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Summary

The chemical senses of taste and smell are the two least well understood of our
senses. Recent advances in our understanding of the genetic and molecular
mechanisms have led to increasing interest in olfaction and gustation. Amongst the
practical applications of fragrances and flavours are commercial consumer products.
The primary source for inspiration for these is nature and the work discussed in this
thesis addresses methods for isolating selected aroma and taste molecules from

natural sources, for use as new ingredients in food and fragrance applications.

The methods are designed to deal with the challenges of isolating and identifying

species present at very low concentrations (as low as parts per trillion), of unstable

nature and with the desire to target specific functional groups. Carbonyl and thiol

compounds have been selected for trapping due to their interesting fragrance and

flavour characteristics respectively.

A portable reactive trap has been designed, built, and tested to isolate aldehyde (or
ketone) compounds from the headspace of living plants. The trap uses the
derivatising reagent, O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride
coated on to a solid sorbent, Tenax TA . Reagents with immobilised reactive
eroups capable of selective reacting with thiol compounds have been investigated

and the proof of principle has been illustrated for three different methods.

The nature identical status of the cooling compound, L-monomenthyl succinate, has
been demonstrated by using highly sensitive and selective analytical techniques to
identify this compound in the berries and leaves of plant Lycium barbarum. A
preparative liquid chromatography system was used to simplify plant extracts which
were subsequently analysed using nano liquid chromatography-electrospray

ionisation-tandem mass spectrometry (nLC-ESI-MS/MS).  This system could be

applied to the analysis of other natural source extracts.
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Introduction

1.1 Synopsis

The chemical senses of taste (gustation) and smell (olfaction) are the two least well
understood of our senses. Recent advances in our understanding of the genetic and
molecular mechanisms have led to ever expanding research into these topics.
Flavour and fragrances have been used by humans for millennia and in this century
flavour and fragrance compounds form the basis of multi-million pound industries
(Leffingwell & Associates, 2006). Amongst the practical applications of fragrances
and flavours are commercial consumer products. The flavour and perfume industnies
both use nature as a guide and source of inspiration with the aim of replicating a
flavour or fragrance to use in new products. In order to do this, the chemuical
compounds responsible for flavour and fragrance need to be isolated, characterised
and synthesised. As isolation, separation, analysis and synthetic techniques have
developed over the last fifty years, new challenges have arisen regarding the
identification of new flavour and fragrance molecules. These challenges include
identifying species present at very low concentrations, of low stability and of wide

chemical diversity. This thesis is primarily concerned with development of methods

to isolate and characterise these species.

To help understand the importance of the chemosenses of taste and smell, this
introduction provides an overview of the current state of knowledge on the function
of these senses. This introduction also sets out some of the history and drivers of the
modern flavour and fragrance industries. Key stages and challenges to be considered
during the process of discovering new ingredients from nature are discussed,
followed by an overview of the tools that provide solutions to isolation and

characterisation problems. The characteristics of three families of fragrance and
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tlavour compounds: aldehydes and ketones, sulfur compounds and menthyl esters,
which are of particular focus in this thesis, are reviewed. Finally, in the light of the

information presented, the aims of this thesis are discussed.

1.2 Chemosensation

Taste and smell are the most ancient senses for all organisms. They are the central
mechanism by which most organisms sample their environment whether finding
food or a mate, evading predators or avoiding ingesting toxic food. Smell has
proved the most perplexing sense to decipher, with the major advances in
understanding of the mechanisms of recognition of smell and taste made only
recently. In the early 1990’s, Richard Buck and Linda Axel (Buck and Axel, 1991)
discovered odorant receptors and the organisation of the olfactory system, for which
they received the Nobel prize in Physiology or Medicine in 2004. Since that time,
significant progress has been made in explaining how animals detect and
discriminate between thousands of different odour compounds. Similar advances
have been made in understanding taste: the receptors responsible for bitter taste were
first 1dentified in 2000 (Adler et al., 2000; Chandrashekar et al., 2000; Matsunami et
al., 2000), with another recent development being the discovery of the receptor

responsible for sweet sensation in 2005 (Zhao ef al., 2005).

Both chemical senses are also intimately linked with two neural systems: emotion
and memory (Rouby, 2002). This means that the perception of smell and taste
consists not only of the sensation of the odorant or tastants themselves but of the
experiences and emotions associated with these sensations. Smells in particular can
evoke strong emotional reactions. This has led to increasing speculation and interest
in the potential commercial and therapeutic applications of exploiting odorous

molecules.

1.2.1 Definition of flavour and fragrance

Fragrance or aroma is due to the volatile compounds emitted by the odour-
producing source, be it blooming rose, or delicious roast dinner. To provide sensory
properties, the odorant must have some water solubility, a sufficiently high vapour
pressure, low polarity, some ability to dissolve in fat (lipophilicity), and surface

activity.
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Flavour is most often associated with taste, and therefore the tongue, but 1n fact, the
nose 18 also the main organ for flavour perception, because flavours can be made of
up to 80% volatile odour compounds, released during eating. Flavour also contains
another sensory aspect, trigeminal, which is an irritant sensation felt in the general
pain, tactile and temperature receptors in the mouth, nose and eyes. It 1s this

trigeminal sensation that makes chillies feel hot, spices pungent and menthol cool.

The three aspects of flavour are shown in Figure 1.1.

Mouth, Nose & Eyes
Contain pain (trigeminal)
sensors for experiences

Nose: detects such as astringency,

odorous " spiciness, pungency and

volatile aspects cooling

of flavours:

low molecular P

oo Detects taste sensations
bitter, salty, sweet, sour

compounds

and umami. Typically
these are non volatile
compounds.

Figure 1.1 Flavour utilises three of our senses: smell, taste and trigeminal

(Image courtesy of Quest International).

Odorous molecules run the gamut of chemical diversity, encompassing functional
groups including aldehydes, esters, ketones, alcohols, alkenes, carboxylic acids,
amines, 1mines, thiols, halides, nitriles, sulfides and ethers. The question of how the

nose manages to detect this wide range of airborne materials and distinguish between

them 1s considered next.

1.2.2 Olfaction

The nose is a remarkable organ capable of detecting about ten thousand difterent
odours, even in infinitesimal quantities, which the brain can then recognise and
remember. From an evolutionary perspective, it is speculated that this ability 1s
required because of the diversity of the molecules that may be encountered in an

organism’s lifetime. The evolutionary importance of smell is also reflected in the

o
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fact that a high percentage (up to 4%) of the genomes of higher eukaryotes is

devoted to encoding the proteins of smell (Firestein, 2001).

In humans, odorants are detected by ciliated olfactory sensory neurons coated in
mucus. They are located in the olfactory epithelium, found in the upper reaches of

the nasal cavity (see Figure 1.2).

Nasal cavily | Olfactory
| epithehum
Al ;
Septum U, .
4 -
vomeranasal ] e ot
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Figure 1.2 The olfactory organs: (a) side view of the human head showing the
olfactory epithelium, the location of the cells responsible for smell. (b) Four

olfactory sensory neurons are shown with their cilia projecting into the mucus

(Mann, 2003).

When an animal or person sniffs an odorant, the odorant molecules are dissolved in

mucus that coats the cilia of the sensory neurons. The lipids in the mucus solubilise
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odour molecules and hence help transport them to the receptors. These receptors
were discovered to be of the G-protein coupled receptor (GPCR) type, ‘7—pass’
transmembrane proteins also important for neurotransmission, photoreception and
other cellular process (Buck and Axel, 1991). Once the odorant has bound, it
activates a G-protein coupled to the receptor on its cytoplasmic side, which in turn
activates adenylyl cyclase, an enzyme embedded in the plasma membrane of the
cilia. Adenylyl cyclase catalyses the conversion of adenosine 5'-triphosphate (ATP)
to the secondary messenger, 3'-5'-cyclic adenosine monophosphate (cAMP). The
release of CAMP opens up ligand-gated cation channels which facilitate the diffusion
of sodium 1ons into the cell, reducing the potential across the plasma membrane. If
this depolarisation reaches threshold, it generates an action potential which is

conducted back along the olfactory nerve to the brain. This sensory transduction

pathway 1s 1llustrated in Figure 1.3.

Each olfactory sensory neurone expresses only one of around 1000 olfactory
receptor genes (Zhang and Firestein, 2002). These olfactory system genes and
pseudogenes make up nearly 2% of the human genome, second only to the receptors
of the immune system (Glusman ef al., 2001). The axons from all cells expressing a
particular receptor are bundled together and converge onto only one or a few
glomeruli in the olfactory bulb, which increases the sensitivity of the signal sent to
the brain. The brain evaluates the olfactory signals reaching it as a particular odour
(Mombaerts et al., 1996). The brain also receives a signal through the limbic

system, which generates an emotional response to the smell.
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Figure 1.3 (a) An inset showing an enlargement of a portion of the membrane of
a cilium showing the location of the receptor and the G-protein system. (b) The
process of sensory transduction: the G-protein system in the resting condition
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As already mentioned, the nose can detect tens of thousands of odours with a
relatively small number of olfactory receptors. This is achieved by using a
combinatorial approach to recognition and processing odours (Malnic et al., 1999).
There i1s no individual receptor dedicated to a specific odour, but rather different
odorants are recognised by different combinations of receptors to create a specific
odour response within the neurons of the brain. This pattern recognition process is
1llustrated 1in Figure 1.4. This is based on the current experimental evidence, which is

likely to be refined and revised in the light of the very active research on this topic.

Odorants Receptors

Patterns of activation by odorants on receptors

Odour 1

Odour 3

Figure 1.4 The combinatorial pattern of odorants interacting with receptors.

Recognition of an odorant molecule depends on which receptors are activated

and to what extent (represented by the shading). Black represents no colour or

shape match. Four odours are shown with the receptors they activate. In each

case there are best receptors (such as red square) but also others receptors are
activated that are able to recognise some feature of the molecule (any square).

(Adapted from Firestein, 2001)
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Different chemical structures activate different combinations of receptors, even when
the change in structure is slight. For example, octanol smells like oranges, but the
related octanoic acid smells like sweat. Malnic and co-workers (1999) also
discovered that a large concentration of an odorant binds to a wider variety of
receptors than smaller amounts of the same chemical. This explains why a

chemical’s odour can vary with concentration. As an illustration, indole smells of

sweet violets at trace level concentrations but putrid at higher concentration.

1.2.3 Gustation

There are five basic tastes that the tongue responds to: sour, salt, bitter, sweet and
umamu (literally ‘delicious taste’). The latter is relatively recent to the Western world
and refers to the savoury flavour of monosodium L-glutamate and similar

compounds. Each of these provides a specific function in allowing animals to

evaluate the nutritional content of a food as shown in Table 1.1. Although there are

only five tastes, these provide an effective and reliable system for recognising and

distinguishing key dietary components.

Taste bud Nutritional role
|

| Sweet Identification of energy-rich nutrients
Control of electrolyte balance ’

Umami Identification of amino-acids

Sour

Warning against ingesting poisonous

Bitter substances

Table 1.1 The five taste sensations and their nutritional role

Taste perception takes place through taste receptor cells located in the taste buds on
the tongue. A schematic of a taste bud is shown in Figure 1.5. Each taste bud 1s
made up of 50-100 cells (Lindemann, 2001). The taste buds are distributed across
different papillae on the tongue. Taste receptor cells project microvillae on the
surface of the tongue, forming a taste pore that opens out to the surface of the tongue

enabling molecules and 10ons taken into the mouth to reach the receptor cells inside.
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Figure 1.5 A schematic of a taste bud on the surface of the tongue. Microvilli in
the taste pore interact with the taste compounds, producing an electrical
charge, triggering release of a neurotransmitter. This activates nerves resulting

in an impulse to the brain (Mann, 2003).

Mechanisms for detection of taste compounds are illustrated in Figure 1.6. Salty and
sour tastants are primarily ionic compounds and these act directly though ion
channels on the cell membrane of taste receptors. The 1on flow triggers neuron
activation and transmission of the signal to the brain. Salty substances often contain
sodium 1ons, whereas sour substances often contain acidic hydrogen ions. Some

bitter substances are also 10nic and can activate potassium i1on channels.

A more complicated process occurs for the non-ionic compounds responsible for
bitter, sweet and umami sensations. As with olfactory receptors, the G-protein

coupled receptors are involved (Adler er al., 2000; Matsunami et al., 2000).
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Figure 1.6 The mechanisms of detection of taste substances. Ionic substances
such as those which can generate a salty, sour or bitter sensation can act
directly on sodium or potassium ion channels. For non-ionic substances (bitter
and sweet) interaction of the tastants is with a GPCR receptor followed by

subsequent activation of potassium or chloride ion channels (Mann, 2003).

The membrane proteins that serve as receptors for the transduction of taste have for a
long time remained elusive, but screening the mass of genome sequence data that has
recently become available has provided a new means to identify key receptors for
bitter and sweet taste (Lindemann, 2001). For bitter tastes, the G-protein receptors
are known as the T,R family of proteins (Chandrashekar ez al., 2000; Mueller ez al.,
2005). The extra-cellular regions show much variation which corresponds well with
the ability to detect the chemically diverse species which taste bitter, representing the

wide range of toxic substances that an animal may encounter.

[n mammals, sweet and umami tastants are detected by TR receptors, a family ot

three GPCRs. These receptors form heterodimers in which different T;R’s come

— L3 -
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together. For example, the T|R;-T;R; dimer binds only monosodium L-glutamate
and L-aspartate. In contrast, in humans, sweetness receptors bind a wide variety of
Structurally diverse molecules including various sugars, sweet proteins and artificial
sweeteners such as saccharin (Nelson er al.,, 2001). A detailed review of the

experiments conducted to determine the receptors responsible for each of the tastes

has recently been published (Chandrashekar ez al., 2006).

Contrary to popular belief, there are no specific areas on the tongue for detecting
each taste. Instead, receptors for particular tastes are spread all over the tongue.
Although a single taste cell may have representatives of several types of receptor,

one type may be more active than the others on that cell. No single taste cell

contains receptors for both bitter and sweet tastants.

One fascinating and active area of taste research is to understand how information
flows from the tongue to the sensory evaluation centres in the brain and hence
controls our behaviour. Such research should reveal how it is that taste perception
varies according to context. For example, the sourness of lemon juice is masked by
the addition of sugar, but retains its acidity. It could also reveal how our perception
of taste 1s atfected by other factors such as how a substance smells, looks, or feels in
the mouth, as well as how this relates to feelings such as prior experience of the taste
or whether a person is hungry or satiated. This research will require molecular

genetic and novel physiological approaches.

1.2.4 Trigeminal sensation

A discussion of flavour would not be complete without mentioning trigeminal
sensations. The trigeminal nerve runs into the olfactory epithelium and has a set of
endings in the mouth, eyes and nasal cavity which are responsible for tactile,
pressure, pain and temperature sensations in these areas. A number of chemical
trigeminal stimulants produce effects described as hot, cold, tinghng or 1rritating.
Common chemicals which stimulate a trigeminal sensation include menthol (mint),
capsaicin (hot chili powder) and diallyl sulfide (onion). It has been suggested that
about 70% of all odours stimulate the trigeminal nerve, but in general the response 1s

several times less sensitive than olfactory receptors (Ohlott, 1994). Menthyl esters,

_11 -
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(discussed in Section 1.9.3) are used in applications where a trigeminal sensation 1is

desirable, such as mouthwash or beverages.

1.2.5  Applications of the latest research in olfaction and gustation.

Untl recently, uses of fragrance and flavour compounds have been rather limited
mainly to use in direct commercial products, such as fine fragrances and flavourings
In food products. These are industries which depend strongly on the sensory
properties of the products. As such, the work reported in this thesis has focussed on
this type of application. Nevertheless, future potential applications of benefit to
society are many and include those important for health, nutrition and quality of life.
An example of one such important issue is pest control. Insects are responsible for
damaging crops and carrying deadly diseases such as malaria. Alternative solutions
to pesticides are highly desirable, due to the detrimental effects of these compounds
on the environment and the increasing emergence of resistant strains. Odours are
showing strong potential in acting as insect control measures, underpinned by an
understanding of the odour receptor genes in the fruit fly Drospophila (Clyne et al.,
1999; Vosshall ef al., 1999). An up-to-date review of the role of molecular genetics

of insect olfaction in controlling insects has been published (van der Goes van Naters

and Carlson, 2006).

Another area of current research which has immediate application i1s chemosensory
neuroscience, that i1s, understanding the direct connection between an odour, the
brain and the effect it has on us physically and emotionally. One study in rats found
that the scent of grapefruit oil and its active components stimulated an increase in
blood pressure (Tanida et al., 2005). Another study showed the aroma of hops
initiated a relaxing effect in humans (Kaneda er al, 2005). A recent review
examines how chemosensory neuroscience could be used to understand the
connection of the brain’s flavour system and eating behaviours (Shepherd, 2006).
The hope for such research is that it will lead to better nutrition, for example, by

using odours to control appetite stimulation.

Other opportunities include tailoring fragrances to individuals' odour phenotype;
testing for deficits in smell for diagnosis of diseases such as Alzheimer’s disease;

and bitter flavour blockers which could be used to make medicines more palatable.

_ 12 -
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A review has been published on the commercial opportunities in olfaction and taste
(Gilbert and Firestein, 2002). Many of these applications will require the challenging

task of an extensive screening program to match tastants and odorant molecules with

their respective receptors.

1.3 Flavours and fragrances: a brief history of usage

1.3.1 Ancient history

Both fragrances and flavours have been in use by societies for millennia, playing a
role 1n religious and pleasurable pursuits for ancient civilisations. Initially,
fragrances and flavours were obtained from natural sources, such as flowers,
aromatic plants and animals (musk scents). In the classical world of ancient Greece
and Rome, the technique of distillation was developed. This is still used today to
extract essential oils from aromatic plants to create perfumes and essences. Herbs
and spices have always been used for flavouring foods. The trade of spices could
even be said to be a major driving force to the discovery by the West of the
Americas, in search of an alternative trade route of the Silk Road from the East via

Constantinople.

1.3.2 The industrial age

The flavour and fragrance industry as it 1s today began to develop in the industrial
age of the nineteenth century. Isolation of many aroma compounds from nature,
especially essential oils, led to the identification of aroma active maternials such as
benzaldehyde (almond aroma). At the same time, advances in organic chemistry led
to the development of synthetic fragrance compounds. For example, the important
perfumery compound, cinnamic aldehyde was first synthesised in 1856. In this age
of discovery, five Nobel Prize winners in the first half of the twentieth century were
involved with aspects of aroma chemistry, indicating the importance of aromatics to

chemistry at that time (Pybus, 1999).

1.3.3 The modern era

The real expansion in the flavour and fragrances industries took off in the latter half
of the twentieth century thanks to both technical and sociological factors. From a

technical point of view, advances in analytical techniques such as infrared (IR)

_13 -



Chapter 1: Introduction

e

T

L - iy et S — ulllinlt o

SpeCtroscopy, nuclear magnetic resonance (NMR) spectroscopy and in particular,
gas chromatography (GC) and mass spectrometry (MS) have been instrumental in
allowing the key odorants of fragrant flowers and food stuffs to be identified at
Increasingly lower concentrations. The use of “trapping’ methods such as headspace
extraction means that the trace level compounds can be identified. These often define
the character of an odour. Isolation methods are discussed in Section 1.5.
Comparable advances in synthetic techniques have also led to a vast increase in the

number of materials available to the perfumer or flavourist at a reasonable cost for

the finished formulation.

Alongside the scientific factors, social factors have also been important in the
development of today’s flavour and fragrance industry. Post World-War II, the
standard of living in the developed world has led to more ‘disposable income’ to
spend on luxury or convenience goods, so that a fine fragrance is no longer the
preserve of the wealthy, and fragrances are now found in hundreds of consumer
products such as bleach, washing powder and soap. These fragrances need to meet
the challenges of harsh chemical environments such as the highly alkaline pH of
bleach. Perfumery i1s now a multi-million pound industry and of considerable
interest to commercial enterprises and also in therapeutic research.  Social and
geographic mobility has also led to people experiencing a much wider palette of
flavours. This is an important driving force in developing new and improved flavour

sensations.

1.3.4 Future trends

A key trend in both flavour and fragrance industries is the search for ever more
‘exotic’ ingredients (Figure 1.7). This quest has led to several expeditions to
untapped sources of plant material such as the canopy of the tropical rainforest,
reached by hot air balloon and sampled by non-destructive techniques (Boelens and
Boelens, 2003; Gassenmeier et al., 2001). Other novel deveiopments include Quest’s
AquaspaceTM technology for capturing the aroma molecules in water using a system
of pumping and filtering water through an odour trap. The technique gives perfumers
a new olfactory experience from a previously inaccessible part of nature and opens

up new creative possibilities.
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Figure 1.7 Images from an expedition to Sri Lanka to discover new and

exciting flavour and fragrance compounds (courtesy of Quest International)

Strong drivers of innovation in the flavour industry are improving nutrition and
creating authentic flavours. With increasing concern about obesity and unhealthy
diets, flavours and tastes which can give low-fat products the same sensation as a
full-tat product are highly desirable. Replacing salt in products whilst still retaining
its flavour enhancing qualities 1s also a prominent movement. Finally, with today’s
busy lifestyles, the trend for purchasing convenience foods shows no sign of halting,
and consequently there 1s a desire to produce healthy, ready-made meals with a

similar taste sensation to a home-cooked meal.

There are two primary reasons that finding flavour or fragrance compounds 1n nature
1s so important. These are external factors experienced by these industries, namely,
consumer perception and regulatory restrictions. There 1s wide-spread consumer
perception that natural is best. This is particularly pronounced in the flavour
industry where artificial flavourings are seen as undesirable. In the European Union,
and in some other countries world-wide, flavour chemicals are classified 1n the
legislation into three categories (European Union, 1988). These are:

e natural; flavour chemicals obtained using a natural process or of natural

extraction or distillation from material of vegetable or animal origin;

e nature identical (NI), flavour chemicals of synthetic origin but
indistinguishable from a substance naturally present in material of vegetable

or animal origin; and
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® artificial; flavour chemicals of synthetic origin with no known natural

occurrence.
Establishing NI status is therefore of key importance to the flavour industry because

NI labelling status is greatly preferred over artificial labelling in the European

Union. The identification of an NI component is demonstrated in Chapter 5.

Recently, even nature-identical has been seen as ‘not natural enough’, and the
flavour industry is shifting to natural extracts. This i1s despite the fact that in many
ways, synthetic flavouring products are preferable to natural extracts: they have
longer shelf-lives, and more reliable in concentration and flavour. Production

volumes of natural flavours are also far less predictable because of uncontrollable

factors such as weather.

1.4 The discovery process

There are several paths for fragrance and flavour chemists to follow in the search for
new ingredients. These include: analysis of natural products, optimisation of leads,
and serendipity. The primary route conside<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>