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1 Introduction

With the pioneering work of Yang and Lee a new perspective on the properties of statistical

systems was established by pointing out the importance of the distribution of zeros of

the partition function [37, 63]. Expressed in terms of an external parameter, which we

shall denote by z, the partition function Z = Z(z) of a finite system can in general be

expressed in terms of its roots zα in the complex plane, i.e., we may write Z =
∏
α(z− zα).

Their significance appears in the thermodynamic limit, V →∞, when they coalesce along

one-dimensional curves that separate different infinite volume behaviors of the partition

function.1 These curves can be viewed as cuts that distinguish different branches of the

free energy (or grand canonical potential) Ω = −β lnZ = −βV
∫

dθg(θ) ln [z − z(θ)], where

g(θ) corresponds to the normalized density of zeros (
∫

dθg(θ) = 1) on a curve parametrized

as z(θ) and β = 1/T is the inverse temperature (kB = 1). Clearly, once the location of

the zeros, or cuts they coalesce into, z(θ), and the distribution g(θ) is known, in principle,

all thermodynamic properties of the system can be calculated. This has led to numerous

efforts to determine g(θ) for a wide range of lattice models via numerical methods [1, 28,

33, 56] and also experimentally [10, 11, 49]. Besides providing a rigorous basis to study

the thermodynamic properties of finite lattice systems, such attempts have also helped to

elucidate features of fundamental theories. Drawing on the principle of universality they

have led to important insights into the phase diagram of strongly-interacting matter at

nonvanishing baryon densities [19, 26, 55].

1In principle, the zeros may accumulate on a dense set in parameter space, which must not necessarily

be one dimensional. However, such a scenario is not relevant to this work.
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Typically, for lattice spin models at temperature T and external field H the natural

variable in terms of which the partition function is a polynomial is z = exp (−2βH). The

zeros of Z(z) are commonly referred to as Yang-Lee or Lee-Yang zeros. In particular,

for the ferromagnetic Ising model one finds these zeros distributed along the unit circle

z = exp(iθ), where θ = 2iβH and H is imaginary. This has been proven rigorously and

is known as the Yang-Lee circle theorem [4, 5, 24, 29, 36, 37, 52, 57, 58]. Depending on

the temperature one may distinguish different scenarios: in the low-temperature region

of the Ising model (T < Tc), the set of zeros crosses the positive real z-axis at z = 1

(θ = 0), which indicates the presence of a first-order phase transition as one traverses the

ReH = 0 axis from positive to negative real H (or vice versa). On the other hand, in the

high-temperature region (T > Tc) one observes a finite gap in the distribution g(θ) = 0 for

|θ| < θg that closes as T → T+
c [1, 56]. Thus, for T > Tc the free energy is analytic along the

real H axis. However, at the edge of the gap θ = ±θg, corresponding to imaginary values of

the magnetic field H = ±i|Hc(T )|, the distribution of zeros exhibits nonanalytic behavior,

i.e., g(θ) ' (|θ| − θg)σ, for |θ| & θg, characterized by the exponent σ [33]. As pointed out

by Fisher [20] this behavior can be identified with a thermodynamic singularity that yields

a divergence in the isothermal susceptibility χ = (∂M/∂H)T ∼ |H − Hc(T )|σ−1, where

M is the magnetization. Thus, the Yang-Lee edge singularity at nonvanishing imaginary

values of the field is similar to a conventional second order phase transition [20, 34].

In contrast to the well-known φ4 field theory that describes the critical point of the

Ising model at T = Tc and H = 0, the field theory at the Yang-Lee edge point, the φ3

theory, admits no discrete reflection symmetry and is therefore characterized by only one

independent (relevant) exponent. In two dimensions the corresponding universality class

has been identified with that of the simplest nonunitary conformal field theory (CFT),

the minimal model M2,5, with central charge c = −22/5 [15]. This allowed to exploit

conformal symmetry in two dimensions to calculate the scaling exponent σ(d = 2) = −1/6,

which has been confirmed with remarkable accuracy by series expansions [7, 30], as well

as by comparing with experimental high-field magnetization data [10, 11]. Furthermore,

using integral kernel techniques it is possible to establish the exact result σ(d = 1) =

−1/2 [20, 34]. On the other hand, most of our knowledge in the region 2 < d < 6 relies on

appropriately resummed results from the ε = 6− d expansion [16, 17, 23], strong-coupling

expansions [13], Monte Carlo methods [27, 35], and conformal bootstrap [22]. Note that in

contrast to the Ising critical point (described by φ4 theory), the upper critical dimension

of the Yang-Lee edge point (described by φ3 theory) is dc = 6 and therefore, fluctuations

are important even above dimension d = 4.

Recently, there has been renewed interest in the Yang-Lee edge point for which the

renormalization group (RG) β functions to four-loop order in the ε expansion were de-

termined in ref. [23] and the corresponding critical exponents (obtained from constrained

Padé approximants) were compared to estimates from other methods. In light of these

developments, we examine the critical scaling properties of the Yang-Lee edge with the

nonperturbative functional RG [60, 61] for dimensions 3 ≤ d ≤ 6. In contrast to the ε

expansion, the functional RG does not rely on the expansion in a small parameter and

is therefore ideally suited to investigate the critical behavior of the Yang-Lee edge away
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from dc = 6. However, care must be taken to address possible systematic errors that arise

from the truncation of the infinite hierarchy of flow equations. We show that that these

errors are under control and comment on the quality of different truncations. In sum-

mary, we find that the obtained values for the critical exponents are in good agreement

with previous results obtained in d = 3 dimensions using high-temperature series expan-

sions [34], the three- and four-loop ε expansion around d = 6 [16, 17] as well as other

methods [13, 22, 27, 35]. We observe that derivative interactions have an important effect

on the stability of the scaling solution and need to be taken into account properly in the

framework of the nonperturbative functional RG.

The outline of this article is as follows: first, in section 2, we give an overview of the

nonperturbative functional RG and the truncations employed in this work. In section 3 we

discuss the scaling properties of the critical equation of state and the mean-field theory at

the Yang-Lee edge singularity. In section 4 we consider the general properties of RG flow

trajectories and in particular their infrared (IR) behavior. In sections 6–7 we summarize our

results for the critical exponents at the Yang-Lee edge singularity and analyze the expected

systematic errors for the truncations employed in this work. We close by comparing our

estimates for the critical exponents to recent data from refs. [23] and [22] and conclude

with an outlook on future work.

2 Nonperturbative functional RG

In this work, we employ a RG scheme that relies on a truncation of a hierarchy of flow

equations derived from an exact flow equation for the scale-dependent effective action

Γk [60, 61], i.e., the generating functional of one-particle irreducible (1PI) diagrams (for

reviews see, e.g., refs. [6, 8, 18, 46, 50]), where k denotes the RG scale parameter. The

scale-dependent effective action is obtained from the functional Legendre transform

Γk = sup
J

(∫
ddxJ(x)φ(x)−Wk

)
−∆kS, (2.1)

of the scale-dependent generating functional of connected correlation functions

Wk = ln

∫
[dϕ] exp

{
− S −∆kS +

∫
ddxJ(x)ϕ(x)

}
, (2.2)

with respect to the external source J = J(x); φ = δWk/δJ is the scalar field expectation

value. Here, we consider a classical action S of a single-component scalar field

S =

∫
ddx

{
1

2
(∂ϕ)2 + UΛ(ϕ)

}
, (2.3)

and the classical potential UΛ is specified in section 3. The additional term ∆kS in eq. (2.2)

is a quadratic functional

∆kS =
1

2

∫
ddx ddy ϕ(x)Rk(x, y)ϕ(y), (2.4)

– 3 –
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Operator Coupling Canonical dimension

δφn Ū (n) dim Ū (n) = d− n(d− 2)/2

δφn(∂φ)2 Z̄(n) dim Z̄(n) = −n(d− 2)/2

δφn (�φ)2 W̄
(n)
1 dim W̄

(n)
1 = −2− n(d− 2)/2

δφn(∂φ)2�φ W̄
(n)
2 dim W̄

(n)
2 = −[d+ 2 + n(d− 2)]/2

δφn
[
(∂φ)2

]2
W̄

(n)
3 dim W̄

(n)
3 = −d− n(d− 2)/2

Table 1. Operators and canonical dimension of associated parameters and couplings that appear

in the expansion of Γk [cf. eq. (2.6)]. Note that we drop the RG scale index k, since the canonical

dimensions are defined at the Gaussian fixed point of the RG β functions.

and serves to regularize the theory in the IR; in particular, the regulator function Rk(x, y) =

Rk(−�x)δ(d)(x− y), where � ≡ ∂µ∂µ, is chosen in such a way that it leads to a decoupling

of IR modes. We require that limk→0Rk = 0 and limΛ→∞Rk=Λ =∞, where Λ is a charac-

teristic scale that regularizes the theory in the ultraviolet (UV) and can formally be sent to

infinity. In effect, this defines a one-parameter family of theories (0 ≤ k ≤ Λ), which inter-

polates between the classical action, S = limk→Λ Γk, and the full 1PI effective action, Γ =

limk→0 Γk. Thus, the scale-dependent regulator function Rk induces a functional RG flow

∂

∂s
Γk =

1

2

∫
ddq

(2π)d
∂Rk(q)

∂s

[
Γ

(2)
k (φ; q) +Rk(q)

]−1
, (2.5)

between these two limits, where s = ln(k/Λ) is a dimensionless scale parameter, and

δ(d)
(∑n

i=1 pi
)
Γ

(n)
k (φ; p1, p2, . . . , pn−1) ≡ (2π)(n−1)dδnΓk[φ]/δφ(p1)δφ(p2) · · · δφ(pn). In

principle, we may choose any (sufficiently smooth) regulator that satisfies the above

limiting properties. For details of our implementation and necessary requirements imposed

on the regulator function see sections 4–7.

Clearly, an exact solution for the full functional flow is not feasible in practice, so one

has to rely on suitable approximations of eq. (2.5). Here, we comment on the nature of our

truncation and discuss its limitations. We use a truncated expansion in derivatives for the

scale-dependent effective action [44, 45]

Γk =

∫
ddx

{
Uk(φ) +

1

2
Zk(φ)(∂φ)2 +

1

2
W1,k(φ)(�φ)2

+
1

2
W2,k(φ)(∂φ)2�φ+

1

2
W3,k(φ)

[
(∂φ)2

]2}
, (2.6)

where Uk is the scale-dependent effective potential, and the scale-dependent functions Zk
and Wa,k, a = 1, 2, 3, parametrize the contributions to order ∂4 (up to total derivative

terms). Furthermore, for each of these functions, we employ a finite series expansion in the

fluctuation δφk = φ− φ̄k around a field configuration φ̄k, which is assumed to be homoge-

neous in space [cf. section 4]. In effect, this corresponds to an ansatz for Γk that includes

only a finite set of independent operators, each of which is parametrized by a single param-

eter or coupling that is field independent, e.g., Zk(φ)(∂φ)2 =
(
Z̄

(0)
k + Z̄

(1)
k δφk + . . .

)
(∂φ)2,

– 4 –
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and Z̄
(n)
k ≡ Z

(n)
k (φ̄k), n ∈ N, and similar expansions apply to Uk and Wa,k. The canonical

dimensions of these parameters are displayed in table 1. Clearly, above dimension d = 2,

Z̄
(n)
k and W̄

(n)
a,k are irrelevant as far as a counting of canonical dimensions goes, but this is

not sufficient to conclude that this is also the case at a nontrivial (i.e., non-Gaussian) fixed

point of the RG β functions. Indeed, one of the objectives of this paper is to investigate their

effect at the Yang-Lee edge point as well as on RG trajectories that approach this scaling

solution in the IR. We should point out that similar truncations of the scale-dependent ef-

fective action were considered also in refs. [14, 42, 54, 62] to establish the critical exponents

at the Ising critical point. Here, we study the scaling properties of eq. (2.6) in the presence

of a nonvanishing external field, when the discrete reflection symmetry φ↔ −φ of the Ising

model is explicitly broken and the system is tuned to the Yang-Lee edge critical point.

The flow equations for Uk, Zk, and Wa,k, a = 1, 2, 3, are derived from the exact func-

tional flow equation for Γk [cf. eq. (2.5)] by applying functional derivatives and projecting

them onto the appropriate momentum contributions, i.e.,

∂

∂s
Uk =

∂

∂s
Γk[φ]|φ=const. , (2.7a)

∂

∂s
Zk = lim

p→0

∂

∂p2

∂

∂s
Γ

(2)
k (φ; p), (2.7b)

∂

∂s
W1,k = lim

p→0

∂

∂(p2)2

∂

∂s
Γ

(2)
k (φ; p), (2.7c)

∂

∂s
W2,k =

1

2
lim
pi→0

∂

∂(p1 ·p2)2

∂

∂s
Γ

(3)
k (φ; p1, p2), (2.7d)

∂

∂s
W3,k = −1

4
lim
pi→0

[
∂

∂(p2 ·p3)
− 1

2

∂

∂(p1 ·p2)

− 1

2

∂

∂(p1 ·p3)

]
∂

∂p2
1

∂

∂s
Γ

(4)
k (φ; p1, p2, p3), (2.7e)

where p · q ≡ pµqµ. The corresponding RG flow equations for the field-independent pa-

rameters Z̄
(n)
k and W̄

(n)
a,k can be derived from eqs. (2.7a)–(2.7e) by suitable differentiation

and successive projection onto the reference field configuration φ̄k that enters the series

expansion. We do not display them at this point but refer the reader to supplementary

material available online.2

The RG flow equations display the following chain of dependencies

Uk ← {Zk,W1,k} ← {W2,k,W3,k} ← . . . , (2.8)

where the ellipsis denotes higher order contributions that we have chosen to neglect in our

ansatz, eq. (2.6). That is, the RG flow equation for the scale-dependent effective potential

Uk depends on the quantities Zk and W1,k, but is independent of W2,k and W3,k etc. We

exploit this structure explicitly by truncating the hierarchy eq. (2.8) at the second level,

i.e., we set W2,k = W3,k = 0 in eq. (2.6), while Uk, Zk, and Wk ≡ W1,k are expanded to

some finite order in δφk. Note that the order of the employed expansion might be different

2Mathematica file available online on the website of the arXiv submission arXiv:1605.06039v2.
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for each of these coefficients. Similar approximations have led to reasonable estimates of

the critical scaling exponents at the Ising critical point [14, 42] and we expect that this is

also the case for the Yang-Lee edge critical point.

3 Critical equation of state and mean-field scaling prediction

Here, we consider a classical potential of the following form

UΛ =
1

2
tΛϕ

2 +
1

4!
λΛϕ

4 + hΛϕ, (3.1)

with a nonvanishing coupling to a symmetry-breaking field hΛ, and tΛ ∼ T − Tc, with Tc
the critical temperature at the Ising critical point. Upon integration of the RG flow equa-

tions (2.7a)–(2.7c) down from the cutoff scale Λ to the IR, the parameters and couplings

of the classical potential acquire a scale dependence. In fact, the corresponding scale-

dependent effective potential Uk for 0 ≤ k < Λ will typically include a large number of

fluctuation-induced interactions. The full effective potential is obtained only when the scale

parameter k is sent to zero and all modes have been integrated out, i.e., U = limk→0 Uk.

In order to arrive at a critical point in the IR the relevant parameters of the classical

action need to be tuned to their respective critical values, while all other parameters or

couplings are kept constant. That is, in the case of the Yang-Lee edge critical point, we

fix λΛ, |hΛ| > 0, and tune tΛ to its critical value tΛ,c = tΛ,c(hΛ) > 0, for which Ū (1) ≡
limk→0 Ū

(1)
k = 0 and Ū (2) ≡ limk→0 Ū

(2)
k = 0 in the IR limit. At the Yang-Lee edge critical

point, the first and second derivative are evaluated at a nonvanishing, imaginary field

expectation value φ̄. In the critical domain, the equation of state satisfies the scaling form

U ′(φ) = δφ|δφ|δ−1f
(
δtΛ|δφ|−1/β

)
, (3.2)

where δφ = φ − φ̄ and f = f(x) is a universal, dimensionless scaling function, which is

uniquely defined up to normalization. The critical exponents β and δ characterize the

asymptotic scaling behavior of the (residual) magnetization δφ for vanishing U ′(φ) = δh

and δtΛ = tΛ − tΛ,c, respectively. Here, the parameter δh ∼ H − Hc, measures the

deviation from the critical field strength Hc = ±i|Hc(T )|, and T > Tc for the range of

values of δtΛ studied in this work.

Before we go on to consider the solution of the RG flow equations (2.7a)–(2.7c), we

discuss the mean-field scaling prediction. Since there is no scale dependence in this case,

we simply drop the k (or Λ) index on all parameters. It is useful to express the potential in

terms of an expansion in field differences δϕ = ϕ− ϕ̄ around a reference field configuration

ϕ̄, which is defined such that U ′(ϕ̄) = 0. According to the strategy outlined above, we fix

|h| > 0 and inquire about possible critical points, by imposing in addition the condition

that U ′′(ϕ̄) = 0. We derive two independent scaling solutions, which we identify as

tc = λ/2 (±i3h/λ)2/3 . (3.3)

Assuming that tc > 0 we see that the corresponding critical field value hc =

±iλ/3 (2tc/λ)3/2 is imaginary in accordance with the Yang-Lee theorem [37, 63]. Near

– 6 –
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Figure 1. Critical exponents σ = 1/δ and νc as a function of Euclidean dimension d for

different truncations of the scale-dependent effective action Γk, as specified by the set of integers

(nU , nZ , nW ) [cf. section 4]. The data for the truncation (4, 2, 1) lies almost exactly on top of that

for (4, 2, 0). Shown in comparison are results from the one- and two-loop ε expansion [20, 43] as

well as high-temperature series expansion data (d = 3) [20, 34]. We observe that the numerical

accuracy of the functional RG results improves significantly as one goes to higher orders in the

derivative and field expansion, respectively.

the critical point U ′(ϕ) satisfies the scaling form (3.2) with δ = 2 and β = 1. Other critical

exponents that characterize the power-law singularities of various thermodynamic quanti-

ties can be determined via scaling relations [48]. That is, in the absence of fluctuations

the anomalous dimension vanishes, η = 0, and we obtain the following scaling exponents:

α = −1, γ = 1, ν = 1/2, and νc = 1/4. Note that the exponent α is negative and therefore,

at the mean-field level, the specific heat does not diverge at the Yang-Lee edge point.

4 Solving the RG flow equations

To solve the RG equations we specify the classical action S =
∫

ddx
{

1
2(∂ϕ)2 + UΛ(ϕ)

}
,

which is defined in terms of the short-distance potential UΛ, and integrate the flow equations

down to s → −∞. The classical potential is given in eq. (3.1) and the coefficients that

parametrize the kinetic contribution to the action are ZΛ = 1 and WΛ = 0.

We use a truncated series expansion for the scale-dependent effective potential Uk as

well as for the field-dependent renormalization factors Zk and Wk (0 ≤ k ≤ Λ). Such a

strategy is often sufficient to extract the leading or subleading critical scaling behavior [9,

14, 40–42]. The employed expansion is organized around a nonvanishing, imaginary, and

homogeneous field configuration φ̄k, which depends on the scale parameter k, and is defined

in the following way: 1) At the cutoff scale Λ, φ̄k=Λ = ϕ̄Λ is a solution to U ′′Λ(ϕ̄Λ) = τ , and

2) the scale derivative of Ū
(2)
k ≡ U ′′k (φ̄k), evaluated at φ̄k = φ̄+ χ̄k, satisfies

d

ds
Ū

(2)
k =

∂

∂s
Ū

(2)
k + Ū

(3)
k

dχ̄k
ds

= 0. (4.1)

– 7 –
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Of course, the imaginary field expectation value φ̄ is scale independent and therefore

dφ̄k/ds = dχ̄k/ds. Note that limk→0 χ̄k = 0, i.e., limk→0 φ̄k = φ̄, only when τ = 0 and the

system has been tuned to criticality. Clearly, conditions 1) and 2) fix one parameter of the

model Ū
(2)
k = τ , at the expense of introducing another scale-dependent quantity, the field

configuration χ̄k, for which we obtain

dχ̄k
ds

= −
(
Ū

(3)
k

)−1 ∂

∂s
Ū

(2)
k . (4.2)

Note that the corresponding set of flow equations requires that |Ū (3)
k | > 0 for all 0 ≤ k ≤ Λ.

This does not hold true in the vicinity of the Ising critical point and therefore, the chosen

expansion point is not adequate to investigate the scaling properties for critical points on

the φ↔ −φ symmetry axis (H = 0).

Eq. (4.1) fixes the second derivative of the scale-dependent effective potential at all

scales and therefore the expansion of the scale-dependent effective potential reads

Uk = Ū
(0)
k + Ū

(1)
k δφk +

1

2
τ δφ2

k +

nU∑
n=3

1

n!
Ū

(n)
k δφnk . (4.3)

Here, the sum runs up to some finite integer value nU , which defines our truncation for the

scale-dependent effective potential with the prescribed expansion point. The coefficients

Ū
(n)
k , n ∈ N, are related to the couplings and parameters of the classical potential at the

short-distance cutoff Λ, i.e., Ū
(0)
Λ = ϕ̄Λ [hΛ + 1/12 (5tΛ + τ)ϕ̄Λ], Ū

(1)
Λ = hΛ+(2tΛ+τ)/3 ϕ̄Λ,

and Ū
(3)
Λ = λΛ/6 ϕ̄Λ, Ū

(4)
Λ = λΛ, while Ū

(n)
Λ = 0, for n > 4. Similarly, the expansions for

Zk and Wk read

Zk =

nZ−1∑
n=0

1

n!
Z̄

(n)
k δφnk , (4.4a)

Wk =

nW−1∑
n=0

1

n!
W̄

(n)
k δφnk , (4.4b)

with Z̄
(0)
Λ = 1, Z̄

(n)
Λ = 0 for n > 0, and W̄

(n)
Λ = 0 for n ∈ N. We define Zk ≡ 0 if nZ = 0

and Wk ≡ 0 if nW = 0. In the following, we denote these type of series truncations in short

by the set of integers (nU , nZ , nW ). nU is considered as a free parameter, while nZ and nW
are chosen such that maxnZ dim Z̄

(nZ)
k ≤ dim Ū

(nU )
k and maxnW dim W̄

(nW )
k ≤ dim Ū

(nU )
k in

d = 6 dimensions. This choice defines what we consider to be consistent truncations (see

section 6).

Substituting eqs. (4.3)–(4.4b) back into (2.7a)–(2.7c) we obtain a finite set of flow

equations for the coefficients of the series expansion. In this work, we consider expansions

of order up to (nU , nZ , nW ) = (7, 5, 0) and (5, 3, 2), which yields a coupled set of partial

differential equations of up to 12 and 10 parameters, respectively. The Yang-Lee scaling

solution is identified by inspecting the behavior of the first and second derivatives of the

effective potential, which should satisfy Ū (1) = Ū (2) = 0, while Im Ū (2n) = Re Ū (2n+1) = 0,

for n ∈ N. Note that all of these coefficients are defined at a reference field configuration φ̄
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(where limk→0 χ̄k = 0), which is imaginary, corresponding to the imaginary magnetic field

Hc = ±i|Hc(T )|, with T > Tc.

We introduce the following short-hand notation for the renormalization factor Z̄k ≡
Z

(0)
k (φ̄k), which satisfies Z̄k ∼ (k/Λ)−η at the critical point. Starting from a set of initial

values for the parameters and couplings in the classical action, which are tuned to their

critical values, we may therefore define the anomalous dimension by the corresponding

value in the IR:

η = − lim
k→0

∂

∂s
ln Z̄k. (4.5)

Note that the anomalous dimension at the Yang-Lee edge critical point is negative for all

values of 1 ≤ d < 6.

5 Critical scaling exponents and hyperscaling relations

The critical exponents at the Yang-Lee edge critical point are extracted by a stability

analysis of the scaling solution with respect to perturbations with those operators included

in our ansatz eq. (2.6). That is, for any finite truncation of the scale-dependent effective

action, we obtain a finite set critical exponents corresponding to the eigenvalues λn of the

stability matrix,

γmn =
∂βm

(
{ḡ∗,l}l∈I

)
∂ḡn,k

, (5.1)

which is evaluated at the fixed point of the RG β functions, βm ≡ ∂ḡm,k/∂s, i.e.,

βm
(
{ḡ∗,n}n∈I

)
= 0. (5.2)

The β functions are derived for the dimensionless, renormalized parameters and cou-

plings of the model, ḡn,k, n ∈ I = {1, 2, . . . , nU + nZ + nW }, which are given by

ḡ1,k = k−(d+2)/2Z̄
−1/2
k Ū

(1)
k , ḡ2,k = k(2−d)/2Z̄

1/2
k χ̄k , etc. We order the eigenvalues λn,

n = 1, 2, . . ., according to their values in d = 6 dimensions, where they are identical to the

canonical dimension of the parameters and couplings associated with the operators that ap-

pear in Γk, e.g., λ1(d = 6) = dim Ū (1) ≥ λ2(d = 6) = dim χ̄ ≥ . . .. Of course, as the eigen-

values are analytically continued to dimensions below d = 6, this ordering might change.

We observe that the largest eigenvalue λ1 ≡ 1/νc satisfies the following scaling relation

1/νc = (d+ 2− η)/2, (5.3)

and therefore, the critical exponent νc is determined completely in terms of the anomalous

dimension η. The Yang-Lee edge critical point is known to exhibit another hyperscaling

relation, which follows from the equation of motion of the φ3 theory [2] and can be written as

λ1 + λ2 = d, (5.4)

with λ2 ≡ 1/ν, from which we obtain

1/ν = (d− 2 + η)/2. (5.5)

– 9 –



J
H
E
P
0
7
(
2
0
1
6
)
0
4
1

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

(3,0,0)

(3,1,0)

(4,2,0)

(5,3,0)

(6,4,0)

(7,5,0)

(4,2,1)

(5,3,2)

η

Truncation

d = 5

d = 4

d = 3

Figure 2. Anomalous dimension η for different truncations of the scale-dependent effective action

in d = 3, 4, and 5 dimensions.

Furthermore, from scaling and hyperscaling relations, one can derive

σ =
1

δ
=
d− 2 + η

d+ 2− η
, (5.6)

and β = 1, independent of dimension [16]. Note, however, that for any finite truncation

of Γk scaling relations between critical exponents need not necessarily be satisfied and

therefore should be checked explicitly. This applies to both eq. (5.5) and to eq. (5.6).

Taking eq. (5.5) for example, one may define the relative difference ∆λ2/[(d− 2 + η)/2] =

2λ2/(d−2+η)−1 as an indicator for the quality of the employed truncation at the Yang-Lee

edge fixed point. We observe that the relative error in the scaling relation (5.5) increases

with smaller dimensions. For both the (7, 5, 0) and (5, 3, 2) truncations, we obtain a 15%

error in d = 5 dimensions, a 60− 70% error in d = 4 dimensions etc. This is an indication

that the considered series expansions are not fully converged yet. Nevertheless, since we

expect these scaling relations to hold for high enough orders, we employ eq. (5.5) in the fol-

lowing to determine the exponent ν, keeping in mind that the corresponding estimates will

be associated with an error that is likely to decrease only when higher-order truncations

are considered. In particular, the above numbers suggest that to reach a given precision,

one will need to account for an increasing number of operators in Γk in lower dimensions.

The scaling properties of the Yang-Lee edge are completely determined by the anoma-

lous dimension η. Therefore, we may use eqs. (5.3) and (5.6) to calculate the critical

exponents νc and σ. Our results are summarized in figure 1 where we show the overall

performance of different truncations in the range 3 ≤ d ≤ 6 at the example of σ and νc,

contrasted against the one- and two-loop ε expansion. In figure 2 we show the values for

η in d = 3, 4, and 5 dimensions for all truncations employed in this work, and our best

estimates for the critical exponents η, νc, and σ are reported in table 2. These values were

obtained with the (7, 5, 0) truncation for which, in contrast to the (5, 3, 2) truncation, η

seems to be reasonably close to its asymptotic value, which is reached in the infinite nU and
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Critical exponent d = 3 d = 4 d = 5

η −0.586(29) −0.316(16) −0.126(6)

σ 0.0742(56) 0.2667(32) 0.4033(12)

νc 0.3581(19) 0.3167(8) 0.2807(2)

Table 2. Numerical values for the anomalous dimension η and critical exponents σ, νc in d = 3, 4,

and 5 dimensions. Here, we show our best estimates with errors to account for possible systematic

effects (see section 7). These values were obtained with an exponential regulator (α = 1) [cf.

eq. (7.2)] and the truncation of the type (7, 5, 0).

Dimension functional RG Ref. [23] Ref. [13] Ref. [35] Ref. [27] Ref. [22]

d = 3 0.0742(56) 0.0785 0.0747 0.076(2) 0.0877(25) 0.080(7) 0.085(1)

d = 4 0.2667(32) 0.2616 0.2584 0.258(5) 0.2648(15) 0.261(12) 0.2685(1)

d = 5 0.4033(12) 0.3989 0.3981 0.401(9) 0.402(5) 0.40(2) 0.4105(5)

Table 3. Different estimates for the critical exponent σ (as compiled in ref. [23]) including results

from the constrained three- and four-loop ε expansion [23], strong-coupling expansion [13], Monte

Carlo methods [27, 35], and conformal bootstrap [22]. The values obtained from the functional

RG, with an exponential regulator (α = 1) and truncation of the type (7, 5, 0), lie within error bars

of refs. [13, 27, 35], and are slightly larger the values provided by constrained Padé approximants

of three- and four-loop ε expansion results [23], but are smaller than those obtained by conformal

bootstrap methods [22].

nZ limit [cf. figure 2]. That is, we observe that larger orders of the finite field expansion are

necessary to reach the asymptotic scaling exponents and it seems that this order increases

for dimensions well below the upper critical dimension dc = 6, which is consistent with our

previous observation on the validity of scaling relations.

In table 2 and 3 we account for a systematic bias due to our choice of the IR regulator

(see section 7 for an in depth discussion of this issue). We remark that the difference in

the values of the anomalous dimension between different high-order truncations is typically

larger than that obtained for the critical exponents σ and νc, which is reflected in the errors

for these quantities (cf. table 2). This effect has also been observed with other methods

and may be attributed to the scaling relations (5.3) and (5.6) that yield a smaller error for

the exponents νc and σ (see, e.g., ref. [23]).

Comparing our estimates for the critical exponent σ to a recent compilation of available

data on the Yang-Lee edge critical scaling exponents provided in ref. [23], cf. table 3, we

find that our values lie within the error bounds provided by other methods, e.g., refs. [13,

27, 35]. They lie slightly above the values obtained from constrained Padé approximants of

three- and four-loop ε expansion results [23], but are in general smaller than those values

obtained from a recent conformal bootstrap analysis [22]. Considering the fact, that our

numerical implementation of the RG flow equations is not overly sophisticated (limiting

the truncations that can be considered to a relatively small number of operators) it is quite

remarkable that our present results are competitive with other data in the literature.
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6 Relevance of composite operators and quality of finite truncations

We observe that certain truncations of the scale-dependent effective action, of the type

(nU , 0, 0), nU > 3, are inadequate to investigate the Yang-Lee scaling behavior. In fact, for

these truncations, the Yang-Lee fixed point is unstable below d ≈ 5.6.3 This is certainly

surprising and in conflict with other available data [13, 22, 23, 27, 35]. However, this

behavior can be understood by examining the effect of operator insertions at the level of

the one-loop ε = 6− d expansion, as considered in refs. [3, 31].

In particular, we consider the renormalization of quartic operators at the Yang-Lee

fixed point. This requires the simultaneous renormalization of all operators that carry the

same canonical dimension as δφ4
k, which mix under renormalization [12]. In d = 6 − ε

dimensions these operators can be listed as follows (up to total derivative contributions)

A1,k = δφ4
k/4!, (6.1a)

A2,k = kε/2δφk (∂δφk)
2 /2, (6.1b)

A3,k = kε (�δφk)
2 /2. (6.1c)

Note that they correspond to particular contributions in the finite series expansion of

Uk(φ), Zk(φ)(∂φ)2, and Wk(φ) (�φ)2, respectively, around the homogeneous field expecta-

tion value φ̄k. Different truncations of the scale-dependent effective action are distinguished

by either including or neglecting some of these operators, (6.1a)–(6.1c). The (nU , 0, 0)-type

truncations, for instance do not include operators A2,k and A3,k, while truncations of the

type (nU , nZ , 0) do not include A3,k.

Treating the operators (6.1a)–(6.1c) on an equal footing, both A2,k and A3,k turn out to

be more relevant in d < 6 dimensions than the quartic interaction A1,k. Indeed, from a one-

loop calculation [3, 31], we obtain the following eigenvalues of the stability matrix: λ4 = −2,

λ5 = −2−ε/9, and λ6 = −2−19ε/9. Each of them corresponds to a different linear combina-

tion of operators (6.1a)–(6.1c). One can show that the dominant contribution to λ4 comes

fromA3,k, for λ5 it is the operator A2,k, and for λ6 it is A1,k that contributes the most. Thus,

one might conclude that any truncation that includes only the quartic interaction A1,k is ill-

defined, as it neglects the more relevant contributions, namely A2,k and A3,k. Interestingly,

it is sufficient to consider truncations of the type (nU , nZ , 0) to stabilize the Yang-Lee edge

fixed point. While (nU , 0, 0)-type truncations, nU > 3, fail to produce a Yang-Lee edge

fixed point below d ≈ 5.6, the (nU , nZ , 0) truncations allow us to identify the corresponding

scaling solution all the way down to d = 3 [cf. figure 1]. In general, we expect that the scale-

dependent effective action needs to respect the properties of the theory under simultaneous

renormalization of operators with the same canonical dimension. This is important to de-

fine consistent truncations that are adequate to describe the Yang-Lee edge critical point.

3We remark that this observation depends on the choice of the IR regulator. While the Yang-Lee fixed

point is unstable for the smooth exponential regulator (7.2) (α = 1), this is not the case for the optimized

Litim regulator [38, 39]. However, the latter is not immediately applicable at higher orders in the derivative

expansion.
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7 Residual regulator dependence and principle of minimal sensitivity

To determine the critical scaling properties of a given model, we may in principle choose

any regulator function Rk = Rk(q) as long as it satisfies the appropriate limiting behavior

limk→0Rk = 0 and limΛ→∞Rk=Λ =∞. Indeed, if an exact solution to the functional flow

equation for Γk were available, the calculated observables should not depend on the way we

choose to regularize the theory in the IR and therefore must be independent of the regulator.

However, in practice, we are bound to consider truncations of the coupled infinite set of flow

equations. This yields a finite set of RG equations for which one observes a residual regula-

tor dependence [47]. To investigate this effect, we define a one-parameter family of functions

Rα,k = αRk, (7.1)

with α > 0, and consider the α dependence of the critical exponents. We employ the

following set of exponential regulators

Rexp
α,k =

αZ̄kq
2

exp(q2/k2)− 1
, (7.2)

for this analysis.4 One may identify an optimal value of α, which is determined by the

principle of minimum sensitivity [14]. It states that the value of any given observable that

is least sensitive to changes in α can be considered the best estimate for that quantity.

Since by virtue of scaling relations all critical exponents at the Yang-Lee edge critical

point can be expressed in terms of the anomalous dimension η, we apply this criterion to

η = η(α), i.e., to find the optimal value, we require that

η′(α = αopt) = 0. (7.3)

In table 4 we compare the values of η(α) evaluated for α = 1 as well as α = αopt in different

dimensions and determine the relative error ∆η/η(αopt)≡ [η(1)−η(αopt)] /η(αopt). Largely

independent of dimension, the anomalous dimension evaluated at α = 1 seems to be slightly

overestimated with a relative error of approximately 3%. From this comparison we conclude

that η(α = 1) is typically already a good approximation to the optimal value η(αopt).

d = 3 d = 4 d = 5

η(α = 1) −0.3270 −0.2542 −0.1498

η(α = αopt) −0.3340 −0.2587 −0.1500

Relative error 2.1% 1.7% 1.3%

Table 4. Anomalous dimension η = η(α) at the Yang-Lee edge critical point in d dimensions,

evaluated for the (deformed) exponential regulator Rexp
α,k(q) = αZ̄kq

2
[
exp(q2/k2)− 1

]−1
with α > 0.

The optimal value of α depends on the dimension, i.e., αopt = αopt(d) [cf. figure 3]. The shown

values were obtained using a truncation of the scale-dependent effective action Γk defined by the

index set (4, 2, 0).

4Note that the regulator should be sufficiently smooth in momentum space if higher order approximations

in the derivative expansion are considered (see, e.g., ref. [14]).
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Figure 3. Rescaled anomalous dimension η(α)/|η(αopt)| shown as a function of α. Different curves

correspond to data obtained in d = 3, 4, and 5 dimensions, respectively. The optimal value αopt

for which the critical exponent i s least sensitive to changes in the deformation parameter, i.e.,

η′(α = αopt) = 0, shifts to larger values as the dimension d is lowered. The displayed values were

obtained for a truncation of the scale-dependent effective action Γk of the type (4, 2, 0).

In principle, αopt might depend on the dimension. Indeed, as shown in figure 3, the

optimal value of α shifts to larger values when the dimension d is lowered and eventually

stabilizes around α ≈ 1.7. Although the value of αopt increases, the relative error in η

remains roughly constant. At this point, we remark that below d = 4 an ambiguity appears:

η(α) develops a second extremum, a local maximum, for α < 1 [cf. figure 3]. However, we

do not consider this solution to be physical and define αopt(d) as the analytically continued

local minimum from d = 6− ε.
Since the search for fixed points of the RG β functions becomes quite demanding

numerically for higher-order truncations, we use this information to limit our calculations

to the case α = 1 and estimate the corresponding systematic error in η(α = 1) at the

3 − 5% level (within the considered one-parameter family of regulators). This systematic

effect in the estimation of the anomalous dimension has been accounted for and is indicated

explicitly as a systematic error in the summary of our results in table 2 and 3.

8 Conclusions

In this work we have examined the critical scaling properties of the Yang-Lee edge, or φ3,

theory in dimensions 3 ≤ d ≤ 6. We find our results in good agreement with available

data in the literature, which includes high-temperature series expansions, results from the

ε expansion, strong coupling expansion, and Monte Carlo methods. While our results

are consistent with the strong coupling expansion and Monte Carlo methods refs. [13, 27,

35], our estimates for the critical exponent σ are slightly larger than the values obtained

from constrained Padé approximants for three- and four-loop ε expansion results [23],

and generally lie below those from a conformal bootstrap analysis [22]. We expect that

truncations at higher orders in the derivative and field expansion will improve our estimates
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for the critical exponents. However, more elaborate numerical treatment is necessary to

study such truncations.

We have shown that the stability of nontrivial fixed point associated to the Yang-Lee

edge singularity is sensitive to the insertion of operators that mix under renormalization.

This might seem surprising since a similar behavior is not observed in applications of

the functional RG to establish the scaling behavior at the Ising critical point. However,

comparing our results with a stability analysis at the fixed point to one-loop order in the

ε = 6−d expansion provides a qualitative explanation for the observed lack of stability of the

Yang-Lee edge fixed point for (nU , 0, 0)-type truncations (nU > 3) of the scale-dependent

effective action.

Finally, we remark on possible applications of this work. Based on mean-field argu-

ments, one expects another thermodynamic singularity in the low-temperature phase of

the Ising model (T < Tc) with exactly the same critical exponents as those of the Yang-Lee

edge point — the spinodal singularity. The corresponding critical point appears on the

metastable branch of the free energy and is usually associated with the classical limit of

metastability. However, its existence (beyond mean-field) as well as its scaling properties

have been subject to some debate [25, 32, 53, 59]. It would be interesting to understand

the relation between the Yang-Lee edge point and the spinodal singularity [21, 51]. We

intend to address these issues in a future publication.
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