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ABSTRACT:  Various feasible approaches to the increase of the flat plate elastic shear buckling capacity 
are investigated. Based on derived theoretical envelopes of the considered approaches, stiffening paral-
lel to the longer plate edges is identified as the most effective approach to the considered problem. An 
accompanying analytical formulation is approximated in a form convenient for utilization in structural 
analysis and design of the plated structures. All derived conclusions and proposed formulations are based 
on results of the numerous rationally designed numerical simulations utilizing the finite element method.

predominantly formulated by means of the regres-
sion analyses based on various results obtained by 
experimental investigations and/or numerical sim-
ulations. Concise description of the various exist-
ing formulations of the plate ultimate shear load 
capacity can be found in Zhang et al. (2008).

Since the most of the contemporary ultimate 
shear load capacity formulations are based on the 
correction of the calculated elastic shear buckling 
critical stress, within the framework of this paper 
various possible approaches to the elastic shear 
buckling inhibition are discussed. The most obvi-
ous one among them is to maximize the rotational 
restraint along the plate edges, resulting ultimately 
with the clamped edge restraints. However, the 
actual edge restraint imposed at the plate edge 
joints varies between the two extreme cases (simply 
supported and clamped). Only the worst (simply 
supported) case, which provides the highest mar-
gin for the increase of the plate elastic shear load 
capacity, is considered further in this paper.

1.2  Elastic shear buckling of the simply  
supported flat plates

An isotropic, flat plate of length L, breadth B and 
thickness t, loaded along the all four boundaries 
(edges) by pure and uniformly distributed in-plane 
edge shear stress is considered (see Fig. 1).

If  the geometrical and material characteristics of 
the considered plate are such that elastic shear buck-
ling occurs at the critical intensity of the imposed 
edge shear loading, the corresponding deflected 
state of the unstable equilibrium can be described 
by the St. Venants equation, see Timoshenko & 
Gere (1985), (given for the pure edge shear case), 
which is valid if  the lateral displacements are small 
with respect to t:

1  INTRODUCTION

1.1  General remarks

During the ship exploitation, an imposed verti-
cal shear loading is predominantly resisted by the 
vertically oriented parts of the hull girder struc-
ture (e.g. sides and longitudinal bulkheads). Pro-
nounced shear loading of the significant intensity 
can induce occurrence of the shear buckling and 
eventual shear collapse of the structural elements 
loaded in shear when acting shear load surpasses 
their ultimate shear load capacity. Possibility of 
incidence for such a hazardous event becomes even 
more significant if  relevant structural elements 
have been damaged previously (e.g. by collision) 
and consequently suffered a notable decrease in 
the load capacity with respect to the undamaged 
condition. In this context, consideration of the 
shear load capacity of the hull girder structural 
elements can represent a relevant aspect and an 
important structural adequacy criterion in analysis 
and design of the ship structures.

Occurrence of the shear buckling does not rep-
resent the ultimate limit state of the plating loaded 
in edge shear. Its ultimate limit state is eventually 
reached by a total depletion of the complete load 
capacity margin of the diagonal tension fields, see 
Bleich & Ramsey (1952), i.e. by the complete plas-
tification (yielding) of the plate material loaded in 
tension. Unfortunately, exact assessment of the 
(ultimate) shear load capacity of the hull girder 
plating necessitates detailed description of the still 
unresolved and very complex interaction of all rel-
evant parameters of influence. This disables com-
plete and accurate theoretical description of the 
shear collapse phenomena. Consequently, virtually 
all of the existing ultimate shear strength formu-
lations are of the semi-empirical nature and are 
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where τcr
P represents the plate elastic shear buckling 

stress, D denotes the plate flexural rigidity, while w 
denotes the out-of-plane or lateral (in direction of 
the z-axis) displacement. Although the exact solu-
tion of (1) is not known, an approximate solution 
can be derived using the stationary potential energy 
principle and a Ritz method (lateral displacements 
expressed in terms of the appropriate coordinate 
functions which satisfy considered boundary 
conditions):
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E and ν denote Young’s modulus of elasticity 
and Poisson’s ratio, respectively, while kP denotes 
the non-dimensional coefficient dependant only on 
L/B:
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Although formulation of kP given by (3) is widely 
accepted in the contemporary structural analysis 
and design practice, it actually represents the para-
bolic approximation of the more accurate values 
of kP calculated previously by various authors, see 
Bleich & Ramsey (1952).

1.3  Plate shear buckling capacity magnification

It should be noted that for a given plate mate-
rial, τcr

P depends solely on the plate geometrical 
characteristics L/B and t/B, according to (2). This 
suggests that τcr

P can be increased by two distinct 

approaches: by decrease in the L/B value and/or 
by increase in the t/B value. Decrease in the L/B 
value can be accomplished by subdivision of the 
plate onto smaller and equal parts by addition of 
the equidistantly placed transverse (parallel with 
the y-axis) stiffeners, whereby t/B ratio remains 
unchanged. On the other hand, increase in the t/B 
value can be accomplished by the increase of  the 
plate thickness and/or by subdivision of the plate 
onto smaller and equal parts by addition of the 
equidistantly placed longitudinal (parallel with 
x-axis) stiffeners. Yet, since the aspect ratio of the 
obtained plate subdivisions a/b (where a denotes 
length of the plating between stiffeners—parallel 
to the stiffener orientation, while b denotes breadth 
of the plating between stiffeners perpendicular to 
the stiffener orientation, see Figure  1) is thereby 
increased, it seems, at the first glance, that the pos-
itive effect of  this approach is somewhat attenu-
ated. Since various possible approaches to the 
plate elastic shear buckling capacity magnification 
are identified, it would be useful to determine the 
most effective one among them, i.e. to identify the 
most gainful approach which would enable maxi-
mum increase in critical shear stress.

In this respect, it is important to emphasize that 
the most gainful effects of the plate stiffening can 
be exploited only if  the critical value of the act-
ing shear load induces imminent occurrence of the 
local shear buckling (shear buckling of the plat-
ing between stiffeners), i.e. that occurrence of the 
global shear buckling (shear buckling of the whole 
stiffened plate) is successfully disabled. In another 
words, this will be accomplished only if  the plat-
ing between stiffeners can be considered as a set 
of an independent, simply supported plates loaded 
in edge shear. Ability to comply with this require-
ment depends on the flexural rigidity of stiffener(s) 
employed, which must be sufficient to enable suc-
cessful resistance of the stiffener(s) to the predomi-
nant vertical bending load imposed by the buckling 
half  waves during their spread along the stiffened 
plate.

Figure 1.  Elastic shear buckling of the simply supported (un)stiffened plate.
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Based on this paradigm, originally introduced 
by Timoshenko, see Bleich & Ramsey (1952), 
Figure  2 illustrates the obtained maximum rela-
tive increases in the critical shear stress attainable 
by the longitudinal and/or transverse (equidistant) 
stiffening of the plate for various L/B ratios and 
number of added stiffeners NS, where τcr

SP denotes 
elastic shear buckling stress of the stiffened plate. It 
is important to emphasize that the curves depicted 
by Figure 2 are valid for an arbitrary plate thick-
ness, i.e. t/B ratio.

Generally, it can be noted that the transverse 
stiffening represents better approach for the L/B < 1 
cases, while longitudinal stiffening is preferable for 
the L/B > 1 cases. Furthermore, it should be noted 
that inverse pairs of the L/B values (e.g. L/B =  2 
and L/B =  0.5) are characterized by the identical 
results. This is due to the inherent irrelevance of 
the acting edge shear load direction, which conse-
quently induces overall symmetry of the obtained 
results with respect to the L/B =  1 case, which is 
characterized by the lowest attainable relative 
critical shear stress increase. For this case identical 
results are obtained by longitudinal and transverse 
stiffening, since both of those approaches result 
in an identical stiffened plate layout. Hence, based 
on the above considerations, it can be generally 
concluded that the plate stiffening with stiffeners 
parallel to the longer side of the initial plate always 
represents a more gainful approach, irrespective 
whether L/B < 1 or L/B > 1.

1.4  Existing formulations of the stiffened plate 
elastic shear buckling capacity

The first formulation regarding the considered 
problem was proposed by Timoshenko, see Bleich & 
Ramsey (1952), for a stiffened plate having one or 

two transverse stiffeners. This pioneering theo-
retical work based on the energy approach was 
extended subsequently by many authors and a 
more extensive overviews of the research work 
regarding this problem can be found in Bleich & 
Ramsey (1952), Hughes (1988) and Alinia (2005). 
All of the existing formulations are based on the 
previously mentioned Timoshenko’s paradigm and 
it is interesting to note that virtually all of them 
are derived considering stiffening parallel to the 
shorter side of the initial plate only, although the 
discussion given in Section 1.3 clearly suggests that 
an alternative stiffening approach is much more 
effective.

2  Modeling of the considered 
problem

2.1  Design of numerical experiments

In order to validate the above given theoretical 
considerations, as well as to provide the basis for 
the  general formulation proposed in Section  4, 
close to three hundred rationally designed numerical 
experiments are performed employing the Finite 
Element Method (FEM) simulations for generation 
of the results for various (un)stiffened plate con-
figurations. All considered variants are character-
ized by the same (isotropic) material (E = 206 GPa; 
ν = 0.3) and B = 3200 mm. Furthermore, due to the 
previously mentioned symmetry of the considered 
problem, only variants characterized by L/B ≥  1 
are considered. All other geometrical properties 
fall within the (relatively wide) range determined 
to cover the characteristic dimensions of the ship 
hull girder’s flat single side plating between wing 
and bilge tanks of the existing and variously sized 
bulk carriers.

Unstiffened plates are analyzed in order to inves-
tigate the correspondence of the results obtained 
by utilization of (2) and by numerical simulations. 
For this purpose five different L/B values (1; 2; 3; 
6; 12) and five different t/B values (0.0025; 0.00375; 
0.005; 0.00625; 0.0075) are considered, resulting in 
a total of 25 numerical experiments.

Furthermore, in order to verify the theoretically 
obtained envelopes (see Figure 2) and their inde-
pendence of t, analyses of the plates stiffened by 
one, two or three longitudinal or transverse stiffen-
ers (of the infinite flexural rigidity) are performed 
for three different L/B values (1; 2; 3) and three dif-
ferent t/B values (0.0025; 0.005; 0.0075), resulting 
in a total of 54 numerical experiments.

Finally, in order to generate the experimen-
tal basis for the proposed formulation, analyses 
of the plates stiffened by longitudinal stiffeners 
(of the finite flexural rigidity) are performed. In 

Figure 2.  Maximum increase in the elastic shear buck-
ling capacity attainable by the plate stiffening.
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this respect, previously mentioned Timoshenko’s 
paradigm (which neglects torsional rigidity of stiff-
eners) enables arbitrary selection of the shape and 
scantlings of the employed stiffener profile, since 
only the stiffeners moment of inertia IS is relevant 
for its flexural rigidity. Among an infinite number 
of the possible stiffener profile variants character-
ized by the same particular IS, a flangeless (flatbar) 
stiffener profile is selected for the further consid-
eration. This choice is due to the irrelevance of the 
higher section modulus (offered by the flanged pro-
files) for the considered problem and since the flat-
bar stiffener offers the highest possible IS = twhw

3/12 
for the particular stiffener cross sectional area, 
or in another words, provides attainment of the 
particular flexural rigidity with the least amount 
of the stiffener material. Furthermore, since the 
results (τcr

SP/τcr
P) are suggestively independent of t, 

the same value (16 mm) is used for the stiffener web 
thickness tw and t of  all variants considered within 
this experimental batch and various stiffener flexu-
ral rigidities considered are attained only by vari-
ation of the stiffener web height hw. Thereby, 13 
different stiffener flexural rigidities are considered 
for each of the three different L/B values (1; 2; 3) 
and three different NS values (1, 2, 3), resulting in a 
total of 117 numerical experiments.

Throughout this paper, particular variant can 
be easily identified according to the assigned des-
ignation (e.g. AR1-T16-S1 L designates the plate 
with L/B = 1, t = tw = 16 mm and one longitudinal 
stiffener).

2.2  Numerical simulations

All executed numerical simulations are based on 
utilization of the FEM analysis of the discretized 
models of the considered (un)stiffened plate vari-
ants, whose bifurcation buckling load is deter-
mined by the eigenvalue analysis, as implemented 
within the employed FEMAP/NX Nastran (2010) 
computer program. Lanczos method is used for 
the eigenvalue extraction and the lowest (positive) 
eigenvalue is accepted as the quantitative repre-
sentative of the relevant buckling mode.

2.3  Discretized model

All considered models are discretized by the two-
dimensional, quadrilateral, isoparametric finite ele-
ments with four nodes (CQUAD4) and six degrees 
of freedom (DoFs) at each node.

The imposed edge shear load is applied by 
means of  the properly oriented nodal forces along 
the plate edges, as illustrated by Figure 1. Their 
magnitude is determined according to the expres-
sions given in Figure 1, where Fn

L and Fn
B denote 

the absolute values of  the nodal forces applied 

Table 1.  Applied constraints of nodal DoFs.

Node location Nodal DoFs:
(see Figure 1) Tx Ty Tz Rx Ry Rz

P1P2; P2P3; P3P4; P4P1; 1 1 0 1 1 0
P5 0 0 1 1 1 0
All other plate nodes 1 1 1 1 1 0

along the L and B edges, respectively. FL
corner and 

FB
corner denote the absolute values of  the compo-

nents (parallel to the L and B edges, respectively) 
of  the resultant nodal force applied at the plate 
corners (nodes coincident with the points P1, P2, 
P3 and P4), while AL and AB denote the cross sec-
tional areas of  the L and B edges, respectively. 
FL and FB denote the absolute values of  the total 
forces applied along the L and B edges, respec-
tively, while nL and nB denote the total number of 
nodes along the L and B edges, respectively. Indi-
cated expressions for Fn

L, Fn
B, FL

corner and FB
corner 

are derived in order to ensure the proper in-plane 
deformation of  the corner finite elements, i.e. to 
ensure that straightness of  the plate edges is fully 
retained in the deformed state. In this respect, it 
can be observed that Fn

L/FL
corner and/or Fn

B/FB
corner 

ratios should be equal to 4.
In order to properly simulate deformation of 

the simply supported (un)stiffened plate models, 
nodal DoF constraints are applied as described 
by Table  1, where 0 and 1 denote constrained 
and unconstrained nodal DoF, respectively. For 
the numerical simulations of  the simply sup-
ported plates reinforced by the stiffeners of  the 
infinite flexural rigidity, in addition to the con-
straints given by Table 1, vertical nodal displace-
ments are constrained (Tz = 0) for all nodes along 
the plate to stiffener joint (line segment P6P7 in 
Figure 1).

In order to rationally determine an appropri-
ate finite element mesh density for discretization 
of all considered FEM models, an extensive mesh 
convergence study is performed. For this purpose, 
two extreme values of L/B (1; 12) and t/B (0.0025; 
0.0075) are considered for both unstiffened and 
stiffened (by three stiffeners of the infinite flexural 
rigidity) plate variants, since the sensitivity of the 
results obtained for those cases should envelope 
the sensitivities characteristic for all other (un)stiff-
ened plate variants considered by the above given 
plan of numerical experiments. For each of those 
eight (un)stiffened plate variants, ten different 
mesh density variants are considered, with 12, 24, 
36, 48, 60, 72, 84, 96, 108 and 120 elements along 
the B edges. Corresponding number of elements 
along the L edges is unambiguously determined so 
as to keep the finite element aspect ratio equal to 
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1 for each mesh density variant. This results in a 
total of 80 additional numerical experiments con-
sidered within the framework of the mesh conver-
gence study.

The results of  the mesh convergence study are 
concisely given by Figure 3. It can be noted that 
the mesh density characterized by 96 elements 
along the B edges gives a considerable relative 
reduction (>35%) of  the total number of  DoFs 
NDoF, while always providing a very small rela-
tive difference (<0.15%) of  the obtained results 
(τcr), all with respect to the finest mesh density. 
Consequently, this mesh density is used for all 
subsequently performed numerical simulations.

3  RESULTS

Figure 4 illustrates the results obtained for the con-
sidered unstiffened plates. An excellent agreement 
of the results obtained by (2) and numerical simula-
tions can be observed. Although an approximated 
relationship between those results is proposed (see 
Fig. 4), only a negligible error is introduced by its 
disregard (τP

cr-FEA = τP
cr-ANALYTICAL).

The results of the numerical simulations obtained 
for plates stiffened by the infinitely rigid stiffeners 
are given in Figure 2. It should be observed that 
the results obtained for various t/B ratios are prac-
tically coincident. Furthermore, a very good agree-
ment with the proposed theoretical envelopes can 
be observed.

Superimposed display of all results obtained 
by the numerical simulations performed for all 
considered plate variants reinforced by stiffeners 
with various (finite) flexural rigidity is given in 
τcr

SP/τcr
P  -  ASP/AP space, represented by Figure  5, 

where ASP denotes the area of the transverse cross 
section of the longitudinally stiffened plate, while 
AP denotes the area of the transverse cross section 
of the initial (unstiffened) plate. A more detailed 
display of the same results is given in τcr

SP/τcr
P - IS/Ib 

space, represented by Figures 6–8, where Ib = bt3/12 
represents the moment of inertia of the plating 
between stiffeners. Figure 6 additionally indicates 
the results obtained by three existing formulations 
of the considered problem, applicable only for 
L/B = 1 cases among the considered ones. Figure 5 
also displays the results obtained by the plate thick-
ness increase approach in τcr

PE/τcr
P - APE/AP space, 

where τcr
PE denotes the elastic shear buckling stress 

of the plate characterized by the (increased) equiv-
alent thickness tE (see Fig. 5), while APE denotes the 
area of its transverse cross section.

4 e lastic shear load capacity of 
the longitudinally stiffened, 
simply supported, flat plates 
made of isotropic material

Results of the numerical simulations performed for 
nine considered plate variants reinforced by stiffen-
ers of various (finite) flexural rigidity are used for 
formulation of the approximate description (sur-
rogate model) of the considered problem. For this 
purpose a regression analysis based on utilization 
of the least squares method is performed, whereby 
coefficient of determination (R2) is used as a quan-
titative measure of the accomplished approxima-
tion quality.

The crucial choice regarding the appropriate 
form of the approximation function is based on 
the similar ‘S-shaped’ layout of the results obtained Figure 3.  Results of the mesh convergence study.
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Figure 5.  Results obtained for longitudinal stiffening and for increase of the plate thickness.

Figure 4.  Unstiffened plate results, obtained by FEM analyses and by utilization of (2).
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Figure  6.  Results for AR1-T16: a) S1 L ; b) S2 L ; 
c) S3 L.

Figure  7.  Results for AR2-T16: a) S1 L ; b) S2 L ; 
c) S3 L.
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for every considered stiffened plate variant, which 
can be observed in Figure 5. Although various sig-
moid functions were considered for approximation 
of the results in τcr

SP/τcr
P – ASP/AP space, the best 

approximate fit is accomplished by utilization of 
the adjusted cumulative distribution function of 
the Weibull distribution:

τ τcr
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C0, C1 and C2 represent the non-dimensional 
coefficients, whose specific values characterize 
every particular stiffened plate variant considered. 
C0 actually represents the highest τcr

SP/τcr
P value 

obtained (by numerical experiments) for each 
stiffened plate variant, while the corresponding 
values of  C1 and C2 are determined numerically, 
using a Levenberg-Marquardt algorithm within 
the framework of  the least squares method. Cal-
culated values of  the C0, C1, C2 and R2, along with 
the corresponding plots of  (4) in τcr

SP/τcr
P – IS/Ib 

space, are given in Figures 6–8 for each of  the nine 
considered stiffened plate variants, respectively.

In order to derive the general formulation valid 
for an arbitrary L/B ratio within the considered 
range (1 ≤ L/B ≤ 3), all values of  the C0, C1 and 
C2 determined for the nine considered stiffened 
plate variants are used. Considering the number 
of  the available results and their scatter (see 
Fig. 9), the second degree polynomial is selected 
as an adequate function for determination of  the 
exact fit:

Figure  8.  Results for AR3-T16: a) S1 L ; b) S2 L ; 
c) S3 L.

Figure  9.  Graphical display of C0, C1 and C2 
coefficients.
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where (κij)0, (κij)1 and (κij)2 represent the (non- 
dimensional) polynomial coefficients valid for the 
respective stiffened plate variant. Calculated values 
which determine curves illustrated by Figure 9, are 
given in Table 2.

It should be noted that the validity of the pro-
posed formulation is limited on stiffening parallel 
to the longer side of the plate, with NS = 1, 2, 3, 
while both 1 ≤ L/B ≤ 3 and 0.333 ≤ L/B ≤ 1 ranges 
are covered due to the previously mentioned sym-
metry of the considered problem (with respect 
to L/B = 1). However, within the 0.333 ≤ L/B < 1 
range, L and a should be interchanged with B and 
b, respectively.

5  CONCLUSIONS

Accuracy of  the commonly and widely accepted 
formulation of  the elastic shear buckling capac-
ity of  the unstiffened flat plates, given by (2), is 
verified by the results obtained by numerical 
simulations (see Fig.  4). Furthermore, proposed 
theoretical envelopes and their independence of 
t, derived using Timoshenko’s paradigm and (2), 
are also verified by the obtained results of  the 
numerical simulations (see Fig. 2). This confirms 
the proposition that longitudinal stiffening for 
L/B > 1 cases and transverse stiffening for L/B < 1 
cases, i.e. stiffening parallel to the longer side of  the 
plate, always represents a more effective approach 
to the considered problem than the stiffening par-
allel to the shorter side of  the plate (considered by 
all existing formulations). Moreover, comparison 
of  the results obtained for all considered plates 
reinforced by stiffeners of  various (finite) flexural 
rigidity (see Figs. 5–8), with respect to the results 
obtained for the plate thickness increase approach 
(see Fig.  5), suggests that the proposed stiffen-

Table 2.  Calculated values of (κij)0, (κij)1 and (κij)2 coefficients.

NS = 1 ( j = 1) NS = 2 ( j = 2) NS = 3 ( j = 3)

(κij)0 (κij)1 (κij)2 (κij)0 (κij)1 (κij)2 (κij)0 (κij)1 (κij)0

C0 (i = 0)   1.75756 0.66568 -0.04857 2.61768 1.35419 -0.06938 4.06229 1.93972 -0.07564
C1 (i = 1) -0.01043 0.03179 -0.00238 0.02913 0.03136 -0.00123 0.09979 0.02239 -0.00004
C2 (i = 2)   2.13970 0.08064 -0.01762 1.45656 0.09352   0.00381 0.63110 0.34641 -0.01347

ing approach always represents a more effective 
approach to the considered problem. Hence, it 
can be unconditionally concluded that the pro-
posed stiffening approach represents the most 
rational course for the elastic shear load capac-
ity magnification of  the simply supported plates. 
Furthermore, based on the results of  the ration-
ally designed and properly configured numerical 
simulations, an approximate formulation for this 
stiffening approach is proposed (valid for 0.333 ≤ 
L/B ≤ 3 and NS = 1, 2, 3). In this respect, a con-
siderably high accuracy level of  the proposed for-
mulation, as well as its convenient mathematical 
nature, can contribute to its recognition as an use-
ful additional tool in the process of  analysis and/
or design of  the ship structures.
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