would be to turn the problem on its head and try to isolate those 

loss functions L(O-d) which have the property that EL(d) has only 

one minima for any unimodal distribution function F(8) I care to 

choose. 
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Unfortunately this approach gives even less joy. I can 

generalise Ibragimov's (1) work (I do not include this for want of 

space) to show that only loss functions L(A-d) satisfying the 

conditions of the section plus the additional condition 

a2 
-ý (Qn(1-L(S))) <0' for all S E]R 
as 

belong to this class. It is quite obvious that this is not a 

natural restriction to make on a loss function especially under 

the observation in Chapter 3 that in fact I should be minimising 

EL(d) where L(O-d) = A(L (9-d)) where A is some Anxiety function 

which is personal to the decision maker and not objective. 

Perhaps the best solution is to restrict attention to loss 

functions under the constraint 

L(S) =1 ISS Z S0(F) 
where S0 is chosen dependent on distribution function F(8) so that 

the corresponding interval for Bayes decisions (see Theorem 3.11) 

is small enough so that a theorem similar to Corollary (6.1.1) can 

be invoked. This way conceptual problems arising from choice of 

Anxiety function are also avoided. Obviously there are theorems 

here to be proved at a later date but it should be noted that they 

will depend heavily on the particular choice of fixed-distribution 

function being considered. 

Returning to the original problem now, it- should be noted 

that I have not yet proved anything outstanding, there could in 

fact be a reprieve from the last theorem if the extra minima appearing 

in EL(d) by the construction of the theorem never become global 

minima. Then they would never effect the topology of the Bayes 

decision. But in fact the infimum of E(d) jumps across these 

local minima. 
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Theorem 6.3. 

Suppose F(O) satis 

Write d(a) _ {d: EL(a)(d(a)) 

where L(a)(6-d) =a Sb (6-d) 
1 

where 0sas1 and 0< b1 < 

fies the 

= inf 
d¬S (F) 

+ (1-a) 

b2 are 

condition of Corollary (6.2.1). 

EL(a)(d)} 

Sb 
2 

(6-d) 

chosen as in the construction 

of Corollary (6.2.1). 

Then d(a) is not a continuous function of a. 

Proof 

Without loss of generality assume that dl < d2 where 

d= {d: E (d )= inf E (d)} 
1 b1 1 dcS (F) b1 

d2_ {d: E (d) = inf E (d)} 
b2 dES(F) b2 

(d1 unique by Theorem 3.2 )) 

(d2 unique by Theorem 3.2 )) 

Then by Theorem ( 3.3. ) d(a) E [d1, d2] 0sas1 and 

d(0) = d1 d(1) = d2.6.1.4. 

Write d(1)(a) the least minima of EL(d)(d) 

d(2)(a) the least maxima greater than d(1ý(a) (if it exists) 
It d(3)(a) the least minima greater than d(1)(a) (if it exists) 

Suppose d(a) were continuous. Then by (6.1.4). 

d(a) = d(1)(a) for all aE [0,1]. 6.1.5. 

By Theorem ( 3.10 ) any new minima of expected loss must be 

greater than d(1)(a) 

Let a_ {Inf ae [0,1]: EL(a)(d) has at least-2 minima 

Then for a in some right neighbourhood of a (a a +sl) E1 >0 

(say) 

d(l)(a), d(2)(a) d(3)(a) exist and satisfy 

dl'(a) < d(2)(a) < d(3)(a) 
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and EL(a)(d(l)(a)) < EL(a)id(2)(a)) 6.1.6. 

Again by Theorem ( 3.10) d(2)(a) is decreasing and d(1)(a) and 

d(3)(a) increasing in a. In a left neighbourhood of 1 

aE (1_c2,1] £2"> 0 (say) 

E L(a) 
(d), has only 1 minima. Hence for some 0< a'< 1, d(Z)(a') 

must disappear. By the above component, the only way it can 

disappear is by merging with d(1)(a) into a point of inflexion. 

It follows thatýd(')(a') is not then an absolute minima of EL(a)(d) 

The result follows. Q 

One consequence of the above theorem is that I can find an a* 

0<a *< 1, a corresponding loss function L(O-d) of the form above 

and a distribution function F(O) satisfying-Corollary (6.2.1) such 

that EL(a*)(d) has at least two Bayes decisions d1 and d2 (say) 

where dl and d2 one isolated (i. e. there are no Bayes decision in 

the interval (dx, d2). Any slight perturbation of F(9) using this 

fixed loss function is likely to cause: a. flip from d1 to d2 or 

vice-versa. In particular if Ft(0) is a distribution evolving 

smoothly with timet, one must be prepared for a sudden change in 

optimal decision at some point even if Ft(6)'is unimodal. This 

point will be touched upon later. 

Returning to the theorem under the class of mixed-step 

loss defined above and distribution F(O) satisfying Corollary (6.2.1), 

since d(a) is increasing in a, the possible Bayes decisions will not 

cover the interval [dl, d23, but there will be at least one region 

(r1, r2) E [d1, d2] where no Bayes decision can possibly lie. 
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Example (All notation as in last theorem) 

Suppose a collection of Bayes decision makers are assembled 

and told that the posterior distribution of a certain parameter 6 is 

F(8) (which for the sake of argument I will assume is an Inverted 

Gamma giving just one region (r1, r2) defined above). A pseudo 

observation 9= x from F(9) is worked out by usual computer techniques, 

but hidden from the decision makers. 

Each decision maker is then forced-to make an estimate 6 

in the knowledge that 

if; _10 - XI < bl he wins £50 

b1 s le - xJ < b2 he wins nothing 0< b11< b2. 

b2 < l6 - XI he loses £100 

Depending on his Anxiety function, the decision maker 

will either make a decision in [dl, rl] or [r21d2] and therefore 

could be classified respectively as optimistic or pessimistic. 

For example those Bayesians who normally go for posterior modes 

could be expected to choose a decision in [dl, r1] and those who 

use posterior means plum for a decision in [r2, d2]. Hence I have 

here a simple example of a population bifurcating when forced to 

make's decision about a seemingly smooth phenomengn. 0 

Finally note that generically, the only type of Catastrophe 

I can expect to isolate using this familty of loss functions is a 

Fold Catastrophe (though there may be many). Allowing a two parameter 

family of loss functions, I could then expect Cusp catastrophes and 

so on. What the normal factors and splitting factors are likely to 

be in these types of situation I must leave for research at a later 

date. They will depend both on the loss function and distribution 

function concerned. 
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6.2. Topology of Expected loss for Multimodal distributions 

It was shown in the last section that one could not guarantee 

getting an expected loss function with only one minima even if the 

distribution concerned was properly unimodal. However, it was found 

that on restricting the loss functions concerned to the (utility 

invariant) step loss functions the topology of the probability density 

function carried over to the expected loss (see Theorem 3.2(1)). As 

a first attempt to classify multimodal distributions therefore it 

might be hoped that the nice property above might be preserved in some 

way. The next theorem shows that this is not the case unless some 

restriction is put on the multimodal distributions being considered. 

First some definitions. 

Notation 

Let F(n) denote the class of all distribution functions F(8) 

continuous oniR and twice differentiable on (S(F)) 0 
such that. its 

corresponding probability density function f(O) has exac-Lly n 

oints on stationary pso where S(F) is the extended support of 

F(8). 

Let S(n) denote the class of all distribution functions 

F(8) continuous on iR and twicn differentiable on (S(F))° for which 

the expected loss Eb(d) with respect to any step loss function has 

a maximum of n stationary points on the part of the range of Eb(d) 

defined by Eb(d) E (0,1). 

Note that if n is even then F(n) and S(n) =Q unless there 

are points of infection and also that if F(6) e F(n), F(6) S(m) 

where mzn (just let b-0 on the step loss). For notational 

convenience I will allow m, n = co. 
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Theorem 6.4. 

If nz3 for all ma 1N there exists a distribution function 

F(8) E F(n) such that 

F(A) E S(m*) for some m* z m. 
Proof. It is sufficient to prove the theorem for odd m. I first 

prove the case for n=3. 

Fix mE IN, m odd. 

Clearly I can choose a distribution function F*(6) in F(1) with the 

following two properties. 

(i) F*(6) has mode at 0 and S(F*) = [-A, A] A E]R,, O. 

(ii) f (y) =f (-ý) has exactly J(m-3) solutions for 

Define the probability density function f(9) of a distribution function 

F(A) by the equation 

f(O) = Hß*(e) + ß*(2A-e)] 
For stationary points d of expected loss using loss function Sb(6-d) 

the' equation 

f(d-b) = f(d+b) is satisfied. 

Putting bcA this has the same number of-solutions as 

f(y) = f(y+A). 

This by definition of f(O) (which is of course symmetric) has the 

same number of solutions as 

2x {no. of solutions of f*(y) = f*(-y) yo (O, A)} + solutions 

{ftA) = f(A), f(O) = f(2A), f(A)=f(3A)} 

= 2(m-3) +3 
2 

= m. 
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Hence for this particular F(8) 

z m. Sup (no of turning point of Eb(d)) 
b>o 

so F(O) -f- S(m ) for some mzm. 

The theorem is now proven for n-= 3. 

For the case n>3 consider a distribution function Fn(O) E F(n) 

such that. 

fn(6)I[-A, 3A] a f(O) and the proof carries through. 

The result follows. p 

An obvious way of disallowing the construction given in the 

last theorem is by the following definition. 

If F(e) E F(n) write S(F) = [MO(F)'Mn+1(F)] (Mo'Mn+l possibly 

infinite) and 

m< M2 <... "< Mn be the stationary points of F(8). 

Write Ai(F) (Mi--11M1) 1sis n+1. 

In passing note that now fi(9) = f(O)JA1 1sis n+1 

is strictly monotonic. 6.2.1. 

Definition 

Call a distribution function F(6) ordinary if for each pair 

(Ai, Aý) 1s i< js n+1, and be M>O there is at most one d*(b, i, j) 

such that 

(i) f(d*-b) = f(d*+b) 

(ii) d-b Ai 

d+bEA 

In this case call d (b, i, j) the (i, j)t stationary point with 

respect to b. 

The following theorem insues. 



146. 

Theorem 6,5. 

If F(6) is an ordinary distribution function, then 

F(O) e F(n) implies 

F(8) 6 S(m) where nsms 2n-1e 

Proof 

Choose an arbitary but fixed b elft>0, Suppose there 

exist 

i# i* J: j* i, J, i*, J* a IN 

such that dl and d2 are respectively (i, j)th and (i*, j*)th stationary 

points and 

i+ j= i+j 

without loss of generality assume i< i*, so that j> j*. But then 

(d+b) - (dl-b) (d2+b) - (d2-b) 

Hence since F(O) is ordinary for all be Il3>0 and k6N2<ks 2n+1 

there exists at most one (i, j)th stationary point of Eb(d) with 

i+j = k. 

Hence F(O) ra S(m) where ms (2n+1) -2= 2m-1. 

The other inequality comes from the comment preceding, the last 

theorem. 0 

Note that for general ordinary distribution F(6) the upper bound on 

m cannot be lowered. To see this choose ba M>O large enough so that 

a (1, n+1) stationary point exists.. 

Then by suitable choice of F(8) I can make sure that all 

(l: j)th turning points 2Sj5n 

and (i, n+1) turning points 15i5n 

(for example let f(O) =0 at the ends of each interval Ai(F)). 

Hence F(O) a S(2n-1). 
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Definition 

If distribution function F(8) is ordinary, call the 

k-stationary-pöint of Eb(d) the unique (i, j)th_stationary point 

such that 

+j=k. I 

So at least for a certain class of distribution functions, the 

associated step expected loss is well behaved in some sense. 

However the reader may see that to isolate ordinary distributions 

analytically directly from their definition is difficult. The 

following theorem makes it easier to detect whether a distribution 

function is ordinary or not. 

Theorem 6.6 

F(. A) F(n) is ordinary if and only if for all pairs 

(i, j) such that 

j= i+2p 

gi3 : Bid -º ]R 

1sps n-i+1 
2 

defined by 

Isisn 

gil(b) = [fi- 1- f3-1](t) is strictly monotonic on Bij 

where Bid is the intersection of the ranges of fi and fi and 

fi(g) = f(O)JAi(F) 1 si s n+1. 

Proof 

Suppose F(6) is not ordinary. I. can then rewrite the 

conditions of the definition of ordinary distributions to say that 

there exist pairs (x1, y1), (x2y2) E ]R2 with 

x1 x2 E Ai and yl y2 E Ai such that 

(-i ) x1 yl = x2 y2 

(ii) f(x1)-f(y1) = f(x2) - f(y2) =0 

for some pair (i, y) 1s i< js n+l 
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Let f(xl) = t1., f(x2) = t2. Then t1 t2 since f(O) is invertible 

on Ai. Hence by (i) gij(t1) = gij(t2) and so gij is not strictly 

monotonic. 

Conversely if there exists a pair (i, j) 1s i< js n+l 

such that gij is not strictly monotonic, i. e. for which there 

exist a t1 ý t2 c Bij such that 

91j(t1) = gij(t2). 

Let xl = ß-1it1) Y1 =t 

x2 = ß11(t2) Y2 = ß1(t2) 

Then (i) and (ii) are satisfied and hence F(8) is not ordinary. - Q 

From the above equivalence it may be apparent that "ordinary" 

distributions-are not as typical as they should be for a general 

analysis multimodal distributions. For example suppose F(9) e F(3) 

with antimode a1 and modes ml, m2 such that. 

ml < al < m2 

S(F) (-03, co) 

Then as tA ß(a1) it is clear that 

ag13(t) 3g24(t) 

-; - 00 and oo 
at at 

So for F(6) to be ordinary {g13(t) must be increasing. This 

in turn implies {'g24(t) must be decreasing 

f(m1)'= f(m2), for if f(m1) > f(m2) (say) then as t+ f(m2) 

3g24(t) 
4. co 

at 
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There are several possibilities for generalising the 

definition of ordinary distributions that I am working on at 

present and will present at a later date. The next theorem is, 

however, "of some interest. 

Theorem 6.7. 

Let ordinary distribution function F(O) E'F(3) have 

probability density function f(@) with stationary points 

ml < a1 < m2 E (S(F))° 

where m1, m2 are modes and a1 is an antimode. Then F(6) will have 

3 minima of Eb(d) for some bE ]R>o if and only -if both 
. g13 (t) is 

strictly decreasing and g24(t) is strictly increasing. Otherwise 

F(8) will have at most two minima of Eb(d) for all bC R>O. 

Proof 

Since F(O) is ordinary, by Theorem (6.5) F(8) E S(j) 35js5. 

For 3 minima of Eb(d) to. -exist it is necessary and sufficient that 

(i) F(8) E S(5) (i. e. all 5 k-stationary points exist for 

some bE gt>0 ) 

(ii) Every one of these 5 stationary points must be either a 

maxima or a minima for b 

(ii) in turn implies 

k-stationary point is a {minima if k is {odd 6.2.2. 

{maxima {even 

For necessity suppose first that 0<b< J(m2-ml), then the 

5-stationary point is the (2,3)t"-stationary point and hence if 

d* is such that 

E'(d*) = f(d-b*) - f(d*+b*) =0 

then E"(d*) = f'(d*-b) - f'(d*+b) < 0. 
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Thus the 5-stationary point is a maxima by (6.2.2). So 

for b* to satisfy (i) and (ii) 

b* > '(m2-ml) 6.2.3. 

Thus if (i) and (ii) are to be satisfied b must be chosen so 

that the 5-stationary point is'the (1,4) th 
stationary point. 

If (d*, b*) has an (1,4)th stationary point in particular 

f(m1) - f(m1+2b )>06.2.4. 

Also if g24(t) is strictly decreasing using (6.2.2) 

f(x) -f*(x+2b )>0 for all x A2. 

Hence Eb(d) will have no 6-turning point. b > J(rn2-m1). Using 

an exactly analogous argument, if g13(t) is strictly increasing 

and b* is chosen so that there is a (1,4)th stationary point then 

Eb*(d) will have no 4-stationary point. Hence necessity is proved. 

For sufficiency all I need do is check that the 4-stationary 

point and 6-stationary point are maxima for some b* E P>0, for then 

by the nature of Eb(e), Eb*(d) must have three minima as well. 

Since g13(t) is strictly increasing 

f(x) - f(x+2b) is strictly decreasing xe A3 

taking a minimum value at x= a1 

and since g14(t) is strictly increasing 

f(x-2b)-f(x) is strictly increasing 'x cm A3 

taking maximum value at x=a1. 

Let n=min{l (f(rnl)-f(mi+2b*))-(f(al)-fai+2b*) j, ((f(rn2)-f(m2-2b*))- 

(f(a1)-f(al-2b)I} 

where b is chosen such that b J(m2-mi) and close enough to 

i(m2-m1) such that 

max, {Jf(m1) - f(m1+2b*)I, If(m2) - f(m2-2b*)I} < n/2. 
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Then there exist x1 E A2 and x2 E A3 such-that: 

f(x1) - f(x1-2b*) =0, f'(x1) - f'(x1-2b >06.2.5. 

f(x2+2b*) - f(x2) =0, f'(x2+2b*) - f'(x2) >06.2.6. 

Putting, di =. xi -b 11,5 c,: 5 2, (6.2.5) (6.2.6) imply that 

Etb*(di) =0 : E"b*ý(di) >015152. 

Hence for b the 4-stationary point and 6-stationary point are both 

maxima of expected loss. 

The result follows. 0 

Let G(0) be given by 

g(e) =i [f(e-u) + f(6+u)] 

where f(O) is the probability density function of a symmetric unimodal 

distribution F(8) with S(F) The comment preceding the 

theorem together with the theorem itself imply that I can expect at 

most 2 minima of expected loss Eb(d) with respect to step loss and 

distribution G(O), provided G(O) is ordinary. Thus the topology of 

E(d) will not be "worse",. than that of g(e) in this sense. Reassuringly 

it seems that most mixtures G(s) of the form above-where F(G) satisfies 

some loose regularity conditions will in fact be ordinary so at least 

Theorem 3.2. (1), can be generalised to a certain class of bimodal 

distributions. 

Summary 

Properly unimodal distributions that always have one minima of 

expected loss with respect to bounded symmetric loss functions have 

been classified together with those which can have more than one 

minima. An example of an application of-this phenomena is given. 

A tentative attempt to classify multimodal distributions under step 

loss starts another rich area for research. 
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7. CATASTROPHES ARISING FROM MIXTURES 

In the last chapter some examples of Catastrophes in 

Statistics were given. However it would be more valuable if some 

general results were possible so that in any particular situation 

the analyst would know whether or not he is likely to come across 

certain types of these singularities. Obviously I would like a 

classification in terms of the Expected loss potential function. 

The easiest of such potential functions to classify are those 

arising from symmetric loss and distributions which are (discrete) 

mixtures of a particular family of distributions, because I can 

then interchange the order of integration so'that I get a (discrete) 

mixture of a potential family. In this chapter, therefore, I 

attempt a classification of such mixtures. Because of the symmetry, 

the most interesting Catastrophes are the symmetric ones (Cusp and 

Butterfly). The following theorem concerns the former. 

Theorem 7.1. 

Suppose a posterior distribution of the form 

g(e) = af(e+u) + (1-a) f(9-0) U>O 

where f is symmetric, unimodal andýgeneric, 'is obtained. 
00 

Let E(d) =J L(d-9) f(O)d8 

co 
E*(d)= 

JL(d_O) 
g(O)dO 

FC8) 
= E(ýýý)(e)(E'(A)r 

and E(d) be Cw. 

(Note E*(d) = aE(d+u) + (1-a) E(d-µ). ) 
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Then if (i) L is symmetric and bounded by 1. 

(ii) E"(x) =0 has one solution in (O, -) namely x=n 

(iii) E"'(x) =0 has one solution in (0, -) namely x=a 

(iv) R((O, n)) n P((n, X)) 

the potential E*Cd) exhibits one unique catastrophe its coordinates 

given by 

(d, a, u) = (O, I, n) 

In this case (a) the normal factor, is a function of a only 

(b) the splitting factor, is an increasing function 

of u only. 

Proof 

E(d) is symmetric since f and L are. 

For a Catastrophe to occur at d=D for E*(d) L need the first 3 

terms of the Taylor expansion of (E*)'(d) to vanish about D, i. e. 

AE' (U+D) + E' (D-p) =07.1.1. 

AE"(u+D) + Ell(D-u) =07.1.20. 

AE"' (}i+D)+E'r' (D-}i) =07.1.3. 

where A= a(1-a)-1, u > 0. 

Since E is, symmetric about zero these may be written: 

AE'(u+D) = E'(p-D) 7.1.4. 

AE"(u+D) = -E"(u-D) 7.1.5. 

AEli I (11+D)= Eli' (p-D) 7.1.6. 

In the region'{D: IDI > u) E(d) has no stationary points hence 

I need only. search for Catastrophes in the region 

{D : IDI s 10 .. 

Conditions (ii) and (iii)'imply n<x. 
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From Condition (ii) 'and Equation (7.1.5) 

'u-D s71- and u +D 2 

and Condition (iii) with Equation (7.1.6) implies 

1 
d) 

d 

Fig. 7.1. Graph of E(d) and some of its derivatives. 

Hence 

(u-D) E (O, nl and (U+D) E [n, X) 

Dividing (7.1.6) by (7.1.4) the equation' 

E" (u-D) Ell' (u+D) 
must be satisfied t, (p-D) E' (u+D) 

Hence Condition (iv) and Equation (7.1.9) give 

u-D = u+D =n 

so D=0 is a necessary condition for a cusp in E(d). 

In this case (7.1.4), (7.1.5) and (7.1.6) become 

(A-1)E'(u) =0 

(A+1)E"(u) =0 

(A-1)E" (p)= 0 

7.1.7. 

?. 1.8. 

7.1.9. 

7.1.10. 

7.1.11. 

7.1.12. 

7.1.13. 
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Since E'(u) >0 (11) implies 

A=1a=1 

Since A+1 >0 (12) implies 

0u=n. 

and (7.1.13) is automatically satisfied. Thus there is a unique 

cusp at 

(d, «, u) _. (O, , n)" 

Finally, expanding the Taylor series about this point, truncating 

after the_3rd term gives the manifold 

d3 + a1d2 + a2d + a3 =0 

+n )a 
where al = 

El 
. 
it 

E (u+n) 

__ 
E"(n+ u) 

a2 6E1°(n+u) 

a3 =12ä 
EIV 
Ei ýl +u ) 

cc = 

ü=u-n 

which on truncating the Taylor series for coefficients in terms of 

cc and to the lowest power, can be rewritten as: 

1P 
3bip 

-a=0 

where ýr =d+ 2r(ri )cc 

b= -6r(n)ii 

a= -12 
E(n)a 
EIV(n) 

and r(n) = 
E1-- (ýl) 

E (r1) 

This completes the proof. p 
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The really crucial condition of the theorem is Condition (ii). 

Suppose for example that instead E"(x) =0 had 3 solutions on (0, co). 

When a= equations (7.1.11) (7.1.12) and (7.1.13) have then 3 

solutions when D=0, hence there are 3 cusps along this line. 

The induced map of stationary points of E(x) across the section 

a= would then look something like Fig. 7.2. corresponding to . 

the evolution of expected loss under increasing/ü given by Fig. 7.3. 

d - -- - -- - 

11 

rig. 7.2. Section of Manifold when a=1. 



One minima 

(u =O) 
a 

y 

Two minima 

d 

Three minima 

d 

Two minima 

Fig. 7.3. 

d 
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increasing 

u 

Note however that provided E(d) is generic, locally, any 

stationary points can be at worst folds or cusps and in particular 

if n is the smallest solution of E"(x) =0a cusp point will again 

be observed. 

A rather crude theorem giving sufficient conditions for 

E"(x) =0 to have exactly one solution is given below. 
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Theorem 7.2. 

Let L(O-d) be any 3x differentiable symmetric loss function 

strictly increasing on L>0 with upper bound: 1 and f(x) be a 

continuous 2x differentiable Ta. e) p. d. f. symmetric about 0 such 

that 

d(x) = 
f, ýýXý is increasing and strictly negative 

oniF>0. 

Then E"(d) =0 has only one solution ing? 
>0. 

Proof 

By{Lemma 3.3.1 of Chapter 3I can write 

E(d) = 10, Eb(d)dG(b) 7.2.1. 
f 

where G is a probability distribution which since L is strictly 

increasing G' has support [O, -) 

Since by the above conditions E(d) is 3x differentiable it 

is sufficient to show that whenever: 

E"(d) =0 then E"' (d) >0de lE? 
>Q 7.2.2 

since then E'(d) can have at most one stationary point a minima. 

Using (7.2.1) above 

Ell(d) _ (ß'(d-b)-i'(d+b))dG(b) 7.2.3. 
J 

IR>0 

E"' (d)- 
JIig>0 

(f"(d-b)-f"(d+b))dG(1) 7.2.4. 

Let kl(d, b) = 6(d)-6(d-b) 

k2(d, b) = S(d+b)-S(d) 

then by the above conditions on 6 



159. 

Hence 

T(d) = 
fý? 

>O 

k1(d, b) Z 0 when 

k1(d, b) < 0 when 

k2(d, b) z 0 for all 

(tl(deb)ß'(d-b)+k2(d, b)f'(d+b))dG(b)_< 0 
Il 0 

0<bsd 

0<d<b 

d, b E ]R>0 

7.2.5. 

7.2.6. 

7.2.7. 

'7.2.8. 

since as mentioned before G' has support IRZp 

But it is easily checked that 

Ell' (d) = -(T(d) + a(d)E""(d)) 

and so whenever E"(d) =0 then E"'(d) >0d e]R>0 . 

7.2.9. 

- The result follows p 

Example 

If f(x) is a Double-exponential p. d. f., then 8(x) is 

constant on ]R>0 and hence for any loss function of the form above 

any mixture of 2 Double exponential distributions can have at most 

1 cusp in its expected loss at the point of symmetry between them 

An Illustration: The mixture of 2 normal distributions 

In multiprocess modelling (Harrison and Stevens (1)) and 

many other situations, mixtures of normal distributions arise as 

the posterior distribution F(O) of a parameter 0 i. e. 

n 
f(6) =E ai n(ui, W1) 

1=1 

where n(u, W) is the normal p. d. f. with argument 9, mean u and 

variance W and 
n 
E ai =1 with ai >01. sisn. 

i=1 
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Lindley's conjugate loss function to the normal distribution 

(1) can be written 

L(O-d) =1- exp {- k 1(6-d)2} 
7.2.10 

where k is some positive constant. 

Notice that as k-0 the Bayes estimate will tend to. the 

highest mode of the posterior distribution and as k-- the 

corresponding Bayes estimate tends to the posterior mean so that 

the family of loss functions is fairly wide. Using this loss 

function the posterior expected loss can be easily computed to be 

n 
E(d) =E a[1-(27rk)ýn(-ui, w1 + k)] 7.2.11. 

i=1 

Corollary 7.1.1. 

An expected loss of the form given by (7.2.11) with n =. 2 

and wl = w2 exhibits a single cusp catastrophe at the point 

a=ý 

ýU1-u2)Z = 4(w + k). 

Proof. Check the conditions of Theorem 1 are satisfied and solve 

the equation 

f"(x) =0 where 

f(x) = exp[-4(w+k)-1(x-i)2] to obtain the value for 

ul - u2 at the cusp 11 

The graph of the control space on this particular catastrophe 

is given in Fig. 7.4. 
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ne. 

M" ; AAzI) 

Fig. 7.4. FeU tcv%e. s .r Lx, o. '! > Spa. 
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An aside 

The above result emphasises an important fallacy, sometimes 

this sort of argument is heard, 

"A loss function L(8-d)-which is symmetric and analytic can 

be expanded in a Taylor Series as 
2 

a0- a2(e-d) + other higher even terms. 

Ignoring these higher terms, this will give the posterior mean as 

Bayes estimate and thus the posterior mean can be seen as a second 

order approximation to the true Bayes estimate". ý,. 

Well, the normal conjugate loss given above is certainly 

analytic. Suppose I consider a posterior distribution of the form 

given in the Corollary above and suppose a1 = a2 = i, then the 

graph of stationary points of E(d) is given by Fig. 7.5. 

d 

ýý 

i 

4 () 

Fig. 7.5. 

Notice that as Iu1-1121 becomes large the posterior mean J(ul + 112) 

becomes a maxima of expected loss and hence a worst decision. 

The last Corollary can be generalised to the case when W ifs as 

the following Theorem shows. 
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Theorem 7.3. 

2 
The expected loss E(d) =E ai(1-(2Trk) n(ui'°i)) 

i=1 

2 
where E ai=1 ai >015is2 and n(u, V) is the normal probability 

i=1 

density function with argument d, mean p and variance V, has no 

swallowtail points if V1 ý V2. 

Proof 

Without loss of generality I can assume that V1 > V2 and 

ul µ2 The fold points of E(d) are then given by the points 

satisfying the two equations 

E'(d) =0 E"(d) = 0. 

which after rearrangement give the respective equations 

(y-a) exp -{icy2} = B(y-b) 7.3.1. 

(1+acy-cy2) exp -{icy2}- °. B 7.3.2. 

where y=d- (V1p1-V2u2)(V1-V2)-1 

B= (1-a-I)V11 V2-1 exp J{(V1-V2)-1(p1-p2)2}. 

c= (V2-V1)(V1V2)-1 

b= V2(ul-u2)(V1-V2)`1 

a= V1(ul-u2)(V1-V2)-1 

Eliminating the exponential term I find that the fold points must 

satisfy the cubic 

(1 + acy - cy2)(Y-b) - (y-a) =07.3.3. 
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which can be written 

z3 - alz - a0 =0 

where z=y- 
3(a+b) 

1= 
12 

- ab a(a+b) 

ao=c-1(a-b) + 
&(a+b)3 

-3 (a+b) 

7.3.4. 

Since ax 0 for any real values of a and b the cusp of this cubic 

in z can never be achieved. But a swallowtail point is exactly a 

cusp point of fold points. 

This completes the proof. 0 

An Application in Normal Hypothesis Testing 

Some important conceptual work*has been done (e. g. Dickey 

(1) and (2)) relating Hypothesis Testing to Bayesian statistics by 

considering mixtures of Alternative and Null hypotheses as priors 

and updating in the usual way. Another interesting link is given 

in the following 

,.. 
Suppose X1... Xn are independent identically distributed 

random variables, having normal distribution with mean u and 

variance. -V, the null hypothesis being 

H0: u=0 

against the alternative 

11 1: uýo. 

Using the usual type of arguments in a Bayes setting this 

implies that I have a prior p. d. f. P(P) of of a form 

P0.0 = (1-ß)X0(') + 

where Xo(u) is the indicator 

represents my pr 
wrong 

and W is'large (and be 

0 (2, rW)-I exp - (w u) 

function for located at 0 

for belief that the null hypothesis is 

tended to in due course) 
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On observing xl... xn using the usual Bayes arguments I obtain 

a posterior probability density function p(p) of u of the form 

ßz(x) 
-z -z -z -z WR 2 

P(u)=(1-ß1(x))Xo(u) +, 2Tr (W +nV ) exp-if(ý'ý- +nV )(u-_i -) )} 
r+n V 

where ß1(x) _ 

6(x) = 

(1 +Y(X 5(x) 

ß 
�2Tr(W+ri 1 V) 

YýX) = 
(1-ß) 

� 27r n-1V 

exp -J{(W+n-1V)-1x2} 

exp -, I {nV 1x2}, 

Now ideally I would like to let W so that I have a flat 

prior over the alternative but this is impossible since as w+ co the 

alternative part of the prior tends to an improper prior distribution 

(which of course gives zero probability to any finite interval) so 

that posterior weighting on the alternative ßl(x) tends to zero 

regardless of x. The problem is simply overcome, however, by 

allowing ß to be a function of W. 

The only function ß, W giving a non trivial limit (i. e. 

such that 

tim ßl(x, W) i0 or 1 for all values x) 
W-o, 

can, from the equation for ß1(x) above, be seen to be a function 

O(W) _ (1 + f(W))-1 

such that 

lim (W 'B where B IR 
>0 W f(IV) 

otherwise y/ö ;1 or O 
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Since I am going to take limits anyway without loss of 

generality write ß(V) 

ß(W) = (1 + BW )-1 

in which, case as w 

B exp _j(x2 nV_1) 

It is easily checked that this now gives sensible results. 

For example as x -ý /S-=0. 
_ and_- hence . 

ß1ýXý '}. 1 

so that all my posterior weight goes on the alternative. Similarly 

if 0 the posterior distribution is then symmetric about 0 so 

that any Bayes decision under symmetric loss will give the null 

hypothesis u=0. 

Hence in representing this Hypothesis Testing procedure in 

this way as a limit of a proper Bayesian procedure it is seen that 

the corresponding posterior distribution for u is given by 

(1 - ß1(X))x0(u) + ßx(x) ---1_1 exp -J(nV-1(x-u)2) 
�27rn V 

where 0 ß(x) _ (1 +B exp -I(nV-1x2))-1 

To make a Bayes decision about uI now use a loss function 

(for convenience's sake the conjugate loss function of the form in 

equation (7.2.10) to obtain a posterior expected loss of the form 
2 

E(d) _E ai(1-. (21Jk) 
n(ui, 

Ui)) 
i=1 

where again n(.,. ) represents the normal probability density 

function with argument d and 
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u1 =0 Ux =k al =1- ßiX) 

u2 =x U2 = n-1V+k a2 = ß(X), 

A diagram of this expected loss is given in Fig. 7.6. Note 

in passing that I have brought only two extra constants B and k 

into the model, B being linked to my prior beliefs and k being 

linked to my criteria of judgement via the loss function. 

J 

Fig. 7.6. 

A 

Now suppose n is large so that U1 = U2 k. Then this 

almost satisfies the conditions of Corollary (.?. 1.1). If U1 = U2 =k 

then there would be a cusp point at 

ß1(X) _i-... 

and x2 = 4k 

where (7.3.5) can be written in the form 

X (2 In B)' 

7.3.5. 

7.3.6. 

2 
Suppose that k is chosen such that k< 14 
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Then the decision space has been split into two sheets by 

the cusp one sheet corresponding to minima of E(d) near 0 (the 

null hypothesis sheet) and minima of E(d) near x (the alternative 

hypothesis sheet). See Fig (7.7) 

Since I have symmetry (n large) to a first approximation, 

the Bayes decision (i. e. the lowest minima of expected loss) will 

be approximately determined by the line 

ßl =i 

Modulo this approximation therefore it follows that the 

null hypothesis sheet holds the Bayes decision if 

i< (2 knB) 

and the Bayes decision is on the alternative sheet if 

li 
> (2 inB) 

These of course are the standard acceptance and rejection 

regions obtained from classical arguments. 

Hence Classical hypothesis testing procedures can be seen 

as a particular form of a limiting case of Bayes decision making 

under bounded loss criteria. Unlike other Bayes analogues however 

it represents hypothesis testing in a qualitative way. When testing 

the hypothesis p=0I do not really believe that u could possibly 

be exactly 0, just that the value of p is near 0. The above 

correspondence presents this point very clearly. 
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-2 
When kz4 the posterior distribution will be unimodal 

and hence I get,. the.. typical k -> -I obtain the mean which always 

compromises (and in so doing loses the topology of the situation) 

-trajectory of 
A. increasing 

b 

ýr. 

ýa-e No 
. 

x=a 

Fig. 7.7. 

It would be very interesting to see (for small values of a) 

how the Bayes decision moves around the 4 dimensional control-space, 

but this is some research that is yet to be completed. 

The Butterfly Mixture 

At the beginning of this chapter I mentioned that the other 

main Catastrophe to appear from mixtures of symmetric distributions 

is the Butterfly. This time I need a 3-mixture to illustrate the 

point. 
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Theorem 7.4. 

'Suppose a posterior probability density function is obtained 

which is of the form 

g(e) = alf(e-ul) + 0ý 2f(e) + a3f(e+u3) 

where i(6) is a symmetric unimodal probability density function 

and 
3 
Ea where ai >O1sis3. 

i=1 

00 
Let E(d) = 

ý- 
L(d-8)f(9)dO 

Co 
E*(d) = J_ L(d-0)g(8)d6 

R(d) = Eris (d)(E" (d))-1 

and E(d) be generic and Coo 

Suppose (i) R(d) is monotonic on]R>0 

(ii) E(1V)(d) (E(il)(d))-1 is monotonic on 

where as before n is the unique solution in (0, co) of E"(x) = 0. 

Then there exists a unique Butterfly Catastrophe along the plane 

d=0 whose coordinates in the Control Space are given by 

(ala2a3)u1u3) = (a, 1-2a, a, u, u) 

where u is the unique solution in (n, -) of 

E(iv) a_ E(iv) 
E(ii)(d) E(ii)(O) 

7.4.1. 

and cc is given by the equation 

a=1_ 
E(li)(u) 

Eýýy)(0) 
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Furthermore such a Butterfly Catastrophe will have 

a and c as linear combinations of u1 - 113 and a1 - a3 

and b and d as linear combinations of ul + 113 and ai + a2 

where a= normal factor 'b =splitting factor 

c= bias factor d= butterfly factor. 

Proof 

Any Butterfly point at d=0 must satisfy 

al E(ý')(d-ul) + a2E(1)(d) + 3E(i)(d+u3) =0 
d=0 

1sis5 

which on using the symmetry of E gives 

-al E(1) (U1) + a2 E(i)(d) + a3 E ()3) _07.4.2. 

al E(ii)(ul) + a2E(ii)(0) +a3 E(ii)(u3) _07.4.3. 

-a1 E(iii)011) +a2E(iii)(0) +a3E(iii)(u3) 0 7.4.4. 

al E(iv) (111) +' a2E(lv)(0) i" a3E(1V)(u3) 7.4.5. 

-al E(v) (111) + a2E(v)(0) + a3E(v)(113) =07.4.6. 

Dividing (7.4.4) by (7.4.2) and using that E(ß)(0) = E(iü)(0) _ 

E(°)(0) =0 implies that 

E(iii)(u1) E(iii)(113) 

E(l) (uI) E(1) (p3) 
7.4.7. 

which on using (ii) gives 

111 = u3 = 11 (say) 7.4.8. 

Resubstituting into (7.4.2)'gives 

a1 = a3 =a (say) 7.4.9. 
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Dividing (7.4.5) by (7.4.3) and using (7.4.8) and (7.4.9) above 
gives 

E(iv)(u) E( 

E(ii)(u) E(ii)(0) 

Also uE (n, -) since E(il)(u) >0 is necessary if (7.4.3) is to hold. 

Hence by (ii) u is uniquely given by the above and a satisfies 

a=21- E(11)(u) -1 

E(ii)(O) 

Conversely if (al, a2, a3, ux, u2) satisfy the above requirements 
then each of the first 5 equations hold. 

The first part of the theorem is now proven. 

For the second part of the theorem consider singularities arising 
from general small perturbations of the butterfly point of the form 

Gp(d) = (1+E1) E(d-p-A1) + (1-(e1+c2))AE(d)+(1+c2)E(d+u+X2) 

where A= a-1 -2 

The kth coefficient of the Taylor series expansion of Gp(d) is then 

given by 

(1+e1)E(lý) (-u-A1) (k) + A(1 - (el+t2))E(p)+(1+c2)E(k)(u+A2) 7.4.10. 

If k is odd. E(1: 
)(_u_ý1) 

-Eýk)(uý-a1) 

Hence (7.4.16) becomes 

("+X2 )- E(k)(u+. ll) - F1E(k)( +A1) + C2E(1')(u+X2) 

which on taking the first 2 terms of the Taylor expansion with respect 
to (e1, £2, X1, X2) 

_ (A2 - A1) E(k}1)(4) + (e2 - c1)E(k)(u) 7.4.11. 
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If k is even E(k)(-u-A1) = E(k)(u+X1) 

Hence expanding (7.4.10) to its first 2 terms in e1, e2, A1, A2 again 

gives 

2E(k)(u) + (al +X2)E(k+l)(u) + AE (k)(0) 
+ (E1 +E2) [E(k)(0)+E(k)(u)] 

and by definition of u and A 

= (A1 + A2) Eýý+1)iu) + (e1+E2) [Eýk)(O) + E(k)(u)I. 

So if an(n! )-1 is the coefficient of do in the, Taylor expansion of 

Gp(d) then 

al = (a2 - A1) E(ii)(u) 

a2 =2+ x1) E(iii)(u) 

a2 =2- x1)E(lvýiu) 

a4 = (ý2 + x1)E(v)(u) 

a5 = (a2 - x1)E(Vl)(u) 

+ (e2 - e1)E(1)(u) 

+ (e1 + E2)E(ii)(11) + E(ii)(0)) 

+ (e2 - el)E(iii)(u) 

+ (E1 + e2)E(iv)(U) + E(iv)(0)) 

+ (e2 - e1)E(v)(p)" 

Since a5 has no 0th order part with respect to (el, e2, X1, X2) it will 

have no effect on the first term expansion of the controls. 

Also E(vl)(0) #0 if E is generic so a6 has nonvanishing 

first term in its Taylor expansion and so will only effect the 

controls proportionalitywise. 

It follows that 

a (A -a) E(ii): (u) 21 

ba (X2 + A1) E(p) 

a (A2 - A1) E(lv)(u) 

da (A2 + A1) E(V)(u) 

+ (e2 - s1)E(1)(u) 7.4.12. 

+ (£1 + C2)(E(ii)(u) + E(ii)(O)) 

+ (E 2-1 )E(iii)(11) 

+ (E 1+E2 )(E('V)(u)+E('V)(0)) 

Rewriting Gp(d) in its original variables (a,, (% 21a3Ip1'p2) now gives 
the result. 
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Comments 

1). It is easily checked that a mixture of 3 normal probability 

density functions 

f(8) = al n(ul, w) + a2 n(O, w) + a3 n(u3, w) 

where n(u, w)-. is"a normal probability density function with-argument 

6, mean p and variance w and 
3 
E ai with ai >O1sis3 

i=1 

under conjugate loss of the form 

L(6-d)'= exp {-Jk-1(d-6)2} 

gives an expected loss satisfying the conditions of the theorem. 

In fact the Butterfly point is given by 

d=O 

ul = u3 = 3(w+k) 

al = a3 = (1+2 exp ( 2))'1 

a2 °1- 2a1 

2). In practice it has been found difficult to isolate Normal factors 

from Bias factors and Splitting factors from Butterfly factors because 

locally they tend to have similar effects on the topology. Here again 

the theorem above emphasises this point since the exact linear 

combination in (7.4.12) of each of the factors depends on the exact 

topological form of E(d). However it is easily seen that "symmetric" 

perturbations around the Butterfly point are encapsulated in the 

Splitting and Butterfly factors and the "antisymmetric" is the Normal 

and Bias factors. 



175. 

Summary 

The last Chapter has shown how one can use Catastrophe 

theory to classify some of the more simple forms of expected loss 

arising from mixtures of processes. With Theorem 7.1 and Theorem 

7.4, I now have the apparatus to redo rigorously in terms'of 

potential theory many of the examples of Catastrophes in the Social 

Sciences (Zeeman (3) and (4)) which Zeeman has heuristically rooted 

out. 

An example using Theorem 7.1 is given which gives a novel 

link between Hypothesis Testing and Bayesian inference. 
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8. GENERALISED BAYES FORECASTING 

8.1., Introduction, 

Toastudy. non-linear temporal processes successfully sooner 

or later-a complete rewrite and reformulation of. existing time series- 

methodology must be attempted. -The reason for this is that the 

standard; formulation. relies heavily on the linearity of the model. - 

an assumptionýWhich for example is contrary to Catastrophe models. 

In this-chapter I shall begin such a reformulation. Obviously 

such aýproject is too large for comprehensive coverage in one chapter 

of a thesis so I have concentrated most of my attention on the steady 

(or first difference) model giving a careful formulation of the 

problems and many examples. I will then briefly indicate how the 

procedure carries through to other models. 

Firstly I shall give a discussion of existing methodology. 

8.2. Normal Bayes Forecasting 

A very useful and robust method of forecasting has been the 

Bayes Forecasting approach introduced by Harrison and Stevens (1). 

For a full exposition I refer the reader to the above reference. 

Briefly the model is specified in two stages. 

Stage 1 (Observation Eqn) 

Xt Ft kt + tit Vt ti n(e, V) 

Stage 2 (System Eqn) 

kt =G et-1+Rt ti`lt ti n(2, w) . 

where Ft, G are known matrices 

titkt are "error" vectors of random variables 

ýt. is the observational vector of random variables 

Qt is the system vector of random variables. 
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The point of splitting the usual sort of Box-Jenkins (1) 

type at ARIMA model into two stages is that the model is much more 

easy to construct and interfere with in any specific situation. 

This is due to the fact that each 0t represents the "level" of one 

of the things I am estimating and has an interpretative value to it. 

For example one 6t may represent the 'true" level of demand for-a 

particular product and Ytrepresent the sales for that item during 

that time stage. Hence theoretically the connection between demand 

between two particular products at some time stage may be specified 

together with the connection between the actual sales in a natural 

way. Also if something outside unusual happens it is possible to 

predict the effect on the levels or observations so the model can 

be quickly readjusted to meet the new situation. 

Because of the nature of the normal distribution the distri- 

bution of kt conditional on collections of the Zt's will be normal. 

Using the short hand 

ktlýt ktIYt'yt-i . 

t 
the distribution of kt has mean which is a'weighted average of 

combination of the observative (the weights and combinations depending 

on Ft, G, V and W) and variance tending to a constant after the edge 

effect of the prior wears off. 

These weighted averages will smooth over the Yt's, the more 
V. U 

weight put on past observations the larger the matrix V is than W. 

In passing it should be noted that such results are not recent, for 

example Muth (1) and Whittle (1) give some special cases of the 

update formulae. 

The purpose of this chapter is to generalise the approachýto 

include models where the YtIs are not necessarily normally distributed. 

In particular I can the model Type II Catastrophes (see Chapter 4). 
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8.3. Some Difficulties in Formalising a Generalisation 

Consider first the special case of when the observations Yt 

are symmetric. A very obvious first try is to keep the same form of 

the equations "Stage 1" and "Stage 2" with error terms Vt2 Wt 

symmetric distributions. This approach however encounters two 

problems. 

Problem 1 Tractability. Because a*convenient error term in 

the second stage cannot be found in general, the 

distribution of 6tJYt gets out of hand and incomputable 

as t increases. 

Problem 2 No "natural" or conjugate distributional choices for 

V. and IVt exist in general and different distributions 

will give different results. 

Obviously without symmetry these problems multiply. 

In the literature I have seen three possible solutions proposed 

all having major disadvantages in a forecasting context. . The most 

common of these is the Control Theory approach (see Snyder (1), 

Kalman (1), Maachi et al (1), and more recently Cleverson and Zidek 

(1) where the process is considered on the first two moments 

only, rather than on the distribution of the second stage'random 

variable. In non-normal situations however, such moment approaches 

are notorious for giving misleading results (for example see Chapter 2) 

The second method proposed by Leonard (1) is to transform 

the second stage parameters to normality and evolve the transform 

random variables in the usual way. This, I hope the reader will 

appreciate immediately removes two main advantages of using the two, 

stage model over other techniques, namely: 

(i) The transformed 0t's and their evolution have lost 

their heuristic significance. 

(ii) The approach is inelegant and messy. 
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t Ixn KYr t 

As a third solution Harrison and Stevens (1) tentatively 

suggest that at. each time stage a normal approximation to the second 

stage random variable should be made equating means and variances. 

Apart from completely losing the form of the random variable 8 this 

again suffers from bad stability properties mentioned in Chapter 2. 
s 

So 'none of these solutions looks very promising. Let us 

returncto the original normal model and check these statements about 

it given below. 

(i) At is in a "natural" parametrisation, firstly because it 

has meaning, as stated before, and therefore can be ascribed to some 

loss function which implies a natural (up to linear transformations) 

parametrisation.. Secondly for ýVt to be specified as marginally 

symmetrical in its components, 6t must be in a particular parametri- 

sation. Symmetry of Wt is only preserved under linear transformations., 

(ii) In Stage 2 kVt is only chosen to be normally distributed 

because it is convenient to do this to get a nice updating relation. 

(iii) In Stage 2 the adding of an error-term is only a convenient 

way of specifying the joint distributions of the random variables 

8t in such a way that our "uncertainty" about ýt1 is: greater than 

the uncertainty of 
t-1 kt-1 

With these concepts in mind I will start my own generalisation 

of the Bayesian forecasting approach. The most important Bayesian 

forecasting model is the Steady Model, so I will start with this and 

expand up. 

Before I begin note that in the normal case Stage 1 can be 

rewritten 

, Xtlkt ti n(O, ) 

,, 
This equivalent representation is usually more useful (since 

it removes the need for the additivity of error on the first stage) 

when dealing with general distributions. 
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8.4. The Steady Model 

The steady model for the Dynamic Linear Model (See Harrison 

and Stevens (1) is given by the equations 

Stage 1 Yt =0t+ Vt V. ti n(O, V) 8.4.1. 

Stage 2 et = At-1 + Wt Wt v n(O, W) 8.4.2. 

where all error components i. e. {Vt, Wt ts IN} are independent. 

The first part of this chapter discusses how to analyse such processes 

for other distributions. 

Write yt = y1... yt, then the normal steady model gives 

etlyt n(mt, Ct) 8.4.3. 

where mt = mt-1 + At(Yt-mt-i) 8.4.4. 

At (Ct-1 + W) (Ct-i +W+ V)-1 8.4.5. 

Ct Ct-1 +W- At (Ct-1 +W+ V) 8.4.6. 

It is easy to see that C. does not depend on the observations yt 

but just on the value of t, and as t -ý Ct +C where 

C= JW [(I +4 r) I] where r=' V/W 8.4.7. 

In fact if I just started at t=0 with Co = C, then C. 

will not depend on t at all. So the convergence with t is due to 

the effects of the prior distribution. Forgetting the effects of 

the prior I obtain the. "steady" state of the steady model. 

mt = mt-1 + A(yt-mt-i) 

Ct=C 

8.4.8. 

8.4.9. 

where A is the constant derived by substituting C for Ct_1 in 

(8.4.5). It can be checked that this gives mt as an exponentially 

weighted average of the observations yt as t+-. 

It is now possible to generalise the process. Write 

ft(0) = probability density function of 6t given'yt 8.4.10. 

f(l)(6)=probability density function of 6t+lgiven yt 8.4.11° 
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Then (8.4.8) and (8.14.9) cän be written 

ft+i-(e) (ft(e))k 8.4.12. 

where kf= (1 + WC-1) 

_ {1 + 2([1 + 4r]-l - 1)-1}- <18.4.13. 

an expression just depending on r, the variance ratio. This suggests 

the following extension to non-normal processes. 

8.5. The General Steady Model 

I shall begin this section with a few mysterious definitions 

and then given an explanatory theorem. 

Suppose for all t EIN parameters 6t are a-priori all contained 

in a bounded interval I, and let F(I) denote the'set of all absolutely 

continuous, distribution--functions with extended support contained in 

this interval. 

Definitions 

Choose a set of continuous functions 

Tt : IR>0 -} 7R>' t¬ IR such that 

(i) for each te lN Tt is concave downwards 

i. e. for all x, y e3%. 0 such that 0<y<x 

T(x) - T(x-y) > T(x+y) - T(x) > 0. 

(ii) Tt converges uniformly to T (say) as t+ co where T satisfies (i). 

Then the steady map St induced by Tt is the map 

St F(I) ý F(I) 

F(e) Gb(e) 

where gt(e), the probability density function of Gt(e) has the 

property 

gt(e) Tt(f(O)). 

where. f(O) is the corresponding density function of F(e). 

It is easily checked that St is well defined since I is compact. 
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Call the Simple Steady Map a steady map'such that Tt T 

for all tE ]t. 

Call. a Steady ModeZ (S. M) with respect to Tt, te IN a model 

for which there exist maps St, tE 1M such that 

F(, (8) = st(Ft(e)) 
.tE] 

where Ft(0) is the distribution of parameter et given 

observations yl ... yt 

Ft+i(6)is the distribution of parameter'et+l given 

observations yl ... yt 

and St is the steady map induced by Tt satisfying conditions (i) 

and (ii) above. 

Finally call a simple Steady Model (S. S. M) with respect'to T 

'E IT. the S. M. with Tt =-T for all t 

Now the clarifying theorem as promised. 

Theorem 8.1. 

Let Ft(0) and Ft+)(A) be defined as above and Ft(0) be 

differentiable on1R. Then any (S. M) satisfies 

i) Ot(b) = Ot+i(b) 

where ýt(b) is the generalised location map associated with Ft(e) 

ýt+i(b) is the generalised location map associated with F(1 (e) 

(ii) If bE IR. 
>O 

is chosen such that 

ft(0) > ft(db-b) 0e B1 

ßt(6) < ßt(db-b) 8E B2 

where B1 = (db-b, db+b) 

B2 = [db-b, db+b] 

and db fi(b) 

then Eb(Ft, db) < Eb(Ft+l, db) 

where Eb(G, d) denotes the expected loss with respect to step loss 

Sb(8-d) distribution G and decision d. 
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Proof 

(i) is a direct consequence of Theorem 3.6. 

(ii) Since T.. is concave downwards for al lc cIR there exists 

an R(c) such. that 

R(c) T(x) >x 0<x<c 

, 
R(c) T(x) <x c<X. 

so by. the. above condition-in particular 

R(db-b) Tt(ft(e)) < ft(8) O B1 

R(db-b) Tt(ft(e)) > ft(0) 0e 'g2 

Hence in. particular 

j ft(0) dO R(db-b) T(ft(e)) dA 
ý EB1 eE$ 

1 

ft(0) d6 f R(db-b) T(f 
t(e)) d@ 

O EB2 0B 2. 

which on rearranging gives 

I T(f. (el) ýa 

B2 
ft (A) dO 

eEB2 
T(f t(e)) d6 feE ,... 

Hence Eb(Ft)db) Eb(Ft+1, db) 

by the definition of Ft+i. This concludes the proof. Q 

Corollary 

If Ft(0) is properly unimodal, then 

Eb(Ft, db) < Eb(Ft+l, db) for all b e]R>C. Q. 
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0 

A discussion of the definitions 

(1) Condition (ii) 

The reason I must consider a set of transformations Tt rather 

than a single transformation Tfor the definition of a S. M. is purely 

(as in the normal case) to'allow for the effects of the original 

prior density p(00) comprising of information not gathered from, the 

data. When considering a Steady Model by its very name I am primarily 

interested in its behaviour as t 4- - and the model "steadies down". 

Thus the edge effects introduced by the prior are of little consequence 

theoretically and in later examples I will'restrict myself only to 

S. S. M's. 

(2) Theorem (8.1) (1) 

For the Steady Model., the Generalised Location Map 4(b) will be 

the same for the distribution of 0t+1ýyt as it was for Otlyt. 'Hence 

the set of all. unemotional (or Anxiety function invariant) local 

minima of expected loss will remain constant over this time period. 

This can be'interpreted as the "location" of the process being fixed. 

Note that I have mimicked the normal steady model where the modes of 

the distributions of Atlyt and 6t+llyt are the same, as are the 4(b) 

functions associated with these two distributions (by the symmetry of 

the probability density functions f(Atlyt ) and f 9t+lIyt 

(3) Theorem (8.1) (ii) 

Clearly the final condition required is that the "spread" of 

the distribution of 6t+11yt is greater than that of Otfyt . This is 

expressed succinctly in terms of Bayesian inference by using Theorem 

(8.1) (ii) which says that the expected step loss associated with the 

Bayes decision increases provided f(etlyt) is well behaved in the sense 

of the restriction of the theorem, for example if it is unimodal. 
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(The reason this restriction needs to be imposed is that one would 

expect a general flattening of f(8t(yt) for f(Ot+lJyt). If db is in 

a neighbourhood of a deep antimode, the antimode will grow less deep 

db-b db db+b 

under the steady model and hence Eb(F(6tlyt), db) may actually decrease. 

(see Fig. 8.1). ) 

£C0 I. t) 

r 

lr 
týr 

Fig. 8.1. 

0i 

8.6. The Power Steady Model 

The definitions above do contain one snag; the parameter space 

for At t'E ]N must be bounded. Although this might be a reasonable 

restriction in many practical situations it is a theoretic embarrass- 

went since nearly all tractable density functions have support in 

either ]R or]R>0. This means that the induced density f(6t+l1yt, ) may 

not be integrable and so S defined above not well defined. I can 

surmount the difficulty in a very interesting way however by imposing 

one more restriction. 

Let B bea compact set and AcB. Write BSA =Bn Ac. 

Let f(O) be a probability density function on B 

fA(e) be the probability density ß(6 6E A) 

fB%A(6)be the probability density i(OIOE BSA) 
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Then fA(8) _ {pl-lf(A) 0EA 

{0 otherwise 

ßB\A(6) {p2-lf(e) 0E B\A 

{0- otherwise. 

for constants pl and p2. 

Condition (iii) 

Choose functions Tt satisfying (i) and (ii) in the above 

definitions with the additional condition that for all probability 

density functions with support contained in B 

Tt(f(O)) a a1 Tt(fA(e)) + a2 Tt(fB\A(6)) 

where a1 and a2 E IlR>O . 

Definition 

Call a S. M. (S. S. M) with Tt(T) satisfying condition (iii) a 

Power Steady Model (P. S. M) (Simple Power Steady Model (S. P. S. M)) 

Note that this implies that 

St(f(e)) _ (P1*)St'(fA(e)) + (P2*)St ($B\A(e)) 

where p1*, P2* >0 and p1* + p2* = 1. 

Interpreting pl* as the probability that 0t+llyt eA and p2* 

as the probability. 0 t+1 
1yt e BSA ' it can now be seen that aP. S . M. is 

a model for which the restriction of 0 to lie in a particular interval 

does not effect the evolution of its distribution function. In 

particular if I apriori restrict @i EB to lie in the interval 

AcBi E] the distribution I obtain for 0t(yt is the-same as the 

one I obtain by restricting 01 to the interval A only at times 

II 

i= t-r, t-r+l .... -) r>t. 
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4 

This of course a property of the non time dependent Bayes 

analysis and a little thought should convince the reader that this 

is an intuitive condition to impose. 

Without loss of generality drop the subscript on T. 

Theorem (8.2) 

T satisfies Condition (iii) if and only if 

T(x) _* xt for some {k F (O, 1) 

{iP E1R>O 

Proof 

T(f)T(plßA + P2- fB\A) 

T(pl-1fA) + T(p2-1(fB\A) 

= a1T(fA) + b2T(fB\'A) 

T(cx), a T(x) for all k, xa IR 
>0 

which is equivalent to the condition 

since A and B\A are disjoint 

if and only if 

W(y+c) - W(y) = J(c) for all y, c em 

where W(y) =. £'n(T(exp y)) 

But this means that W is a linear function of y. 

Hence (iii) is satisfied if 

T(x) = ýxk k, e IR 0. 

But Condition (i) will be satisfied in this case if and only if 

ke (0,1). 

This completes the proof. Q 

It should be noted that without loss of generality I can drop 

the constant tP since proportional T induce the same transformation 

S: F(I) -> F(I"). 

It is obvious that the normal steady model is in fact a P. S. M. 

and so I have achieved the generalisation I require. It is also 

obvious that I could have proceeded by using a prior likelihood 
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approach, (Edwards (1 

as 

)) The P. S. M. model can then be formulated 

IY )=k to e+ constant RnQ 8t+1 
t( 

tlYt) 

where is the likelihood function and 0<k<1. 

This would have the advantage of removing the integrability 

condition on T("Q(O)) and the disadvantage in the difficulty to find 

a spread concept. 

I said at the beginning of this section that the P .S . M. got 

round the necessity for the condition of compactness of support of 

. The reason for this is as follows. A consequence of Bayes rule 

is that if Wt Z. and Ut are random variables with 

Wt = ZtJA then 

f(XtlYt = yt' Xt a A) = f(Wt(Yt`Yt)" 8.6.1. 

Suppose random variables At with support contained in1R are such 

that 

ýt = OtIA is a P. S. M. for all compact subsets 

of]R, A. 8.6.2. 

Then clearly by the definition of a P. S. M. and (8.6.2) 

f(ýtIYd = fA(AtIYt) 8.6.3. 

where fA(6tlyt)= {p-1f(6tlyt) at ¬A 

{0 otherwise 

and p is a constant to make fA(8tlyt) integrate to unity. 

Thus (8.6.3) is satisfied if and only if the 0t's satisfy 
k 

f(Ot+lfYt) f t(etlyt) 

where 0< kt < 1. 

Hence provided I remember to restrict 8t t{y a postiori to a compact 

set I always have a well defined distribution which agrees with the 
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formulation given in Theorem 8.2. In this way the posterior (possibly 

improper) distribution on At can thus just be seen as a limiting 

distribution of a proper P. S. M. 

All the examples I shall give later (except one) have f(Btlyt) 

integrable for all times t so usually no such problems arise anyway. 

The exception is the t-product. 

The P. S. M.. has the following pleasing properties 

Let It = llnft(0) dFt(e) 

Zt+1 =f R. 
nf 

t+1(8 ) dFt (0) 

Then It and It+, represent Shannons negative entropy at time t for 

et and et+1 respectively. This can be used as an alternative measure 

of speed. 

Theorem 8.3. 

Let et be a P. S. M. with associated transformations Tt given 

by 
k 

Tt(x) =xt "kt E (0,1) 

tE 
YY . 

Then (i) T(O) =0 

It+1 - kt zt 

('iii) i(0t+l I yt) -} R(et+l I yt) pointwise as Ißt -* 0. 

where R is a rectangular distribution on the support B of f(etl*yt). 

Proof 

(i) and (ii) follow directly from the definitions. For (iii) 

let 

An = {g E B: 
n< 

f(O yt) < n} 

Then BO =U An" 8.6.4. 
n=1 

For each fixed nE 3t . 
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8t An (n)< (pn(kt))"'1 f(at+lIyt) < nk 

where pn(kt )= fA fkt(0 1 yt ) dot . n 

So fA (At+1 1yt) -* pn-1 uniformly as k -ý 0 
n 

where pn = lim !A fkt(Otlyt)dot. 
kt-*O n 

and. fA (et+l1yt) _ {pn-1 f(et+llyt) 0t+l , An 
n{ 

{0 
otherwise. { 

Let pn p. By (8.6.4) and the definition of a P. S. M. it follows 

.. f o(0t+llyt) um 'fA(8t+llyt) ; p-1 pointwise. B n+- n 

The result follows. 

Let f( r) (ß) = f(6t+rIyt) 
t+r 

ft(6) = f(6tlyt) 

where rF ]K 

as before. 

It is then easily seen that 

t+r(e) 
= s(s(s(s( t(s)) 

r times 
rE] 

0 

This is often complicated to work out but in the case of the S. P. S. M. 

with coefficient k (0,1) it is easily seen that 

ft+r(e) a (ft(e))k 
r 

rr -1N. 

Hence predictions i--steps ahead are easily found. In particular 

Theorem 8.3 (iii) gives that 

f+T(8) R(6) pointwise as r} 03 

where R(O) is the rectangular distribution on B the support of ft(8). 

Hence the distribution (r )( 
0) expresses complete ignorance about t+r 

8t+r as r apart from the fact that 0 must lie in the set B. 

This I think the reader will agree is a useful property. 
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The S. P. S. M. can also easily be extended for times tE ]t>a 

instead of just t, E] and thus deal with situations where the times 

of-observations are irregular. Just put 
r 

f( t+r 
r)(e) a (ft(0))k where r, tE Il3: 

ý, 0 

More than one observatidn at any time point causes no difficulty 

I just update the prior with the likelihood in the usual way. Due to 

lack of space I will not develop these generalisations in this thesis 

but leave them to a later date. One more theorem. 

Theorem 8.4. 

Let 8t, denote a P. S. M. and {Ft: t IlV} be the set of properly 

unimodal distributions described as before. Let the mode of Ft be 

mt, Then if mt_l is the most likely value of 6t given 
t 

mt mt-1 

Proof 

? tCe) a . Z(e"yd (ft-1(0)) k by Bayes Rule. 

and ä8 ft(e) =O 
mt-1 

a 
ae . jbtelyd =o 

mt-1 

since 

and ae ft-1(6) 
Im 

=0 
t-1 

The result follows since ft is unimodal. p 

This shows the fundamental difference between the P. S. M. 

and'other formulations of the steady model. Whereas moment approaches 

typically adjust observations towards a posterior mean the P. S. M.. 

adjusts towards the posterior mode of the underlying "level" 

distributions. - 

I am now at a stage to give some explicit examples of P. S. M's. 
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8.7. Examples of the Simple Power Steady Model 

In this section I will give three examples of distributions 

on the level parameter 0 which give S. P. S. M's. I choose the usual 

conjugate forms in the first two examples simply for the sake of 

tractability and simplicity, I_could if I wished work outside the 

usual conjugate forms. In the same way all distributions for @I 

will choose are in fact Linear Expanding Families (See 3). Again 

the reason for this choice is just to give recognisable forms to 

the posterior distributions. 

1). Beta = (Negative) Binomial Distribution 

Write the Beta distribution B(S, y) as the distribution with 

corresponding probability density function satisfying 

' «0) a{ oa (i-e )y eE ('Ö, 1) 
{ 
{O otherwise 

where S, yýO. 

If Otlyt has distribution B(öt, yt), then since the Beta distribution 

is a Linear expanding family, under the S. P. S. M. with associated 

coefficient k 

6t+lýyt has distribution B(4 , 
1t+1) 

where St+i =k St 

(1) 
_ Yt+1 k Yt 

1a). Binomial distribution of wirst stage 

Let Yt -, t e 3N have binomial distributions given by 

P(Yt = yt) _ {(Yt ) 0Yt(1_8)n_yt yt ZZO 
{ 
{0 

otherwise 

8.7.1. 

Then if 6tlyt has distribution B(bt, yt)'under the S. P. S. M. using 

(8.7.1) and the usual conjugate analysis, 
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I 

et+llyt+l has distribution B(6 t+1, Yt+1) where 

öt+l k at 

Yt+l =k Yt 

+ yt+1 

+ n-yt+l 

It.. follows that if 8 has a Beta distribution in particular 

6T+ YT ,} n(1-k)-l as T -º co 

aT -E kt yT-t as T -º co f 
t=0 

Thus the posterior mode mT of T yT satisfies 

00 
m= (1-k) E kt P T t=0 T-t 

yt 
where p= is the proportion of success at time t. tn 

Hence I obtain in the limit under the S. P. S. M. a distribution 

0T' YT which has mode an ExponentiaZZy Weighted Moving Average (E. W. M. A) 

of the'proPortiön of successes up to that time. 

It will soon be realised by the reader that the E. W. M. A. is 

intrinsic to the location of posterior distributions arising from 

S. P. S. M's. Anyone who has worked in practice will know how useful 

this average is to forecasting. This time however I have given 

theoretical reasons why this type of estimator should be expected to 

be good. Of even more importance is that since in this Bayesian 

approach information is expressed in terms of a distr, ibution, ideas of 

the accuracy of estimators are easily worked out. 

The estimator of Ot+1 will*be, of course, the Bayes decision 

obtained as a minima of the expected loss with respect to the 
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distribution of 6t t+11y and its spread the associated expected loss. 

1b). The Negative Binomial Distribution on first stage 

. Let Yt have negative binomial distributions given by 

P(Yt-yr) {J'r+yt-1 6t (I-6t)yt yt = 0,1,2.... 

{ yt . 
{ 
{0 

otherwise { 

Borrowing the notation above, the corresponding recurrent 

relationship for the S. P. S. M. is then 

at+l =k 6t +r 

Yt+l k Yt + yt 

Again, with Beta prior on 61 

6T} r(1_k)-1 T+ co 

öT +1}E kt(r + yT-t) T- o3 
t=0 

Thus in particular the posterior mode mT satisfies 

mT-1 E kt(PT-t)-1 
t=0 

where PT-k 
r+yT-k ' the proportion on succession 

r+ yT-t trials. Again this is a E. W. M. A. 

2. Gamma-Poisson/Exponential Distribution 

Write the Gamma distribution G(y, ß) as the distribution with 

corresponding probability density function i(6) satisfying 

f(@) {@Y e-" 0>0 
{0 

otherwise { 

ßE 7R>0' where y, 
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If etlyt has distribution G(Yt, ßt) then since the Gamma 

distribution is a linear expanding family, under the S. P. S. M. with 

associated coefficient k, 

t+1lyt 
has distribution G(yt+i, ßt+l) 

where Yt+l k Yt 

ßt+1 -k ßt' 8.7.2. 

2a). 'Poisson observations on the first stage. 

Let Yt te 3N have Poisson distribution given by 
{ (exp - At)BtYt 

PCY =Y){ for y Z> O t{ (yt)i tO 

4.1- 

Then if 0tYt has distribution G(yt, Rt) under the S. P. S. M. 

using (8.7.2) and the usual conjugate analysis 

6t+lJyt+1 has distribution G(yt+Z, ßt+x) where 

Yt+1 k Yt + yt+i 

+1 gt+l k at 

It follows that if 01 has a Gamma distribution, in particular 

Co 
Yt -ý E kt yT-t as T -ý Co 

t=0 

ßt ,ý (1-k)-1 as T .*C 

Thus-the posterior mode of 8T TI y mT* satisfies 
00 

mT = (1-k) E kt yT-t. 
t=0 

the E. W. M. A.. 
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Note that since the fi(b) function for the Gamma distribution 

is strictly increasing, any Bayes decisions made under symmetric 

loss will be strictly greater than this value (See §3). 

2b). Exponential observations on the first stage. 

(Here for simplicity I will consider a S. P. S. M. on 6 whereas 

strictly by argument in Chapter 2, a S. P. S. M. on In 0 might be more 

sensible) 

Let Yt have exponential distribution given-by the probability 

density function f(8t) where 

f( e t) 
{e tyt 

yt G IR 
>O { 

{0 otherwise 

Borrowing the notation from above again, the corresponding recurrent 

relationship for the S. P. S. M. is then 

Yt+1 =kyt+1 

ßt+l 
.k 

ßt + yt. 

Again with Gamma prior on 01 

YT - (1-K) 1 
as T* c* 

Oo 
OT +E kt YT-t as T -, co 

t=0 

Thus in particular the posterior mode mT satisfies 

-1 _ (1-k) Z kt mT YT-t 
r=O 

A Bayes decision with respect to symmetric-loss will always be strictly 

greater than mr given above for the "rate of decay" of this process. 
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3) Student t sample distribution Steady Model 

Suppose the sample distribution for observations in the S. P. S. u. 

is not normal, but perhaps more sensibly assumed to have a student t 

probability density function 

i. e. . p(YtI Bt) a (1 + V-1(yt - at)Z a>8.7.3. 

Either using limiting arguments or using a prior on 0l of the 

form 
-a 

p(01) « (1 + V-1(yo V, 60)2) 8.7.4. 

using the S. P. S. M. at time t=TI have the t-product- for eTl yT 
T (T-t ) 

P(0 1 YT) 
t11 

(1 + v-1(yt-8T)2) k 
8.7.5. 

Obviously this does not have the same neat posterior form as 

the normal but has great advantages in practice because it is a more 

realistic model. I shall examine the posterior distribution more 

closely. 

Slowly varying observations 

The posterior mode(s) mT of a' T is obtained by taking logs Tly 

and differentiating once giving mT as the solution of the equation 

T 
k(T-t) 

(mT Yd 
= 208.7.6. t=O (V + (mT_yt) 

This in general may have many solutions m for mT but if the 

observations yT are close together 

V+ (mil, -yt)2 =V 

so (8.7.6) reduces to 

T 
mT _(Z kT-t)-1 

Z 
kT-tyt 

r=O r=O 

which-as T -* - gives 
T 

mT = (1-k) E kT-tyt 
t=0 

the E. W. M. A. (just as in the normal case! ). 
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For Bayes estimates under symmetric bounded loss I obviously 

require the types of conditions on O(b) discussed in Chapter 3. By 

Theorem 3.7. 

fi(b) -" YT as b -ý 

so roughly speaking as long. as observations are not flying about too 

much, Bayes estimates will-lie approximately an interval around 

(i) the exponentially weighted moving average up to YT 

(ii) the observation yT. 

Outlying Observations 

Suppose now that YT is a long way away from the body of the 

other data yT-1 Then since for a Student t-product p(8). 

P 1( 6) -º- 0 as let -º 

the posterior distribution p(6TlyT) will be at least bimodal. The 

bimodality will express the difficulty in discerning whether there 

has been a change of "level" at time T or whether YT was in fact a 

rogue, observation. If k is very close to 1, the highest mode will 
T 

tend.. to, be in the region Of IR around yýl , and in. fact if these 

early-data points were fairly close as above, the highest posterior 
T T-1 

mode of, O 
TIy will be approximately an E .W .M .A. of they data . 

Conversely if k is small so that information from time stage to time 

stage is, weak, the highest mode will be the one in'a neighbourhood 

of YT. 

Usually, it will be appropriate to choose k large. In this 

outlier situation I then have that Bayes estimates will lie approxi- 

mately in an interval around. 

(i) the E. W. M. A. up to YT-1 

(ii) the observation yT. 

If-then YT+1 YT+2 ".. are observed in a region of YT, the 

highest mode will flip' from the E. W. M. A. of y. 
T-1 to the mode near the 

new observations. 
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Thus it can be seen that such a model has many practical 

advantages over the normal model usually used. Firstly it retains 

the possibility of a pragmatic choice of estimate all important in 

modelling. Secondly it registers "jumps" in level and adjusts to them 

far more quickly than does the-normal approach. Hence model "break- 

downs" are unlikely to occur (it is in this sense a far better local 
.i 

first order approximation model than the normal). 

Truncation of the Parameter Space 

As hinted on previously in this chapter, another big advantage 

of this method is that the analysis does not depend on whether I 

truncate the parameter space. For example in the Poisson-Gamma 

process given in Example 2, I could put a truncate Garnaa rather than 

just a , Gamma-on the second stage. The effect would be to give a 

Gamma distribution with the same parameters as posterior distribution 

but this time truncated over the original trancation interval. In 

many applications it is far more sensible to put a truncated Conjugate 

prior that the actual conjugate distribution to represent prior 

beliefs. For example, in the normal model there is . usually a constrain 

on the upper and lower band of the level. 

Another advantage in the P. S. M. is that I do not need conjugacy 

for it to work or in fact be tractable. However it can-clearly be 

seen that in all the cases cited above I will tend towards the conjugat 

posterior distribution anyway, regardless of the original prior I use. 

This is however due to the fact that I am working with expanding 

families of distributions. 

8.8. Multivariate Simple Power Steady Models 

In the same way as for the univariate case, I need to find an 

up-date relationship of the distribution, of Qtlyt to the distribution 

of Qt+ljyt where this time ktlyt and kt+11yt are random vectors 
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Writing ft(0) as the probability density function of 

Qt, yt and 

ft+i(6) as the probability density function of 
t kt+11Y 

an obvious first candidate. would be to let 

ft+1(e) a (ft(ß))k where kr (O, 1). 8.8.1. 

It is fairly clear that, any generalisation of the univariate S. P. S. äi. 

must be expected to at least contain this type of model. It is not 

quite general enough unless there is some sort of symmetry about the 

parameters .Q since information about each component of k dissipates 

at the same rate, but it does allow for the following two examples. 

4. Dirichlet/Multinomial distribution 

Suppose Yy 15tsT are random variables taking values 

yt E Kr with probability 0r(t) 1 s'r s n, where 

1stsT 
n 

for each t1sts1 O< gr(t), z 6. (t) = 1. Then assuming I 
r=1 

have'a model governed by (8.8.1) and that Or(t) are distributed 

Dirichlet i. e. 
ns (t) 

ft(e) a8 for 1srsn r=1 rr0<S 

15tsT. 

'trien"this steady model generates the recurrence relationships 

Sr(t) = {k Sr(t-1) +1 yt e Kr 
{ 
{k Sr(t) otherwise- 

Define the random variable 

if Xý kr 
{ 
{O otherwise. 
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Then in the limit 

Sr(T) Z kl xT-. (r) as T 
i=0 

Of course by the definitoh of X1(r) this implies that 

n- 
E- Sr (T) -r (1-k) 

r=1 

Note therefore that in the limit 6r(T), the probability YT Et has 

marginal, distribution with mode 

(1-k) E kl XT-i(r) 8.8.3. 
i=O 

again an E. W. M. A. of the observations. 

Hence instead of using a parametric evaluation of my distributiv 

for the random variable Yt I can, in fact, use this type of non- 

parametric histogram approximation. Thus I have a non-parametric 

time series. Of course I would obviously need to have fairly frequent 

observations for this to work better than parametric forms of the same 

problem, but it is still rather exciting. 

I can even go one further than this by using a paper by Ferguson 

1 ). I shall not go into any detail, but in the limit his 

estimate f or the distribution 

T 
FT(YIYt) = 1/T E 

i=1 

where Xi(A) '{1 if Y. 
{ 
{O other, 

of Yt is given by 

xi( co, y) 

EA 

wise 

Well, in the Times series steady model case I obtain the result 
T 

FT(YIYo ... YT) _ (1-k) E ki T-i(-()O, Y) 
i=0 

for the posterior distribution of the distribution of YT at time T. 

Again, by similar arguments to those of Ferguson, the posterior 

expectation of YT' uT is given by 
00 

IT (1-k) E k1 YT-i 
i=O 
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and posterior variance VT given in the limit as 

CO 
VT = (1-k) E kl (YT-i-"T)2, 

i=0 

an avalanche of E. W. M. A. 's 

5. Normal-Variance Unknown Steady Model 

Often in the normal steady model the variance is unknown and 

needs to be estimated. This can be done very simply by using 

euqation (8.8.1). Throughout I will use the usual conjugate analysis 

advocated by De Groot (1) and follow his notation as much as 

possible. 

I-will-assume that I am primarily interested in the logarthmic 

transform of the variance V. This is the'hatural parametrisation"I 

of V. advocated'in Chapter 2. However, if the reader preferred working 

directly with either the precision or variance similar limiting 

result, though slightly different would arise. 

Let n(u, V) denote the normal distribution mean p variance V 

, G(a, ß) denote the Gamma distribution i. e. 

G(a, ß, x) « {xa-1 exp - ßx ,x}O 
{ 
{0 otherwise 

where a, ß > 0. 

Since I have chosen the conjugate forms and the family is Linearly 

Expanding it follows that if data Yt, tV 

Yt ti n(Ot, rt-1) then 

etlyt, rt, nu n(ut, Ttrt-1) 

rtlyt ti G(at, ßt) 

For some parameters ut' tt' at' ßt. If I use the log transform on r 

a 
P(et, R, n rtlyt) « rt 

t±i 
exp(-J rt {rt(At-ut)2 + 2ßt}) 

Using the S. P. S. M. I have the following recurrence relationship. - 
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Time tt 

ut, 

at + 

ßt. 

Time t+1t 

ut 

k 't't 

k(at + f) 

k ßt 

(. I-have used the standard update formulas (see De Groot (1) 

169) . Page 
. 

I can now find limiting forms for all these parameters. It. is 

easily checked that 

IT -ý T = (1-k) -1 8.8.4. 

aT -ý a = ((1-k)-1 -1) 8.8.5. 

as T -ºoo 

By the update relationships of ut and ßt with the limiting forms 

given in (8.8.4) and (8.8.5) gives that 

ut+1 = k ut + (1-k) Yt+I 8.8.6 

t+1 
k (ßt +I St+1) 8.8.7. 

where St+1 Yt+l-ut' 

Hence VT -* (1-k) 
T 
E kt YT-t 8.8.8. 

t=OT 

and ßT -º kE kt ST-t 8.8.9. 
r=-O 

Time t+llyt+l 

ktut+yt+l 
ut+1 = 

kt 

T t+1 =kT t+ 1 

at+l k(at-1 +) 't 

ßt+l -k ßt +kT. 2(Yt+1 - ut) 

2(k tt + 1) 
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As might be expected the posterior mean of Yt is the same 

as in the variance unknown case. The posterior distribution of the 

variance however is very interesting. The mode of the log transform 

of the precision (the lower bound of the estimate for the variance 

(see Chapter. 3)) mT is given by 

ßT 
MT aT 

which by (8.8.8) and (8.8.9) has limiting form 

,T 
mT = (1-k) E kt St 8.8.10. 

r=-0 

the E. W. M. A. the reader has grown to expect. Note that the 

corresponding variance of the level 8t is given by (1-k) mr. This 

suprisingly'simple and intuitive result I find especially pleasing. 

6. - Mean vector of observations Multivariate Normally distributed, 

(Covariance Matrix Known) 

Suppose zt is an n vector Ytl) ... Ytn) of observations at 

time t. Let 

nQt, tit> 

where n(k, ti) represents the normal distribution with mean vector 

and covariance matrix ti Then assuming that it is appropriate to 

use the evgluation given by equation (8.8.1) on the vector kt (for 

example one could usually make this assumption if the kt were apriori 

exchangeable) I have the following evaluation. 

If Atlyt ti n(kt'tit) 
t (1) (1) then 6t+lýy ti n(kt+i ' tit+l where 

kt+i kt 

V(1) = k-1 V t+1 t where k (0,1] 
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Notice that for time t to time t+1, adding no more information, 

the means will remain the same. So will the correlation vector. 

This is the first derivation from the Bayesian forecasting in 

Harrison and Stevens (1) where they would usually put independent 

errors on the second stage so that the correlation-over this interval 

would automatically change. Note too that in my model the marginal 

variance of each component of the mean vector 6t1) will increase, 

as would be expected. 

It would now be quite. simple to use the exchangeability model 

proposed by Lindley and Smith (1) in a time series setting. 

The Principle of Stacking 

Although the method of updating given by equation (8.8.1) is 

useful it is a bit too restrictive for many cases because, as 

mentioned before it assumes that. information about each component of 

the random vector decays at the same rate. In many applications this 

is not the case, some parts of the model must of necessity-be assumed 

far more "stable" with time than others because their likelihood 

component caves in much flatter so that otherwise information would 

be decayed away faster than it came in. 

The simplest way I have found to deal with this problem is 

by "stacking" the respective distributions. Let 81 ... An be 

parameters ordered in such a way that "information" about 8 decays 

at least as fast as information about 8i+1 1s15 n-1. Use the 

notation of the previous section. 

Definition A Stacked Simple Steady Model S. S. S. M. is one for which 
ki 

4ej'oi+l 
... 8n) « (ft(8il6i+l... 8n)) 1si n-1 

f }1(en) 
( ft(en) )kn 

where 0< kz s ki+1 s1111s n-i. 
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Notes 

1). Equation (8.8.1 ) gives a special case of a S. S. S. M. with 

k. =k 0<k<1. 
i 

2). If 91 en. t are individually S. S. M's and are independent 

then trivially k is a S. S_S. M. 

3). If 91 ... 8n is a S. S. S. M. and I keep parameters ai .., am 

fixed-then (A1... 8m al ... am) is a S. S. S. M. Hence I can 

replace al ... am by these estimates without losing the 

form of the model. 

4).. In general a S. S. S. M. marginalised across one of its parameters 

is not and S. P. S. M. 

5a). Normal Variance unknown 

Here I consider case 5) but instead of the model imposed by 

equation (8.8.1) replace it by the more general S. S. S. M. putting 

61 =8 and A2 = kn V it is easily checked that the update of", ut and 
" 

Tt remain the same with kl written for k and the update of at and ßt, 

are given by the equation. 

Time tIYt+1 

at. 

ßt 

Time t±llytfil 

at+1 k2(at + j) + 

_2 
k1 Tt(Yt+i ' ut) 

ßt+1 k2't + 
2(k'Tt+1) 

The limiting forms of tt and at are. the same with k replaced by 

k1 and k2 respectively as in equations(8.8.4) and (8.8.5). Also 

using the limiting form for T 

ßt+1 - k2(ßt +S2 t{1). where St+1 = yt+i - ut 

The mode of the log transform of the variance mT is now given by 

T 
mT (I-k2 E kt St2 

t=o 2 
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Hence I obtain the same weighted average forms, but this 

time with a longer "memory" than the weight average form for the 

posterior. modeof 6t which is given by 

*Tt 
MT = (1-k1) 

tO 
K1 yT-t' 

6a). )dean vectors. for Bivariate normal 

For simplicity take the model given in 6) with n=2. The 

new update system now gives the recurrence relations'(using well 

known multivariate normal theory) 

x1 
t+l Pt 

V(1) `'__' V(. 1) 'V(1) = k-1 V- (k-1-k-1)V k"IV t+1 11 
. 

12 1 11 12 12' 2 12 

V(1) V(1) k-1 V k-1 ` 12 22 2 12 '2 X22 

where Vt = Vil V12 

V12 v22 

Obviously this update can be generalised for general sizes 

of vectors but the equations are a bit tedious to write down. ' 

7). The Mixed Model 

This is almost a trivial consequence of the definition of a 

S. S. S. M. Suppose I have no models giving different evaluations for 

a parameter 0t with time each of these being S. P. S. M's. Then by note 

3I have a Stacked Simple Steady Model if I incorporate the weighting 

on the 'n models as the distribution of a lower stage random variable 

e2ýt. 
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7a). ' The' Normal Mixture S. S. S. Di . 

Let 91 tI-e2t n(u1 +0 2t, V) 8.8.11 

and 02t ti P(62t 0) =a 
8.8.12 

P(02t = II) = 1-a 

where, O '. <'a<, I- ±Then rI have a mixture of 2 normals with equal 

variances.,, Imposing a S. S. S. M. with for example 

k2 

I have a simple update form for the mixture, each normal component 

updating as before and a being adjusted as in the static case. 

Catastrophe Models in Time Series 

I now refer to Chapter 4. On the S. S. M. models I can expect 

Catastrophes on the decision space (Type I model) if the distribution 

satisfies the condition in Chapter 6. For example, putting a loss 

function on the variance component in Example 5 above, between 

observations I have smooth movement and possible catastrophe's since 

the Inverted Gamma has 
.a 

polynomial tail. Again Example 7a, gives 

an evolution of a mixture which is steady and allows for the sort of 

Catastrophes discussed in Chapter 7. So at last, in these late stages 

of the thesis I can start modelling general forms of Catastrophes in 

Statistics. For Type II models I need to get away from the steady 

model. I hope that the reader has been convinced that this model 

gives remarkably single and intuitive results for a large class of 

examples I must now generalise away from the Steady Model and try and 

formulate a theory for general time series. 

8.9. A Discussion of some of the Drawbacks of Box-Jenkins Modelling 

Usually in the analysis of time series the unit of the 

stationary series is used (See Box-Jenkins (1), Anderson (1)) 

the rest of the model being represented as combinations of these 

stationary series. This can be done by: 
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A 

(i) Isolating the Trend and Seasonal from the model 

(by least squares? ) 

(ii) Differencing until a stationary series is arrived at. 

Procedure (i)-is rarely criticised but is to my opinion very 

difficult to justify. - In most. practical time series Trend and 

Seasonal account for mosttof the. -variation in the data, but these 

are immediately "taken out" in an ad hoc way to leave an ARIMA 

model for which there is a reasonable amount of theory. Polynomial 

regression in particular is very often misused in the context of 

removing trends, I feel that one should take the attitude that 

there is always a model underlying a particular time series and the 

modeller should always be prepared to make an assumption of the 

dynamic governing the model so give him a sensible family of trend 

curves. Other statisticians seem to have misgivings about some of 

these points (e,. g; see Whittle (1)) 

Having followed procedure (i) the Box-Jenkins modeller then 

uses procedure (ii) and possibly differences once or twice to obtain 

a time series he can deal with. Usually he will difference once. I 

can illustrate why one can expect this to be the case by the following 

example, 

Let us assume that the Trend component is known and additive 

and that there is no seasonal component 

Then the original series Yt = h(t) + Zt 

where h(t) represents the trend. If Zt were stationary(see Fig. 8.23) 

then I would expect flow lines pulling Yt on to h(t). If, however, 

Zt is a first difference stationary model then h(t) represents a 

vector field and Zt is jostled across its flow lines by random 

variation (see Fig. 8.3). When working in disciplines like Economics 

one often talks of an upward drift of an observable. The latter 

interpretation is then more realistic. 
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time' 

But why work with stationary processes as the "unit" in the 

first place? Would it not be better to work in units of Steady 

models instead? This provokes the following definition. 
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Definition 

Suppose random variables Yt te 3N are such that 

Ytlkt ' g(yt I (Qt)) where Tt is a known function 

f(ktl)) cc pt(f(ýt_1)) where pt is a known function 

and where the notation is. as before. Then call Yt a Bayes Time 

Series (B. T. S). 

Example - Trend model 

This can simply be given by putting 

Tt(6) =0t+ h(t) where h(t) is some known 

function of t 

and 6t is a S. P. S. M. i. e. pt is the power transformation 

f(Ot) - Mot-1)) k0<k<1. 

Example - Periodic functions model (Normal Case) 

Here I follow Harrison'and Stevens (1) using the same 

analogy as. before. So put pt to be the linear function. 

n 
pAt) E pit(eit) where pit are periodic function of t 

i=1 

and 

f(kt) cc (f(kt-1)) k0<k<1. 

Most typically pit will be sine and cosine functions. To update 

now just use the usual Bayes formulae. 

Example - Type II Catastrophe Models 

Referring back to Chapter 4, Section 1 the model proposed 

here is in fact a B. T. S. with Tt the identity map and the evolution 

of 0t defined by 
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r 
f (O M (f ( 

t-r) 
k if ý(t) `E (A u P)c 

{ (f(et-1))k otherwise. 

Some Further Ideas and a Final Generalisation 

It will have been seen that all the conjugate models proposed 

in this Chapter have been 2 stage heirarchical models. What may 

have been missed is that each one can be expressed equivalently as 

a3 stage model of a deterministic character. 

For example the Steady Gamma-Poisson process of Example 2. 

given at the beginning of the previous section could be written in 

the form 

YtIOt 
etlYt1), ßtl) 

Y(1) t 

ß(1) 
t 

ti Poisson (6t) 

ti Gamma (YZ1), $(1)) 

k Yt-1 

k ßt'1 

where again I have used the notation of the example. 

Again the standard Growth Model (Harrison and Stevens (1) 

can be specified in terms of deterministic up-dates on the second 

stage mean and variance over the time interval [t, t+I). 

Synthesising these pieces of information it follows that I 

am dealing with fundamentally deterministic evoZution3 on the 

hyper parameters. Of course such deterministic evolutions must be 

specified for well chosen reasons together with reasons for remaining 

in conjugate form (as in the above examples of the Steady Model). 

However, I hope that the reader will appreciate the scope of models 

this opens up to be moulded by. the practioner for his various uses. 

All he needs do is specify how he feels the distribution of 

6tlyt evolves in the distribution of Ot+1Iyt 
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and then use Bayes rule. The true Bayesian should not flinch at 

such a proposal. 

The myth of additive error models is widespread but there is 

no reason. for the Bayesian to restrict himself to just the consid- 

erations of these. Many difficulties arise from such models which 

are easily side stepped. For example in the continuous time case the 

additive model will restrict the user to stable distributions for 

his underlying level unless he works in specifications just using 

the first two movements which are notorious (for example see Chapter 2) 

for giving misleading estimates in non-normal situations. 

A methodology must be cimpZe and fZexibte enough to give 

models to the practicioner he can use on situations he is commonly 

confronted with. For this reason the. Bayesian (or for that matter 

prior likelihood) framework has a real advantage over the conventional 

approach. I will continue my research into the many specific types 

of model arising from*'*these ideas on the completion of this thesis. 

Summary 

A generalisation of the Formal Steady model has been given 

across all distributions in a well argued way. Many examples were 

presented. A brief statement of how to generalise the procedure 

to non-steady models was then given. 
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