-

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by FAMENA Repository
I [
N T~ E

Int. J. Nav. Archit. Ocean Eng. (2015) 7:324~345
http://dx.doi.org/10.1515/ijnaoe-2015-0023
pISSN: 2092-6782, eISSN: 2092-6790

A new finite element formulation for
vibration analysis of thick plates

Ivo Senjanovi¢', Nikola Vladimir* and Dae Seung Cho?

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia
Pusan National University, Dept. of Naval Architecture and Ocean Engineering, Busan, Korea

ABSTRACT: A new procedure for determining properties of thick plate finite elements, based on the modified Mindlin
theory for moderately thick plate, is presented. Bending deflection is used as a potential function for the definition of
total (bending and shear) deflection and angles of cross-section rotations. As a result of the introduced interdependence
among displacements, the shear locking problem, present and solved in known finite element formulations, is avoided.
Natural vibration analysis of rectangular plate, utilizing the proposed four-node quadrilateral finite element, shows
higher accuracy than the sophisticated finite elements incorporated in some commercial software. In addition, the
relation between thick and thin finite element properties is established, and compared with those in relevant literature.
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INTRODUCTION

In plate theory, two mathematical models are distinguished, the well-known Kirchhoff thin plate and the Mindlin thick plate
theory. In the former, shear influence on deflection is small and is therefore ignored. This theory is very well developed and the
achievements are presented in Szilard's fundamental book (Szilard, 2004). The dynamic behaviour of thick plate is quite a
complex problem, due to shear influence and rotary inertia, and is still an interesting subject of investigation. The first works are
those of Reissner and Mindlin (Reissner, 1945; Mindlin, 1951), in which it is assumed that the plate cross-section remains a
plane but not normal to the plate middle surface. As a result, the Mindlin theory deals with a system of three differential equa-
tions of motion with plate deflection and two angles of rotation of cross-section as unknown variables. This system is the
starting point for all later developed variants. In the meantime, a large number of articles have been published and a compre-
hensive survey of literature up to 1994 can be found in (Liew et al., 1995).

Generally, there are two main approaches for solving the problem of thick plate natural vibrations, i.e. analytical methods
for the solution of differential equations of motion, and numerical procedures based on the Rayleigh-Ritz energy method as well
as the Finite Element Method (FEM). Different analytical methods are known depending on which functions are kept as funda-
mental ones in the reduction of the system of differential equations of motion. Some methods operate with three, two or even
one function, for instance Wang (1994), Shimpi and Patel (2006) Endo and Kimura (2007) and Xing and Liu (2009), respect-
tively. The application of analytical methods is relatively simple for simply supported plates and plates with simply supported
two opposite edges. A sophisticated closed-form solution is derived in Xing and Liu (2009) for plate vibration analysis with any
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combination of simply supported and clamped edges.

The Rayleigh-Ritz method is widely used for arbitrary boundary conditions as well as for elastically supported edges.
Accuracy depends on the chosen set of orthogonal functions for the assumed natural modes. For that purpose two dimensional
polynomials can be used Liew et al. (1993), or functions of static Timoshenko beam deflection Dawe and Roufaeil (1980),
Cheung and Zhou (2000). Efficient solution is also achieved applying the assumed mode method with static Timoshenko beam
functions to thick bare plate Kim et al. (2012) as well as for some more complex problems (Cho et al., 2013; 2014).

The finite element method is a very powerful tool for the analysis of any problem (linear, nonlinear, static and dynamic) of
engineering structures with a complicated configuration. Several finite elements for Mindlin plate have been developed and
incorporated in commercial FEM software. They deal with three displacement fields, i.e. deflection and two rotations. Due to
the impossibility to prescribe correct interdependence among deflection and rotations, the same order polynomials for the
interpolation of all displacements are used. Consequently, so-called shear locking phenomenon arises since in transition from
thick to thin plate, it is not possible to capture pure bending modes and zero shear strain constraints. There are a few procedures
for solving shear locking problem in the FEM analysis, which are referred to in Falsone and Settineri (2012): reduced
integration for shear terms (Zienkiewicz et al., 1971; Hughes et al., 1977), which is commonly used in commercial software;
mixed formulation of hybrid finite elements (Lee and Wong, 1982; Auricchio and Taylor, 1995; Lovadina, 1998); Assumed
Natural Strain (Hughes and Tezduyar, 1981; Bathe, 1996; Zienkiewicz and Taylor, 2000); and Discrete Shear Gap (DSG)
(Bletzinger et al., 2000), and its combination with the mesh-free procedure (Liu et al., 2009; Nguyen-Xuan et al., 2010). Recently,
a new shear locking free finite element formulation for static analysis of thick plate has been proposed in (Falsone and Settineri,
2012) based on an extension of the well-known Kirchhoff thin plate theory. The so-called fictitious deflection is used as a basic
function, by which the other kinematic and static quantities are determined. It is also necessary to mention the worthwhile
formulation of the mixed FEM and the Differential Quadrature Method (DQM) for longitudinal and transverse plate direction,
respectively (Eftekhari and Jafari, 2013).

Motivated by the state of the art described above, in the present paper a new finite element formulation is proposed for thick
plate vibration analysis. It is based on a new moderately thick plate theory presented in (Senjanovi¢ et al., 2013a; 2013b), where
a system of governing differential equations of motion is reduced to one equation with bending deflection as an unknown func-
tion. It is actually a potential function by which total deflection and angles of rotations are determined, as well as bending and
shear strains and sectional and inertia forces. This plate theory actually represents an extension of the modified Timoshenko beam
theory (Senjanovi¢ and Fan, 1989; Senjanovi¢ and Grubisi¢, 1991; Senjanovi¢ et al., 2009; Senjanovi¢ and Vladimir, 2013).
Due to strong interdependence among deflection and rotations, the shear locking phenomenon does not occur. Finite element
stiffness and mass matrices are determined by employing an ordinary variational formulation (Zienkiewicz and Taylor, 2000).

OUTLINE OF NEW PLATE THEORY

Deformation of a thick rectangular plate is considered in the Cartesian coordinate system in Fig. 1. By following the idea
from the modified Timoshenko beam theory, total deflection is decomposed into bending deflection and shear deflection
(Senjanovic et al., 2013a; 2013b)

Fig. 1 Displacements of rectangular plate.
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w(X,y,t) =w, (X, y,t)+w, (X y,t). (1)

It is assumed that the angles of rotation of the plate cross-section are caused only by bending that is acceptable for the
vibration of moderately thick plates in a lower frequency domain

oW, ow,
= =——", 2
7 Y v, Y 2

Bending moments and twist moments are a function of plate curvatures and warping, respectively, i.e.

2 2
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is plate flexural rigidity, and h,Eand v is plate thickness, Young's modulus of elasticity and Poisson's ratio, respectively.

Shear strain is the summation of the angle of rotation of the plate generatrix and its cross-section, i.e.

oW oW,
=—+4 = S s 7
K=o YT (7
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Thus, the shear forces read
ow, oW,

=S—= =S—= 9
Q, ax Q, Y )

where S =kGh is shear rigidity and k is shear coefficient.

Natural vibrations of plate is caused by inertia force and moments



Int. J. Nav. Archit. Ocean Eng. (2015) 7:324~345 327
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where m = ph is the plate mass per unit area, and J = pl = ph® /12 is the mass moment of inertia of the cross-section per
unit breadth.

By considering the equilibrium of vertical forces and moments around the x and y axis, and applying the above relations,
one obtains a single differential equation of motion as shown in (Senjanovi¢ et al., 2013a)

mD & 2 J o%w,
DAAWb—J(1+EJ¥AWb+m—[Wb+E atzbj:q(x, y.t), (11)

2 2
where A(.):aa_(z')Jra_(z') is the Laplace differential operator and g is the distributed excitation. Bending deflection W, is
X

actually a potential function since the remaining displacements w,, , and ., are defined by its derivatives. Hence, the total
deflection (1), according to (Senjanovic et al., 2013a) reads

Jo’w, D
hal — = Aw, . 12
S o> s°° (12)

w=Ww, +

FORMULATION OF FINITE ELEMENT PROPERTIES

A general finite element with n nodes and three d.o.f. per node, i.e. deflection and rotations around the x and y axis, is con-
sidered. The ordinary procedure for determining stiffness and the mass matrix in the case of a thin plate is used (Szilard, 2004).
Bending deflection as a potential function is assumed in a polynomial form with a number of unknown coefficients which
corresponds to the total number of d.o.f. N=3n

w, =(a){P}, (13)

where (a) isarow vector with terms a, ,i=0,1,...N-1, and

(Pl =(P), =(Lxy. X %y, y"...). w

Total static deflection, according to (12), reads

W=<a>[{P}b _DZIP), —%az{P}b J (15)

Angles of rotation (2) yield

b (16)
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By taking coordinate values x, and vy, for each node, 1=1,2...n , into account in Egs. (15) and (16), the relation between
the nodal displacements and the unknown coefficients a; is obtained

{o}=[Clia}. (17)
where [C] includes x, and y; and
{o}, w
{6}=1 ¢ ¢ {6}, =1a¢- (18)
{5}n ¥

Now, for the given nodal displacement vector {5} , the corresponding coefficient vector {a} can be determined from (17)

{aj=[c] " {s}. (19)
Substituting (19) into (13) yields
w, =(¢), {o}, (20)
where
(), =(P),[c]” (21)

is the vector of the bending shape functions.
In a similar way, shear deflection can be presented in the form

w, =(P), {a}, (22)

where according to (15)

__D&(P), D&(P)
Ph="5"¢ "5 & (23)
Substituting (19) into (22) yields
W, =(¢), {0}, (24)

where

(#), = (P).[c]” (25)
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is the vector of the shear shape functions.
Total deflection according to (1) reads

w=(g){s}. @)

where
(9)=(9), +{9). (27)

is the vector of the total shape functions.
Columns of the inverted matrix [C] are vectors of coefficients a; obtained for the unit value of particular nodal
displacements

[C]" =[{AL {AL - {AL ] (28)

where
{A}: =(A), =<ag aj...ag,71>. (29)

Bending curvatures and warping are presented in the form

(ef = 2% (30)

Oxoy
Substituting (20) with (21) into (30) yields

{x}, =—[L], {5}, (31)

where

[L], =[H],[cT" (32)

ML= S | @)




330 Int. J. Nav. Archit. Ocean Eng. (2015) 7:324~345

Now it is possible to determine the bending stiffness matrix by employing a general formulation from the finite element

method based on the variational principle as shown in (Zienkiewicz and Taylor, 2000)
T
[K]b = J-[L]b [D]n [L]n dA'
A

where

1 v 0

[D]b:D v 1 0
00 1-v

2

is the matrix of plate flexural rigidity. Furthermore, substituting (32) with (33) into (34) yields

[K], =[] [B][e] ™.

. -T -1\'
where symbolically [C] :([C] ) and

[B]:J‘[H]Z [D]b[H]b dA.

A

By taking (33) and (35) into account, (37) can be presented in the form

[B]= D([I]l+v([l]2+[I]3)+[I]4+2(1—v)[|]5),

where

[|]1 :J'az{P}b 62<P>h dA,

ox? ox?

() L R Y

. X oy s’

i, ziaza{;}b a;(yf)b dA.

[|]5 =J'62{P}b 62<P>b dA

s OX0y  OXoy

(34)

(35)

(36)

@37)

(38)

(39)

(40)

(41)

(42)
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According to (9) the shear strain vector reads

and by taking (24) with (25) into account, one obtains

try=[LL{s},

where

(L], =[H1.[eT™

o(P),
KL= oip)
X3

Analogously to (34), the shear stiffness matrix is presented in the form

K], =1L [P} (1] o8,

where [D]. = SLl) ﬂ . Substituting (45) with (46) into (47) yields
[K], =[c] " [s][c]",

where

[5]=SJ[H]. W], 0a.

A
By taking (46) into account, (49) can be presented in the form

[s1=s([1),+[1],).

where

331

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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Hence, the complete stiffness matrix is

[K]=[K],+[x], =[] ([B]+[s])lc]"-

(51)

(52)

(33)

According to the general formulation of the mass matrix in the finite element method based on the variational principle

(Zienkiewicz and Taylor, 2000), one can write
[M]=m[{g}(¢)aA,
A

where {¢} is the vector of the total shape functions (27). Taking (21) and (25) into account yields

where

and {P}={P}, +{P},,Egs. (14)and (23).

RELATIONSHIP BETWEEN THICK AND THIN FINITE ELEMENT PROPERTIES

(54)

(55)

(56)

If the shape functions of thick and thin plate are determined by the same polynomial, it is interesting to find out the relation
between their properties. For this purpose, let us decompose the coefficient matrix [C] into the bending matrix and shear

contribution

[€]=[c], +[c]..

(57)

where [C]b includes all terms without shear stiffness S, while [C]S contains only terms with S. Eq. (57) can also be presented in

the form

[€]=([1]+[E])IC],.

where [1] is the identity matrix and

(58)
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[E]=[c].[c], (59)

Furthermore, substituting (58) into (36) and employing the inverse of the product, ([A][B])f1 :[B]fl[A]fl, and the
transpose of the product, ([A][B])T =[B]' [A]', one arrives at

(K], =(01]+[ET) KR (]+[ED) (60)
where
(K] =[c]," [Bllc), (61)

is the bending stiffness matrix of thin plate.
In a similar way, the matrix of shear stiffness (48) can be presented in the form (60), and the complete stiffness matrix of
thick plate reads

-1

[<)= ([ [ET ) (KR +IKE)0+(ED) 62)

where
(K], =[c], [s]e], (63)
The mass matrix (55) can also be decomposed if the relation {P}={P} +{P}_istaken into account. Hence, one obtains

-1

[M]=([+ET ) ([M], +[M], +[M1, +[M],)([1]+[ED) (64)
where
[M], =m[C]," [{P},(P), dA[C]," (65)
[M], =m[c]," [{P}, (P}, dalc] = [M],, (66)
[M],=m[C]," [{P},(P),dA[C],"- (67)

The matrix [M ], is the bending mass matrix of thin plate, [M ] is the shear mass matrix of thick plate, and [M]_and
[M], aremass matrices of bending and shear coupling.
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Distributed excitation is transmitted to the nodes by the shape functions
{F}=[{g}adA.
A
Taking (21) and (25) into account yields
{F}=[c]" [{P}adA.
A

Furthermore, by employing (58) and {P} ={P}, +{P}_,onearrivesat

where

are the vector of the nodal forces due to bending and shear, respectively.

An observation on the relevant literature related to the above subject is given in Appendix.

RECTANGULAR FINITE ELEMENT

(68)

(69)

(70)

(71)

(72)

The four-node rectangular finite element with nodal displacements is shown in Fig. 2. The dimensionless coordinates
&=x/a and n=y/b are introduced. The ordinary polynomial for the thin plate finite element is applied for bending (Holand

and Bell, 1970).

Yy
Wy A
S w7
4 3/ @3
a
4| ¥
b
w1 1 Wo
0 o 2 ¢y x

Fig. 2 Rectangular finite element.



Int. J. Nav. Archit. Ocean Eng. (2015) 7:324~345 335

(P), =(L&m. & nn® & En.én’ 0. Enén’) (73)

The shear polynomial according to (23) reads

(P), =—(0,0,0,22,0,2/3,6a&,2an,2 5,6 fn,6aln,6 5<n), (74)
where
D D
=T p= e (75)

{P}s is for two order lower polynomial than {P}b which is important for the possible avoidance of shear locking. The total
deflection, Eq. (15), is

w=(a)({P}, +{P1,). (79)
and the angles of rotation. Egs. (16)
1 0P . 1 0P b
A MR e )

on

By taking the coordinates & and 7, defined in Fig. 2 into account, matrix [C] is obtained in the following form

1 0 0 =2« 0 =28 0 0 0 0 0 0
0 0 % 0 0 0 0 0 0 0 0 0
o -1 0 0 0 0 0 0 0 0 0 0
a
1 1 0 1-22 0 =28 1-6a 0 28 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0
b b b b
1 2 3
o -= 0 -2 0 o -= 0 0 0 0 0
c]- a a a . (78)
1 1 1 1-2¢ 1 1-28 1-6a 1-2a 1-28 1-68 1-6a 1-68
0 0 1 0 1 2 0 1 2 3 1 3
b b b b b b b b
o X o .2 1 o 3 .2 r 4 3 _1
a a a a a a
1 0 1 -2a 1-26 0 =2a 0 1-68 0 0
0 0 1 0 0 2 0 0 0 3 0 0
b b b
o -1 o -1 0 0o -= 0 o -1
L a a a a |
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The stiffness and mass matrix can be determined directly by employing Egs. (53) and (55), respectively, or in an indirect
way by Egs. (62) and (64). The decomposition of matrix [C] into [C], and [C] is very simple. The inversion of the matrices can

be done analytically by a Computer Algebra System (CAS). For illustration, matrix [E] is obtained in the following form:

TRIANGULAR FINITE ELEMENT

[6a+64 4bp —daa —ba 0 —2aa 0 0 0 -6/
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
—6a 0 2aa 6a+6p 4bB daa 68 205 O 0
0 0 0 0 0 0 0 0 0 0
[E]- 0 0 0 0 0 0 0 0 0 0
0 0 0 68 -2bf 0 6a+68 -4bB daa  —ba
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
-6 -2bp O 0 0 0 —6a 0 —2aa 6a+6p
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

2bp 0
0 0
0 0
0 0
0 0
0 0
0 2ax
0 0
0 0

—4bp —daa
0 0
0 0

(79)

The three-node triangular finite element in the Cartesian coordinate system with nodal displacements is shown in Fig. 3.

The ordinary polynomial for triangular finite element of thin plate is used for bending

L]

; // w3l / Y3

/ 3 (.Y3 s}"?, ); I\:\?}:‘_B}

/ , \'\‘fzj/’fﬁrz
/) 2w s

if .
/ ) %" - Yia
/ 11’| ff —

/ "

Fig. 3 Triangular finite element.

<P>b==<1,x,y,xz,xy,yz,x3,x2y4—xy2,y3>,

The shear polynomial is obtained according to (23)

(P), :_%<0,0,0,2,0,2,6x,2(X+ y).6y).

The total deflection is

w=(a)({P}, +{P},).

(80)

(81)

(82)
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where (a)=(0,a,,...,a,) . Angles of rotation are determined according to (16), i.e.

v, =—(a){0,1,0,2x,y,0,3x* 2%y + 2,0}
83
v, =—(a){0,0,1,0,x,2y,0,x* + 2xy,3y*}. @)

Matrix [C] in expression for nodal displacements, Eqgs. (17) and (18), is obtained by taking nodal coordinates x; and y,,
1=1,2,3, into account

D D D D D
1ox v X =22 XY ¥W=22 X-6x XY+Xy -2—(x+y) -6y
S S S S S
0 -1 0 -2x -y, 0 -3x2 —(2xy, +¥7) 0
00 -1 0 -x -2y 0 —(x +2xy,) -3y;
D D D D D
L Yo X=22 %Y, Yi=22 %-62% XY, tXY-2=(6+Y,) ¥V;-6<Y,
[Cl=lo -1 0 —2x, -y, o ~3x2 (26, +¥) o | @
0 0 -1 0 -X, -2V, 0 —(x§+2x2yz) -3y;
D D D D D
L% ¥s %20 %Y, Yi=20 %60 XYty —2-(%+Y:) YVi-6=s
0 -1 0 -2x -y, 0 -3x2 ~(2%y5+y3) 0
0 0 -1 0 X, =2y, 0 —(x§+2x3y3) -3y?

In order to determine bending stiffness matrix it is necessary to define matrix [H]y,, Eq. (33). Hence, one finds

000200 6x 2y 0
[H],={0 0 0 0 0 1 0 2X 6y |. (85)
000020 0 4(x+ty) O

Matrix [B], Eq. (37), in the bending stiffness matrix, Eq. (36), is given in the Cartesian coordinate system. In order to make
integration over the element area possible, triangular coordinates & and # are introduced. According to Fig. 4 one can write

Fig. 4 Triangular coordinates.
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X=X + X8 + X817

(86)
y=y+ y21§+ y32§771

where X; =X, —X; and Yy; =Y; — Y, . Furthermore, differential area of triangular element reads
dA =Jd&dn, (87)
where

X X
o an
&y
o5 On

J =2Af (88)

is Jacobianand A= %(x21 Y31 — Xyt Yo, ) s element area. Finally, one can write for matrix [B], Eq. (37)

[B]= ZAﬁ[H (&n)] [P],[H(£.m)] dedn. (89)

In a similar way matrix [H]s, Eq. (46), in the shear stiffness matrix, Eqgs. (48) and (49), takes the following constant form

[H]:_E{O 0 0O0O0O0OTG6 2 O} (90)
s S|/00O0O0OO0OOO 26
Hence, one finds for matrix [S], Eq. (49), after integration
D\'|[0] [0]
S]=AS[H] [H =(—M , (91)
where
36 12 0
[s]=]12 8 12| (92)
0 12 36
Mass matrix [M] is defined by Egs. (55) and (56), where by employing triangular coordinates
11
[1], =2A] [{P(&m)}{P (& m)) édcdn. (93)
00

and {P(é’,ﬂ)}:{P(flﬂ)}ﬁ{P(f'n)}s'

It is necessary to mention that application of the triangular coordinates in case that two element boundaries are parallel to the
coordinate axes leads to singularity of element properties. Therefore, application of the area coordinates is preferable in general
case (Zienkiewicz, 1971).
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NUMERICAL EXAMPLES

Reliability of the developed finite element formulation and four noded rectangular element is analysed by three numerical
examples of natural vibrations: simply supported square plate (SSSS), rectangular plate clamped on transverse edges and simply
supported on longitudinal edges (CSCS), and rectangular plate for combined clamped, free, and simply supported boundary
conditions (CFSS). All plates are modelled with 8x8=64 finite elements. Necessary data and nondimensional frequency para-
meters are listed in the title of Tables 1, 2 and 3. Thin and thick plates are considered and Present Solutions (PS) are compared
with available ones determined analytically, Tables 1 and 2, and by Rayleigh-Ritz method, Table 3. Also, results obtained by
NASTRAN (MSC, 2010) are included in the tables. In the most cases very high accuracy is achieved, somewhere better than
that of NASTRAN results. PS and NASTRAN values for thick plates bound rigorous frequency parameters. The first four
natural nodes for case CFSS generated by NASTRAN are shown in Fig. 5 for illustration.

Table 1 Frequency parameter = wa’+/ph/ D of square plate, case SSSS, k=0.86667.

h/a Method 117> | 2/12/ 3/21/ 4/22/ 5/13/ 6/31/ 7123/ 8/32/
0.001 | Hashemi and Arsanjani (2005) | 19.739 | 49.348 | 49.348 | 78.956 | 98.694 | 98.693 |128.302 | 128.302
Senjanovic¢ et al. (2013a) 19.739 | 49.348 | 49.348 | 78.956 | 98.694 | 98.694 |128.302|128.302
FEM - PS 19.592 | 48.744 | 48.744 | 76.603 | 98.487 | 98.487 |123.374|123.374
FEM - NASTRAN 19.377 | 48.115 | 48.115 | 74.420 | 96.381 | 96.381 |119.255|119.255
0.1 | Hashemi and Arsanjani* (2005) | 19.084 | 45.585 | 45.585 | 70.022 | 85.365 | 85.365 | 107.178|107.178
Senjanovic et al. (2013a) 19.084 | 45.585 | 45.585 | 70.022 | 85.365 | 85.365 |107.177|107.177
FEM - PS 19.082 | 45.924 | 45.924 | 70.134 | 87.655 | 87.655 |108.510|108.510

FEM - NASTRAN 18.274 | 44.047 | 44.047 | 64.502 | 83.076 | 83.132 |97.0710| 97.071

0.2 | Hashemi and Arsanjani (2005) | 17.506 | 38.385 | 38.385 | 55.586 | 65.719 | 65.719 | 79.476 | 79.476
Senjanovic et al. (2013a) 17.506 | 38.385 | 38.385 | 55.586 | 65.719 | 65.719 | 79.476 | 79.476

FEM - PS 17.795 | 39.718 | 39.718 | 57.512 | 69.795 | 69.795 | 83.561 | 83.561

FEM - NASTRAN 16.604 | 37.414 | 37.414 | 51.803 | 63.932 | 64.062 | 72.406 | 72.406

*/m,n/ - mode identification number, m and n number of half waves in x and y direction.

Table 2 Frequency parameter A= (a)b2 /zz)\/ph/ D of rectangular plate, case CSCS, a/b = 0.5, k=0.86667.

h/b Method 1 2 3 4 5 6 7 8
0.01 | Xing & Liu (2009) 9.622 | 11.691 | 15.777 | 22.076 | 25.573 | 27.891 | 30.545 | 31.969
Senjanovi¢ et al. (2013a) | 9.622 | 11.691 | 15.777 | 22.076 | 25.573 | 27.891 | 30.545 | 31.969
FEM - PS 9.507 | 11.287 | 15.060 | 21.146 | 25.292 | 26.739 | 29.593 | 29.648
FEM - NASTRAN 9.455 | 11.053 | 14.538 | 20.373 | 25.168 | 26.323 | 28.582 | 28.689
0.1 Xing & Liu (2009) 7.589 9.034 | 11.948 | 16.193 | 16.854 | 18.117 | 20.389 | 21.199
Senjanovi¢ et al. (2013a) | 7.589 9.034 | 11.948 | 16.139 | 16.854 | 18.117 | 20.389 | 21.199
FEM - PS 7.626 9.014 | 12.044 | 16.734 | 17.341 | 18.390 | 20.540 | 22.883
FEM - NASTRAN 7.541 8.723 | 11.269 | 14.920 | 16.765 | 17.313 | 18.418 | 18.929
0.2 Xing & Liu (2009) 5.202 6.223 8.261 | 10.350 | 10.898 | 11.209 | 12.706 | 13.809
Senjanovi¢ et al. (2013a) | 5.202 6.223 8.261 | 10.350 | 10.898 | 11.209 | 12.706 | 13.809
FEM - PS 5.327 6.457 8.711 | 10.936 | 11.807 | 11.836 | 13.378 | 15.618
FEM - NASTRAN 5.250 6.202 7.970 | 10.056 | 10.402 | 10.851 | 11.614 | 11.994
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Table 3 Frequency parameter A= (cob2 /ﬁz)\/ph/ D of rectangular plate, case CFSS, a /b =0.4, k=5/6.

h/b Method 1 2 3 4 5 6 7 8
0.001 Liew et al. (1993) 9.874 | 11.346 | 14.900 | 19.539 | 26.624 | 31.698 | 33.397 | 35.788
FEM - PS 9.896 | 11.172 | 14.017 | 18.746 | 25.554 | 31.711 | 32.663 | 34.556

FEM - NASTRAN 9.823 10.945 | 13.363 | 17.404 | 23.574 | 31.402 | 32.257 | 32.623
0.1 Liew et al. (1993) 7.941 8.970 11.135 | 14462 | 18.761 | 20.459 | 21.357 | 23.112
FEM - PS 8.099 8.965 11.001 | 14476 | 19419 | 21.383 | 21.931 | 23.242
FEM - NASTRAN 7.985 8.635 10.196 | 12.825 | 16.215 | 19.771 | 20.457 | 20.887
0.2 Liew et al. (1993) 5.594 6.305 7.752 9.828 12.294 | 12.679 | 13.236 | 14.289
FEM - PS 5.765 6.386 7.885 10.325 | 13.418 | 13.541 | 13.830 | 14.757
FEM - NASTRAN 5.669 6.126 7.277 8.993 10.839 | 12.470 | 12.790 | 12.945

S
i"‘ix
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-
]‘h--n" .
AP h/b=0.1
1 =0.
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"----~‘ 2 : g;eplv supported

A hfa=0.1
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Fig. 6 The first four natural modes of triangular plate with simply supported corner nodes, (NASTRAN).

In addition, the natural vibration of equilateral triangular plate (like tension leg platform), using the developed general train-
gular finite element is analysed. The plate is modelled with 25 finite elements and it is simply supported at corner nodes. Dimen-
sionless frequency parameters obtained by the proposed procedure are given in Table 4, together with NASTRAN solutions,
where good agreement can be noticed. For illustration, the first four natural modes obtained by NASTRAN are shown in Fig. 6.

The convergence of the proposed finite element formulation is demonstrated in the case of a simply supported square plate.
Natural frequencies are determined by the finite element model for three mesh densities, i.e. 6x6=36, 8x8=64 and 10x10=100
elements, and three values of a thickness ratio h/a: 0.001, 0.1 and 0.2. The obtained frequency parameters are listed in Table 5
and compared with the exact analytical solution as well as with the NASTRAN and Abaqus (Dassault Systémes, 2008) results.
In order to have better insight into the convergence, frequency parameter for the 1st, 4th and 7" modes are shown in Fig. 7. For
thin plate (h/a=0.001), the present solution converges to the exact value, faster than the NASTRAN and Abaqus results, which
converge from the opposite sides. PS values for moderately thick plate (h/a=0.1) are very close to the exact values for all three
mesh densities, while the NASTRAN and Abacus results converge to a lower value than the exact solution. The discrepancy is
reduced for higher modes. In the case of thick plate (h/a=0.2), the variation of the PS values, which are somewhat higher than
the exact solution, is rather small. The NASTRAN and Abaqus results show the same tendency as in the previous case.
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Table 4 Frequency parameter 1 = wa’./ph/ D of equilateral triangular plate with simply supported corner nodes, k=5/6.

h/a Method 1 2 3 4 5 6

0.01 FEM - PS 8.691 18.840 18.848 47.014 47.112 64.268
FEM - NASTRAN 8.542 18.226 18.227 46.990 46.993 63.360

0.1 FEM - PS 8.340 17.821 17.824 43.999 44,002 46.014
FEM - NASTRAN 8.284 17.609 17.610 43.620 43.624 45.626

Table 5 Convergence of frequency parameter u = wa’\/ph/D of square plate, case SSSS, k=5/6.

h/a METHOD V1> | 27121 | 3/21/ | 4/22] 5/13/ 6/31/ 7123/ 8/32/
0.001 | Senjanovi¢ et al. (2013a) | 19.739 | 49.348 | 49.348 | 78.956 | 98.694 | 98.694 | 128.302 | 128.302
PS (6x6) 19.459 | 48.326 | 48.326 | 75.103 | 96.867 | 96.867 | 120.658 | 120.658
PS (8x8) 19.592 | 48.744 | 48.744 | 76.603 | 98.487 | 98.487 | 123.374 | 123.374
PS (10x10) 19.629 | 48.944 | 48.944 | 77.384 | 97.859 | 97.859 | 124.933 | 124.933
NASTRAN (6x6) 19.150 | 47.343 | 47.343 | 71.762 | 95.014 | 95.084 | 115.491 | 115.491
NASTRAN (8x8) 19.377 | 48.115 | 48.115 | 74.420 | 96.381 | 96.381 | 119.255 | 119.255
NASTRAN (10x%10) 19.488 | 48.497 | 48.497 | 75.803 | 97.063 | 97.063 | 122.044 | 122.044
Abaqus (6x6) 20.205 | 54.743 | 54.743 | 86.623 | 132.223 | 132.223 | 158.355 | 158.355
Abaqus (8%8) 20.000 | 52.251 | 52.251 | 83.203 | 115.389 | 115.389 | 143.839 | 143.839
Abaqus (10x10) 19.906 | 51.169 | 51.169 | 81.652 | 124.895 | 124.895 | 137.892 | 137.892
0.1 Senjanovi¢ et al. (2013a) | 19.065 | 45.483 | 45.483 | 69.794 | 85.038 | 85.038 | 106.684 | 106.684
PS (6x6) 18.959 | 45.581 | 45.581 | 69.055 | 87.636 | 87.636 | 107.334 | 107.334
PS (8x8) 19.063 | 45.821 | 45.821 | 69.908 | 87.320 | 87.320 | 108.019 | 108.019
PS (10x10) 19.117 | 45.949 | 45.949 | 70.374 | 87.230 | 87.230 | 108.520 | 108.520
NASTRAN (6x6) 18.022 | 42.985 | 42.985 | 60.972 | 80.069 | 80.090 | 89.787 | 89.787
NASTRAN (8x8) 18.243 | 43.927 | 43.927 | 64.251 | 82.692 | 82.750 | 96.541 | 96.541
NASTRAN (10x10) 18.339 | 44.380 | 44.380 | 65.918 | 83.926 | 84.008 | 100.115 | 100.115
Abaqus (6x6) 18.906 | 49.078 | 49.078 | 73.469 | 106.435 | 106.605 | 122.766 | 122.766
Abaqus (8%8) 18.663 | 46.971 | 46.971 | 70.836 | 95.661 | 95.831 | 114.072 | 114.072
Abaqus (10x10) 18.544 | 46.037 | 46.037 | 69.609 | 91.190 | 91.354 | 110.279 | 110.279

0.2 Senjanovi¢ et al. (2013a) | 17.449 | 38.152 | 38.152 | 55.150 | 65.145 | 65.145 | 78.697 | 78.697
PS (6x6) 17.662 | 39.476 | 39.476 | 56.997 | 70.314 | 70.314 | 83.630 | 83.630

PS (8x8) 17.733 | 39.454 | 39.454 | 57.016 | 69.123 | 69.123 | 82.667 | 82.667

PS (10x10) 17.767 | 39.451 | 39.451 | 57.081 | 68.584 | 68.584 | 82.280 | 82.280
NASTRAN (6x6) 16.348 | 36.264 | 36.264 | 48.588 | 60.567 | 60.641 | 65.908 | 65.908
NASTRAN (8x8) 16.535 | 37.148 | 37.148 | 51.336 | 63.253 | 63.383 | 71.578 | 71.578
NASTRAN (10x%10) 16.617 | 37.562 | 37.562 | 52.679 | 64.503 | 64.667 | 74.427 | 74.427
Abaqus (6x6) 16.796 | 40.014 | 40.014 | 56.260 | 76.247 | 76.591 | 85.787 | 85.787
Abaqus (8x8) 16.610 | 38.620 | 38.620 | 54.749 | 70.632 | 70.966 | 81.596 | 81.596
Abaqus (10x10) 16.523 | 37.997 | 37.997 | 54.046 | 68.169 | 68.493 | 79.675 | 79.675

*/m,n/ - mode identification number, m and n number of half waves in x and y direction.
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Fig. 7 Convergence of frequency parameter u =wa“\/ph/ D of simply supported square plate, k=5/6.
CONCLUSION

Thick plate appears as a structural element in many engineering structures. In this paper, an outline of the modified
Mindlin theory for moderately thick plate is presented. Instead of three variables, i.e. deflection and two rotations of cross-sec-
tions, the problem is reduced to only one, where bending deflection is used as a potential function for determining the remaining
displacements, strains and sectional forces. A new formulation of thick plate finite elements based on this theory is proposed
following the standard FEM procedure, thus ensuring variational consistency. The well-known shear locking problem, which
accompanies the Mindlin theory, is overcome as a result of the strong interdependence among deflection and rotations which
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reduce the order of the shear polynomial compared to the bending polynomial. The consistent relationship between thick and
thin finite element properties is derived, so that the stiffness and mass matrix for the thick element can be determined directly or
indirectly. Based on a systematic analysis of this subject, some shortcomings of a known similar relationship are noticed and
discussed. The vibration analysis of a thick rectangular plate by a simple quadrilateral finite element and coarse mesh shows a
higher level of accuracy than sophisticated finite elements incorporated in some commercial software packages. Developed
triangular finite element applied for vibration analysis of the triangular plate, also gives good results. Avoidance of the shear
locking problem, fast convergence and high accuracy are the advantages of the proposed finite element formulation for vibra-
tion analysis of moderately thick plates.

Shear locking is not a natural phenomenon. It is introduced by the inconsistent mathematical modelling of a physical task,
resulting in a numerical problem. With finite elements based on the original Mindlin thick plate theory, it is not possible to ensure
smooth transition from thick to thin plate, since the shear stiffness, which is dominant for higher modes, also remains dominant
for lower modes, which is not realistic. Any attempt to eliminate shear locking results in complicated finite element properties
and a decrease in accuracy. However, such elements can usually capture so-called missing modes in the higher frequency domain,
which represent the coupling of ordinary bending-shear modes with in-plane shear modes (Lim et al., 2005). In contrast, the
modified Mindlin theory is related to moderately thick plate and due to the strong interdependence among the deflection and
rotations the shear locking problem in finite elements does not occur. Finite elements derived according to these two theories
actually cover two regions of the problem, i.e. one from thin to moderately thick plates, and the other from moderately to fully
thick plates, which partly overlap. Higher accuracy is obtained in the former types of finite elements than in the latter if modera-
tely thick plate is an issue. Based on the above, it is not efficient to derive unique finite elements for solving shear locking and
capturing high in-plane modes which are usually not of practical interest. Now, the proposed procedure for the formulation of
shear locking-free finite elements may be used for the development of sophisticated thick plate elements with different shapes
and a higher number of nodes.
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APPENDIX — Consideration of the known relationship between thick and thin plate finite element properties

Stiffness matrix of thick plate finite element is derived in (Falsone and Settineri, 2012) by employing the simplified thick
plate theory similar to that presented in (Senjanovi¢ et al., 2013a). So-called fictitious deflection as single variable is used,
which corresponds to the bending deflection applied in the present paper. Stiffness matrix of thick plate finite element is
obtained based on the known stiffness matrix of thin plate element. The following relation between those two matrices, written
in the present notation, is found:

[K]=[KL([1]+[E]) " (A1)

-1
By comparing Eq. (A1) with (62) it is obvious that transformation matrix ([I]+[E]T) on the left side of (62) is not

present in (Al). Reason is that shear influence on external nodal forces (70) is ignored in (Falsone and Settineri, 2012), and
condition of equivalence of internal nodal forces for thick and thin finite element is used instead of balance of their strain
energies. As a result stiffness matrix (A1) is not consistent and consequently it is not symmetric. Relation between equilibrium
equations of thick and thin finite element should be of similar form like transformation of element equation from local to global
coordinate system (Zienkiewicz and Taylor, 2000). Furthermore, explicitly specified matrix [S]E in (62) is missing in (Al),
and the obtained stiffness matrix is not complete. Since this matrix is relevant for shear locking, it is not possible to consider that
problem a priori.

Finite element approach to thick plate theory presented in (Falsone and Settineri, 2012) is actually an extension of the
previously worked out simplification of the Timoshenko beam theory. Hence, the shortcomings of relation between thick and
thin plate finite element properties are also related to the beam elements (Falsone and Settineri, 2011).
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