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SUMMARY

The aim of this thesis is to generélise Bayesian Forecasting
processes to models where normality aséumptions are not appropriate.
In particular I devélop models _that can change their minds and I
utilise Catastrophe Theory in their 'description. N

Under squared-error loss types of criteria the eétimates
will be smoothed out, so for model description andfprediction I need
to use bounded loss functions. Unfortunately the induced types of
estimators have not been investigated very fully and so two chapters
of the thesis represent an attempt to develop theory up to a necessar
level to be used on.Times Series models of the above kind.

An introduction to Catastrophe Theory is then given.
Catastrophe Theory 1is basically a classification of Cm-potential
functions and since the expecfed loss function is in fact itself

a potential function, I can use the classification on them. Chapters

6 and 7 relate the topologies of the posterior distribution and loss
function to the topologies of the posterior expected loss hence a

Bayes classification of posterior distributions is'possible.

In Chapter 8, I relate these results to the forecasting of

non-stationary time series obtaining models which are very much
" akin to the simple weighted moving average processes under which  '
1ies this firm mathematical foundation. F¥rom this I can generate

pleasing models which adjust in a "Catastrophic" way to changes

in the underlying process generating the data.




1). Introduction to  Thesis

May .I take the earliest opportunity- to apologise for the
style in which this thesls 1s written. I write in the first person
singular for three quite inadequate reasons. The firét is that I
find the passive tense difficu}t to.read, the second is that the
word "we'" is a trifle regal for me to feel comfortable using it
and the third is that for a scientist who believes only in subjective
. reality it expresses his basic philosophy éﬁccinctly and frequently.-
The reason I have included thié note 1is fﬁat I feel it

important to outline the layout of the rest of the thesis so that

the reader knows which parts are the most important,
Chapters 6, 7 and 8 represent the core of results obtained

and -are the central chapters of the thesis. Chapters 6 and 7 deal
with Bayes estimation problems relating the t0pology'of the posterior
distribution to the tOpoloéy of the ﬁosterior expected loss. Chapter
8 gives a generalisation of the Steady lModel defined in Earrison and

-Stevens (1) for general distributions.

Chapter 4 and 5 give an introduction to Catastrophe Theory

and examples.of its uses in getting to understand the topology of
well known likelihoods, posterior distributions and expected loss.

functions. These two chapters therefore make much less intense

reading than the rest of the thesis.

Chapter 2 1is at the beginning of this work because its

subject matter is extremely important conceptually to the mood of
the rest of the thesis. I use a stability rather than an axiomatic
approach to show that to act sensibly in a Bayesian framework I must
work with bounded likelihoods and loss functions. Having come to
the latter conclusion, which I must remark is not new, though it

is a point never emphasised by theoretical Bayesians, 1 realised

that most of the usual estimation procedures used by practical




Bayesians are bad. if’wﬁs‘theréfbre necessary to develon a théoryi
around bounded loss. This is what Chapter 3 is all about.

Thus Chapters 2 and 3 are reference chaﬁtefs andhonly the
results“thereinlcontained are of imporfaﬁée to the rest of the thesis.,
¥Finally may I point out that there is a summary'at the end

of each chapter which can be used by the reader to gét an idea of =

the main—points covered in then.

f‘ i y *

"T’ -El'ul'
L




2. . A DISCUSSION OF BAYESIAN INFERENCE

2.1. Introduction

Before using ahﬁ inferential procedure it is important to
understand how and when*that procedure can be used. 1In the following
chapter the author explores when it is likely that a Bayesian
analysis will give reasonable and coherent results (the word 'coherent'
being used in the non-technical sense). There are two ways in which
such an exploration can begih. |

| (i) An axiomatic base
(ii) Identification of various "counterexamples" to

the system.;

The axiomatic basis for Bayesian statistics is well documented
(See, for example, De Groot (1), De TFinetti (1), Raiffa (1)). I
must admit to feeling that although these axioms give a good feel
for what one is d01ng'when maklng 1nference about dlstributlons the
implications of seemingly innocuous assumptlons can often be much

‘more than one would suppose. It £011oWws that theymay induce a type
of structure that is clearlylundesirable.

Rather than get lost in these obscurities (to*which I will
refer throughout), I would like to start with the conclusion of the
axiomatic systems and crlticise the building rather than the brlcks.
The concluding statement from the axiomatic systems 1is:

"] can express all my prior opinions about a particular
parameter 0 € P in teros of a probablllty distribution P(8), my
prior belief that 6 lies in a Borel set A being represented by the
number P(A)".

Now there is a gap here,ﬂah-inferential step, that many seem
to have missed. How am.I“to express my oriorﬂheliefs in terms of

the measure P, that is, do I substitute what I conceive heuristlcally

as my subjective probablllty distribution for € or something else?



If there is to be any meaning to Bayes inference I obviously nust

do the former. .Yor this link to be'made I feel that it is at least

necessary .(but by no means sufficient) that the following two criteris

are met.

Criteria
1). If 2 prior distribﬁ%ioﬁétPl(e), Pz(e) are 'close', then - their
posterior distributions P,(8), P,(6) are close

i.e. M : P(8) - P(8) is continuous.
2). If 2 priors Pl(ejlpé(e) are- "close" then their associated
’ decisions (or estiﬁa%ééj dl,dzufespectivély must be '"'close"

i.e. M : Pk(e) -> dk is a continuous map.

If these criteria did not hold, then prior probabilities
would lose their intuitive meaning since the ezact form of the prior

would have to be known for any sense to come from the inference. But
how can one be sure of the exact form? Obviously éne could not
since the ihtuitive, subjective idea of probability 1is necessarily
fuzzy.

| - of course, in the. usual statistical tradition (see Wilkinson
(1)) I have not specified wﬁat‘I megﬁﬁpreciséiyﬁﬁ§mthé above two
criteria. Firstly the word "close" must be defined. This is done
by introducing aitopology onto the distribution functions which is

related to the class of probability measures in some direct sense.

2.2. A choice of togolbgies on F. (the class of distribution function

Clearly there are many topologies that one could use to give
this idea of. closeness. Perhaps the weakest such topology is

generated by the Lévy metric.




Definitions

Define the distance in Lévy metric pLﬂF,G)‘between two
distribution functions F and G to be the infimum of all h > O

such that

F(0-h) - h < G(8) < F(6+h) + h. for all 8 < R.
The usefulness of this topology is that |

W o i .
Fn +F properly (i.e. properly in distribution) iif_pLQFan)+0 '
(See Moran (1)).

Although this is a useful property for our purposes it
should be noted that it linearly varies its measure of distance
as the parameter 6 is transformed linearly.

The untform metric - pO(F,G) is definedtby

p,(F,G) = Sup |F-G]
0 R

The variation metric pv(F,G) is defined by

Py (F,G) = Sup { ||/p UaF - fp UaG|| }
{ueC_: |[u]| =1}

Lemma 2.1.

(i) The Lévy metric is-at least as weak as the Uniform metric

(ii) The Uniform metric is at least as weak as the Variation metric

Proof. (i) is an obvious consequence of the fact that the Lévy

metric convergence is equivalent to convergence in distribution. .

(ii) Let X, Y has distribution functions F and G respectively

Then pO(F,G) = gI:iD{ IE (X(_me](x)) - ]E,,ﬁ(X(_mel(Y))l



where X[a,b](x) = -f%l . X € [a,b]

{0 otherwise

and p_(F,G) = Sup [E UX)-E U(Y)]
{ueC_: Huj] =1}

which since C,|F is dense in F under the usual metric

Sup |E U(X) -E U(Y)]
'{u measurable: llul] = 1}

> po(F,G). | . | - -D
In fact this weakness is strict. Consider these two counterexamples.

Counterexamnle 1.

let F= {0ifx <O and T = {0 if x < —
{ *Il { n
El otherwise | -El otherwise

Then DISF’FQ)_+ Oas n =+ « ygt po(F’Fn) = 1 for all n.

- Counterexample 2,

It can be shown that if F and G are absolutely continuous
Q0 :
= pV(F,G) = I lf(x) - g(x)ldx (See Feller (1)).

| Lei F be distributed rectangularly on [0,1] and Gm(x) defined by

n
1 (m)
C(x)= = ¥ . J¥V/(x)
m m . . °n
where J(m) = { 1 X (-1-1—'-'-:-[-“: + .._1_.., o )
n { m 2
-{ m
{ O X € (_m’ .I}_-:.;l.'.
{ y .
{ increasing elsewhere

is continuous and differentiable. (For the specific construction

of such functions see Bridcker (1)).



Then Gmis“an absolutely continuous distribution on [0,1] and

'po(F,Gm) <m yet it is easily checked that

J | £(x) - gh(x)ldx > 3 for all m > M

oo

where ! is a suifabl& large constant.

Hencetpo(F,GI“n) + O and *in:lli pv(F’Gm) > 2 as m+ o ,
m> * ﬁ

Now I shall introduce a little notationm.

Let T, '>' T, signify that pi.induces a weaker topology

T. than Hoes f .
B TR A

'=!' 1. signify that the induced topologies are

equivalent.
Then the above comments can be summarised by

Weak convergence '=' >t 2ot

T
S L ; ' 0

s I shall now proceed as follows. If I.caﬁ‘shOW'ﬁn inferential
procedure to satisfy Criteria 1 and 2 with respect to weak topologies
(in particular the:ones induced by pL) then I will pro?isionally
accept it. If, however, no matter how strong the topology which I
put on the distribution fucntions Criteria 1 and 2 are still not
satisfied I will reject the inference as fatuous if uéed in this

-t
O T

a
F p

general setting.

To show that any counterexamples are not extrodinary in some
sense I will assume that to reject an inference a CnCBJ counterexamplel

(i.e. an n x differentiable distribution where n is an arbitrary

integer).




2.3. Topologies on FICng-ww)

Let T(n) be the topology induced By'the basis ﬁ(n)(F,e) where

B(n)tf,e)';”{é € FICn(-W,W): §:§(|DHF(6)-DDG(6)| < ¢}

and Tn‘be the topology induced by the basis Bn(F,s)'where

B (F,e) = {G « FC" __ )¢ "Sup {max | bt F(e)-DiG(e)| < &}
n | At 0eR O<i<n

(1)

S0, fbr examﬁle T close says that the p.d.f. of G are uniformly

close to F
Ta ' close says that the disfributionhfunctions,
p.d.f and its derivative, of G are uniformly
close to F,
-and so on.
Clearly as n becomes large, the topology T, becomes extremely
strong and hence should satisfy anyone.

Using the notation of the previous section the following -diagram

is true in F|C"
| (_m’m)

. 1 ) ; , )
weak convergence ':=' TL =t TO - TV 'y ! t( ) =t 711>| T

t>l'..l>l
o | T

To prove this, it is necessary to show

* b, n
(1) Convergence in T_=>'weak convergence in F|C (o )
- b

(ii) Convergence in T(ll=§ Convergence in variation,
since ali other 'inequalities'" have either been proved already or

are trivial.




ﬁemma 2.2,

(i) Convergence in T0;=$'weak convergence in FIC11

(..m’m)
(1)

(ii) Convergence-in T' = Convergence in variation.

Proof: (i) Note that since F(8) is a continuous distribution

function it -is-uniformly continuous on R.

Hence Sup IF(B) - F(3+6)| <n(8§) where n(d) > O as |6| +~ 0O
0elR | ,

So Sup {F(0-¢g) + € < Fn(e) < F(6+c) - €} can be arranged in the
6eR ~

form

= Sup {Tl(e) < Fn(B? - F(8) < Tz(e)}: whe?e Tl(E) 12(8)'+ o,
as € + 0O

convergence weakly é#;'convergence in Lévy metric, so from the

definition of the Lévy metric

DL(Fn(B),F(B)) +0 = €-+0
=>1,(c), T5(e) > O
::gpo(e)(Fn(e),F(e)) + 0 as required

Then I | £(x)-g(x)|dx s I 5 ‘|f(x)—g(x)|dx + I  f(x)dx +
= 1x|<s~t - I x]>8-1%
[|*l . 1’g(;ﬁ:)dx} 2.3.1
X|>6~ -
Note that J %(x)dx = I f(x)dx + I (£(x)-g(x))dx.
|x|>6~ |x|{>8-13

x| >6-4

Hence (2.3.1) becomes




10.

< z't[ O £(x) - g(x)|dx + 1 - F(6™Y) + p(=s"Y)
|x|<s-3

< 2 6% + n(s) where n(8) =1 - P~ Y, + r-s"%) » 0

as ¢ » 0.

The result follows. N

" The reader will be pleased to hear that I can make some

comments on Bayesian inference now.

2;4.- Restrictibns‘onxgrior to Eosteriofhanalzsis

Restriction 1. The Likelihood function £GHX) is meaéurable.

Comment. This is in fact an extremely mild condition on 2, in fact

it is difficult to construct a problem when this 1is not the case.
However 1t does emphasise one point, namely‘that the family of

sample distributions that have been chosen to represent the
experimeht have to be "sensible'" in some way.
Restriction 2. The likelihood function must be bounded.

Corment. This is a restriction that does not seem to be commonly

M

realised and often "occurs'" in practice. To demonstrate why this

does not satisfy Criteria 1 suppose L(@K) = » as 6 = O and is

continuous on (0,k) where k > O. I can without loss of generality

consider
2.1(9 k) = 20 )| (0,k) since I can assume that it is

appropriate to put prior measure zero on 6 outside this range. For

construction purposes transform the interval (0,k) smoothly to

(_m’m) o



11,

I now have a likelihood 2(6| x) on R such that:

,Q,(elx)-)-m as 0 + -w

2(6|x) is defined and finite elsewhere.

Consider the distribution function Fl(ela):fl(ela) « n(a,l) a €R.

Then Sup (Sup (max IDkFl(ela)l))
aell 0€R 1sksn-

il

Sup (max |D°F,(8]0)]) < M <R | 2.4.1.
0eR 1sks<n

,
1.

since Dkf(BIO) = Pk(e) exp {—%62} where Pk(e) is a polynomial.
Now suppose I have chosen a prior F(6) and let G(9) be defined by

G(0|a,a) = (1-)F(B) + oF (6]a)

Then it is easy to check, using the above comment (2.4.1) that for

each € > O there is an A such that if o < A, a € R

k
G(6| o,a) e B (F,e), provided Sup (max. D (F(x))) s M
| xelR 1<ks<n

rsiowever, 1f G and F represent the posterior distributions using

respective priors G and ¥,

G(8) = (1-a) F*(8) + a Fy(0]a) | 2.4.2.
| 5 |

where F*(Bla) = J 2(8|x)dF(8) 2.4.3.

.« 6 | . . | q
Fl(ela) = I ﬂ(elx)dFl(Bla) 2.4.4.

Hence ¥ A ¥ ~
n (1-a)F (2)F(0) + oF,(=|a)F,(6]a)
G(8) = * - 2.4.5.
(1-a)F (=) + aFl(mla)

kN x A }h | " -

= (1-a ) F(8) + a F;(8]a) - - 2.4.6.

e | -1
where o = [1 + (¢ =1)F" (=) (F*(=]a))™ 1) 2.4.7.



12.

providing it exists. Since % is unbounded at -2, as a + -

* |
F (©a) » » . It follows that for each fixed o there is an R(a)

such that for all a < R(a)

'gqa'1-1)F*gm2 <1  i.e. a*>%_ . 2.4.8.
F (]a)
Finally noté that F(a) - O as a+ -~ whereas
Fl(a a) = 3 for all a € R | 2.4.9.
,Hence there is an R1 (depending on ¢ and hence €) such that
if |
| a < Rl(e)

|G(ala) - F(a)| = |a” F,(ala) - (1-a )F(a)| > 5. - - -2.4.10.

Hence for all priors F and all ¢ >0 there is a G such that

G e Bn(F,e) and yet
A N 1
G f.Bo(F,n) if n < 3

In words this means that any prior distribution I choose must be
specified exactly, otherwise the posterior distribution and hence

my consequent inference will be more or less arbitrary. Hence

Criteria 1 is not met. 0

It follows that in general I cannot make sensible inference
in é Bayeslian setting (or for that matter m.l.e. approach see
Edwards (1)) using unbounded likelihoods. The difficulty is only.

an apparent one, however, for the fo'llowing reasons. In any experiment

(and here I echo Bartlett et al (1)) I can only take. a measurement
within a tolerance governedby my measuring inétrumént. So rather

than take an observation x I take an bbservation X * €. Hence I will,

in general, observe a set of pOSlth@ measure rather than a p01nt It

[ T—

Wlll follow that the corrdsponding likellhood Wlll then be bounded, -

so this crlteria is always met in good modelling

*.
e —
- r—t—
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 Since the form of the tolerance region (x 7

¢) taken-are often
cormunicated by the scaling in which the observations are given, I
feel that the invariance principle applied to the scaling in the'

sample distribution of the data is a bad Criterionfor discrimination

11_‘_‘&-

between inferences.

Restriction 3

My prior F must be such that J 2(6|x)ar(8) # o.
4 LT i“ ’ m )

- Comment
This means that apriori I must have the Prob (L(8|x) > 0) > O
Even a Bayesian is goiﬁg‘to’be confused if”évery'value of © he thinks

a priori is possible his data tells him is not and values of 8 he

diened impossible his data tells him have positive likelihood.

This highlights indirectly an important deficiency of
Bayesian anélysis. If one remembers that 6 is just a label for
a particular family F(8) of sampling distributions then on putting
a prior on 6 we automatically put zero measure on all other sampling
distributioné. So I cannot see when my data (whilst not rejecting
as above) seems to contradict the family.

For example suppose that I assume that the random variable X

is normally distributed with mean p and unit- variance and I have

prior on 6 which is normal mean 10 variance 1. If I now take 1,999

e

observations of which

999 have value 10.0000
1000 have value -10.000,
Then my postefior distribution (which I quote "contains all the

posterior-informatidn") says 0 1s normally distributed mean O

variance 0.0CO5.
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But what rubbish is this! I am almost posiﬁiye‘that the points

have come from a n(0,1) distribution! This is obviously ridiculous,

but without sidestepping the formalism .there is no way out of the
problem. The more data points I have the more information there

is contradictingfmy*prior choiée of distribution functions, but I
cannot adapt to more likely ones since 1 have put measure zero on

‘: »

them41

Of ‘course this p;oblem.arises from the fact that I am not
putting a prior "distribution" across function space in a sensible
way. At the moment I am researching into more sensible methods

but it should be noted that the inferential procedures I have found

so far, contradict De Groots 5th axiom (1),that is, that I can -compare'

Tt

the chance of each distribution function being right with a uniform
distribution on [O,1]. For1interesting analagous problems see
Fergusén (1), Leonard (4). |

Henceforth write %(e) as the posterior distribution of 6
given data Ko
Restriction 4

LetkT(R(elx)) be thé set of discontinuities of &. Then
T(g(elx))'must'have measure zero with respect to the prior

distribution ¥, .

Comment

First I will give an example of the restriction.

Example
Let 2(0|x) = {"o on @ n [0,1) .

1 otherwise

The prior F(6) is a rectangular distribution on [0,1] and the

prioran(e) defined by
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F (8) = {0 X <0
{ | ; o ¢
_%m/n X € [m,m+1) 0'sm < n-1)
{1 otherwise

Then pL(F,Fn) = %-+ Oasn -+

But F(6) is a rectangular distribution on [O,1]

p—

¥ (0)is {0 x< 1 if p.(F,F. ) =1 for all n.
n { . L 1l
{1 x=21

Hence_ifw;:have a family pf*sdmbling distributions labelled
by 6, I must arrange the family in such a way that the priors are
ordered in a natural continuous way with respect to their labels,

i.e. the closeness of distribution functions is mimicked by

closeness in 6. This is a topic that I will go into more detail

about in a later section.

Having now discussed the restrictions I can show that under

them ériteria i is satisfied.

Preservation under Lévz norm

Lemma 2.3. If (i) 2(6|x) is measurable
W
(ii) o_ + 0 and P(T(2(6[x)) = O (where T is

defined above)

then  2(8 ) W 2(0)

P v

Proof [See Billingsey (13)] 8

Lemma 2.4. If 2(8]|x) is bounded above, then
@) T L(e) = E(R(8)) + E(L(8))

Proof [See Billingsey (1)] . D
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g * ‘ y A . - i
:?“g""l)) T J « f -

Theorem Let Pn.*'P in Lévy metric, and 2(6) be a likelihood,

‘then provided (i) 2(6) is bounded aﬁd.measurable
(ii) P(T(2)) =.0
C(diii) I‘ 2(6)dP(6) > O,

OO

| thén *Pﬁ‘+ P in Lévy metric.

‘Proof. As a codsequeﬁée of Lemmas 1 and 2 and assumption (iii)

‘J 2(6) dPn(B) -+ I 2(6) dP(9) =-P*(9) > 0 2.4.11,
13 R '

where convergence is in Levy metric

Also for each t

o0 o0

X (=, t] 2(3)d£n(é) -> I X(—m,tlﬂ(e)dp(e) = P*(t) 2.4.12.
* as n -+ o

*
Pr(t) = |

o

at all continuity points. of P, by replacing 2(8) by x(-—=,t) 2(6)

and using Lemmas 2.3 and 2.4.

n PX(t) .. . PH(t) | 1 .
But Pn(t) = , P(t) = , which by (2.4.11) and (2.4.12)
PE(=)  P*(») * S

gives that P_(t) -+ P(t) at all points of continuity of P(t)
(Since P*(=) > 0)

The result foliows{ . . o O

¥

‘To conclude this section, consider the following theorem.

Theorem 5.5. Suppose that (i) 2(6) is bounded above b§ Mnand is

measurable

(ii) LP 2(6)dF(6) > 0
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Then Fn -+ Y 1in Ty tOpology implies Fn + F in Ty topology in the

class absolutely continuous priors.

Proof Firstly, as in the previous theorem, by premise (ii) it

is sufficient to pnrove that - -

* .
Fﬁ‘+ F = Fn*+ F* using the notation” above. -

- x | ¥
Well, since 2(6) is measurable £ = 2f and fn = £fn are Lebesgue

measurable as a consequence of the D.C.T, it follows that F and

anare absolutely continuous.

o0

D ok % %
So pV(F Fn) = J Iz(e)f(e) - 2(8) fh(e)lde by a comment in the

- OO

‘previous section

sM[ |f(w)-fn(6)|de

- O

= MpV(F,Fn). The result follows 0

So if ' I work in the class of all absolutely continuous distribution
functions, 1n fact Restriction 4 is no longer needed provided the
p;“metriC'is used. Perhaps the moral of this story is ‘that when

dealing with Bayesian inference, the Lévy topology is a little too
weak and that it might be more sensible to restrict oneself to
absolutely continuous priors when considering continuous phenomena.

My personal feelings are that Restriction 4 is much more difficult

to justify than the restrictions imposed above.

Note that there is.still a need for a natural ordering of

parametrisation of the family oI sample distributions since 2

likelihoods £1~and 22 equal a-«»S«»‘W‘f:i'-ll*g:i.ve the same inference. The
set of measure zero on which they are different may contain the

"true'" sample distribution so anomalies (which I will not at this

stage go into) could arise.
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2.5. Stability of Bayes Estimates

The reader will be familiar with the'waﬁ a Bayes decision/
estimate d is made. Without loss of generélity I can as;um; that
my utility is linear (by absorbing it into the loss function
(see Chapter 3) sb*my*Ba&es decision corresponds to the infimum of

the expected loss (with.respect to prior ¥ and loss function.L)

written E(L,¥,d) (where L and F may be omitted if no confusion

arises.)

Since my concern is estimation rather than general decision

making I will assume I have a_loss‘function of the form: L(d-0).

Unbounded loss functions

Definlition An unbounded loss. function L(d-06) has.the property that

Sup L(d-0) = o for all d e R,
BeS

where S is the extended support of the posterior distribution F

(i.e. the smallest{moﬁén _interval containing all points such that
£f(6) > O (see Chapter 3))
| Until now I think that it is safe to..say that the bulk of

Bayes estimation have corresponded to such loss functions. The-fact

that this is theoretically absurd is apparent when one sees that 1
am taking the infimum of a function E(F,d) which may or may not occur

depending on the particular convention I employ to obtain F. I will

elucidate this point.

Claim

F

The rate of convergence to zero of the tails of my

1ikelihood should not make a significant difference to any

inference I make.
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Justification

Suppose that I have a family of sample distributions G

parametrised by g and have observed a measurable set

. N - x
T=(x -€, x + €)-

1
) TH ==

- Following the same sort of argument as for Criteria 1,

the family o ) N o e
¢ = {Gy(x) : & «R}

of sample distributions cannot be specified precisely, each must

be considered as a representative of itself and distributions '"close"

to it in any practical situation. Again I must define ''close"

so I shall use the strong definition in the section preceding this,
since I am looking for coﬁnterexamples.b
Now consider ah alfernative family of sample distributions

* .
G defined by

! - L
G =1{(1« )Gg(x) +aF,(s a) :60,2<R, 0= o<1}

where Fl(xla) is a normal distribution with mean ' a and variance 1.
In an exactly analogous way to the example in Restriction 2 in the

previous section, it can be.shown .that for all € >0 there . is an

A such that for all O < a < A and a, 6 € R
G G.(x),e).
G € a G e Bn( a) XJ),y€)

provided Sup { max D™ GB(X)} <M for some X € IR..
XES(GG) 1<is<n “ |

* % . _
In particular putting a = X where X 1is defined above, the likelihood
ok
induced by G(6,a,a), & (©) is such that . e . »
* = | 1 |
L (8) -+ o as |8] + « provided that the

original family with likelihood 2(6) has the property g¢(g) + O

as IBI +- o , I leave the reader to check that small perturbations

of the likelihood do not affect the continuity arguments of the:
previous section.
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The point of this claim is to show that perturbations of
my prior distributions in the tail under T, topology can induce
the same perturbations in the tails of the posterior distribution
if the problem:is changed an indissemable amount, since by wiggling
my family of sample distriubtions a bit I can make the likelihood
constant_in the tails. Hence without loss of generality I can
consider perturbations of the posterior distribution rather than
the prior, ‘when - the perturbations are in the tail of the posterior.

I can nOW'return to the original problem, that of constructing

counterexamples to using unbounded loss functions.

Lemma 2.6.

Suppose that a function L(6) + « as 6 - < and finite

elsewhere in R Then there' exists a distribution function F such

>0 °
that F, « F|C"(—,®) such that

—co <R 1sisn a
Proof .
Since L(6) + « there exists points ty...t. such that
L(6) > 2 v O € Al = [tl-l,t1+1]
L(e) > 2% 0 « A, = [t,-1,t,+1]
; | . ) J
y 5 o 0 e A, = [t.-1,t,+1]
€ = .~1,
L(B) > 2 o b ey 3 1
where Ai n AJ =@ 1i,j € N.
Let F.(86) = L —l-J'(e) where J.(06) is some chosen ¢~ distributio
2 =1 21 i i o~

function with p.d.f. having support in
(ti-l,ti+1) and such that

Sup {max D J

()} =< M_ for at J.
eR 1<i<n J
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Then (i) Y(O) is a c” distribution function
(ii) I L(6)dr¥r(o) > 2 1 + 22.'11 + ... = o
R o ';2 | .
' 8

Now suppose 1 do a_Bayésian analysis using a loss
function L(d-0) and a posterior distribution F, giving rise to
. . . | , S
a Bayes decision d , the minima of expected loss, its associated

. | % - |
expected loss being E(L,F,d ). Perturbing ¥ slightly in P

topology by replacing it by

2 2
preceeding lemma,

G = (1-a)F + aoF where ¥, is defined in the

. ‘ | | ok
I see that the associated expected loss no longer exists at d

i.e. this is in fact a worst decision. So my posterior decision

depends crucially on the (ﬁsually conjugate) form I have chosen to

approximate it. This is obviously unacceptable.l

Consider this even more stunning counterexample when I use
convex loss functions (advocated by De CGroot (2)) and including

the squared error loss currently in vogue.

Let (6~d) = S and suppose L(s) is differentiable and

L'(s) is strictly monotone.

Leﬁma 2.7.
If L. is defined as above and E(L,F,d) exists for all d € R,

then it has exactly one minima, provided F'(0) # o,“e e R.

Proof

It is obviously sufficient to prove that E(L,F,d) has exactly
one stationary point since E(L,¥,d) - o as 4 + « ,-go this

stationary point must be a minima.
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Vell E'(F,L,d) - E'¢(F,L;6) = J L'(s)dF(s+d) - I L'(S)dF(Sil
R J R L

LR(L' (s)‘-L' (s-d))d¥F(s)

which is strictly monotone in d since L'(s) is strictly monotone

in its argument (by definition). Hence E'(F,L,d) is strictly

‘monotone. It follows that it will cut the axis d = O at most

once. | | B

Theorem 2.8.

Let L(6-d) be a convex loss function with its derivative
L'(s) continuous and nmy o}iginal posterior distribution function F

is . such that

Sup. { max [D*F(B)I} < M where £(0) # O on R,
0 R O<ksr

Then for all e(small) > O A*(large) > O and n €e IN there is a

posterior distribution'fﬁnction G'such that
, . | | L
p (F,G) < & and |d(F) - d(G)| > A

where d(F) and d(G) are the Bayes decisions corresponding to F

and G respectively.

Proof. Define Fl(a,e) as n(a,l) and

G(a,a,0) = (1-a)F(8) + aF(a,08). Then it has

' ‘ * |
previously been shown that for € >0 there is an a > O such that

A
for all a a < a and a € R

pn(G(G,a),F)~ < E.
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Let E(d,G) represent the expected loss with respect to decision d
and distribution function L. Then d(G) such that E'(d(G),G) = O

gives the (unique by Lemma 2.7) Bayes decision.

f

Well, E'(%ﬁ(a,a)) =-;JJ L'(s) (51—a):f(s+d)+qf1(a?s+d))ds_= 0.;

1.1‘
0

implies E'(d,F) = -2 E'(d,F,(a)).
1-q

Fix an arbitary d € R. Then it is easily checked that
E'(d,Fl(a)) > o as a +
E'(d,Fl(a) >~ as a > - sinde L' is
increasing and unbounded.

It follows that for all d €« B there is an a(d) € R such that

E'(d,F) = -2~ E'(d,F(a)), i.e. such that d is the
1-0

unique Bayes decision with respect to G(a,a(d),6).

The result is now clear. | U

I hope that the reader is now satisiied that such contortions
of a proper Bayesian analysis are just not on. The question remains
"]s Criteria 2 satisfied by a‘prOpef Béyesién analysis?" (i.e. one

where bounded loss functions are used). The answer is almost. First

a definition.

Definition

A decision d(F) is said to be gtable within J with respect to
topology induced by the metric p if for all n > O there is an € > O

'such that
o(F,G)< e => | C(G) = d(G) | < n
where C is some point in J.

Call a decision simply stable if J = {d(F)}
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Theorem 2.9.

Suppose (i) L(s) = L+(s) + L (s)

t__‘m '1‘}
—-a - - = -

where Lf+(s) -2 {L(s) s>0 . 'LT(s) = {L(s) s <0
| { {
{ OO. otherwise - . {0 otherwise .
and such that L+‘} are right continuous increasing} and bounded by Ml
Sy ) } .
L <}~ left | decreasing} o M,
| (ii) JDRL+ (6-d)dF(6) and [BiL—(e;d)dF(e) are continuous;

v v —— - ‘
.
’ ’ -l e

then E(L,Fn,d):”;TE(L,F,d)‘uhiformlyﬂas pL(Fn;P)h;Tb”t_

.

Proof

E(L,G,d) ] LT (6-d)dG(o) + J L™ (6-d)dG(9)
. m - * )

R

le [ H (d-6)dG(e) - Mgl I H (d-8)dG(6)
IR R

+ - _ *
where H and 'H are distribution functions. Each of the above integralsl

is therefore a convolution. Hence

-1

E(L,G,d) = M4

(1) =1 (2)
’UG (d)‘+ M2 UG (d)

where Uél) gndUéz),are the convolutions mentioned above.

It is a well known result that (See Feller (1))

o (F,F,) 0 => pL(Uéi), Uéi))—’- 0 i=1,2.

so provided Uél) and Uéz) are continuous by Lemma 2.2.

i) (i o
o (F,F,) + 0 =3 p(Ug), UgH)»0  1=1,2.

So in particular

E(L,F,,d)* E(L,F;d) uniformly as_pL(Fn,F) ~ 0.- 0
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i *,.)::.iiﬁ\}'l‘x)'
Comments

The conditions on this theorem need some discussion. Firstly
if F is continuous (see Feller (1) p.147) condition (ii) is auto-~
matically satisfied and even if LY and L. are not respectively right.
and left continuous the préof holds. So inthis case the theorem is
trﬁe for all bounded loss functions 6f the form L(s). Secondly
if I allow F to be discontinuous and L continuous'in S, the conditions
of the theorem are also met. So unless my loss function and
distribution function are vefy discontinuous the fheorem.holds.
Finally notethat if p (L ,L) -~ O, E(L_,F,d) - E(L,F,d)
by symmetry of the convolution operator. Pufting these two results

together gives the following Corollary.

Corollary 2.9.1,.

If the conditions of Theorem 2.9 are met for all Ln and
max {pL(Ln,L), pL(Fn,F)} -+ 0, then -

E(Ln,Fn,d) > E(L,F,ﬁ) uniformiy. L
Thus if Loss functions and distributions are close, so is
the expected lbss functioﬁ. This is the most impbftént fesuif for
Bayesians. Hoﬁever the Ba&es estimate is one step away from this,

since I am interested in the infimum of such functions.

Theorem 2.10

Let D be the set of minima of expected loss with respect to

the originally chosen posterior distribution E(L,F;d). Suppose
there is no sequence dJ € P such that

lim E(L,F,d) » E(L,F,d(F))
j->oo

and lim dj 7 d(F) where d(F) is a Bayes decision.

j-i-m
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Then if E(L,Fn,d) + E(L,F,d) uniformly d(F) is stable within J
where
J = set of original Bayes decisions.

Proof

Suppose to the contrary there exists a sequence of distributions

such that

E(L,Fn,d) +'E(L,F3d) and yet

P

l1im |d(F,) - d(F)| > ¢ where d(F) < J and d(F,) is a

Bayes decision w.r.t. E(L,Fn,d).

Since E(L,Fn,d) + E(L,F,d) uniformly

inf E(L,Fn,d) + inf E(L,F,d) (since E 2 O by definition)
delR deR

,Hence,E(L,Fn,d(Fn)) + E(L,F,d) as.n =+ o.contradicting the

hypothesis. ]

Since this condition is extremely weak (since it is on the

posterior I end up with) I have in fact proved that condition 2

is satisfied provided I use a bounded loss function in the Bayesian

setting.

A related piece of‘%ork has subsequently emerged from Kadane
& Chuang (1) dealing in a weaker sort of way with general loss
functions of the form L(d,6). -‘They seem however to completely miss

the point that the infimum of an expected loss function has no

JF TE R S e L T M - YT, TR SR SR B L L L

meaning if that expected loss function does not exist.

9 6. A preview of the Kernel of the Thesis

The reader may be wondering what this has to do with Catastrophe

Theory and Time Series. The answer 1s that Catastrophe Theory is a

classification theorem about families of potential functions

THE EXPECTED LOSS FUNCTION IS A POTENTIAL FUNCTION

|
:
1
%
2
3
R
i
ﬁ
$
x
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since the behaviour (or decisions) . are governed by its minima. Thus:
theorems classifying minima of potentials are applicable. |

Now if convex loss functions are ‘used Lemma 2.7 shows. that
only one minima can arise on the expected loss function. Since
Catastrophe Theory is’a classificafion in terms of the number of
minima, it would be redundant. But I have shown tpat such aﬁortions
of Bayesian analysis admit ridiculous and unacceptable results. I

must work with bounded loss functions so Catastrophe Theory is

applicable.
Now considér theﬁlﬁst”theorem;’but this time, rather than
interpret F as the original posterior distribution let it represent

the "best" representation of my posterior beliefs. Suppose the

corresponding expected loss function E(L,F,d) is smooth and has 2

minima and 1 maxima where the 2 minima m,, m, are each Bayes decision

with respect to F.-

E(d)

Fig. 2.1.
If F, and F2 are 2 perturbations of ¥, i.e. 2 approximations of the

1
"hest" representation of my posterior beliefs, then no matter how good

my approximations, the Bayes decision d(Fl), d(F2) of‘F1 and F2

respectively could be very different and unique (e.g. d(Fl) near mlguf

nedrmz) Hence a bifurcation (classified in Catastrophe Theory,) is

Observed.
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Certainly in a one-off situation such as E (with two
identical minima) would be an extreme oddity. (see for example Morse
Theory). But suppoée {E} is in fact a parametfised family
{E(t) : t € R} where t might for exaﬁple represenf time. Then one
of+ten ':f:'ind;s thaﬂ‘é the family _{E(L',E‘(t),d') : dt e R} goes fhrough

evolution @ > @ > @ pictured below, as t increases.

Y .

E(L,F(t;),d)
: 't d.
A(F(t;))
E(ngctl),d)
o T T |
' * d
d(F(ty))  d(F(t,)) |
E(L,F(tg),d)
==Y
n d ty <ty <t
d(F(tg)) .

Fig. 2.2.
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N
The*Bayeé decision. thus experiences a jump from a point in
a neighbourhood of d(F(tl)) to a point. near d(F(tS)). Hence.
Catastrophes occur (in a Bayesigp sense) readily in:
Time Series |
Sequential Analysis
‘Removal of nuisance parameters and many other

fields. The first of these is the most striking and so I shall

concentrate on it in this thesis. .
n x Differentiability of the expected loss follows if either:

(1) L is n x differentiable w.r.t. d and bounded in some

sense (see Burrill (1) for details):
(ii) the distribution function used is sufficient1y~smooth.

Since such loss functions/distributions functions will be

dense (under Py, metric) in the space of all bounded loss functions/F,

the last theorem and the previous Corollary mean that without loss

of generality I can make assumptions.of smoothneés of Etd). ‘ |
Since no-one has yet developed Bayesian inference with bounded

loss functions far enough I must devote a chapter to these problens

(Chapter 3) before going on to using Catastrophe Theory on themn.

For this I need the concept of natural parametrisation.

2.7. Natural Parametrisations

It does not seem to be widely realised that Bayesian inference
using a loss function L is invariant under transformations of the
parameter, even though the posterior moments)mode are not, since

E(d) =LBL(B,d)dF(6) does not depend on the parametrisation of 8.
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The transformation is Jjust absorbed into the loss function. Therefore
the most sensible way in which to define a "naturai"parametrisation
is by specifying the loss structure and then changing the parametrisatio
of 6 and d such that L is in a simple form. In most problems of an
inferential nature it is possible to convert the original loss function
into the form L(6-~d) by an appropriate choice of parametrisatiqn of 9.
Note that this implies that before I make a .Bayes estimate I
must say what it is I am looking for. (i.e. fix L(06~d). This seems
sensible but in an inferential setting the appropriate loss iunction*

may at first seem difficult to find: many statisticians .(including

Bayesians) don't like to state explicitly what they are looking for,

for fear that their results may seem subjective. The following
suggestions are for those at a loss choosing theilir right parametrisation

- i.e. when the loss structure is not immediately obvious to themn.

Definition

Call a parametrisation 0 of a family F0 of saﬁple distributions

JE
|
b

p-continuous 1if

p(ﬂ@(x),hFe+n(x)) < k(n) where k(n) > 0 - 0 as n + O.

How often there exists a p-continuous parametrisation of such a family
of distribution functions is a moot point and requires further research.
Certainly if this condition is met, then problems outlined in

Restriction 4 etc, are bypassed. I will take this one step further.
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Definit]

Call a parametrisation 6 of a family of sample distributions Fe

p-natural if

p(Fo(x), Fg, (X)) =k(n)  where k(n) > O,
| k(n) - 0 as |n| »O0.

and® . Kk 1is locally about O 1-1.

If such a parametrisation exists, then it is easily seen that

it 1is natural with respect to the metric p in the sense that it
measures a function of the p-distance between distribution functions
of the same family. Hence the loss function depends only on the
distance (i.e. p-distance) on t between the chosen sample distribution

and the actual sample distribution. The last condition of the

definition ensures that for positive n., k will separate the

distributions that are close to the chosen Fe.
A question now arises: How many "natural' parametrisations

are there for a particular family of distributions?

Theorem 2.11
A p-natural parimefrisation is unique up to linear trans-
formations of the said parametrisation.

Proof

Clearly from the definition, if 0 is a natural parametrisation

then a6 + b will be.

Conversely suppose both 6 and J(0) are p-natural paramterisation

D(Fel(x)’ Fg (%)) = ky(8; = 8,) | - . 2.7.1,

2

o e(Eg X)) Eax)) = Kp(I(g) = 3(8,)) ' 2.7.1.

and assume without loss of generality. J(8) = 0
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By definition, on some neighbourhood (0,8),*(say) k2 will have

an inverse, so putting k3 = kgl kl (1) and (2) can be written

ky(21) = J(A+u) - J(u-A) where A = } (8,-0,) - 2.7.3.
J ) w= 3% (6,%0,)
or k3(2A) = J(y+x) - J(y) where x = él | 2.7.4.
y =

H=A.
for sufficiently small A (wx) |
Putting y = O in (4)

k3(2A) = J(x) ~ J(0O) = J(x) by assqmption.

Hence J(y+x) J(x) + J(y), so that J is a linear function of 6 . (O

So I have at least found that such a definition gives me a unique
parametrisation (up to linear transformation). It should be noted

that a function k defined above has properties induced by the
metric namely
b(i) kK is symﬁetric aboﬁt O\
(ii) k is concave downwards
(i.e. k(X) + k(y) s k(x+y)) x,y <R

so it looks something like Fig. 2.3.

k(n)

Fig. 2.3. The function k(n).
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Sefore I can proceed any further I must chooée‘a“pirtiéular

metric. This, as I have said before, will deﬁend vefy much on the

situation 1 am parametrising (i.e. myulbss structure). The simplest

metric to.-consider is the po—topology Ifor which the followingxpheorem |

gives many results for po-natural parametrisation.

—u—
i

Theorem 2.12

7" Let F_ (.}16) be a family of continuous distribution functions

of X € I <R with parameter 0 e I, < R. Suppose:

(i) There exists a transformation T: X »- Y such that

‘ p;(Fy(.1el), Fy(.165)) = rl(pg(Fy (101, F, (- 185))]

L
[

for each 61 92 € Ie where r is increasing in somei[O,s) neilghbourhood

of O with r(0) = 0. * |

(ii) That Fy(y|6+h) = Fy(y-hle) for each 0 € I,

(iii)That for each 0 e Ie Fy(yle) is strictly increasing on an
.
open interval (possibly infinite) Iy and constant on Iy.

Then 0 is itself a po-natural parametrisation

Proof -

~p0(Fx(,[e+h), Fx(.IB) o

rlpy(Fy(.] 6+h), F (.[6))] by (1)

rlp,(Fo(y]|8), Fo(y-h|6))] by (ii)

which is { a function of h only
E increasing in h for small ht> O by (iii) and the
‘} dgfinition or r
So & is a;po-natu;alhparametrisation. o ]

Notes

1). If T is a monotone function of X, then condition (i) of the

theorem 1s satisfied fatuously from the definition of the a
distribution function. |
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2) If each F(.[8) 6 « I has a symmetric p.d.f. about a common

point (w.l.o.g. O) then if T is some even function then again
condition (i) of the theorem is satisfied since

Po(FC.[0), (F(.]0,) = Sup |F(x|8y) - F(x]|6,)] = Sup [F(x|e,)-F(x|s,)

-3 1 >
. X % | x’OeIx

SO since T is 1-1 on x > O the argument. above applies.

¥y

Examples
1). If the family is of the form F(9-x), then 6 is already in

its po-natural parametrisation (e.g. normal mean, t—-distribution

mode etc.)

2). If the family is symmetrical and of the formFCE%E) put
T(x) = &n|u-x|. It is then easily seen, using note 2, that
2n 0 satisfies condition (ii) of the theorem and so (modulo
condition (iii)) gives a p,—natural parametrisation. (e.g. normal
variance V has a bo-natural parametrisation &n V or a &n v + b
for any comstants -a, and.b). -,

Although the search for such parametrisations is obviouély

very interesting it is a bit off the track of the thesis so I will

leave most further classification for my further research.

Summary

I have shown that to use Bayesian inference successfully I

must have.

i) A reasonable set of sample distributions to distinguish between

(Restriction 1)

ii) One of these sample distributions is the "right'" one (Restriction 2)
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iii) The likelihood function must be bounded (Restriction 2)
iv) The sample distribution must be ordéredhin a sensible way
(Restriction 4) |
v) I must use bounded 1osé f?nCtions to get my estimates.
I have noted that with (v) I must admit the possiﬁilities of
Catastrophes. In the last section I have suggested a way in which

a sensible ordering of sample distributions (iv) can be fouhd.
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3. SOME PROPERTIES OF ESTIMATES MADE UNDER BOUNDED LOSS

wr

3.1. Introduction

In this section I will give a classification of Bayes decisions
made when using bounded loss functions, the classification being
slanted towards decisions which are estimates of a parameter. The
idea is‘ultimately to use this on Time Series data to make sequential
decisions.

Although many theoriéts (e.g. De Groot (1) have emphasised
that the axiamatic systems forming the basis ol Bayesian statistics

imply the use of. bounded loss, it has not been until recently that

any serious work has gone into looking at the properties of the

induced estimates (see Lindley (1) and (2)). On the other hand

estimates using, for example, quadratic loss functions have almost

exhaustively been looked at (e.g. Chao (1) and De Groot and Rao (2)). i

In the last chapter.it was pointed out the sort of pitfalls
around when unbounded loss structures are used. In any real life

situation resourses always.have an upper bound anyway.

Of course, there are some difficulties which arise from
thinking Of estimates aéﬁdecisions. Perhaps the most poignient is
the fact that the personal utility function of the decision maker

must be‘épecified before an optimality criteria is well defined.

Utility Functions
Suppose that I have found m& posterior distribution P(6) of ©

and that I have a loss function L(68,d) with an associated decision
‘d € D the decision space. The loss function will represent my

rational assessment of losses incurred from certain decisions d when

the --true value of the parametegﬁﬁe. (Hence'my loss function correspénd

to - De Groot's gain function (De Groot (1)).
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The posterior P(6) then induces a posterior distribution for
the random variable L(6,d) where d is fixed, for each diedD. Call

the distribution associated with L(p ,d)‘ Pd-(g*).

p.d.f.’ | .

Loss L = 4.

b

—amm,

Fig. 3.1.

'The axiomatic syétem then states that to make a "sensible"
choice\for d e D. I must pick a d* € D such that with respect to

some strictly debreaéing function of L, U(%),d* max;mises

{ J.ﬁ U(%) dP,(2) : d < D}.
R>0

Equivalently I must pick a d* such that there is a strictly increasing |

'c
r

reparamentisation of L, A(L) such that

E(A(L),d)ié { J A(L)de):dED}. is minimised.
R>0 | ‘ |

U is called the Utility fﬁnct%énT;ﬁd A = -U1 will call the Anxiety

function (Note the invariance of optimal decisions under linear

increasing transformations of A (or U), so without loss of generality

assume A(O) = Q).
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The-sceptical critic mdy ‘assert that this-statement abouta. best
choicg '~ says very little. For example if L(0,d) is of the form
Ll(e—d) where L, is symme@ic about (6-d) and increasing on R )s"o‘m,
I can find for any other fixed Lz(e-d),'symetric and increasing

on R > O an .anxiety function A such that
| o Lz(e—d) = A(Ll(e—d))

+ﬁence unless 1 csﬁ'give A (or U) a conceete mesning, then
thecisss of all loss functions symmetric in 6-d and 1ncreasing in
R > O give the same class of optlmal de0151ons, so it does not matter
what the form of the loss function 1is. o

Now unlike the -loss function L, A is a far more subjecéive
quantlty to L. WhereasiL represents the sational assessment of the
situation as percelved by the deC1sion maker, A augments the.
situation to fit the oﬁtlmism, pessimism, fears, expectatlons in
fact the totalemotional state of mind of this person. |

There are 2 major-misconceﬁtions about the nature of*Utility/
Anxiety functions in the literature that firstly neéd to be removed
before I can proceed.

(i) The "sensible" - non emotional utility/anxiety functlon

is the linear one.-

|

The consequence of this wrongly inferred statement is that it ﬁ

is commonly assumed that to be ratiomal, I must choose a decision whlcf

mlnimises:my expected loss C rather than my exPected anxiety) A

study of the build up of the ax1amatlc system C in e.g. De Groot (1))

!
|

should satisfy the reader that this 1s in fact a completely erroneous
deduction. This hoped-for correspondence is jﬁst a case of wishful

thinking. Anyﬁay all Bayes decision '‘(including those made under

linear utility functions) contain an emotional element about them.
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(ii) The utility/anxiety fuﬁction is independent of the
.amount of information I think I have. o

Suppose"tﬂaf I have a dafa set'{X}‘aﬁdLI ﬁm.makiﬁg inference
aﬁout a parameter 6 using a loss function L. The estimate I make
will correspond_to the Bayes decision obtained from using some anxiety
functions A'whiéh the reader will remémber is supposed to summarise,
in part, the optimiémfana expectétioné of the decision?maker. If I
then incfeasé the daté setwto include another much larger set of d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>