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On the linear stiffness of tension leg platforms 
 

I. Senjanović, N. Hadžić, M. Tomić 
University of Zagreb, Zagreb, Croatia 
 
ABSTRACT: The tension leg platform (TLP) is a type of compliant offshore structures generally used for deep 
water oil exploration. The platforms are moored by very flexible tendons so that surge amplitude can achieve a 
large value. The platform hull is considered as a rigid body with six DOF. The total restoring stiffness plays a 
very important role in the TLP dynamic behavior. In present literature inadequate formulations of the stiffness 
have been used. The problem is to define realistic centre of rotations. The purpose of this paper is to present a 
consistent formulation of the stiffness matrix, derived from the general solution established for hydroelastic 
analysis of ship structures, as a specific case. In reality the total TLP stiffness in dynamic analysis consists of 
hydrostatic hull stiffness (pressure and gravity), and conventional and geometric tendon stiffness. The new 
stiffness is compared to the known ones, and discrepancies are analyzed and discussed.  
 

1 INTRODUCTION 

A tension leg platform (TLP) is a semi-submersible 
platform, moored by vertical pretensioned tendons or 
tethers (Baltrop 1998). The platform constitutive parts 
are pontoon, columns and deck with drilling 
equipment (Det norske Veritas 2005). Heave, roll and 
pitch have high natural frequencies due to high tendon 
axial stiffness. Surge, sway and yaw are compliant 
modes due to quite low tendon geometric stiffness. 
Vertical motions are excited by the first order wave 
forces, while horizontal motions appear due to the 
second order wave forces with very low frequency 
(Natvig & Teigen 1993). 
 Stiffness plays very important role in dynamic 
analysis of TLPs (Adrezin et al. 1996). Platform can 
be considered as a rigid body with tendons as massless 
quasi-static springs. The hydrodynamic coefficients 
can be determined by Morison’s equation or the 
radiation-diffraction theory, depending on the ratio of 
diameters of platform cylindrical segments and the 
wave length. 
 Since even linear stiffness is not formulated in the 
relevant literature in a consistent way, the new 
formulation is presented in Section 2, and its 
comparison with the known formulations is elaborated 
in Section 3. Additional comparison is done via 
numerical example, Section 4. 

2 LINEAR STIFFNESS 

2.1 Definition of total stiffness 

Let us consider a double symmetric TLP with N 
tendons, Figure 1. The origin of the coordinate system 
is located in the middle of the waterplane, and the 
motion components are shown in Figure 2. The 
platform is treated as a rigid body due to very high 
stiffness compared to that of tendons. The total 
stiffness consists of three parts: 

       C G

P
K K C K   ,           (1) 

where  CK is the conventional tendon stiffness,  C  

is the platform restoring stiffness with influence of 

tendons included, and  GK is the tendon geometric 

stiffness. 

2.2 Conventional stiffness 

The tendons are steel pipes with negligibly small 
bending stiffness. Heave changes the tension of 
tendons so that the stiffness is the relation between 
vertical force and displacement: 
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The tension of tendons is also changed by roll and the 
corresponding stiffness is found from the moment as 
function of the roll angle. Since  
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one gets: 
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Figure 1. Double symmetric TLP. 
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In the similar way, the pitch stiffness is: 
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where A, Ix, and Iy are the total cross-section area and 
moments of inertia about x and y axis of all tendons, 
respectively. Hence, set of tendons is considered as a 
beam with distinct fibers. 

2.3 Restoring stiffness 

Hydroelastic analysis of a deformable floating body is 
usually performed by the modal superposition method. 
The ordinary restoring stiffness consists of variation 

of hydrostatic pressure, variation of normal vector and 
natural mode and gravity part respectively, 
(Senjanović et al. 2009): 

o p nh m
ij ij ij ijC C C C   ,             (6) 

3 dp i j
ij k k
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C g Zh h n S  ,           (8) 
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V

C g h h S  ,            (9) 

where, according to the index notation, hk,l
i is the l-th 

derivative of the k-th component of the natural mode 
hi, S is the wetted surface, nk are components of its 
normal vector, V is the structure volume, while ρ and 
ρs are the water and structure density, respectively. 
 For the TLP platform only rigid body natural 
modes are of interest, and the general restoring 
stiffness is reduced to the formulas of ship 
hydrostatics for the floating and stability conditions, 
(SNAME 1988). In the case of double symmetric 
platform, the centroid of waterplane is located at the 
vertical line of the buoyancy and gravity centre and 
the restoring stiffness matrix is diagonal with the 
following heave, roll and pitch coefficients: 

0 0
33 WLC gA ,             (10) 

 0 0 0 0 0
44 WLX B GC g I V z z      ,       (11) 

 0 0 0 0 0
55 WLY B GC g I V z z      ,       (12) 

where, AWL
0, IWLX

0 and IWLY
0 are the waterplane area 

and its moments of inertia about x and y axis, 
respectively, V0 is the buoyancy volume while zB

0 and 
zG

0 are coordinates of buoyancy and gravity centre, 
respectively. 
 The buoyancy, U, is larger than the platform 
weight, Q, due to tendon pretension forces, Tn, which, 
only for this purpose, can be treated as virtual lumped 
weights, Figure 3: 
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The stiffness coefficients, Eqs. (10), (11) and (12) take 
the following form: 
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Figure 2. Motion components 
 
 
where all quantities are related to the increased 
platform immersion due to the tendon forces. 

2.4 Geometric stiffness 

TLP can be translated horizontally in x and y direction 
and rotated about vertical z axis. External forces are 
equilibrated with internal forces which depend on the 
tendon geometric stiffness. The stiffness can be 
determined by the general formulation of geometric 
stiffness written in the index notation (Huang & Riggs 
2000; Senjanović et al. 2010): 
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where kl  is the stress tensor. In the considered case 
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and the surge mode 
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is defined in domain -(L+d) ≤ z ≤ - d, Figure 4a. Thus, 
one finds hx,z

1=1/L and further 
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 The yaw mode of the n-th tendon, according to 
Figure 4b, is: 
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In this case, Eq. (16) gives 
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2.5 Total stiffness and mass matrix 

By summing up the terms of conventional, restoring 
and geometric stiffness, determined in previous 
sections, elements of the total stiffness matrix [K]P, 
Eq. (4), are obtained: 
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The total stiffness matrix is a diagonal one because the 
middle point of hull bottom is used as pole P, Figure 
4, for the platform rotations. As a result, there is no 
coupling between degrees of freedom through the 
stiffness. 
 On the other side, the mass matrix has some off-
diagonal elements since the following inertia forces 
(designated with i) depend on both displacements and 
rotations: 

 i
x x G T yF m m z z              (29) 

 i
y y G T xF m m z z              (30) 

 i P
x G T y x xM m z z J             (31) 

 i P
y G T x y yM m z z J             (32) 

where 
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x x G TJ J m z z             (33) 

 2P G
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are the mass moments of inertia. The mass matrix with 
respect to the pole P, reads: 
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Figure 3. Stiffness model of TLP 
 
 
where zGT = zG - zT. Due to the off-diagonal terms of 
matrix [M]P, the vibrations are coupled through the 
mass matrix. 
 If the center of gravity G is used as the reference 
point, the following relations between displacements 
exist: 
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               (36 a, b) 
Hence, the displacement transformation matrix reads: 
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Now, the stiffness and mass matrix can be adapted to 
the new coordinate system in the way well known in 
the finite element method, which is based on the fact 
that the total energy of a structure does not depend on 
the chosen coordinate system, (Zienkiewicz 1971): 
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Figure 4. Surge and sway of TLP 
 
 

Thus, one finds: 
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while the mass matrix becomes diagonal: 
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 In direct analysis of ship motion in seaway, it is 
assumed that vessel rotates about the centroid of the 
waterplane. If the same assumption is accepted for 
TLP, the stiffness and mass matrix can be transformed 
in the same manner and both have off-diagonal 
elements. 

3 COMPARISON OF THE KNOWN STIFFNESS 
MATRICES WITH THE NEW ONE 

3.1 Stiffness from Malenica, 2003 

The linear stiffness matrix is derived for the tendon 
top points and arbitrary origin of the coordinate 
system. 
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 In the case of a double symmetric platform xG
n=±a, 

yG
n=±b, zG

n=zTG, Figure 1, and all off-diagonal 
elements in the resulting matrix, Eq. (41), vanish. By 
taking into account the relations 
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one can write for diagonal elements 
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By comparing Eqs. (52) – (55) with Eqs. (25) – (28) 
some differences can be noticed. The 5th and 6th terms 
in Eqs. (53) and (54) are additional. 

3.2 Stiffness from Jain, 1997 

Nonlinear stiffness matrix presented in (Jain 1997) is 
ordinary used for dynamic analysis of TLP. It is 
specified with respect to the centre of gravity: 
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The linear part of Eq. (56) reads 
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where elements K11
L, K22

L, K33
L and K66

L are equal to 
Eqs. (25a, b) and (28), while the remaining elements 
are 
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By comparing Eqs. (58) and (59) with Eqs. (26) and 
(27) it is noticed that the coordinate of the gravity 
center zG is accompanied to the buoyancy U instead of 
its own zB. Since Eq. (57) is derived with respect to 
the gravity center it should have additional terms K15

L 
and K24

L like Eq. (39). 

3.3 Stiffness from Low, 2009 

Recently, a new formulation of nonlinear stiffness 
matrix, based on energy approach, is presented in 
(Low 2009). Its linear part reads 
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where 
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It is obvious that only the tendon contribution is taken 
into account, while the restoring stiffness is ignored. 

4 NUMERICAL EXAMPLE 

Outlined theory is illustrated by analyzing a TLP spar 
floater without the installed wind turbine (Withee 
2004). Hydrodynamic part of fluid loading (added 
mass, radiation damping, Froude-Krylov and 
diffraction loads) and the equations of motion (solved 
for the centre of gravity of the floater) are calculated 
using the Bureau Veritas HYDROSTAR software 
(Chen 2004). 
 
Table 1. Particulars of a TLP spar floater 
Spar diameter 4 m Water depth 200 m
Spar draft 10 m Mass 49002.3 kg
Thickness 25.3 mm Buoyant mass 149887.8 kg
Spoke length 5 m COG -6.698 m
Spoke width 1 m COB -5.687 m
Line diameter 50 mm Jxx 1140080.9 kg m^2
Number of lines 1 per spoke Jyy 1140080.9 kg m^2
Line length 190 m Jzz 451478 kg m^2  
 
The mean wetted surface of a TLP spar floater is 
discretized into 2272 panels. Two distinctive cases 
were analyzed, one using high modulus polyester 
tendons (HMPE, E=2.5 1010 N/m2) and the other using 
the usual steel tendons (STEEL, E=2.06 1011 N/m2). 
HMPE tendons are used in order to lower the stiffness 
and thus allow larger oscillation amplitudes. 
Frequency domain responses (1st order motion 
transfer functions) were calculated for a range of 
frequencies in 1m head waves (180 deg wave 
heading).  Please note that the ratio between the 
response amplitude and wave amplitude is called 
transfer function in this paper. 
 

 
Figure 5. Panel  model of TLP 
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Figure 6. TLP surge transfer function (HMPE tendons) 
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Figure 7. TLP heave transfer function (HMPE tendons) 
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Figure 8. TLP pitch transfer function (HMPE tendons) 
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Figure 9. TLP pitch transfer function (STEEL tendons) 
 
In Figure 6 one can see that there are almost no 
differences in the surge due to different stiffness 
formulations and obviously these is the most 
important mode for TLP’s. Low’s stiffness 
formulation results with slightly larger values for the 
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heave response, Figure 7, than the other ones that are 
again very close to each other. The largest differences 
are obtained for the rotational modes of motion as can 
be noted from the Figure 8. That particular case 
corresponds to HMPE tendons and the lower elasticity 
obviously will pronounce differences (as compared to 
steel tendons in Figure 9 were the different 
formulations give practically identical results). One 
should also note that the coupling between the modes 
of motion is influenced by the distance between the 
center of gravity and the center of buoyancy, so one 
would expect slightly larger differences between the 
stiffness formulations by Senjanovic and Malenica for 
the rotational modes, if the wind turbine itself was 
included in the model. 

5 CONCLUSION 

In this paper, the consistent linear stiffness for 
dynamic analysis of TLP’s is derived in a systematic 
and physically transparent way. It comprises platform 
restoring stiffness, tendon conventional stiffness and 
tendon geometric stiffness. The first two components 
are important for the vertical motions, while the third 
one is related to the horizontal motions. Comparison 
of the known stiffness matrices with the new one 
shows some differences of the former. Their influence 
on response will be analyzed in further investigation 
by numerical examples. In general there is a good 
agreement between different formulations, especially 
if steel tendons are used. Therefore, in analyzing 
TLP’s one should use formulation which appears to be 
physically consistent. 
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