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Abstract We use the functional renormalization group and
the ε-expansion concertedly to explore multicritical univer-
sality classes for coupled

⊕
i O(Ni ) vector-field models

in three Euclidean dimensions. Exploiting the complemen-
tary strengths of these two methods we show how to make
progress in theories with large numbers of interactions, and
a large number of possible symmetry-breaking patterns. For
the three- and four-field models we find a new fixed point
that arises from the mutual interaction between different field
sectors, and we establish the absence of infrared-stable fixed-
point solutions for the regime of small Ni . Moreover, we
explore these systems as toy models for theories that are
both asymptotically safe and infrared complete. In particu-
lar, we show that these models exhibit complete renormaliza-
tion group trajectories that begin and end at nontrivial fixed
points.

1 Introduction

The O(N ) Wilson–Fisher fixed point appears in a large vari-
ety of systems where it controls the universal critical behav-
ior in the infrared (IR) scaling regime [1–5]. Generalizations
of this universality class appear in the context of coupled-
field models, e.g., for the O(N1) ⊕ O(N2) two-field model
[6–11]. Depending on the number of field components Ni

and dimension d, one finds that different fixed points (FP)
govern the IR behavior of the model. Two of these, the decou-
pled (DFP) and isotropic fixed point (IFP), can be deduced
from the existence of the Wilson–Fisher fixed point. While
the DFP is characterized by a complete decoupling of the

a e-mail: a.eichhorn@imperial.ac.uk
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c e-mail: scherer@thphys.uni-heidelberg.de

fields and therefore can effectively be regarded as a model
for two independent vector fields, the IFP displays a com-
plete symmetry enhancement to an O(N1 + N2) rotational
symmetry. However, the two-field model features another
so-called biconical fixed point (BFP), which emerges due to
the nontrivial interactions between the two field sectors. The
BFP is fully coupled, i.e., mixed interactions are nonvanish-
ing, but it does not show an enhanced symmetry, as the IFP
does; see, e.g., Refs. [10–12]. Interestingly, it turns out that
the O(N1) ⊕ O(N2) model in d = 3 dimensions exhibits
exactly one IR-stable fixed point (with no more than two
relevant directions) for any pair of values N1 and N2. In this
work, we address the question whether generalizations of the
two-field model to the case of three and four fields allow for
further unprecedented fixed-point solutions that are relevant
for the IR scaling behavior of the respective model. More-
over, we look for additional confirmation of our previous
study of n = 3 fields in three dimensions [13], where no sta-
ble fixed point (with no more than three relevant directions)
was found for small values of Ni – in contrast to the two-
field model.1 In our previous study of this system [13], we
searched for fixed points using the nonperturbative functional
renormalization group (RG) [14–19]. Within this scheme, the
β-functions are non-polynomial functions of the couplings
and it is therefore challenging to make sure that numerical
fixed-point searches do indeed uncover all stable fixed points
of the system. To address this problem, we match the solu-
tions of the renormalization group β-functions derived within
the framework of the functional RG to those obtained with the
Wilsonian momentum-shell RG by employing an expansion
in ε = 4 − d. The ε-expansion features β-functions that are
polynomials of the couplings. A comprehensive study of all

1 Here, we consider only IR-stable fixed points for which the effective
potential is real and satisfies a stability criterion [12,13].
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fixed points that are continuously connected to the Gaussian
FP at d = 4, is therefore straightforward. On the other hand,
the full nonlinear β-functions of the functional RG yield rea-
sonable estimates of the stability of fixed points already at
low orders in the approximation. Indeed, comparing fixed
points in both RG schemes, we can convincingly identify
stable fixed points and determine their stability regions in
the space spanned by the values of the field components Ni

in arbitrary dimensions.
More recently, interacting fixed points have become an

active field of research in four-dimensional models, which
are explored in the context of an ultraviolet (UV) comple-
tion for gravity [20,21] as well as QFTs including mat-
ter fields [22–24]. In this setting, an interacting fixed point
provides a well-defined microscopic starting point from
which a fundamental quantum field theory (QFT) valid on
all scales, can be defined. Here, we add another exam-
ple to the collection of toy models for asymptotic safety
that apply to QFTs in low dimensions (see, e.g., Refs.
[25,26]). In our example, we focus on the question how
both the UV and the IR limit of the RG trajectory are deter-
mined by interacting fixed points with different degrees of
symmetry.

2 Effective action functional for multi-field models

Building on previous work [13], we derive the functional RG
β-functions from the nonperturbative flow equation for the
scale-dependent effective action functional � = � [{φi }] in
d-dimensional Euclidean space [14] (see, e.g., [15–19] for
reviews). Our starting point is an ansatz for � to leading
order in the derivative expansion

� =
∫

dd x

[
1

2

n∑

i=1

Zi (∂φi )
2 +U

({φ j }
)
]

, (1)

where the summation runs over n distinct field degrees of
freedom φi (defined in the Ni -dimensional vector space rep-
resentation of the O(Ni ) symmetry group). The renormaliza-
tion factors Zi and the effective potentialU are both assumed
to be scale-dependent.2

In the following, we exploit the symmetry of the model and
write U in terms of the field invariants ρi = φ2

i /2. Further-
more, we choose to expand the effective potential to some
finite order M ≥ 2 around a possibly nonvanishing scale-

2 Here, we include terms to O(∂2) and neglect a possible field depen-
dence of the scale-dependent renormalization factors Zi (that are eval-
uated at the minimum of the effective potential U ). Terms of the type
∼ (

∂φ2
i

)2, which in principle contribute at the same order in the deriva-
tive expansion, are not taken into account.

dependent minimum κi , where ∂Uk/∂ρi |{ρ j=κ j } = 0 and

∂2Uk/∂ρ
2
i

∣
∣{ρ j=κ j } > 0. We have

U =
M∑

m1+···+mn=2

λm1···mn

∏n
i=1 (ρi − κi )

mi

∏n
i=1 mi ! , (2)

where λm1···mn are the scale-dependent couplings. The above
expansion (2) effectively introduces a large number of cou-
plings (at each value of the RG scale parameter, 0 ≤ k < 
),
but only a few of them appear in the bare action S = �(k =

) defined at the scale 
.

The β-functions to one-loop order in the ε-expansion may
also be obtained from the nonperturbative RG flow equa-
tion. This is achieved by employing an expansion around
the upper critical dimension and restricting the functional
space to those operators that appear in the bare action.3 In
the case of two fields these β-functions agree with those
given in Ref. [11], as expected by one-loop universality.
In the following, we consider a model in d = 3 dimen-
sions with three different field degrees of freedom, φ1, φ2,
and φ3, with N1, N2, and N3 field components, respectively,
and compare our results [13] explicitly with the Wilsonian
momentum-shell RG to one-loop order in the ε-expansion.
As outlined in Sect. 1, our main goal is to complement the
functional RG with the ε-expansion to identify and charac-
terize all possible multicritical scaling solutions relevant in
the IR scaling regime. A similar strategy was also chosen in
Ref. [27], where the Polchinski version of the nonperturba-
tive RG [28] was contrasted to the ε-expansion to investigate
multicritical points for a scalar theory with a single order
parameter.

3 RG fixed points to O(ε) in the three-field model

Employing the Wilsonian momentum-shell RG to one-loop
order in the ε-expansion, we obtain the following set of β-
functions:4

3 By virtue of one-loop universality, the O(ε)-expanded functional RG
β-functions are exact and independent of the chosen (nonperturbative)
regulator.
4 We introduce the following notation for the β-functions:

βm1···mn ≡ k
∂λm1···mn

∂k
, (3)

which are expressed in terms of the rescaled couplings

λm1···mn → Kdk
−d(

n∏

i=1

Z−mi
i k(d−2)mi

)
λm1···mn , (4)

where Kd = [
(4π)d/2�(d/2 + 1)/2

]−1
and the RG scale is given by

k = es
, −∞ < s ≤ 0.

123



Eur. Phys. J. C (2016) 76 :88 Page 3 of 10 88

β200 = −ελ200 + (N1 + 8)λ2
200 + N2λ

2
110 + N3λ

2
101, (5)

β020 = −ελ020 + N1λ
2
110 + (N2 + 8)λ2

020 + N3λ
2
011, (6)

β002 = −ελ002 + N1λ
2
101 + N2λ

2
011 + (N3 + 8)λ2

002, (7)

β110 = −ελ110 + (N1 + 2)λ110λ200 + (N2 + 2)λ020λ110

+ N3λ011λ101 + 4λ2
110, (8)

β101 = −ελ101 + (N1 + 2)λ101λ200 + N2λ110λ011

+ (N3 + 2)λ002λ101 + 4λ2
101, (9)

β011 = −ελ011 + N1λ101λ110 + (N2 + 2)λ011λ020

+ (N3 + 2)λ002λ011 + 4λ2
011. (10)

Let us briefly highlight the difference of the above β-
functions to those derived within the functional RG approach
[13]: In the latter case higher-order interactions (generated
by the RG flow toward the IR) are explicitly taken into
account. Therefore, the β-functions for the quartic cou-
plings receive contributions from higher-order couplings
(their scale-dependence being characterized by additional β-
functions that are determined within this approach). More-
over, the functional RG represents amassive renormalization
scheme, and accordingly, mass parameters explicitly enter
all β-functions, resulting in their non-polynomial structure.
Details can be found in Refs. [12,13].

We solve for the zeros of the β-functions, Eqs. (5)–(10)
to obtain the FPs of the RG flow. Their stability is captured
by the (critical) scaling spectrum, defined in terms of the
eigenvalues of the stability matrix at the FP:

θ ∈ − spec

(
∂βM

∂λM ′

)

FP
, (11)

where βM ≡ βm1···mn and λM ′ ≡ λm′
1···m′

n
. We refer to a

FP as IR-stable, if all eigenvalues (11) are negative. Mass-
like perturbations in the bare action are always relevant. It
is the parameters corresponding to these mass-like operators
that need to be tuned in order to reach the IR scaling solu-
tion (assuming that the microscopic parameters of the model
are in the domain of attraction of that particular FP).5 If no
stable FP is found, additional fine tuning might be neces-
sary to observe a continuous phase transition with universal
scaling exponents. However, usually this is experimentally
unfeasible, and we therefore conjecture that the correspond-
ing systems will not feature multicritical behavior. In such a
case the RG flow trajectories diverge and we expect that if a
phase transition is observed it will be of first order. Neverthe-
less, the divergence of RG trajectories might manifest itself
only deep in the IR. E.g., the RG trajectory of a theory for
which the couplings at the UV scale 
 are chosen to be close

5 To comply with the notation introduced in [13], we will assume that
the eigenvalues are labeled in descending order, i.e., θ1 ≥ θ2 ≥ . . . ,
while θμ > 0, for 1 ≤ μ ≤ n, corresponding to mass-like perturbations
(where n = 3 for the three-field model).

to a particular symmetry-enhanced subspace (where another
fixed point with four relevant directions exists) might display
a weak scale-dependence, a very slow walking, over a wide
range of scales. For all practical purposes, such a scenario is
hard to distinguish from conformal scaling behavior.

Within the one-loop ε-expansion our study uncovers the
following expected scaling solutions:

• Isotropic fixedpoint (IFP), featuring a symmetry enhance-
ment to an O(N1+N2+N3) symmetry and consequently
has coordinates λ200 = λ020 = λ002 = λ110 = λ101 =
λ011;

• Decoupled fixed point (DFP) is characterized by a com-
plete decoupling of all sectors, i.e., λ110 = λ101 =
λ011 = 0;

• Decoupled isotropic fixed points (DIFP) are character-
ized by a partial decoupling of the sectors as well as
partial symmetry enhancement. One representative in
this class is given by λ002 = λ020 = λ011, while
λ101 = λ110 = 0, and features an enhanced O(N2 + N3)

symmetry;
• Decoupled biconical fixed points (DBFP) are partially

decoupled but feature no symmetry enhancement, e.g.,
we might have λ101 = λ110 = 0 and λ011 �= λ020.

These FPs were previously identified in the framework of the
functional RG in Ref. [13] where their scaling and stability
properties were discussed in detail.

Within the ε-expansion, we confirm our previous find-
ing that the three-field models in d = 3 dimensions exhibit
regions in the space of field components Ni where no IR-
stable FP exists; cf. Fig. 1. Specifically, this implies that par-
ticular three-field models with a given set of (N1, N2, N3)

do not feature multicritical behavior without additional fine
tuning. A similar absence of IR-stable multicritical FPs was
observed in Ref. [29] where the effect of competing order
was investigated on fermionic quantum criticality (see also
Ref. [30]).

3.1 Fully coupled FPs

To uncover additional IR-stable FPs, we inspect the scaling
solutions as a function of the parameters Ni ; see Fig. 1.

3.1.1 Asymmetrically coupled FP

Our main result is the discovery of a new FP, which is com-
pletely coupled, i.e., λ101 �= 0, λ110 �= 0, and λ011 �= 0, but
which does not feature any symmetry enhancement. In the
following, we will refer to this scaling solution as the asym-
metrically coupled fixed point (ACFP). It defines a genuine
new universality class that cannot be obtained as a generaliza-
tion of the Wilson–Fisher FP, and occurs for the first time in
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Fig. 1 IR-stable and marginally stable FPs for the three-field model in
the one-loop ε-expansion (ε = 1) in the (N2, N3)-plane, where N1 = 1
(left) and N1 = 2 (right). We identify the IFP (blue inverted triangle),
the DFP (green upright triangles), the DIFP (purple filled circles), and

the DBFP (blue filled squares). In addition to these scaling solutions,
we find another IR-stable fully coupled FP, the ACFP (pink filled dia-
monds), while no stable FP is found for small values of N2 and N3
(white circle)

the three-field model. This new universality class relies cru-
cially on the presence of three competing orders, and cannot
occur in systems with a smaller number of order parameters.

To illustrate its properties, we give the corresponding val-
ues of the dimensionless, renormalized couplings λm1m2m3

and the critical exponents θ4, θ5, . . . at selected points in the
(N2, N3)-plane, for N1 = 1; see Table 1. Mass parameters
do not appear in the β-functions to the given order of the
ε-expansion. Therefore, the three relevant scaling exponents
θ1, θ2, and θ3 are not provided in the following.

We follow the fully coupled asymmetric FP along the N ≡
N2 = N3 direction, where we expect that it should collide
with the DFP at some critical value of N ; cf. Fig. 2. In fact,
we find that the two FPs exchange their stability properties
at (N = 10, N1 = 1). That is, at the collision point the
exponent that decides about the stability properties of the
scaling solution, θ4, changes its sign for each of the two
solutions. If we attempt to continue the asymmetric FP to
smaller values of N , we observe that it disappears into the
complex plane at N = 8, N1 = 1, together with another
fully coupled FP which is always unstable – both FPs become

inaccessible for small values of Ni . From these results one
might conclude that the fully coupled asymmetric FP will
not be of any significance experimentally: The one-loop ε-
expansion seems to suggest that there is a threshold value
Ni � 5, for all i = 1, 2, 3, below which the ACFP disappears
completely (cf. Fig. 1). We show in Sect. 5 that the functional
RG provides a quantitatively more reliable estimate for the
critical values of Ni .

It is interesting to note that the spontaneous creation/
annihilation of two FPs, at least one of which is IR stable
and therefore might be relevant for the multicritical scaling
behavior in the IR, does not appear in the O(N1) ⊕ O(N2)

models. In the case of two coupled order parameters, we
may associate exactly one IR-stable FP to each pair of val-
ues (N1, N2). Such a scaling solution can then be continued
to all values of Ni , but in that process it might lose its sta-
bility to another FP. That is, in principle each of the possible
multicritical universality classes is accessible for all values
of field components N1 and N2 via additional fine tuning of
the parameters. This is in sharp contrast to the three- and
four-field models (see Sect. 4).

Table 1 As we decrease the
number of field components N3
and pass through the point
N1 = 1, N2 = N3 = 8 (ε = 1),
the fully coupled FP ceases to be
IR stable – the scaling exponent
θ4 becomes non-negative as the
value of N3 is lowered

N1 N2 N3 λ200 λ020 λ002 λ110 λ101 λ011

1 8 8 0.105 0.062 0.062 0.020 0.020 −0.002

1 8 9 0.109 0.062 0.059 0.013 0.008 −4 × 10−4

1 8 10 0.110 0.063 0.056 0.012 0.002 −7 × 10−5

N1 N2 N3 θ4 θ5 θ6 θ7 θ8 θ9

1 8 8 0 −0.096 −0.255 −0.996 −0.996 −1.000

1 8 9 −0.019 −0.046 −0.274 −0.977 −0.999 −1.000

1 8 10 −0.007 −0.037 −0.294 −0.985 −1.000 −1.000
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Fig. 2 Varying the number of field components N ≡ N2 = N3, while
keeping N1 = 1 fixed, we observe that the asymmetric fully coupled
FP (pink filled diamonds) appears together with a second fully coupled
(unstable) FP (rose diamond). By inspecting the sign of the exponent
θ4, which determines the stability of the considered scaling solution,
we conclude that the ACFP is IR stable until N = 10 where it collides
with the DFP (green upright triangles). From there the DFP takes over
stability

3.1.2 Generalized BFP and regions without IR stable FP

In general, the space of renormalized couplings λm1 ...mn fea-
tures closed subspaces that are characterized by enhanced
symmetries and the decoupling phenomenon: Whenever one
of the sectors decouples, and the couplings between sectors
vanish, fluctuations cannot regenerate the mixed couplings,
and therefore the RG flow stays within that space, making
it an RG-invariant subspace. With the discovery of the new
asymmetrically coupled FP we may complete this picture in
the following way: We may state that each of these subspaces
(excluding its symmetry-enhanced or decoupled subspaces)
contains at least one FP. In fact, from our analysis we find
that almost all of these subspaces will feature an IR-stable FP
for a particular set of values Ni , with one notable exception,
the BIFP, cf. Appendix 1. This scaling solution is associated
to the partially symmetry-enhanced subspace and is nowhere
stable.

While in principle such a universality class exists, it would
require a higher degree of fine tuning to reach it. Thus, the
associated pattern of symmetry-breaking is not expected to
be relevant experimentally. The BIFP would be a natural can-
didate to take over stability from the IFP as soon as it becomes
unstable, just as the BFP takes over stability from the IFP in
the two-field model. The additional relevant directions of the
BIFP prevent this scenario from being realized, and imply
that the three-field case features a region in the space of the
Ni that is devoid of stable FPs.

3.2 Multi-field theories as toy models for asymptotic safety
and IR-completeness

In order for a QFT to provide a viable description of a set of
degrees of freedom and their interactions on all scales, i.e.,
in order for the theory to be fundamental, it must reach a

renormalization group FP in the UV and IR, respectively.6

Here, we provide a set of models that feature a large number
of complete trajectories that run into nontrivial FPs both in
the UV and IR.

In this context, it is important to realize that in principle
a given FP can be reached asymptotically in either one of
the two limits, if it features at least one critical exponent that
differs in sign from the others. If a FP should be reached in
the UV, all irrelevant couplings need to be tuned in such a
way that the RG trajectory lies within the UV-critical hyper-
surface of the FP. In the context of high-energy physics, this
implies that the values of all irrelevant couplings correspond
to predictions of the model, i.e., for the model to be asymp-
totically safe, there is exactly one possible value for each
irrelevant coupling. On the other hand, if the FP is reached
in the IR, the renormalization group flow is automatically
drawn toward it along the irrelevant directions, and it is the
relevant directions that require tuning.

The large number of interacting FPs in our model pro-
vides a variety of different complete trajectories, connect-
ing pairs of nontrivial FPs, subject to global properties of
the flow. Furthermore, due to the possibility of symmetry
enhancement at FPs, multi-field models are also of interest
from the point of view of fundamental physics. For instance,
it has been conjectured that quantum gravity should exhibit
a violation of Lorentz symmetry, connected to anisotropic
scaling in the ultraviolet [31,32]. As violations of Lorentz
symmetry are strongly constrained in the IR, such a setting
requires a rather precise restoration of Lorentz symmetry at
small scales. Here, we identify a set of models (defined by
the number of field components in the different field sec-
tors, Ni ) where a symmetry enhancement – in our case an
enhanced rotational symmetry in field space – requires addi-
tional tuning. That is, the symmetry enhancement scenario is
thus considered “unnatural”. Interestingly, we also observe a
number of realizations of these theories, in which an enhance-
ment of symmetry is the most natural IR-endpoint of a tra-
jectory, as all other existing FPs require a higher degree of
tuning in order to reach them. Note that some degree of tun-
ing is always required, as no fixed point comes with only
IR-attractive directions. Demanding that the trajectory ends
in an IR fixed point thus requires tuning at least three parame-
ters. To avoid symmetry enhancement in these cases requires
additional tuning.

In particular, we will focus on two examples: The first
involving the ACFP as a UV fixed point, thus defining a toy
model for an asymptotically safe model. Here we pick N1 =
1, N2 = N3 = 11, where the ACFP has one IR-relevant
direction; this triggers a flow to the DFP in the IR. As a second
example, we consider a region of Ni where, e.g., the IFP is

6 In principle, more exotic scenarios as, e.g., limit cycles, might also
be viable.
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Fig. 3 Upper panel We plot RG flow trajectories connecting the DFP
in the UV (large positive s) with the symmetry-enhanced IFP in the IR
(large negative s). We show the couplings λ200 = λ020 = λ002 (solid
red line) and λ110 = λ101 = λ011 (dotted blue line) for N1 = N2 =
N3 = 1 as a function of the RG scale s = ln(k/
). In this case the
IFP is the stable FP and the enhanced symmetry emerges naturally as
a result of the flow toward the IR. Lower panel We show a trajectory
that connects the ACFP in the UV to the DFP in the IR for the case
N1 = 1, N2 = N3 = 11, for which the DFP is IR stable, and the ACFP
has one IR-relevant direction, which triggers the flow to the IR. We
show the couplings λ200 (solid red line), λ020 = λ002 (dotted dark red
line), λ110 = λ101 (dashed blue line) and λ011 (dot-dashed dark blue
line)

stable (with three relevant directions) it is a natural candidate
FP for RG trajectories in the IR; see Fig. 3. Thus, a model
that has been rendered asymptotically safe, e.g., by defining
it at the DFP, can only be infrared complete when at least
three directions are tuned and it is the symmetry-enhanced
IFP which provides the lowest number of relevant directions.
In this case, IR FPs with a lower degree of symmetry will
typically require a higher degree of fine tuning.

4 Four-field model to one-loop order in the ε-expansion

We proceed in an analogous manner for the four-field model.
Our main goal here is to confirm that the two novel features
of the class of O(N1) ⊕ O(N2) ⊕ O(N3)-field models – the
possible existence of theories without an IR-stable FP and the
existence of a new fully coupled FP – carry over to the case
of larger numbers of fields. The β-functions are given by the
obvious generalization of Eqs. (5)–(10) to the case where one
additional field degree of freedom with O(N4) symmetry is
added. Determining the zeros of the beta functions, we find
that a new FP which is fully coupled and does not feature
any symmetry enhancement, exists and is stable at selected
points in the space of the Ni , i.e., a FP that appears for the
first time in the four-field case similar to the role of the ACFP
in the three-field case, cf. Table 2. In this context, stability
is of course defined as the existence of no more than four
relevant directions.

The new FP collides with the DFP at Ni = 10 and becomes
unstable. Moreover, our results indicate that no FP is stable,
e.g., at the point N1 = 1, N2 = N3 = N4 = 8. Together
with the results in Table 2, this suggests that a structurally
similar picture to the three-field case carries over to the four-
field case: The IFP will be stable for very small values of
the Ni , before it is destabilized. Keeping N1 = 1 fixed and
increasing N2 = N3 = N4, we pass through a regime without
a stable FP, i.e., with nonuniversal behavior only. At Ni = 9,
the new FP then appears from the complex plane, and is
stable until it collides with the DFP, that takes over stability
for all larger values of the Ni . Based on our findings in the
three-field model, we expect that our O(ε) estimates for the
Ni , at which FPs are stable, are considerably larger than the
correct values. As can be tested within, e.g., the LPA 4, the
functional RG is more reliable when it comes to quantitative
estimates.

Based on our findings in the three- and four-field case, we
therefore conjecture that models with larger numbers of com-
peting orders will not feature multicritical behavior without
additional fine tuning.

Table 2 Stable, fully coupled FP in the four-field case. There are four relevant directions; the corresponding exponents θ1, …, θ4 are not provided

N1 N2 N3 N4 λ2000 λ0200 λ0020 λ0002 λ1100 λ1010 λ0110 λ1001 λ0101 λ0011

1 9 9 9 0.110 0.059 0.059 0.059 0.007 0.007 −1 × 10−4 0.007 −1 × 10−4 −1 × 10−4

1 10 9 9 0.110 0.056 0.059 0.059 0.001 0.006 −2 × 10−5 0.006 −2 × 10−5 −1 × 10−4

1 10 9 8 0.109 0.055 0.059 0.062 0.003 0.008 −8 × 10−5 0.013 −1 × 10−5 −3 × 10−4

N1 N2 N3 N4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 θ13 θ14

1 9 9 9 −0.012 −0.028 −0.028 −0.295 −0.295 −0.295 −0.986 −1.000 −1.000 −1.000

1 10 9 9 −0.004 −0.016 −0.024 −0.295 −0.314 −0.314 −0.993 −1.000 −1.000 −1.000

1 10 9 8 −0.009 −0.022 −0.046 −0.294 −0.306 −0.314 −0.975 −0.999 −1.000 −1.000
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5 Results from the functional RG

Details on the derivation of the functional RG equations
for the model can be found in Ref. [13]. As an important
difference to the results of the ε-expansion we note that
the critical values of Ni , at which the DFP becomes sta-
ble, are found to lie at much lower values even in the sim-
plest possible truncation of the functional RG equations,
the local potential approximation (LPA). It is defined by an
expansion of the scale-dependent effective potential (2) in
terms of point-like interactions, without taking into account
the scale-dependence of the renormalization factors, i.e.,
ηi ≡ −k∂ ln Zi/∂k = 0 (see Eq. (1) for the definition of
the parameters and couplings in the given model). The LPA-
type truncation of the functional RG provides a quantitatively
more precise estimate than the one obtained from the one-
loop ε-expansion, which may be confirmed independently by
employing nonperturbative scaling relations (see Ref. [33]).

Employing an LPA truncation to fourth order in the fields
and including the scale-dependence of the renormalization
factors, i.e., ηi �= 0 (which we will refer to as LPA 4 + η in
the following), we confirm the qualitative behavior of the ε-
expansion: Fixing N1 = 1 and increasing N ≡ N2 = N3, the
IFP becomes unstable around N � 1.85. For larger values of
N there is no IR-stable FP, until the new ACFP appears and
becomes stable; cf. Fig. 4. In contrast to the ε-expansion,
this already happens at N � 2.8. Finally, at N � 3 the
asymmetrically coupled FP exchanges its stability with the
DFP, which remains IR stable for all N � 3. The mecha-
nism by which the new ACFP appears is completely analo-
gous to the situation observed in the one-loop ε-expansion:
It appears from the complex plane together with another FP
and immediately takes over stability. Note, however, that the
region of values N where the ACFP is stable is shifted to

Fig. 4 We show the values for the critical exponent θ4 obtained from
the functional RG (LPA 4 + η) as a function of N ≡ N2 = N3 (N1 = 1,
d = 3), for the IFP (blue inverted triangles), the DFP (green upright
triangles), and the new coupled asymmetric FP (pink filled diamonds).
We find the same picture as in the ε-expansion: The ACFP is IR stable
in a small region 2.8 � N � 3 before the DFP takes over stability.
The upperand lower boundary values to this region are significantly
smaller than those obtained from the one-loop ε-expansion (ε = 1):
8 ≤ N ≤ 10 (cf. Fig. 2)

significantly smaller values of N bringing it into the reach of
physically interesting models. Thus, the asymmetrically cou-
pled FP might actually be of interest for efforts to establish
the phase diagram of strongly correlated many-body systems
either experimentally or via lattice Monte Carlo techniques,
for an overview, see, e.g., Ref. [34]. Using scaling relations
to estimate the stability regime for the DFP, we find that the
LPA 4 + η slightly overestimates the width of the region
where the ACFP is stable. We expect that the region where
the ACFP is stable becomes even smaller at higher orders of
the LPA. In fact, this might account for the fact that it was not
discovered in our previous analysis [13] based on a LPA to
eighth order in the fields. We generically expect that a trun-
cation of eighth will be sufficient to provide quantitatively
reasonable estimates for the critical exponents.

Our present results clearly highlight the strength of a com-
bination of the functional RG with the ε-expansion: The latter
allows us to compile a complete list of all FPs that can be con-
tinuously connected to the Gaussian FP at d = 4, whereas
the former provides us with a quantitatively more reliable
estimate of the stability regions of the different FPs. Com-
bined, these methods allow us to arrive at a complete picture
of stable FPs in the space of the Ni while minimizing the
computational effort.

6 Conclusions

With this study we identify a new fully coupled FP in the
d = 3 dimensional three- and four-field models. While we
find that this FP is indeed IR stable for some values of Ni ,
it does not lie at real fixed-point values for the couplings at
other values of the Ni . This is in stark contrast to the O(N )

theory or the class of O(N1) ⊕ O(N2) models [6–11] where
the relevant scaling solution(s) are either IR stable or can be
reached via additional fine tuning. In addition to identify-
ing a new FP, we confirm our previous finding [13] that for
certain multi-field models there is no IR-stable multicritical
scaling solution. This behavior is directly tied to the prop-
erties of the new fully coupled fixed points, the ACFP and
the BIFP. Thus, this study has further clarified the reason
for the absence of multicritical scaling solutions: While in
the two-field model [6–11] different FPs exchange stability
only through a collision of two fixed points at real values of
Ni , the three- and higher-field models feature the additional
possibility that FPs emerge from the complex plane.

Our study plays out the strengths of two methods: The
ε-expansion allows for a straightforward identification of all
FPs that can be continuously connected to the Gaussian FP in
d = 4 dimensions, as the β-functions are polynomial in the
couplings. In contrast, the fixed-point search is more involved
with the functional RG due to the non-polynomial nature of
the β-functions. However, the functional RG provides better
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quantitative results already at low orders of the LPA. This
can be seen clearly for the example of the DFP. To estimate
its stability regime, we may apply an exact scaling relation
[8,9,35–37] to determine the exponent θ4 from critical expo-
nents of the O(N ) Wilson–Fisher FP [1–5]. By doing so, we
find that the result from the LPA at fourth order in the fields
provides a quantitatively more reliable estimate for the scal-
ing exponent than the ε-expansion at one-loop order. Taken
together, the two methods thus allow for an efficient iden-
tification of all existing FPs, using the ε-expansion at low
orders, followed by a leading order determination of the sta-
bility regimes and critical exponents with the functional RG.

The identification of distinct interacting FPs in three- and
four-field models also allows us to explore RG trajectories
that define both UV- and IR-complete QFTs in 2 < d < 4
dimensions. In general, multi-field theories provide a large
number of such trajectories and typically feature two distinct
regimes when it comes to the question of symmetry enhance-
ment in the IR: For values of Ni where a symmetry-enhanced
FP is IR stable, all other FPs require a higher degree of fine
tuning to reach them in the IR. Thus, IR symmetry enhance-
ment appears as a “natural” possibility that requires the least
amount of fine tuning. In contrast, for other values of Ni , the
same symmetry-enhanced FP will feature additional relevant
directions, giving rise to the familiar notion that an enhance-
ment of symmetry typically requires additional fine tuning.

Our findings might have implications for possible UV
completions of coupled scalar models in d = 4 dimensions.
We observe that the asymmetrically coupled FP can be found
in the ε-expansion, i.e., it emerges from the Gaussian FP at
d < 4. Thus we conclude that no nontrivial FP exists for these
models in d = 4, unless it lies within a strongly nonperturba-
tive regime at very large values of the couplings. This implies
that, e.g., inflationary models with several scalar fields are not
UV complete, but instead they most probably feature Lan-
dau poles at finite scales. Interestingly, a coupling to gravity
could facilitate a UV completion in the context of asymp-
totically safe models. Studies suggest that a gravitational
FP persists when the effects of several minimally coupled
scalars are taken into account [38]. It is of course interesting
to understand whether a similar statement applies to interact-
ing matter models. In particular, the new universality classes
that we discuss in this paper and which are inherent to n field
models (n ≥ 2) could potentially survive an extension to 4
dimensions, when gravitational effects are added, as these
generically seem to shift Gaussian FPs to interacting FPs
[39]. Thus gravity might extend the upper critical dimension
for this interacting FP to d > 4. Following the methods dis-
cussed in [40–42], an assessment of this scenario could be
possible. In the context of scalar dark-matter models, where
the coupling to other matter fields is less relevant, the exis-
tence of such scalar-gravity FPs could provide a predictive
UV completion.
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Appendix A: Fully coupled FPs without IR stability

Here, we discuss the existence of FPs, which feature sym-
metry enhancement to O(Ni + N j ) ⊕ O(Nk) symmetry.
Unlike the DIFP, these FPs feature nonvanishing interactions
that couple the (i, j)- to the k-sector, which does not take
part in the symmetry enhancement. We can identify these
as arising from the biconical FP in the two-field model, i.e.,
their coordinates are given by the coordinates of the two-
field BFP for N1 + N2 and N3 (and the two other combi-
nations, respectively). As an example, let us focus on the
O(N1 + N2) ⊕ O(N3)-symmetric FP. To reach this FP, it
is necessary to tune at least one additional direction. As an
example, we give the coordinates and critical exponents of
the FP at several selected points, cf. Table 3. Comparing the
critical exponents to those of the BFP in the two-field model
we realize that three of the critical exponents are inherited
from the BFP. For comparison, we list the fixed-point coor-
dinates and critical exponents for the two-field BFP at the
corresponding points, cf. Table 4.

Two of these FPs collide with the isotropic FP at N1 = 1,
N ≡ N2 = N3 = 1.5, and they destabilize the IFP. Addi-
tionally, two more coupled, non-symmetric FPs are involved
in this collision. These new FPs are nowhere stable. They
disappear into the complex plane away from the real axis
at N ≈ 5.8, where they collide with each other. We show

Table 3 Fixed-point values and critical exponents for the symmetry-
enhanced BIFP. A positive exponent θ4 indicates that this FP is not IR
stable

N1 N2 N3 λ200 λ020 λ002 λ110 λ101 λ011

1 1 1 0.084 0.084 0.068 0.084 0.115 0.115

1 2 2 0.085 0.085 0.091 0.085 0.054 0.054

N1 N2 N3 θ4 θ5 θ6 θ7 θ8 θ9

1 1 1 0.130 −0.011 −0.101 −0.491 −0.708 −1

1 2 2 0.097 −0.017 −0.053 −0.667 −0.836 −1
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Table 4 For comparison, we show fixed-point values and critical expo-
nents for the biconical FP in the two-field case. There are only two rel-
evant directions in this model and it is therefore the exponent θ3, which
determines the IR stability of the scaling solution

N1 N2 λ20 λ02 λ11

1 2 0.084 0.067 0.115

3 2 0.085 0.091 0.054

N1 N2 θ3 θ4 θ5

1 2 0.130 −0.491 −1

3 2 −0.053 −0.836 −1

Fig. 5 Two new, fully coupled FPs also collide with the IFP at N ≡
N2 = N3 = 1.5. These two FPs are mapped into each other under the
exchange of φ2 and φ3. Thus their critical exponents are identical, as
are some of their couplings. We show the values of λ110 for the two
FPs (lower panel), to illustrate their collision at N ≈ 5.8, where they
disappear into the complex plane

Fig. 6 We show the IFP (blue inverted triangles), the DIFP (purple
filled circles), and the coupled isotropic BIFP (orange multiple sign) as
a function of N2 = N3 for fixed N1 = 1. The BIFP collides with the
IFP at N2 = N3 = 1.5 and renders the IFP unstable without becoming
stable itself. At larger values of N2 = N3 it collides with the DIFP. The
coupled BIFP is shown only between the collision points to illustrate
its role as a mediator between the IFP and DIFP

their critical exponents and selected fixed-point coordinates
in Fig. 5. The collision that destabilizes the IFP leaves no
stable FP. The coupled IFP then moves on to collide with the
DIFP which features a similar symmetry enhancement to an
O(N1 + N2) ⊕ O(N3) symmetry, cf. Fig. 6. The existence
of new, symmetry-enhanced FPs is thus responsible for the
early destabilization of the IFP (Fig. 6).
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