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Abstract. The aim of this note is to characterize all pairs of sufficiently smooth functions for
which the mean value in the Cauchy mean value theorem is taken at a point which has a
well-determined position in the interval. As an application of this result, a partial answer is
given to a question posed by Sahoo and Riedel.
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1. Introduction

Given two differentiable functions F,G : R → R, the Cauchy mean value
theorem (MVT) states that for any interval [a, b] ⊂ R, where a < b, there
exists a point c in (a, b) such that

[F (b) − F (a)] g(c) = [G(b) − G(a)] f(c). (1)

Here, and in the rest of the paper we will use the “lower case” notations for
the derivates f = F ′ and g = G′. A particular situation is the Lagrange MVT
when G(x) = x is the identity function, in which case (1) reads as

F (b) − F (a) = f(c)(b − a). (2)

The problem to be investigated in this note can be formulated as follows.

Problem 1. Find all pairs (F,G) of differentiable functions F,G : R → R

satisfying the following equation

[F (b) − F (a)] g(αa + βb) = [G(b) − G(a)] f(αa + βb) (3)

for all a, b ∈ R, where f = F ′, g = G′, α, β ∈ (0, 1) are fixed and α + β = 1.

The authors were supported by the Swiss National Science Foundation, SNF, Grant No.
200020 146477.
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For the case of the Lagrange MVT with c = a+b
2 , this problem was con-

sidered first by Haruki [5] and independently by Aczél [1], proving that the
quadratic functions are the only solutions to (2). This problem can serve as
a starting point for various functional equations [9]. More general functional
equations have been considered even in the abstract setting of groups by sev-
eral authors including Kannappan [6], Ebanks [3], Fechner-Gselmann [4]. On
the other hand, the result of Aczél and Haruki has been generalized for higher
order Taylor expansion by Sablik [8].

For the more general case of the Cauchy MVT much less is known. We men-
tion Aumann [2] illustrating the geometrical significance of this equation and
the recent contribution of Páles [7] providing the solution of a related equation
under additional assumptions. In this note we provide a different approach to
the Cauchy MVT. As it will turn out, the most challenging situation corre-
sponds to c = a+b

2 in which case our main result is the following:

Theorem 2. Assume that F,G : R → R are three times differentiable functions
with derivatives F ′ = f , G′ = g such that

[F (b) − F (a)] g
(

a + b

2

)
= [G(b) − G(a)] f

(
a + b

2

)
(4)

for all a, b ∈ R. Then one of the following possibilities holds:
(a) {1, F,G} are linearly dependent on R;
(b) F,G ∈ span{1, x, x2}, x ∈ R;
(c) there exists a non-zero real number μ such that

F,G ∈ span{1, eμx, e−μx}, x ∈ R;

(d) there exists a non-zero real number μ such that

F,G ∈ span{1, sin(μx), cos(μx)}, x ∈ R.

The paper is organized as follows. In Sect. 2 we consider the problem first
for the known case of the Lagrange MVT as an illustration of our method. In
Sect. 3 we provide a preliminary result that will allow passing local information
to a global one about the pairs of differentiable functions (F,G) satisfying (3).
In Sects. 4, 5 we consider the asymmetric (α �= β) and symmetric (α = β =
1/2) cases, respectively. Section 6 is for final remarks. Here we also provide a
partial result to an open problem by Sahoo and Riedel which corresponds to
a more general version of (3).

2. The Lagrange MVT with fixed mean value

Note that every c ∈ (a, b) can be written uniquely as c = αa + βb for some
α, β ∈ (0, 1) with α + β = 1. It is easy to check that (2) holds for all a, b ∈ R

with fixed α �= 1/2 if F is a linear function, and with α = 1/2 if F is a
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quadratic function. We claim that the converse of this statement is also true.
As mentioned earlier, there are various proofs of the latter in the literature,
see for example [1,5,9]. Nevertheless, we give here a short and self-contained
argument mainly to illustrate our approach to the more general case of the
Cauchy MVT.

Proposition 3. Let α ∈ (0, 1) be fixed and β = 1 − α. Assume that F : R → R

is a continuously differentiable function with F ′ = f such that

F (b) − F (a) = f(αb + βa)(b − a) for all a, b ∈ R with a < b. (5)

Then the following statements hold:

1. if α �= 1/2 then F is a linear function;
2. if α = 1/2 then F is a quadratic function.

Proof. Let us put αb + βa = x and b − a = h. Then (5) reads as

F (x + βh) − F (x − αh) = f(x)h for all x ∈ R, h > 0. (6)

From this equation it is apparent that f = F ′ is differentiable as a linear
combination of two differentiable functions and thus F is twice differentiable.
By induction, it follows that F is infinitely differentiable.

Differentiating (6) with respect to h, we obtain the relation

βf(x + βh) + αf(x − αh) = f(x), x ∈ R, h > 0. (7)

Again, we differentiate (7) with respect to h and find that

β2f ′(x + βh) − α2f ′(x − αh) = 0, x ∈ R, h > 0.

Since f ′ is continuous, letting h ↘ 0, we obtain

(β2 − α2)f ′(x) = (1 − 2α)f ′(x) = 0 for all x ∈ R.

If α �= 1/2, this implies that f ′ = 0 identically. Therefore f is constant and
thus F is a linear function, proving the first statement.

If α = 1/2, then (7) reads as

f

(
x +

h

2

)
+ f

(
x − h

2

)
= 2f(x), x ∈ R, h > 0,

and twice differentiation with respect to h leads to

f ′′
(

x +
h

2

)
+ f ′′

(
x − h

2

)
= 0, x ∈ R, h > 0.

Now letting h ↘ 0, we get f ′′(x) = 0 for all x ∈ R, so f is linear and F is a
quadratic function, proving the second statement. �
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3. The Cauchy MVT with fixed mean value

Let us introduce the sets

Uf := {x ∈ R : f(x) �= 0}, Ug := {x ∈ R : g(x) �= 0}, (8)

and also their complements Zf := R\Ug and Zg := R\Uf . Observe that if Ug

is empty, i.e. G is constant on R, then (3) holds for trivial reasons (both sides
are identically zero) for an arbitrary differentiable function F . Of course, we
can change the roles of G and F and claim: if F is constant then (3) holds for
any differentiable function G. Assume therefore that Ug �= ∅. Then there is a
sequence of mutually disjoint open intervals {Iσ}σ∈Σ, Σ ⊂ N, such that

Ug =
⋃

σ∈Σ

Iσ. (9)

Proposition 4. If Ug �= ∅ and Uf ∩ Ug = ∅, then Uf = ∅, i.e. f ≡ 0 on R and
thus F is constant.

Proof. By assumption, there is a non-empty interval (p, q) ⊂ Ug such that
g(x) �= 0 on (p, q), but f(x) = 0 for all x ∈ [p, q]. Then with the changing of
variables h = b − a, x = αa + βb, (3) yields

F (x + αh) − F (x − βh) = 0 for all x ∈ (p, q), h > 0. (10)

Denoting x + αh by y for x ∈ [p, q] and h > 0, we get F (y) − F (y − h) = 0
if (h, y) lies within the semi–strip (cf. Fig. 1)

L :=
{
(h, y) : h > 0, p + αh < y < q + αh

}
.

Figure 1. The semi-strip L
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Then, for y > p choosing h > 0 such that (h, y) ∈ L, we have
∂

∂y
F (y) =

∂

∂y
F (y − h) = − ∂

∂h
F (y − h)

= − ∂

∂h
F (y) = 0,

so F (y) is a constant, say F (y) = F
(

p+q
2

)
for y > p. However, by (10), we

have F (q + αh) = F (q − βh) and thus F (y) is the same constant for all y < q.
Therefore, f(y) = F ′(y) = 0 for all y ∈ R. �

Proposition 4 shows that the condition Uf ∩ Ug = ∅ holds only if at least
one of the sets Uf and Ug is empty. Then we have the simple cases described
in the beginning of the section.

Proposition 5. Let (F,G) be a solution of the Problem 1 satisfying

Uf ∩ Ug �= ∅, (11)

and consider the representation (9). If {F,G, 1} are linearly dependent as func-
tions on Iσ for every σ ∈ Σ, then {F,G, 1} are linearly dependent on R.

Proof. For σ1, σ2 ∈ Σ with σ1 �= σ2, consider the intervals Iσ1 := (p1, q1),
Iσ2 := (p2, q2) with

p1 < q1 ≤ p2 < q2, (12)

and assume that {F,G, 1} are linearly dependent on Iσ1 and Iσ2 . Then it
follows that there are constants A1, A2, B1, B2 ∈ R such that

F (x) = A1G(x) + B1, x ∈ Iσ1 , (13)

= A2G(x) + B2, x ∈ Iσ2 . (14)

With the changing of variables h = b − a, x = αa + βb, (3) yields

[F (x + αh) − F (x − βh)] g(x) = [G(x + αh) − G(x − βh)] f(x)

for all x ∈ R and h > 0. Since f(x) = A2g(x) if x ∈ Iσ2 by (14) and g(x) �= 0
for x ∈ Iσ2 , we have, for all x ∈ Iσ2 , h > 0

F (x + αh) − F (x − βh) = A2[G(x + αh) − G(x − βh)], x ∈ Iσ2 , h > 0. (15)

If at the same time x − βh ∈ Iσ1 , then F (x − βh) = A1G(x − βh) + B1 by
(13). Inserting this value into (15), we obtain

F (x + αh) = A2G(x + αh) + (A1 − A2)G(x − βh) + B1 (16)

for

x ∈ Iσ2 , x − βh ∈ Iσ1 , h > 0. (17)

Put y = x + αh, then x − βh = y − h, and (17) means that (h, y) lies within
the parallelogram (cf. Fig. 2)

Π :=
{
(h, y) : p2 + αh < y < q2 + αh, p1 + h < y < q1 + h

}
.
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Figure 2. The parallelogram Π

Since β ∈ (0, 1), (12) guarantees that Π �= ∅, and (16) implies

F (y) = A2G(y) + (A1 − A2)G(y − h) + B1 for all (h, y) ∈ Π.

Therefore, at any point of Π, we have

0 =
∂

∂h
F (y) = −(A1 − A2)G′(y − h) = (A2 − A1)g(y − h).

But y − h ∈ Iσ1 by (17), so g(y − h) �= 0 and thus

A2 − A1 = 0. (18)

So far our analysis says nothing about B1, B2 in (13), (14) but since σ1, σ2 ∈ Σ
were arbitrary, (18) together with (13) and (14) imply

f(x) = Ag(x) for some constant A ∈ R and all x ∈ Ug. (19)

On the other hand, by changing the roles of F and G in the above analysis,
we come to the conclusion that

g(x) = Kf(x) for some constant K ∈ R and all x ∈ Uf . (20)

By (11) there is a point x0 ∈ Ug ∩ Uf so AK = 1 and these coefficients are
not zero. But then (19) implies Ug ⊂ Uf and (20) implies Uf ⊂ Ug; therefore,
Ug = Uf and Zg = Zf . The latter means that

f(x) = Ag(x), g(x) = Kf(x) if x ∈ Zg = Zf

by trivial reasons (all these values are zeros) so with (19) and (20) these iden-
tities are valid on the entire R = Uf ∪ Zf = Ug ∪ Zg. In particular, it follows
that {F,G, 1} are linearly dependent on R. �
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Figure 3. The triangle T

4. The Cauchy MVT with fixed asymmetric mean value

In this section we consider the asymmetric case, i.e. in (3) we take

α, β ∈ (0, 1) with α �= 1/2 and β = 1 − α. (21)

The following proposition describes all pairs (F,G) of two times continu-
ously differentiable functions satisfying (3) under the assumption (21) on α, β
in the intervals where g = G′ does not vanish.

Proposition 6. Let (F,G) be a solution of the Problem 1 with α, β satisfying
(21) and I = (p, q), −∞ ≤ p < q ≤ +∞, be an interval where the derivative
g(x) does not vanish. If F,G are twice continuously differentiable on I, then
{F,G, 1} are linearly dependent on I.

Proof. With the changing of variables h = b − a, x = αa + βb, (3) yields

[F (x + αh) − F (x − βh)] g(x) = [G(x + αh) − G(x − βh)] f(x) (22)

if x ∈ I and h > 0 are such that x + αh, x − βh ∈ I. The latter condition
yields that (22) holds if (h, x) lies within the open triangle (cf. Fig. 3)

T :=
{
(h, x) : 0 < h < q − p, p + βh < x < q − αh

}
. (23)

By differentiating both sides of (22) with respect to h twice, we obtain the
following relation in T

[α2f ′(x + αh) − β2f ′(x − βh)] g(x) = [α2g(x + αh) − β2g′(x − βh)] f(x).

All the functions are continuous so the latter holds on the closure T as well,
in particular, on the interval {h = 0, p < x < q}. Therefore, with β2 − α2 =
1 − 2α �= 0 by (21), we get f ′(x)g(x) = g′(x)f(x) for all x ∈ I = (p, q). We
can divide both sides by g2(x) and conclude that (f/g)′ = 0 on I. This implies
that f/g = A for some constant A ∈ R, and F ′(x) = f(x) = Ag(x) = AG′(x),
x ∈ I. After integration we get F (x) = AG(x) + B(x), x ∈ I. �
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The following theorem is the main result of this section.

Theorem 7. Let (F,G) be a solution of the Problem 1 with α, β satisfying (21).
If F,G are twice continuously differentiable on R, then {F,G, 1} are linearly
dependent on R, i.e. there exist constants A,B,C ∈ R such that not all of
them are zeroes and

AF (x) + BG(x) + C = 0 for all x ∈ R. (24)

Proof. Consider the following cases:
Case 1: Ug = ∅.

In this case G is a constant on R and (3) holds for any differentiable function
F . Hence (24) holds, for example, with A = 0, B = 1, C = −G and thus
{F,G, 1} are linearly dependent on R.
Case 2: Ug �= ∅ but Ug ∩ Uf = ∅.

In this case Proposition 4 yields that F is a constant on R and (3) holds
for any differentiable function G. Hence (24) holds, for example, with A = 1,
B = 0, C = −F and thus {F,G, 1} are again linearly dependent on R.
Case 3: Ug ∩ Uf �= ∅.

In this case Propositions 5 and 6 immediately imply that {F,G, 1} are
linearly dependent on R. �

5. The Cauchy MVT with symmetric mean value

In this section we consider the problem of describing all pairs (F,G) of smooth
functions for which the mean value in (3) is taken at the midpoint of the
interval. Our first result gives a necessary (and also sufficient in case {1, F,G}
are not linearly dependent) condition on such pairs in the intervals where
g = G′ does not vanish.

Proposition 8. Assume that F,G : R → R are three times differentiable func-
tions with derivatives F ′ = f , G′ = g. Let I ⊂ R be such an interval that
g �= 0 for all x ∈ I and (4) holds for all a, b ∈ I. Then there exist constants
A,K ∈ R and x0 ∈ I such that

f(x) =
(

A + K

∫ x

x0

dt

g2(t)

)
g(x) for all x ∈ I. (25)

Moreover, if (25) holds with K �= 0, then (4) holds if and only if
∫ x+h

x−h

g(t)

( ∫ t

x0

du

g2(u)

)
dt =

(∫ x+h

x−h

g(t)dt

)(∫ x

x0

du

g2(u)

)
(26)

for all x, h ∈ R such that x, x + h, x − h ∈ I.
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Proof. With the changing of variables x = a+b
2 , h = b−a

2 , we can rewrite (4)
as

[F (x + h) − F (x − h)]g(x) = [G(x + h) − G(x − h)]f(x) (27)
for all x, h ∈ R with the property that x, x + h, x − h ∈ I. By differentiating
this equality three times with respect to h, we get

[f ′′(x + h) + f ′′(x − h)] g(x) = [g′′(x + h) + g′′(x − h)] f(x).

Setting h = 0, we obtain

0 = f ′′(x)g(x) − f(x)g′′(x) =
(
f ′(x)g(x) − f(x)g′(x)

)′ for all x ∈ I,

and thus f ′(x)g(x) − f(x)g′(x) = K for some constant K. Then(
f
g (x)

)′ = K
g2(x) , x ∈ I, and integration over (x0, x) with any x0 ∈ I yields

(25).
Now assume (25) holds with a nonzero constant K. Then we have

F (x + h) − F (x − h) =
∫ x+h

x−h

f(t)dt

=
∫ x+h

x−h

(
A + K

∫ t

x0

du

g2(u)

)
g(t)dt

=A

∫ x+h

x−h

g(t)dt+K

∫ x+h

x−h

g(t)
( ∫ t

x0

du

g2(u)

)
dt

and

[G(x + h) − G(x − h)]
f(x)
g(x)

=

(∫ x+h

x−h

g(t)dt

)(
A + K

∫ x

x0

du

g2(u)

)

= A

∫ x+h

x−h

g(t)dt+K

(∫ x+h

x−h

g(t)dt

)(∫ x

x0

du

g2(u)

)
.

By comparing the last two relations, it is easy to see that (26) is equivalent to
(4). �

The following example illustrates that there are non-trivial functions satisfying
(26) (and hence (4)) on R.

Example 9. Consider g(t) = et on I = R and let A = 0,K = 1, x0 = 0. The
integral condition (26) reads as the following identity

∫ x+h

x−h

et

(∫ t

0

e−2udu

)
dt =

(∫ x+h

x−h

etdt

)(∫ x

0

e−2udu

)
.

A direct computation gives f(x) = sinh(x) = ex−e−x

2 , and consequently,

F (x) = cosh(x) =
ex + e−x

2
, G(x) = ex, x ∈ R. (28)



Z. M. Balogh et al. AEM

We invite the interested reader to verify directly that the pair (F,G) in
(28) satisfies the relation (4), giving a non–trivial example of such pairs.

Now we assume that K �= 0 and analyze the property (26) for all x, h ∈ R

such that x, x + h, x − h ∈ I. Differentiating it with respect to h, we obtain

g(x + h)
∫ x+h

x0

du

g2(u)
+g(x − h)

∫ x−h

x0

du

g2(u)
=[g(x + h)+g(x − h)]

∫ x

x0

du

g2(u)
.

Differentiation two more times with respect to h gives

g′′(x+h)
∫ x+h

x0

du

g2(u)
+g′′(x−h)

∫ x−h

x0

du

g2(u)
=[g′′(x+h)+g′′(x−h)]

∫ x

x0

du

g2(u)
,

for all x ∈ I and h ∈ R such that x, x + h, x − h ∈ I. Setting h = x − x0 in
these two equations, we obtain

g(2x − x0)
∫ 2x−x0

x0

du

g2(u)
= [g(2x − x0) + g(x0)]

∫ x

x0

du

g2(u)
, (29)

and

g′′(2x − x0)
∫ 2x−x0

x0

du

g2(u)
= [g′′(2x − x0) + g′′(x0)]

∫ x

x0

du

g2(u)
, (30)

for all x ∈ I with 2x − x0 ∈ I. Since 2x − x0 ∈ I and g has no zeros in I, both
sides of (29) do not vanish. By comparing (30) and (29), we get

g′′(2x − x0)
g(2x − x0)

=
g′′(2x − x0) + g′′(x0)
g(2x − x0) + g(x0)

(31)

for all x ∈ I such that 2x−x0 ∈ I. Putting y(x) := g(2x−x0) and λ := 4g′′(x0)
g(x0)

,
(31) yields the second order differential equation y′′ − λy = 0, whose general
real-valued solution (depending on the sign of λ), has the following form

g(x) = Px + Q, if λ = 0;

g(x) = Pe
√

λx + Qe−√
λx if λ = μ2, μ > 0;

g(x) = P sin(
√−λx) + Q cos(

√−λx) if λ = −μ2, μ > 0,

where P , Q are real constants. Hence G has one of the following forms

G(x) = Ax2 + Bx + C, (32)

G(x) = Aeμx + Be−μx + C, μ > 0, (33)

G(x) = A sin(μx) + B cos(μx) + C, μ > 0, (34)

where A,B,C are real constants.

Remark 10. Altogether, we come to the following conclusion: on every interval
I ⊂ R on which G′ �= 0, either {F,G, 1} are linearly dependent, or G and thus
also F , cf. (25), has one of the forms described in (32)–(34).
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In the sequel, we call a function G (resp. the pair (F,G)) to be of quadratic,
exponential or trigonometric type on I if G has (resp. both of F and G have)
the form (32), (33) or (34), respectively.

Consider the set Ug and its representation, cf. (8), (9). The following lemma
plays a crucial role in the analysis of the equation (4).

Lemma 11. Let (p, q) ∈ {Iσ}σ∈Σ be such that p > −∞ and f(p) = 0. Then
{F,G, 1} are linearly dependent on [p, q).

Proof. g(p) = 0 by (9) so by Remark 10, it is sufficient to consider the following
cases.
Case 1: G is of quadratic type on (p, q).

Then F is also of quadratic type on (p, q), and since f(p) = g(p) = 0, we
have F,G ∈ span

{
1, (x−p)2

}
. Thus {F,G, 1} are linearly dependent on (p, q).

Case 2: G is of either exponential or trigonometric type on (p, q).
First suppose that G is of exponential type on (p, q). Then so is F and since

the set of functions satisfying (4) is invariant with respect to the addition of
constant functions, we can assume, without loss of generality, that F,G ∈
span

{
eμ(x−p), e−μ(x−p)

}
for some μ �= 0. Hence there are real constants u, v

such that F (x) = ueμ(x−p) + ve−μ(x−p), x ∈ (p, q). Since F ′(p) = f(p) = 0,
we get u = v and thus F (x) = 2u cosh(μ(x − p)). The same argument for G
explains that G(x) = 2w cosh(μ(x − p)) for some real w, and consequently F
and G are multiples of the same function cosh(μ(x − p)).

If G is of trigonometric type, then in the same way as above, we can con-
clude that F and G are multiples of the same function cos(μ(x−p)), implying
that {F,G, 1} are linearly dependent on [p, q). �

Proof of Theorem 2. Consider the set Ug defined in (8). If Ug = ∅, then g ≡ 0 on
R, and thus G is identically constant on R. In this case F can be an arbitrary
differentiable function on R and thus {1, F,G} are linearly dependent on R.
If Ug = R, then it follows (cf. Remark 10) that either {1, F,G} are linearly
dependent or G has one of the forms (32)–(34) on the whole of R. Moreover,
we get the same conclusion if Ug ∩ Uf = ∅ (cf. Proposition 4).

Next, let us assume that Ug ∩ Uf �= ∅ and Ug is a proper subset of R.
Consider the representation (9). It is clear (cf. Remark 10) that the index set
Σ can be split into disjoint subsets as Σ = Σlr ∪ Σq ∪ Σt ∪ Σe, where

Σlr :=
{
σ ∈ Σ : {F,G, 1} are in linear relationship on Iσ

}
,

Σq :=
{
σ ∈ Σ : (F,G) are of quadratic type on Iσ

}
,

Σt :=
{
σ ∈ Σ : (F,G) are of trigonometric type on Iσ

}
,

Σe :=
{
σ ∈ Σ : (F,G) are of exponential type on Iσ

}
.

Claim 1. If Σlr �= ∅, then Σlr = Σ.
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Proof. Assume Σlr is a proper subset of Σ. Then there exists σ2 ∈ Σ such that
σ2 /∈ Σlr. Since Σlr �= ∅, there is σ1 ∈ Σlr and A1 ∈ R such that f(x) = A1g(x)
on x ∈ Iσ1 . Consider all x, h ∈ R such that x + h ∈ Iσ2 and x ∈ Iσ1 . Using (4)
for a = x − h and b = x + h, and recalling that g �= 0 on Iσ1 , we get

F (x + h) − A1G(x + h) = F (x − h) − A1G(x − h). (35)

Therefore,

f(x + h) − A1g(x + h) =
1
2

(
∂

∂x
+

∂

∂h

)
F (x + h) − A1

2

(
∂

∂x
+

∂

∂h

)
G(x + h)

=
1
2

(
∂

∂x
+

∂

∂h

)(
F (x − h) − A1G(x − h)

)
= 0,

and thus f(x + h) = A1g(x + h) for all x, h ∈ R such that x + h ∈ Iσ2 and
x ∈ Iσ1 . From this it follows that F and G are in linear relationship on Iσ2 ,
that is, σ2 ∈ Σlr, which leads to a contradiction. �
Claim 2. If Σlr = ∅, then only one of the index sets Σq, Σt, Σe is non-empty.
Proof. Let σ ∈ Σ and Iσ = (p, q). Since Ug is a proper subset of R, one of
p, q is finite. We can assume p > −∞. Then g(p) = 0, and Lemma 11 yields
f(p) �= 0. Hence using (4) for a = p − h and b = p + h we get

G(p + h) = G(p − h) for all h ∈ R, (36)

so the graph of G is symmetric with respect to the vertical line y = p.
If σ ∈ Σq or σ ∈ Σe, then q = +∞ since the functions of quadratic type

have exactly one and the functions of exponential type have at most one critical
point. Therefore, if σ ∈ Σq, then G ∈ span{1, (x − p)2}, x ∈ R and Σ = Σq.
Similarly, it follows from (36) that if σ ∈ Σe, then Σ = Σe.

Next, assume Σlr = Σq = Σe = ∅. Then Σ = Σt and let σ ∈ Σt. Since G is
of trigonometric type on Iσ = (p, q), we must have q < +∞. So g(p) = g(q) = 0
and it follows as in the proof of Lemma 11 that there are real constants u, v
such that

G(x) = u + v cos
(
π

x − p

q − p

)
, x ∈ (p, q). (37)

Using (36) we obtain that (37) holds on the whole of R. �
Since Ug �= ∅, at least one of Σlr, Σq, Σt, Σe is non-empty. If Σlr �= ∅, then

Claim 1 and Proposition 5 imply that {F,G, 1} are linearly dependent on R.
If Σlr = ∅, then Claim 2 yields that one of the possibilities (b)–(d) holds. �

6. Final remarks

As a consequence of our main result we can give a partial answer to the follow-
ing still open question of Sahoo and Riedel (cf. [9, Section 2.7] for an equivalent
formulation).
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Problem. Find all functions F,G, φ, ψ : R → R satisfying

[F (x) − F (y)]φ
(

x + y

2

)
= [G(x) − G(y)]ψ

(
x + y

2

)
(38)

for all x, y ∈ R.
We provide a partial solution to this problem under certain assumptions

on the unknown functions. First let us change the variables s = x+y
2 , t = x−y

2
and write (38) equivalently as

[F (s + t) − F (s − t)]φ(s) = [G(s + t) − G(s − t)]ψ(s), s, t ∈ R. (39)

Theorem 12. Let F,G : R → R be three times differentiable and φ, ψ : R → R

be arbitrary functions satisfying (39) on R. If either φ �= 0 or ψ �= 0 on R,
then one of the following possibilities holds:
(a) there exist constants A0, A1, A2 ∈ R such that for all s ∈ R, we have

A0 + A1F (s) + A2G(s) = 0 and G′(s) [A1ψ(s) + A2φ(s)] = 0;
(b) there exist constants A0, A1, A2, B0, B1, B2 ∈ R such that for all s ∈ R,

we have F (s) = A0 + A1s
2 + A2s

2, G(s) = B0 + B1s + B2s
2 and

(A1 + 2A2s)φ(s) = (B1 + 2B2s)ψ(s);

(c) there exists μ �= 0 and constants A0, A1, A2, B0, B1, B2 ∈ R such that for
all s ∈ R, we have F (s) = A0 + A1e

μs + A2e
−μs, G(s) = B0 + B1e

μs +
B2e

−μs and

(A1e
μs − A2e

−μs)φ(s) = (B1e
μs − B2e

−μs)ψ(s);

(d) there exists μ �= 0 and constants A0, A1, A2, B0, B1, B2 ∈ R such that
for all s ∈ R, we have F (s) = A0 + A1 sin(μs) + A2 cos(μs), G(s) =
B0 + B1 sin(μs) + B2 cos(μs) and

[A1 cos(μs) − A2 sin(μs)]φ(s) = [B1 cos(μs) − B2 sin(μs)]ψ(s).

Proof. Let f, g be the derivatives of F,G, respectively and the sets Ug, Uf

(resp. Zg, Zf ) be defined as in Sect. 3. Without loss of generality, assume that
φ does not vanish on R. By differentiating (39) with respect to t and setting
t = 0 in the resulting equation, we get

f(s)φ(s) = g(s)ψ(s), s ∈ R. (40)

For any s ∈ Ug and t ∈ R, by (39) and (40), we have

F (s + t) − F (s − t) = [G(s + t) − G(s − t)]
ψ(s)
φ(s)

= [G(s + t) − G(s − t)]
f(s)
g(s)

,

and thus

[F (s + t) − F (s − t)] g(s) = [G(s + t) − G(s − t)] f(s), s ∈ Ug, t ∈ R. (41)
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On the other hand, observe that we have Zg ⊂ Zf by (40) since φ �= 0 on R.
So (41) holds for all s ∈ Ug ∪ Zg = R. Therefore, Theorem (2) can be applied
to (41) and the four characterizations follow immediately. �

It is likely that the methods of this paper work for related equations when
we replace the linear mean αa +(1− α)b by the p-mean Mp

α(a, b) = (αap +
(1− α)b)

1
p , for a, b ≥ 0. Here Mp

α(a, b) is defined for all values of p �= 0. For
p = 0 the corresponding mean is defined by M0

α(a, b) = aαb1−α. Moreover,
for p ∈ {−∞,∞} we can define M−∞

α (a, b) = min{a, b} and M∞
α (a, b) =

max{a, b}. We intend to investigate this issue in a subsequent paper.
The essence of our approach is to reduce a functional equation to an ODE.

For this strategy we need certain smoothness assumptions. It would be interest-
ing to provide an alternative way that will not require this additional smooth-
ness assumptions.
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