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ABSTRACT: A new procedure for determining properties of thick plate finite elements, based on the modified Mindlin 
theory for moderately thick plate, is presented. Bending deflection is used as a potential function for the definition of 
total (bending and shear) deflection and angles of cross-section rotations. As a result of the introduced interdependence 
among displacements, the shear locking problem, present and solved in known finite element formulations, is avoided. 
Natural vibration analysis of rectangular plate, utilizing the proposed four-node quadrilateral finite element, shows 
higher accuracy than the sophisticated finite elements incorporated in some commercial software. In addition, the 
relation between thick and thin finite element properties is established, and compared with those in relevant literature. 
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INTRODUCTION 

In plate theory, two mathematical models are distinguished, the well-known Kirchhoff thin plate and the Mindlin thick plate 
theory. In the former, shear influence on deflection is small and is therefore ignored. This theory is very well developed and the 
achievements are presented in Szilard's fundamental book (Szilard, 2004). The dynamic behaviour of thick plate is quite a 
complex problem, due to shear influence and rotary inertia, and is still an interesting subject of investigation. The first works are 
those of Reissner and Mindlin (Reissner, 1945; Mindlin, 1951), in which it is assumed that the plate cross-section remains a 
plane but not normal to the plate middle surface. As a result, the Mindlin theory deals with a system of three differential equa-
tions of motion with plate deflection and two angles of rotation of cross-section as unknown variables. This system is the 
starting point for all later developed variants. In the meantime, a large number of articles have been published and a compre-
hensive survey of literature up to 1994 can be found in (Liew et al., 1995). 

Generally, there are two main approaches for solving the problem of thick plate natural vibrations, i.e. analytical methods 
for the solution of differential equations of motion, and numerical procedures based on the Rayleigh-Ritz energy method as well 
as the Finite Element Method (FEM). Different analytical methods are known depending on which functions are kept as funda-
mental ones in the reduction of the system of differential equations of motion. Some methods operate with three, two or even 
one function, for instance Wang (1994), Shimpi and Patel (2006) Endo and Kimura (2007) and Xing and Liu (2009), respect-
tively. The application of analytical methods is relatively simple for simply supported plates and plates with simply supported 
two opposite edges. A sophisticated closed-form solution is derived in Xing and Liu (2009) for plate vibration analysis with any 
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combination of simply supported and clamped edges. 
The Rayleigh-Ritz method is widely used for arbitrary boundary conditions as well as for elastically supported edges. 

Accuracy depends on the chosen set of orthogonal functions for the assumed natural modes. For that purpose two dimensional 
polynomials can be used Liew et al. (1993), or functions of static Timoshenko beam deflection Dawe and Roufaeil (1980), 
Cheung and Zhou (2000). Efficient solution is also achieved applying the assumed mode method with static Timoshenko beam 
functions to thick bare plate Kim et al. (2012) as well as for some more complex problems (Cho et al., 2013; 2014). 

The finite element method is a very powerful tool for the analysis of any problem (linear, nonlinear, static and dynamic) of 
engineering structures with a complicated configuration. Several finite elements for Mindlin plate have been developed and 
incorporated in commercial FEM software. They deal with three displacement fields, i.e. deflection and two rotations. Due to 
the impossibility to prescribe correct interdependence among deflection and rotations, the same order polynomials for the 
interpolation of all displacements are used. Consequently, so-called shear locking phenomenon arises since in transition from 
thick to thin plate, it is not possible to capture pure bending modes and zero shear strain constraints. There are a few procedures 
for solving shear locking problem in the FEM analysis, which are referred to in Falsone and Settineri (2012): reduced 
integration for shear terms (Zienkiewicz et al., 1971; Hughes et al., 1977), which is commonly used in commercial software; 
mixed formulation of hybrid finite elements (Lee and Wong, 1982; Auricchio and Taylor, 1995; Lovadina, 1998); Assumed 
Natural Strain (Hughes and Tezduyar, 1981; Bathe, 1996; Zienkiewicz and Taylor, 2000); and Discrete Shear Gap (DSG) 
(Bletzinger et al., 2000), and its combination with the mesh-free procedure (Liu et al., 2009; Nguyen-Xuan et al., 2010). Recently, 
a new shear locking free finite element formulation for static analysis of thick plate has been proposed in (Falsone and Settineri, 
2012) based on an extension of the well-known Kirchhoff thin plate theory. The so-called fictitious deflection is used as a basic 
function, by which the other kinematic and static quantities are determined. It is also necessary to mention the worthwhile 
formulation of the mixed FEM and the Differential Quadrature Method (DQM) for longitudinal and transverse plate direction, 
respectively (Eftekhari and Jafari, 2013). 

Motivated by the state of the art described above, in the present paper a new finite element formulation is proposed for thick 
plate vibration analysis. It is based on a new moderately thick plate theory presented in (Senjanović et al., 2013a; 2013b), where 
a system of governing differential equations of motion is reduced to one equation with bending deflection as an unknown func-
tion. It is actually a potential function by which total deflection and angles of rotations are determined, as well as bending and 
shear strains and sectional and inertia forces. This plate theory actually represents an extension of the modified Timoshenko beam 
theory (Senjanović and Fan, 1989; Senjanović and Grubišić, 1991; Senjanović et al., 2009; Senjanović and Vladimir, 2013). 
Due to strong interdependence among deflection and rotations, the shear locking phenomenon does not occur. Finite element 
stiffness and mass matrices are determined by employing an ordinary variational formulation (Zienkiewicz and Taylor, 2000). 

OUTLINE OF NEW PLATE THEORY 

Deformation of a thick rectangular plate is considered in the Cartesian coordinate system in Fig. 1. By following the idea 
from the modified Timoshenko beam theory, total deflection is decomposed into bending deflection and shear deflection 
(Senjanović et al., 2013a; 2013b) 

 

 
Fig. 1 Displacements of rectangular plate. 



326 Int. J. Nav. Archit. Ocean Eng. (2015) 7:324~345 

( ) ( ) ( ), , , , , ,b sw x y t w x y t w x y t= + .  (1) 

It is assumed that the angles of rotation of the plate cross-section are caused only by bending that is acceptable for the 
vibration of moderately thick plates in a lower frequency domain 

,b b
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Bending moments and twist moments are a function of plate curvatures and warping, respectively, i.e. 
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where 
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−
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is plate flexural rigidity, and h , E and ν  is plate thickness, Young's modulus of elasticity and Poisson's ratio, respectively. 

Shear strain is the summation of the angle of rotation of the plate generatrix and its cross-section, i.e. 

s
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Thus, the shear forces read 

,s s
x y

w w
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∂ ∂

= =
∂ ∂

     , (9) 

where S kGh= is shear rigidity and k is shear coefficient. 

Natural vibrations of plate is caused by inertia force and moments 
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2 2 2, ,b b
x y

w wwq m m J m J
t x t y t

∂ ∂∂
= = − = −

∂ ∂ ∂ ∂ ∂
          , (10) 

where m hρ=  is the plate mass per unit area, and 3 /12J I hρ ρ= =  is the mass moment of inertia of the cross-section per 
unit breadth. 

By considering the equilibrium of vertical forces and moments around the x and y axis, and applying the above relations, 
one obtains a single differential equation of motion as shown in (Senjanović et al., 2013a) 

( )
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where ( ) ( ) ( )2 2

2 2

. .
.Δ

x y
∂ ∂

= +
∂ ∂

 is the Laplace differential operator and q is the distributed excitation. Bending deflection bw  is  

actually a potential function since the remaining displacements sw , xy  and yy  are defined by its derivatives. Hence, the total 
deflection (1), according to (Senjanović et al., 2013a) reads 

2

2
b

b b
wJ Dw w Δw

S St
∂

= + −
∂

. (12) 

FORMULATION OF FINITE ELEMENT PROPERTIES 

A general finite element with n nodes and three d.o.f. per node, i.e. deflection and rotations around the x and y axis, is con-
sidered. The ordinary procedure for determining stiffness and the mass matrix in the case of a thin plate is used (Szilard, 2004). 
Bending deflection as a potential function is assumed in a polynomial form with a number of unknown coefficients which 
corresponds to the total number of d.o.f. N=3n 

{ }b b
w a P= , (13) 

where a  is a row vector with terms ia , i=0,1,...N-1, and 
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P P x y x xy y= = . (14) 

Total static deflection, according to (12), reads 
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Angles of rotation (2) yield 
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By taking coordinate values lx  and ly  for each node, l=1,2...n , into account in Eqs. (15) and (16), the relation between 
the nodal displacements and the unknown coefficients ai is obtained 

{ } [ ]{ }C aδ = , (17) 

where [C] includes xl and yl and 
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      . (18) 

Now, for the given nodal displacement vector { }δ , the corresponding coefficient vector { }a  can be determined from (17) 

{ } [ ] { }1a C δ−
= . (19) 

Substituting (19) into (13) yields 

{ }b b
w φ δ= , (20) 

where 

[ ] 1

b b
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=  (21) 

is the vector of the bending shape functions. 
In a similar way, shear deflection can be presented in the form 

{ }s s
w P a= , (22) 

where according to (15) 
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Substituting (19) into (22) yields 

{ }s s
w φ δ= , (24) 

where 

                                         [ ] 1
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=  (25) 
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is the vector of the shear shape functions. 
Total deflection according to (1) reads 

                                          { }w φ δ= , (26) 

where 

                                         
b s

φ φ φ= +  (27) 

is the vector of the total shape functions. 
 Columns of the inverted matrix [C] are vectors of coefficients ai obtained for the unit value of particular nodal 

displacements 
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Bending curvatures and warping are presented in the form 
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Substituting (20) with (21) into (30) yields 
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Now it is possible to determine the bending stiffness matrix by employing a general formulation from the finite element 
method based on the variational principle as shown in (Zienkiewicz and Taylor, 2000) 
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b b b b
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is the matrix of plate flexural rigidity. Furthermore, substituting (32) with (33) into (34) yields 
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According to (9) the shear strain vector reads 
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and by taking (24) with (25) into account, one obtains 
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Analogously to (34), the shear stiffness matrix is presented in the form 
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By taking (46) into account, (49) can be presented in the form 
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Hence, the complete stiffness matrix is 
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According to the general formulation of the mass matrix in the finite element method based on the variational principle 
(Zienkiewicz and Taylor, 2000), one can write 

                                      [ ] { } d
A

M m Aφ φ= ∫ , (54) 

where { }φ  is the vector of the total shape functions (27). Taking (21) and (25) into account yields 
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where 
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and { } { } { }b s
P P P= + , Eqs. (14) and (23). 

RELATIONSHIP BETWEEN THICK AND THIN FINITE ELEMENT PROPERTIES 

If the shape functions of thick and thin plate are determined by the same polynomial, it is interesting to find out the relation 
between their properties. For this purpose, let us decompose the coefficient matrix [C] into the bending matrix and shear 
contribution 

                                        [ ] [ ] [ ]b s
C C C= + , (57) 

where [ ]bC  includes all terms without shear stiffness S, while [ ]s
C  contains only terms with S. Eq. (57) can also be presented in 

the form 

                                       [ ] [ ] [ ]( )[ ]bC I E C= + , (58) 

where [I] is the identity matrix and 
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                                         [ ] [ ] [ ] 1
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Furthermore, substituting (58) into (36) and employing the inverse of the product, [ ][ ]( ) [ ] [ ]1 1 1A B B A
− − −
= , and the 

transpose of the product, [ ][ ]( ) [ ] [ ]T T TA B B A= , one arrives at 
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is the bending stiffness matrix of thin plate. 
In a similar way, the matrix of shear stiffness (48) can be presented in the form (60), and the complete stiffness matrix of 

thick plate reads 
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The mass matrix (55) can also be decomposed if the relation { } { } { }b s
P P P= +  is taken into account. Hence, one obtains 
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The matrix [ ]bM  is the bending mass matrix of thin plate, [ ]s
M  is the shear mass matrix of thick plate, and [ ]bs

M  and 

[ ]sb
M  are mass matrices of bending and shear coupling. 
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Distributed excitation is transmitted to the nodes by the shape functions 

                                        { } { } d
A

F q Aφ= ∫ . (68) 

Taking (21) and (25) into account yields 
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A
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Furthermore, by employing (58) and { } { } { }b s
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s sb
A

F C P q A−
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are the vector of the nodal forces due to bending and shear, respectively. 
 An observation on the relevant literature related to the above subject is given in Appendix. 

RECTANGULAR FINITE ELEMENT 

 The four-node rectangular finite element with nodal displacements is shown in Fig. 2. The dimensionless coordinates 
/x aξ =  and /y bη =  are introduced. The ordinary polynomial for the thin plate finite element is applied for bending (Holand 

and Bell, 1970). 
 

 
Fig. 2 Rectangular finite element. 
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                            2 2 3 2 2 3 3 31, , , , , , , , , , ,
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The shear polynomial according to (23) reads 
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{ }s
P  is for two order lower polynomial than { }b

P  which is important for the possible avoidance of shear locking. The total 

deflection, Eq. (15), is 
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By taking the coordinates lξ  and lη  defined in Fig. 2 into account, matrix [C] is obtained in the following form 

[ ]
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−
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 
 
 
 
 
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 
 
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 
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The stiffness and mass matrix can be determined directly by employing Eqs. (53) and (55), respectively, or in an indirect 
way by Eqs. (62) and (64). The decomposition of matrix [C] into [C]b and [C]s is very simple. The inversion of the matrices can 
be done analytically by a Computer Algebra System (CAS). For illustration, matrix [E] is obtained in the following form: 

[ ]

6 6 4 4 6 0 2 0 0 0 6 2 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 0 2 6 6 4 4 6 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 2 0 6 6 4 4 6 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 2 0 0 0 0 6 0 2 6 6 4 4
0 0 0 0 0 0

b a a b

a b a b

E
b b a a

b a b a

abbaaabb      
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− + −
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 
 
 
 
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 
 
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 
 
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 
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. (79) 

TRIANGULAR FINITE ELEMENT 

 The three-node triangular finite element in the Cartesian coordinate system with nodal displacements is shown in Fig. 3. 
The ordinary polynomial for triangular finite element of thin plate is used for bending 

 

 
Fig. 3 Triangular finite element. 

                          2 2 3 2 2 31, , , , , , , ,
b

P x y x xy y x x y xy y= + , (80) 

The shear polynomial is obtained according to (23) 

                              ( )0,0,0,2,0,2,6 ,2 ,6
s

DP x x y y
S

= − + . (81) 

The total deflection is 

                                     { } { }( )b s
w a P P= + , (82) 
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where 1 80, ,...,a a a= . Angles of rotation are determined according to (16), i.e. 

                              
{ }
{ }

2 2

2 2

0,1,0, 2 , ,0,3 , 2 ,0

0,0,1,0, , 2 ,0, 2 ,3 .

x

y

a x y x xy y

a x y x xy y

y

y

= − +

= − +
 (83) 

Matrix [C] in expression for nodal displacements, Eqs. (17) and (18), is obtained by taking nodal coordinates xl and yl, 
l=1,2,3, into account 

[ ]

( )

( )
( )

( )

2 2 3 2 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2
1 1 1 1 1 1

2 2
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2
2 2 2
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1 2 2 6 2 6

0 1 0 2 0 3 2

D D D D Dx y x x y y x x x y x y x y y y
S S S S S

x y x x y y

x y x x y y

D D D D Dx y x x y y x x x y x y x y y y
S S S S S

C x y x x

− − − + − + −

− − − − − +

− − − − + −

− − − + − + −

= − − − − −( )
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( )
( )

2
2 2 2

2 2
2 2 2 2 2 2
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3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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3 3 3 3 3 3

2 2
3 3 3 3 3 3

0

0 0 1 0 2 0 2 3

1 2 2 6 2 6

0 1 0 2 0 3 2 0

0 0 1 0 2 0 2 3

y y

x y x x y y

D D D D Dx y x x y y x x x y x y x y y y
S S S S S

x y x x y y

x y x x y y

 
 
 
 
 
 
 
 
 
 
 +
 
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 

− − − + − + − 
 
 − − − − − +
 
 − − − − + − 

. (84) 

 In order to determine bending stiffness matrix it is necessary to define matrix [H]b, Eq. (33). Hence, one finds 

                         [ ]
( )

0 0 0 2 0 0 6 2 0
0 0 0 0 0 1 0 2 6
0 0 0 0 2 0 0 4 0

b

x y
H x y

x y

 
 =  
 + 

. (85) 

Matrix [B], Eq. (37), in the bending stiffness matrix, Eq. (36), is given in the Cartesian coordinate system. In order to make 
integration over the element area possible, triangular coordinates ξ and η are introduced. According to Fig. 4 one can write 

 

 
Fig. 4 Triangular coordinates. 
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                                      1 21 32

1 21 32 ,
x x x x
y y y y

xx η
xx η

= + +

= + +
 (86) 

where ij i jx x x= −  and ij i jy y y= − . Furthermore, differential area of triangular element reads 

                                           d d d ,A J ξ η=  (87) 

where 

                                       2

x x

J A
y y
x η

x

x η

∂ ∂
∂ ∂

= =
∂ ∂
∂ ∂

 (88) 

is Jacobian and ( )21 31 31 21
1
2

A x y x y= −  is element area. Finally, one can write for matrix [B], Eq. (37) 

                             [ ] ( ) [ ] ( )
1 1

0 0

2 , , d d .
T

bb b
B A H D Hξ η ξ η ξ η   =    ∫ ∫  (89) 

 In a similar way matrix [H]s, Eq. (46), in the shear stiffness matrix, Eqs. (48) and (49), takes the following constant form 

                              [ ] 0 0 0 0 0 0 6 2 0
0 0 0 0 0 0 0 2 6s

DH
S
 

= −  
 

 (90) 

Hence, one finds for matrix [S], Eq. (49), after integration 

                                [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

2 0 0
,

0
T

s s

DS AS H H
sS

  = =   
    

 (91) 

where 

                                      [ ]
36 12 0
12 8 12 .
0 12 36

s
 
 =  
  

 (92) 

Mass matrix [M] is defined by Eqs. (55) and (56), where by employing triangular coordinates 

                                [ ] ( ){ } ( )
1 1

0
0 0

2 , , d d .I A P Pξ η ξ η ξ ξ η= ∫ ∫  (93) 

and ( ){ } ( ){ } ( ){ }, , ,
b s

P P Pξ η ξ η ξ η= + . 

It is necessary to mention that application of the triangular coordinates in case that two element boundaries are parallel to the 
coordinate axes leads to singularity of element properties. Therefore, application of the area coordinates is preferable in general 
case (Zienkiewicz, 1971). 
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NUMERICAL EXAMPLES 

Reliability of the developed finite element formulation and four noded rectangular element is analysed by three numerical 
examples of natural vibrations: simply supported square plate (SSSS), rectangular plate clamped on transverse edges and simply 
supported on longitudinal edges (CSCS), and rectangular plate for combined clamped, free, and simply supported boundary 
conditions (CFSS). All plates are modelled with 8×8=64 finite elements. Necessary data and nondimensional frequency para-
meters are listed in the title of Tables 1, 2 and 3. Thin and thick plates are considered and Present Solutions (PS) are compared 
with available ones determined analytically, Tables 1 and 2, and by Rayleigh-Ritz method, Table 3. Also, results obtained by 
NASTRAN (MSC, 2010) are included in the tables. In the most cases very high accuracy is achieved, somewhere better than 
that of NASTRAN results. PS and NASTRAN values for thick plates bound rigorous frequency parameters. The first four 
natural nodes for case CFSS generated by NASTRAN are shown in Fig. 5 for illustration. 

 

Table 1 Frequency parameter 2 /a h Dµ ω ρ=  of square plate, case SSSS, k=0.86667. 

h/a Method 1/11/* 2/12/ 3/21/ 4/22/ 5/13/ 6/31/ 7/23/ 8/32/ 

0.001 Hashemi and Arsanjani (2005) 19.739 49.348 49.348 78.956 98.694 98.693 128.302 128.302 

  Senjanović et al. (2013a) 19.739 49.348 49.348 78.956 98.694 98.694 128.302 128.302 

 FEM – PS 19.592 48.744 48.744 76.603 98.487 98.487 123.374 123.374 

 FEM – NASTRAN 19.377 48.115 48.115 74.420 96.381 96.381 119.255 119.255 

0.1 Hashemi and Arsanjani* (2005) 19.084 45.585 45.585 70.022 85.365 85.365 107.178 107.178 

 Senjanović et al. (2013a) 19.084 45.585 45.585 70.022 85.365 85.365 107.177 107.177 

 FEM – PS 19.082 45.924 45.924 70.134 87.655 87.655 108.510 108.510 

 FEM – NASTRAN 18.274 44.047 44.047 64.502 83.076 83.132 97.0710 97.071 

0.2 Hashemi and Arsanjani (2005) 17.506 38.385 38.385 55.586 65.719 65.719 79.476 79.476 

 Senjanović et al. (2013a) 17.506 38.385 38.385 55.586 65.719 65.719 79.476 79.476 

 FEM - PS 17.795 39.718 39.718 57.512 69.795 69.795 83.561 83.561 

 FEM - NASTRAN 16.604 37.414 37.414 51.803 63.932 64.062 72.406 72.406 

*/m,n/ - mode identification number, m and n number of half waves in x and y direction. 
 

Table 2 Frequency parameter ( )2 2/ /b h Dλ ω π ρ=  of rectangular plate, case CSCS, / 0.5a b = , k=0.86667. 

h/b Method 1 2 3 4 5 6 7 8 

0.01 Xing & Liu (2009) 9.622 11.691 15.777 22.076 25.573 27.891 30.545 31.969 

 Senjanović et al. (2013a) 9.622 11.691 15.777 22.076 25.573 27.891 30.545 31.969 

 FEM - PS 9.507 11.287 15.060 21.146 25.292 26.739 29.593 29.648 

 FEM - NASTRAN 9.455 11.053 14.538 20.373 25.168 26.323 28.582 28.689 

0.1 Xing & Liu (2009) 7.589 9.034 11.948 16.193 16.854 18.117 20.389 21.199 

 Senjanović et al. (2013a) 7.589 9.034 11.948 16.139 16.854 18.117 20.389 21.199 

 FEM - PS 7.626 9.014 12.044 16.734 17.341 18.390 20.540 22.883 

 FEM - NASTRAN 7.541 8.723 11.269 14.920 16.765 17.313 18.418 18.929 

0.2 Xing & Liu (2009) 5.202 6.223 8.261 10.350 10.898 11.209 12.706 13.809 

  Senjanović et al. (2013a) 5.202 6.223 8.261 10.350 10.898 11.209 12.706 13.809 

 FEM - PS 5.327 6.457 8.711 10.936 11.807 11.836 13.378 15.618 

 FEM - NASTRAN 5.250 6.202 7.970 10.056 10.402 10.851 11.614 11.994 
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Table 3 Frequency parameter ( )2 2/ /b h Dλ ω π ρ=  of rectangular plate, case CFSS, / 0.4a b = , k=5/6. 

h/b Method 1 2 3 4 5 6 7 8 

0.001 Liew et al. (1993) 9.874 11.346 14.900 19.539 26.624 31.698 33.397 35.788 

 FEM - PS 9.896 11.172 14.017 18.746 25.554 31.711 32.663 34.556 

 FEM - NASTRAN 9.823 10.945 13.363 17.404 23.574 31.402 32.257 32.623 

0.1 Liew et al. (1993) 7.941 8.970 11.135 14.462 18.761 20.459 21.357 23.112 

 FEM - PS 8.099 8.965 11.001 14.476 19.419 21.383 21.931 23.242 

 FEM - NASTRAN 7.985 8.635 10.196 12.825 16.215 19.771 20.457 20.887 

0.2 Liew et al. (1993) 5.594 6.305 7.752 9.828 12.294 12.679 13.236 14.289 

 FEM - PS 5.765 6.386 7.885 10.325 13.418 13.541 13.830 14.757 

 FEM - NASTRAN 5.669 6.126 7.277 8.993 10.839 12.470 12.790 12.945 

 

 
Fig. 5 The first four natural modes of rectangular plate, case CFSS (NASTRAN). 

 

 
Fig. 6 The first four natural modes of triangular plate with simply supported corner nodes, (NASTRAN). 

 
In addition, the natural vibration of equilateral triangular plate (like tension leg platform), using the developed general train-

gular finite element is analysed. The plate is modelled with 25 finite elements and it is simply supported at corner nodes. Dimen-
sionless frequency parameters obtained by the proposed procedure are given in Table 4, together with NASTRAN solutions, 
where good agreement can be noticed. For illustration, the first four natural modes obtained by NASTRAN are shown in Fig. 6. 

The convergence of the proposed finite element formulation is demonstrated in the case of a simply supported square plate. 
Natural frequencies are determined by the finite element model for three mesh densities, i.e. 6×6=36, 8×8=64 and 10x10=100 
elements, and three values of a thickness ratio h/a: 0.001, 0.1 and 0.2. The obtained frequency parameters are listed in Table 5 
and compared with the exact analytical solution as well as with the NASTRAN and Abaqus (Dassault Systémes, 2008) results. 
In order to have better insight into the convergence, frequency parameter for the 1st, 4th and 7th modes are shown in Fig. 7. For 
thin plate (h/a=0.001), the present solution converges to the exact value, faster than the NASTRAN and Abaqus results, which 
converge from the opposite sides. PS values for moderately thick plate (h/a=0.1) are very close to the exact values for all three 
mesh densities, while the NASTRAN and Abacus results converge to a lower value than the exact solution. The discrepancy is 
reduced for higher modes. In the case of thick plate (h/a=0.2), the variation of the PS values, which are somewhat higher than 
the exact solution, is rather small. The NASTRAN and Abaqus results show the same tendency as in the previous case. 
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Table 4 Frequency parameter 2 /a h Dµ ω ρ= of equilateral triangular plate with simply supported corner nodes, k=5/6. 

h/a Method 1 2 3 4 5 6 
0.01 FEM - PS 8.691 18.840 18.848 47.014 47.112 64.268 

 FEM - NASTRAN 8.542 18.226 18.227 46.990 46.993 63.360 
0.1 FEM - PS 8.340 17.821 17.824 43.999 44.002 46.014 

 FEM - NASTRAN 8.284 17.609 17.610 43.620 43.624 45.626 

 

Table 5 Convergence of frequency parameter 2 /a h Dµ ω ρ=  of square plate, case SSSS, k=5/6. 

h/a METHOD 1/11/* 2/12/ 3/21/ 4/22/ 5/13/ 6/31/ 7/23/ 8/32/ 

0.001 Senjanović et al. (2013a) 19.739 49.348 49.348 78.956 98.694 98.694 128.302 128.302 

 PS (6×6) 19.459 48.326 48.326 75.103 96.867 96.867 120.658 120.658 

 PS (8×8) 19.592 48.744 48.744 76.603 98.487 98.487 123.374 123.374 

 PS (10×10) 19.629 48.944 48.944 77.384 97.859 97.859 124.933 124.933 

 NASTRAN (6×6) 19.150 47.343 47.343 71.762 95.014 95.084 115.491 115.491 

 NASTRAN (8×8) 19.377 48.115 48.115 74.420 96.381 96.381 119.255 119.255 

 NASTRAN (10×10) 19.488 48.497 48.497 75.803 97.063 97.063 122.044 122.044 

 Abaqus (6×6) 20.205 54.743 54.743 86.623 132.223 132.223 158.355 158.355 

 Abaqus (8×8) 20.000 52.251 52.251 83.203 115.389 115.389 143.839 143.839 

 Abaqus (10×10) 19.906 51.169 51.169 81.652 124.895 124.895 137.892 137.892 

0.1 Senjanović et al. (2013a) 19.065 45.483 45.483 69.794 85.038 85.038 106.684 106.684 

 PS (6×6) 18.959 45.581 45.581 69.055 87.636 87.636 107.334 107.334 

 PS (8×8) 19.063 45.821 45.821 69.908 87.320 87.320 108.019 108.019 

 PS (10×10) 19.117 45.949 45.949 70.374 87.230 87.230 108.520 108.520 

 NASTRAN (6×6) 18.022 42.985 42.985 60.972 80.069 80.090 89.787 89.787 

 NASTRAN (8×8) 18.243 43.927 43.927 64.251 82.692 82.750 96.541 96.541 

 NASTRAN (10×10) 18.339 44.380 44.380 65.918 83.926 84.008 100.115 100.115 

 Abaqus (6×6) 18.906 49.078 49.078 73.469 106.435 106.605 122.766 122.766 

 Abaqus (8×8) 18.663 46.971 46.971 70.836 95.661 95.831 114.072 114.072 

 Abaqus (10×10) 18.544 46.037 46.037 69.609 91.190 91.354 110.279 110.279 

0.2 Senjanović et al. (2013a) 17.449 38.152 38.152 55.150 65.145 65.145 78.697 78.697 

 PS (6×6) 17.662 39.476 39.476 56.997 70.314 70.314 83.630 83.630 

 PS (8×8) 17.733 39.454 39.454 57.016 69.123 69.123 82.667 82.667 

 PS (10×10) 17.767 39.451 39.451 57.081 68.584 68.584 82.280 82.280 

 NASTRAN (6×6) 16.348 36.264 36.264 48.588 60.567 60.641 65.908 65.908 

 NASTRAN (8×8) 16.535 37.148 37.148 51.336 63.253 63.383 71.578 71.578 

 NASTRAN (10×10) 16.617 37.562 37.562 52.679 64.503 64.667 74.427 74.427 

 Abaqus (6×6) 16.796 40.014 40.014 56.260 76.247 76.591 85.787 85.787 

 Abaqus (8×8) 16.610 38.620 38.620 54.749 70.632 70.966 81.596 81.596 

 Abaqus (10×10) 16.523 37.997 37.997 54.046 68.169 68.493 79.675 79.675 

*/m,n/ - mode identification number, m and n number of half waves in x and y direction. 
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(a) h/a=0.001. 

 

 
(b) h/a=0.1. 

 

 
(c) h/a=0.2. 

Fig. 7 Convergence of frequency parameter 2 /a h Dµ ω ρ=  of simply supported square plate, k=5/6. 

CONCLUSION 

 Thick plate appears as a structural element in many engineering structures. In this paper, an outline of the modified 
Mindlin theory for moderately thick plate is presented. Instead of three variables, i.e. deflection and two rotations of cross-sec-
tions, the problem is reduced to only one, where bending deflection is used as a potential function for determining the remaining 
displacements, strains and sectional forces. A new formulation of thick plate finite elements based on this theory is proposed 
following the standard FEM procedure, thus ensuring variational consistency. The well-known shear locking problem, which 
accompanies the Mindlin theory, is overcome as a result of the strong interdependence among deflection and rotations which 
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reduce the order of the shear polynomial compared to the bending polynomial. The consistent relationship between thick and 
thin finite element properties is derived, so that the stiffness and mass matrix for the thick element can be determined directly or 
indirectly. Based on a systematic analysis of this subject, some shortcomings of a known similar relationship are noticed and 
discussed. The vibration analysis of a thick rectangular plate by a simple quadrilateral finite element and coarse mesh shows a 
higher level of accuracy than sophisticated finite elements incorporated in some commercial software packages. Developed 
triangular finite element applied for vibration analysis of the triangular plate, also gives good results. Avoidance of the shear 
locking problem, fast convergence and high accuracy are the advantages of the proposed finite element formulation for vibra-
tion analysis of moderately thick plates. 

 Shear locking is not a natural phenomenon. It is introduced by the inconsistent mathematical modelling of a physical task, 
resulting in a numerical problem. With finite elements based on the original Mindlin thick plate theory, it is not possible to ensure 
smooth transition from thick to thin plate, since the shear stiffness, which is dominant for higher modes, also remains dominant 
for lower modes, which is not realistic. Any attempt to eliminate shear locking results in complicated finite element properties 
and a decrease in accuracy. However, such elements can usually capture so-called missing modes in the higher frequency domain, 
which represent the coupling of ordinary bending-shear modes with in-plane shear modes (Lim et al., 2005). In contrast, the 
modified Mindlin theory is related to moderately thick plate and due to the strong interdependence among the deflection and 
rotations the shear locking problem in finite elements does not occur. Finite elements derived according to these two theories 
actually cover two regions of the problem, i.e. one from thin to moderately thick plates, and the other from moderately to fully 
thick plates, which partly overlap. Higher accuracy is obtained in the former types of finite elements than in the latter if modera-
tely thick plate is an issue. Based on the above, it is not efficient to derive unique finite elements for solving shear locking and 
capturing high in-plane modes which are usually not of practical interest. Now, the proposed procedure for the formulation of 
shear locking-free finite elements may be used for the development of sophisticated thick plate elements with different shapes 
and a higher number of nodes. 
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APPENDIX – Consideration of the known relationship between thick and thin plate finite element properties 

Stiffness matrix of thick plate finite element is derived in (Falsone and Settineri, 2012) by employing the simplified thick 
plate theory similar to that presented in (Senjanović et al., 2013a). So-called fictitious deflection as single variable is used, 
which corresponds to the bending deflection applied in the present paper. Stiffness matrix of thick plate finite element is 
obtained based on the known stiffness matrix of thin plate element. The following relation between those two matrices, written 
in the present notation, is found: 

                                     [ ] [ ] [ ] [ ]( ) 10

b
K K I E

−
= +

. (A1) 

By comparing Eq. (A1) with (62) it is obvious that transformation matrix [ ] [ ]( ) 1TI E
−

+  on the left side of (62) is not  

present in (A1). Reason is that shear influence on external nodal forces (70) is ignored in (Falsone and Settineri, 2012), and 
condition of equivalence of internal nodal forces for thick and thin finite element is used instead of balance of their strain 
energies. As a result stiffness matrix (A1) is not consistent and consequently it is not symmetric. Relation between equilibrium 
equations of thick and thin finite element should be of similar form like transformation of element equation from local to global 
coordinate system (Zienkiewicz and Taylor, 2000). Furthermore, explicitly specified matrix [ ]0bS  in (62) is missing in (A1), 
and the obtained stiffness matrix is not complete. Since this matrix is relevant for shear locking, it is not possible to consider that 
problem a priori. 

Finite element approach to thick plate theory presented in (Falsone and Settineri, 2012) is actually an extension of the 
previously worked out simplification of the Timoshenko beam theory. Hence, the shortcomings of relation between thick and 
thin plate finite element properties are also related to the beam elements (Falsone and Settineri, 2011). 
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