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SUMMARY

Sildenafil, an inhibitor of the cGMP-degrading
phosphodiesterase 5 that is used to treat erectile
dysfunction, has been linked to an increased risk of
melanoma. Here, we have examined the potential
connection between cGMP-dependent signaling
cascades and melanoma growth. Using a combina-
tion of biochemical assays and real-time monitoring
of melanoma cells, we report a cGMP-dependent
growth-promoting pathway in murine and human
melanomacells.Wedocument that C-type natriuretic
peptide (CNP), a ligand of themembrane-bound gua-
nylate cyclase B, enhances the activity of cGMP-
dependent protein kinase I (cGKI) in melanoma cells
by increasing the intracellular levels of cGMP. Activa-
tion of this cGMP pathway promotes melanoma cell
growth and migration in a p44/42 MAPK-dependent
manner. Sildenafil treatment further increases intra-
cellular cGMP concentrations, potentiating activa-
tion of this pathway. Collectively, our data identify
this cGMP-cGKI pathway as the link between silden-
afil usage and increased melanoma risk.

INTRODUCTION

Malignant melanoma is one of the most aggressive cancers. It

arises frommelanocytes and accounts for the majority of deaths

related to skin cancer. In theWestern world, its incidence almost

doubles each decade. If melanoma is diagnosed early, it can be

curedby surgical resection. However, due to its distinct tendency

tometastasize, in about 20%of patients it progresses to an inva-

sivedisease that is refractory to therapyandhasapoor prognosis

(Gray-Schopfer et al., 2007;Miller andMihm, 2006). At themolec-

ular level, the mitogen-activated protein kinase (MAPK) pathway

is hyperactivated in the majority of melanomas, and this typically

occurs through somatic gain-of-function mutations in either

NRAS (15%–20% cutaneous melanomas) or BRAF (40%–
50%). These mutations can be identified in benign melanocytic

proliferation and all stages of invasive and metastatic melanoma

(Lo and Fisher, 2014; Omholt et al., 2003; Shtivelman et al., 2014;

Sullivan and Flaherty, 2013). Interestingly, oncogenic BRAF

signaling and invasiveness of melanoma cells in mice are associ-

ated with an increased level of cyclic guanosine-30, 50-mono-

phosphate (cGMP) due to downregulation of PDE5A gene

expression, which encodes the cGMP-degrading phosphodies-

terase 5 (PDE5) (Arozarena et al., 2011). In this study, melanoma

cell invasion could be induced in vitro by the PDE5 inhibitor sil-

denafil, which is clinically used to treat erectile dysfunction and

pulmonary hypertension. Moreover, a recent prospective cohort

study inmen in theUnitedStates indicated that sildenafil usemay

be linked to an increased risk of developing melanoma (Li et al.,

2014). Together, these findings point to a crosstalk between

cGMP and MAPK signaling that might be relevant to the patho-

physiology and therapy ofmelanoma inmouse and human. How-

ever, the molecular players of cGMP signaling, for example, the

cGMP generators and effectors, in melanoma cells are not well

characterized.

cGMP is an intracellular signaling molecule that transmits the

effects of NO and various peptides and regulates diverse cellular

functions in eukaryotes (Beavo and Brunton, 2002; Kemp-

Harper and Feil, 2008; Kots et al., 2009). It can be generated

from GTP by two classes of guanylate cyclases, NO-sensitive

soluble guanylate cyclases (sGCs) (Mergia et al., 2009) or pep-

tide-activated membrane-bound guanylate cyclases (Kuhn,

2009; Potter et al., 2006), such as the atrial natriuretic peptide

(ANP)-responsive GC-A or the C-type natriuretic peptide

(CNP)-responsive GC-B. The amplitude and duration of cGMP

signals are regulated through a dynamic balance between its

rate of synthesis by guanylate cyclases and degradation by

phosphodiesterases (Francis et al., 2009). In many cell types,

themajor downstream effector of cGMP is the cGMP-dependent

protein kinase I (cGKI, also known as protein kinase G or PKG),

which belongs to the serine/threonine family of protein kinases

(Hofmann et al., 2006). The mammalian prkg1 gene encodes

two isoforms of cGKI, cGKIa and cGKIb, which differ in their

N-terminal region of approximately 100 amino acids. cGKI activ-

ity in intact cells can be monitored by immunodetection of
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Figure 1. B16 Melanoma Cells Express

Functional cGKI

(A) Expression of cGKIa and cGKIb mRNA in B16

melanoma cells as detected by RT-PCR. RNA

from mouse lung and aorta served as positive

controls and water as negative a control. GAPDH

was used as a loading control. A DNA size marker

was loaded in the left lane.

(B) Detection of cGKIa and cGKIb protein in

B16 melanoma cell lysates (10 mg) by western

blot with antibodies that recognize both cGKI

isoforms (cGKI) or selectively cGKIa or cGKIb.

Purified cGKI isozymes (5 ng) served as

controls.

(C) Immunofluorescence staining of B16F10 cells

with the cGKI antibody (green); nuclei (blue); scale

bar, 25 mm.

(D) B16F10 cells were incubated for 10 min in PBS

(‘‘0’’) or with the indicated concentrations of

8-Br-cGMP. Then, protein lysates (10 mg) were

analyzed by western blot with antibodies detect-

ing phospho-PDE5 (p-PDE5), cGKI, or phospho-

VASP (p-VASP) and VASP.

(E) B16F10 cells were incubated for 10 min under

control conditions (PBS) or in the presence of

100 mM 8-Br-cAMP or 100 mM 8-Br-cGMP. Then, protein lysates (10 mg) were analyzed by western blot with antibodies against cGKI or p-VASP/VASP.

For thewestern blots shown in (B), (D), and (E), GAPDHwas used as a loading control. Representative data from one of three independent experiments are shown.
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phosphorylated cGKI substrate proteins such as vasodilator-

stimulated phosphoprotein (VASP) (Lohmann and Walter, 2005)

or PDE5 (Rybalkin et al., 2002).

It is well established that activation of the cGMP-cGKI axis ex-

erts acute cardiovascular effects such as relaxation of vascular

smooth muscle and modulation of platelet aggregation. Addi-

tionally, cGMP has been implicated in the regulation of growth

and survival in multiple cell types including tumor cells (Fajardo

et al., 2014; Feil et al., 2003, 2005). The role of cGMP in cancer

appears to be complex and dependent upon the type of tumor

and model system under investigation (Barsoum et al., 2014; Fa-

jardo et al., 2014; Ying and Hofseth, 2007; Zhang et al., 2014).

Both pro- and anti-cancer effects of cGMP have been reported.

The variable effects of cGMP on tumor growth are likely due to

the fact that different tumor cells express different cGMP gener-

ators and effectors and that cGMP signaling also affects various

processes in the tumor microenvironment, such as blood flow,

angiogenesis, inflammation, and immune response.

The aim of the present study was to characterize the expres-

sion and functional role of components of the cGMP signaling

system in melanoma cells of murine and human origin. We

have identified a cGMP pathway that promotes MAPK signaling

and melanoma growth in vitro and in vivo. Importantly, it was

found that the growth-promoting cGMP pathway could be

potentiated pharmacologically by treatment of melanoma cells

or mice with sildenafil.

RESULTS

Identification of a CNP-cGMP-cGKI Pathway in B16
Melanoma Cells
Initially, we analyzed the expression and function of cGMP

signaling pathway components in murine B16 melanoma cells.
2 Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors
At the mRNA level, we detected the expression of the cGKIa

isoform, but not the cGKIb isoform, in B16F1 as well as

B16F10 cells (Figure 1A). The selective expression of the cGKIa

isozyme was confirmed at the protein level by western blot anal-

ysis with isoform-specific antibodies (Figure 1B) and immuno-

fluorescence staining of cells (Figure 1C). Unless otherwise

stated, subsequent experiments were performed with B16F10

cells. To monitor cGKI enzymatic activity in intact cells, we

analyzed phosphorylation of the cGKI substrates, PDE5 and

VASP. Phospho-PDE5 was detected with a phospho-specific

antiserum and phospho-VASP was detected with an antiserum

that recognizes both dephospho-VASP and phospho-VASP

(phosphorylated at Ser157). Phospho-VASP (Ser157) migrates

at a discernible higher molecular weight compared to dephos-

pho-VASP. VASP can be phosphorylated on Ser 157 by multiple

kinases including cGKIa, cGKIb, and cAMP-dependent protein

kinase (cAK) (Lohmann and Walter, 2005; Weber et al., 2007).

B16 cells expressed both PDE5 and VASP, and treatment of

intact cells with the membrane-permeable cGMP analog and

cGKI activator, 8-Br-cGMP, stimulated the phosphorylation of

both PDE5 and VASP in a dose-dependent manner (Figure 1D).

To test for the presence of a functional cAMP-cAK pathway,

B16 cells were incubated with the cAK activator, 8-Br-cAMP,

and then phosphorylation of VASP was monitored. However,

the level of phospho-VASP induced by 8-Br-cAMP (100 mM)

was much smaller than with an equimolar concentration of

8-Br-cGMP (Figure 1E). Taken together, these findings showed

that B16 melanoma cells express functional cGKI as well as

its substrates VASP and PDE5, and that the cGMP-cGKI

pathway might be more prominent than the cAMP-cAK pathway

in these cells. While PDE5 could be involved in cGMP-degrada-

tion in B16 cells, it was not clear how cGMP is generated in

these cells.



Figure 2. B16 Melanoma Cells Express a CNP-cGMP-cGKI Pathway
(A) Expression of mRNA encoding the membrane-bound guanylate cyclases,

GC-A andGC-B, or the soluble guanylate cyclase subunits, sGCa1 and sGCb1,

in B16 melanoma cells as detected by RT-PCR. RNA from mouse lung and

aorta served as positive controls and water as a negative control. GAPDH was

used as a loading control. A DNA size marker was loaded in the left lane.

(B) Cyclic nucleotide levels in B16F10 cells. Cells were incubated for 10 min

under control conditions (PBS) or with 1 mM ANP, 1 mM CNP, or 100 mM DEA/

NO. Then, cells were lysed and cGMP (black bars) or cAMP (gray bars) levels

were determined in cell extracts by enzyme immunoassays. Data are pre-

sented as mean ± SEM (n = 3); ***p < 0.001 compared to PBS. Representative

data from one of two independent experiments are shown.

(C) Real-time imaging of cGMP signals in living B16F10 cells by FRET micro-

scopy. Cells were transfected with the fluorescent FRET-based cGMP sensor,

cGi500. To trigger cGMP elevations, cells were superfused with increasing

concentrations of CNP (horizontal bars). CFP and YFP emissions were

simultaneously recorded (light gray and gray traces, respectively). The CFP/

YFP ratio (black trace) reflects the intracellular cGMP concentration. The di-

agram shows the response of an individual B16 cell that was representative of

ten cells measured overall.

(D) B16F10 cells were incubated for 10min under control conditions (PBS) or in

the presence of 100 mM 8-Br-cGMP (cG) or 1 mM CNP. Then, protein lysates

(10 mg) were analyzed by western blot with the indicated antibodies. GAPDH

was used as a loading control. Representative data from one of three inde-

pendent experiments are shown.

See also Figure S1.
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To identify the cGMP-generating mechanism(s) in B16 cells,

the mRNA expression of guanylate cyclases was analyzed in

B16F1 and B16F10 cells. We detected very weak expression

of the ANP receptor, GC-A, relatively strong expression of the

CNP receptor, GC-B, and no expression of the a1 and b1 sub-

units of the NO receptor, sGC (Figure 2A). To test the ability of

the melanoma cells to generate endogenous cGMP, intact cells

were incubated with physiological stimulators of the respective

guanylate cyclases, and then cGMP was measured in cell ex-

tracts by enzyme immunoassay. In line with their expression pro-
file for guanylate cyclases, treatment of B16 cells with ANP

(1 mM), CNP (1 mM), or the NO-releasing compound DEA/NO

(100 mM) resulted in a weak increase, strong increase, or no sig-

nificant change of the intracellular cGMP concentration, respec-

tively, as compared to control conditions (PBS) (Figure 2B, black

bars). None of the compounds significantly altered the level of

cAMP in B16 cells compared to control conditions (PBS) (Fig-

ure 2B, gray bars). The dynamic change of cGMP signals upon

CNP stimulation could also be visualized in real time in livingmel-

anoma cells that expressed a cGMP biosensor. B16 cells were

transfectedwith an expression plasmid encoding the fluorescent

cGMP sensor, cGi500 (Russwurm et al., 2007; Thunemann et al.,

2013b). This sensor contains the cGMP-binding domain of the

cGKI flanked by CFP and YFP. Binding of cGMP alters the sen-

sor’s conformation and the efficiency of fluorescence resonance

energy transfer (FRET) from CFP to YFP. Thus, the FRET-based

cGi500 sensor reports changes of the cGMP concentration

via a change in its CFP/YFP emission ratio. Application of CNP

increased the intracellular cGMP concentration dose-depen-

dently as indicated by the CFP/YFP ratio (Figure 2C, black trace).

Moreover, the physiological GC-B ligand, CNP (1 mM), was as

effective as the synthetic cGMP analog, 8-Br-cGMP (100 mM),

in stimulating phosphorylation of the cGKI substrates, PDE5

and VASP, in intact B16 cells (Figure 2D). Thus, we concluded

that B16 melanoma cells express a functional CNP-cGMP-

cGKI pathway.

cGMP Promotes B16 Melanoma Cell MAPK Signaling,
Growth, and Migration
To determine the downstream mechanisms and functions of

cGMP in melanoma cells, we tested the effects of pharmacolog-

ical and physiological stimulation of cGMP signaling with 8-Br-

cGMP and CNP, respectively, on MAPK pathway activity and

on B16 cell growth and migration. Exposure of B16F10 mela-

noma cells for 10 min to 8-Br-cGMP (100 mM) or CNP (1 mM)

caused phosphorylation of PDE5 and VASP and a dramatic

increase in the phosphorylation of p44/42 MAPK (Figure 3A).

Similar results were obtained with B16F1 melanoma cells (Fig-

ure S1A). The p44/42 MAPK is normally activated by phosphor-

ylation via mitogen and extracellular signal-regulated protein

kinase kinase (MEK). Co-incubation of the cells with the MEK in-

hibitor, U0126 (10 mM), abolished CNP/cGMP-stimulated phos-

phorylation of p44/42 MAPK (Figure 3A). The cGMP-induced

MAPK phosphorylation was also suppressed by lower concen-

trations of U0126 (1 mM, 0.1 mM) as well as by two alternative

MEK inhibitors, PD98059 (50 mM, 10 mM) and trametinib (1 mM,

0.1 mM) (Figure S1B). These results indicated that cGMP acts up-

stream of MEK to promote p44/42 MAPK signaling. Incubation

with 8-Br-cGMP for 10 min and MEK inhibition did not affect

the expression level of PDE5 (Figure S1B), and MEK inhibition

did not alter the CNP/cGMP-induced phosphorylation of PDE5

(Figure 3A) and VASP (Figure 3A; Figure S1B). Thus, MAPKs

did not appear to regulate the activity of cGMP generators and

effectors under the conditions tested.

In line with their stimulating effects on MAPK activity, both

8-Br-cGMP (1 mM) and CNP (1 mM) provoked increases in mel-

anoma cell growth as measured by a conventional endpoint

assay (Figure 3B) as well as by monitoring living cells with an
Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors 3



Figure 3. Activation of the cGMP Pathway

in B16F10 Melanoma Cells Promotes

MAPK Signaling andMelanoma Cell Growth

In Vitro

(A) B16 cells were incubated for 10 min in PBS

(control) or in PBS in the presence of 100 mM 8-Br-

cGMP (cG), 1 mM CNP, 10 mM U0126, or 8-Br-

cGMP plus U0126, or CNP plus U0126. Protein

lysates (10 mg) were analyzed by western blot with

the indicated antibodies. GAPDH was used as a

loading control.

(B) B16 cells were grown for 48 hr under control

conditions or in the presence of 1 mM 8-Br-cGMP

(cG), 1 mMCNP, 10 mMU0126, or 8-Br-cGMP plus

U0126, or CNP plus U0126. Then, cell growth was

determinedby theMTSassay.Data are normalized

to growth under control conditions, which was

set to 1, and presented asmean ±SEM (n = 4); *p <

0.05 and **p < 0.01 compared to control.

(C and D) B16 cell growth was continuously

monitored by impedance-based RTCA. Cells

were grown under control conditions and (C) in the

presence of 1 mM 8-Br-cGMP, 10 mM U0126, or

8-Br-cGMP plus U0126, or they were grown (D) in

the presence of 1 mM CNP, 10 mM U0126, or CNP

plus U0126. Data shown are mean ± SEM (n = 3);

**p < 0.01 and ***p < 0.001 compared to control.

In (A)–(D), representative data from one of three

independent experiments are shown. See also

Figure S1.
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impedance-based real-time cell analyzer (RTCA) (Figures 3C and

3D). U0126 (10 mM) reduced basal and CNP/cGMP-stimulated

growth of B16 cells (Figures 3B–3D). Next, the effect of cGMP

on B16 cell migratory potential was tested in two assays. In the

scratch assay, 8-Br-cGMP (1 mM) increased the number of cells

in the wounded region after 24 hr compared to control (Figures

4A and 4B). In an alternative migration assay performed with

the RTCA, the migration of B16 cells through a membrane

(8-mm pore size) was significantly enhanced by 8-Br-cGMP

(1 mM) at 6 hr, 12 hr, and 18 hr in comparison to control

conditions (Figure 4C). Together, these findings indicated that

activation of the cGMP pathway is associated with increased

B16 melanoma cell growth and migration, presumably via a

crosstalk with MAPK signaling.

cGKI Overexpression or Sildenafil Treatment Enhances
B16 Melanoma Growth in Mice
To determine the consequences of increased cGMP signaling for

tumor growth under in vivo conditions, we analyzed the effects of

overexpressing cGKIa or sildenafil administration on B16 mela-

noma growth in mice. B16 cells infected with an adenovirus en-

coding cGKIa (Ad-cGKIa) expressed much higher amounts of

the protein kinase than cells infected with a control virus (Ad-

EGFP) (Figures 5A and 5B). Both the basal level of VASP phos-

phorylation in the presence of PBS as well as VASP phosphory-

lation induced by 8-Br-cGMP (10 mM) or CNP (5 nM) were higher

in Ad-cGKIa-infected cells than in Ad-EGFP-infected control

cells (Figure 5B). Mice that received intracutaneous injections

of cGKIa-overexpressing B16 melanoma cells developed signif-

icantly bigger tumors than mice injected with Ad-EGFP-infected
4 Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors
control cells. Fourteen days after implantation, tumors derived

from cGKIa-overexpressing B16 cells were�2-fold bigger in vol-

ume and area than control tumors (Figures 5C and 5D).

Since B16 cells express PDE5 (Figures 1D, 2D, and 3A), we

askedwhether the clinically usedPDE5 inhibitor, sildenafil, would

enhance the level of cGMP and the associated downstream

signaling events in these cells. Indeed, cGMP imaging in living

B16melanomacells expressing the cGMPbiosensor, cGi500, re-

vealed that sildenafil (100 mM) strongly increased CNP-triggered

cGMP signals as compared to stimulations with CNP alone (Fig-

ure6A).Moreover, sildenafil potentiatedCNP-inducedphosphor-

ylation of PDE5, VASP, and p44/42MAPK (Figure 6B). In line with

these biochemical data, sildenafil (100 mM) enhanced CNP-stim-

ulated growth of the melanoma cells as determined by both an

endpoint assay (Figure 6C) as well as by impedance-based

real-time monitoring of cells (Figure 6D). To determine whether

PDE5 inhibition affects melanoma cell growth in vivo, B16 cells

were injected intracutaneously into mice that received sildenafil

(200 mg kg–1day–1) in their drinking water or water without the

drug. Compared to control animals, sildenafil-treated mice

showed increased cardiac cGMP levels (Figure 6E) and tumor

growth (Figure 6F). Collectively, these data showed that stimula-

tion of cGMPsignaling in B16 cells by overexpression of cGKIa or

pharmacologically via treatment with sildenafil promotes mela-

noma growth both in vitro and in vivo in mice.

TheGrowth-Promoting cGMPPathway IsAlsoPresent in
Human Melanoma Cells
Since our previous studies were performed with a mouse model,

it was important to evaluate the relevance of cGMP signaling in



Figure 4. Activation of the cGMP Pathway Promotes B16F10 Mela-

noma Cell Migration In Vitro

(A and B) Analysis of B16 cell migration by a scratch assay. A confluent

monolayer of cells was wounded (0 hr) and then incubated for 24 hr under

control conditions or in the presence of 1 mM 8-Br-cGMP. (A) shows repre-

sentative photomicrographs of the cell monolayer (scale bars, 25 mm), and (B)

shows the quantitative evaluation of cell migration reflected by percentage of

cell-covered area. Data are presented as mean ± SEM (n = 3); ***p < 0.001

compared to untreated control at 24 hr.

(C) B16 cells were plated on membranes (8-mm pore size) and migration under

control conditions or in the presence of 1 mM 8-Br-cGMP was monitored 3, 6,

12, and 18 hr later by impedance-based RTCA. Data are presented relative to

control migration at 3 hr, which has been normalized to 1 and expressed as

mean ± SEM (n = 3); *p < 0.05, **p < 0.01 compared to the untreated control at

the respective time point.
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human melanoma. Indeed, expression of cGKIa and cGKIb

mRNA could be detected by qRT-PCR in several human pri-

mary/non-metastatic and metastatic melanoma cell lines (Fig-

ure 7A). Western blot analysis (Figure S2A) confirmed the

expression of cGKI in primary cell lines (WM35, WM3211) as

well as in metastatic cell lines (1205Lu, WM852, and SKMel147).

PDE5 protein was also detected in these cell lines except in

WM852 cells. The cell lines 1205Lu, WM852, and SKMel147 re-

sponded to treatment with both 8-Br-cGMP (100 mM) and CNP

(1 mM) with strongly increased phosphorylation of the cGKI sub-

strate VASP (Figure S2A). Interestingly, WM35 and WM3211

cells showed relatively weak to undetectable VASP phosphory-

lation in response to 8-Br-cGMP or CNP (Figure S2A). This could

be due to differences in the components of cGMP signaling in

these cells as compared to the other cGKI/PDE5-positive cell

lines. RT-PCR analysis of PDE expression in these human cell

lines correlated well with the western blot results for PDE5.

Furthermore, the data indicated that human melanoma cells ex-

press varying levels of other cGMP-PDEs including PDE1C,

PDE3B, PDE9A, PDE10A, and PDE11A (Figure S2B). Thus, we

cannot exclude that in addition to PDE5 other PDEs might

be involved in cGMP signaling in human melanoma cells. The

cGKI protein was also detected in melanomas from human

patients. Immunohistochemical staining of cGKI was positive in
tumor cells of primary melanomas from nine of the 17 patients

(Figure 7B, left; data not shown) and in tumor cells of metastases

from one of the 11 patients analyzed (data not shown). Interest-

ingly, cGKI protein was not detectable in tumor cells of most me-

tastases tested, including a matched metastasis derived from a

patient with a cGKI-positive primary tumor (Figure 7B, right).

Together, the results obtained with human melanoma cell lines

and tumor tissues indicated that the cGMP-cGKI pathway is ex-

pressed in many but not all human melanomas. Importantly,

analysis of 418 melanoma patients from The Cancer Genome

Atlas (TCGA) (Weinstein et al., 2013; Cheng et al., 2015) revealed

that the median survival time of patients with high cGKI expres-

sion in their tumors is dramatically reduced compared to patients

with low cGKI expression (Figure S3).

For further functional studies, we selected the non-metastatic

human melanoma cell line WM3211 (BRAF-wild-type), and the

metastatic cell line 1205Lu (BRAF-mutated). Both cell lines ex-

pressed cGKI and PDE5 (Figure 7A; Figure S2). Both WM3211

and 1205Lu cells showed a strong increase in their intracellular

cGMPconcentration upon treatment with CNP (1 mM) and this in-

crease was further augmented by co-treatment with sildenafil

(100 mM) as measured in cell extracts by a cGMP immunoassay

(Figure 7C). Dynamic cGMPmeasurements in living 1205Lu cells

confirmed these results and showed that in addition to sildenafil,

cGMP signals were also enhanced by two other clinically used

PDE5 inhibitors, tadalafil and vardenafil (Figure S4).

Next, we asked whether stimulation of the cGMP pathway in

human melanoma cells would also promote MAPK signaling as

in murine melanoma cells. Note that, as expected, BRAF-

mutated 1205Lu cells exhibited a higher basal level of p44/42

MAPKphosphorylation than BRAF-wild-typeWM3211 cells (Fig-

ure 7D, PBS). Compared to control (PBS), 8-Br-cGMP (100 mM)

or CNP (1 mM) strongly stimulated phosphorylation of p44/42

MAPK in WM3211 cells and, to a lesser extent, also in 1205Lu

cells (Figure 7D). The latter finding was of particular interest

because it suggested that cGMPmight even be able to stimulate

the growth of BRAF-mutated melanoma cells, such as 1205Lu

cells, which already exhibit hyperactive MAPK signaling. Indeed,

8-Br-cGMP (100 mM) or CNP (1 mM) significantly increased the

growth of both WM3211 and 1205Lu cells, and sildenafil

(100 mM) further augmented the pro-growth effect of CNP in

both melanoma cell lines (Figure 7E). We conclude that, similar

to murine melanoma cells, human melanoma cells can express

a growth-promoting cGMP pathway that is also responsive to

pharmacological stimulation with sildenafil.

DISCUSSION

Previous work has indicated a role of cGMP signaling in mela-

noma, but the underlying mechanism(s) remained largely un-

known (Arozarena et al., 2011; Li et al., 2014). In the present

study, we have identified a cGMP pathway in murine and human

melanoma cells that promotes p44/42 MAPK signaling and mel-

anoma growth in vitro and in vivo. Moreover, the clinically used

PDE5 inhibitor, sildenafil, potentiated the biochemical activity

of the cGMP signaling cascade in melanoma cells and enhanced

tumor growth. With the discovery of a CNP-cGMP-cGKI-MAPK

pathway in melanoma cells, our study provides the cGMP
Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors 5



Figure 5. Overexpression of cGKIa Aug-

ments cGMPSignaling in B16F10Melanoma

Cells In Vitro and Tumor Growth In Vivo

(A) B16 cells were infected with a control adeno-

virus expressing EGFP (Ad-EGFP) or with an

adenovirus encoding EGFP and cGKIa (Ad-cGKIa)

and analyzed 48 hr post-infection; scale bars,

50 mm.

(B) Melanoma cells infected with Ad-EGFP or Ad-

cGKIa were incubated for 10 min in PBS or in PBS

in the presence of 10 mM 8-Br-cGMP (cG) or 5 nM

CNP. Protein lysates (10 mg) were analyzed by

western blot with the indicated antibodies.

GAPDH was used as a loading control. Values

below the panels represent fold increase in VASP

phosphorylation as determined by densitometric

analysis of the p-VASP to VASP ratio and

normalization to control conditions (Ad-EGFP-in-

fected cells incubated with PBS). Representative

data from one of two independent experiments are

shown.

(C and D) B16 melanoma cells infected with Ad-

EGFP or Ad-cGKIawere injected intracutaneously

(i.c.) into C57BL/6 mice (2 3 75,000 cells/mouse,

n = 18 injections with Ad-EGFP cells and n = 16 injections with Ad-cGKIa cells). (C) Tumor growth curves were determined by measuring the tumor volume over

time. Data are presented as mean ± SEM. Differences between groups were assessed by repeated-measures ANOVA followed by a Bonferroni t test; **p < 0.01.

(D) Mice were sacrificed on day 14, and tumor area was determined. Data are presented as mean ± SEM; ***p < 0.001 compared to tumors from Ad-EGFP-

infected cells.
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generator and effector mechanisms that are potentially involved

in the pro-melanoma effects of sildenafil in men.

This report describes a role for CNP and its receptor GC-B in

melanoma. We are aware of few studies that have linked CNP

signaling to tumorigenesis. One study (Lelièvre et al., 2001)

showed that subnanomolar concentrations of CNP stimulated

the proliferation of human and rodent neuroblastoma cell lines,

presumably via activation of cGMP-dependent protein kinase.

In another study (Schönrath et al., 2011), the authors observed

increased cGMP levels in murine skin squamous cell carcinoma

cells following CNP stimulation, but the functional relevance of

CNP-induced cGMP in tumor cell growth was not investigated.

Interestingly, however, the high cGMP levels in response to

CNP appeared to correlate with the aggressiveness/invasive-

ness of the analyzed tumor cell lines (Schönrath et al., 2011). In

contrast to CNP, ANP and its receptor GC-A (Zhang et al.,

2014) as well as NO-derived cGMP (Barsoum et al., 2014; Ying

and Hofseth, 2007) have been previously implicated in various

cancers including melanoma. For instance, genetic GC-A defi-

ciency protected mice from grafted lung, skin, and ovarian can-

cer, possibly because GC-A positive cells in the tumor stroma

are involved in the regulation of local inflammation and tumor

angiogenesis (Kong et al., 2008). More recently, Nojiri et al.

(2015) reported that ANP via GC-A on vascular endothelial cells

prevented metastasis of B16 melanoma cells to the lung by in-

hibiting their adhesion to the inflamed endothelium. The roles

and mechanisms of cGMP signaling in melanoma cells them-

selves are, however, not well understood.

We have identified the cGMP effector cGKI as downstream

component of CNP/GC-B signaling in melanoma cells and, as

expected from previous reports, its substrates VASP (Kim

et al., 2011) and PDE5 (Arozarena et al., 2011; Drees et al.,
6 Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors
1993). While the functional significance of VASP in melanoma

cells is not clear (Kim et al., 2011), our pharmacological experi-

ments with PDE5 inhibitors (sildenafil, tadalafil, and vardenafil)

demonstrated that PDE5 contributes to the degradation of

cGMP and is, thus, an important ‘‘brake’’ for cGMP signaling in

melanoma cells. Stimulation of melanoma cells with the physio-

logical agonist CNP resulted in increased growth as determined

by conventional endpoint assays as well as by impedance-

based real-time monitoring of living cells. Mechanistically,

activation of the cGMP-cGKI cascade was associated with

increased MAPK signaling as shown by detection of phospho-

p44/42 MAPK. Experiments with MEK inhibitors (U0126,

PD98059, and trametinib) demonstrated that the cGMP pathway

interacts with MAPK signaling upstream of MEK and that this

crosstalk is required for the growth-promoting effect of cGMP

in melanoma cells.

To evaluate the potential clinical relevance of the cGMP-cGKI

pathway inmelanoma, we have analyzed humanmelanoma cells

and the effect of the PDE5 inhibitor sildenafil on melanoma

growth. Indeed, we could demonstrate the growth-promoting

cGMP cascade not only in murine B16 cells but also in human

melanoma cells, although this pathway is probably not univer-

sally conserved in all human melanomas. Importantly, treatment

with sildenafil increased the biochemical activity of the cGMP-

cGKI pathway as well as melanoma cell growth in vitro, and it

significantly enhanced melanoma growth in mice in vivo. Our re-

sults with sildenafil are in agreement with a recent study that indi-

cated a link between PDE5 and cGMP signaling in melanoma.

Arozarena et al. (2011) reported that in melanoma cells onco-

genic BRAF, acting through MEK and the transcription factor

BRN2, downregulates PDE5 expression. PDE5 downregulation

was associated with a relatively modest increase in cGMP and



Figure 6. Sildenafil Augments cGMP Signaling in B16F10 Melanoma Cells In Vitro and Tumor Growth In Vivo
(A) Real-time imaging of cGMP signals in living B16 cells by FRET microscopy. Cells were transfected with the fluorescent FRET-based cGMP sensor, cGi500.

Elevations of cGMPwere triggered by superfusion of the cells with 100 nMCNP (short horizontal bars) in the absence and presence of 100 mMsildenafil (SIL, long

horizontal bar). The black trace denotes the CFP/YFP ratio signal, which reports the intracellular cGMP concentration. The diagram shows the response of an

individual B16 cell that was representative of ten cells measured overall.

(B) B16 cells were incubated for 10min in PBS or in PBSwith CNP (1 nM, 10 nM) in the absence (–) or presence (+) of 100 mMsildenafil (SIL). Protein lysates (10 mg)

were analyzed by western blot with the indicated antibodies. GAPDH was used as a loading control. Values below the panels represent fold increase in

phosphorylation of PDE5, VASP, and p44/42 as determined by densitometric analysis of the ratios of p-PDE5 to GAPDH, p-VASP to VASP, and p44/42 to

GAPDH, respectively. Values were normalized to the respective control conditions (1 nMCNP or 10 nMCNP in the absence of SIL). Representative data from one

of three independent experiments are shown.

(C) B16 cells were grown for 48 hr under control conditions or in the presence of 1 mMCNP or 1 mMCNP plus 100 mMsildenafil. Then, cell growth was determined

by the MTS assay. Data were normalized to growth under control conditions, which was set to 1, and presented as mean ± SEM (n = 4); *p < 0.05 compared to

control.

(D) B16 cell growth was continuously monitored by impedance-based RTCA. Cells were grown under control conditions or in the presence of 1 mMCNP or 1 mM

CNP plus 100 mM sildenafil. Data are shown as mean ± SEM (n = 3); ***p < 0.001 compared to control.

(E and F) B16 melanoma cells were injected intracutaneously (i.c.) into C57BL/6 mice (23 75,000 cells/mouse). A subgroup of the experimental animals received

sildenafil (200 mg kg�1day�1) in their drinking water, while the remaining mice had water without the drug. Administration of sildenafil was started 2 days before

injection of the melanoma cells and continued throughout the study. (E) At the end of the study (day 13 after injection of melanoma cells), the cGMP levels in the

hearts of control and sildenafil-treated mice were determined by enzyme immunoassay. Data are presented as mean values (n = 2 mice per group). (F) Tumor

growth curves were determined by measuring the tumor volume over time. Data are shown as mean ± SEM (n = 20 tumors from control mice and n = 18 tumors

from sildenafil-treated mice). Differences between groups were assessed by repeated-measures ANOVA followed by a Bonferroni t test; *p < 0.05.
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cytosolic Ca2+ and promoted the invasiveness of the melanoma

cells. However, the effect of sildenafil on the growth of primary

tumors was not determined in this study, and the potential

cGMP generators and effectors were not identified. Thus, while

Arozarena et al. describe an influence of MAPK on cGMP

signaling, in that enhanced MAPK activity results in increased

cGMP levels via downregulation of PDE5, our study reports
vice versa that cGMP also impacts MAPK signaling, in that

increased levels of cGMP enhance the activity of MAPK via

cGKI. Arozarena and colleagues could not detect cGKI expres-

sion in seven BRAF mutant melanoma cell lines analyzed in their

study (Arozarena et al., 2011). Our expression analysis of a panel

of humanmelanoma cell lines and tumor sections of human mel-

anoma patients also indicated that cGKI is probably not the only
Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors 7



Figure 7. Human Melanoma Cells Also Express a Growth-Promoting cGMP Pathway

(A) Analysis of cGKIa and cGKIbmRNA expression in human melanoma cell lines by qRT-PCR. Data normalization was carried out against 18S rRNA, and values

were referenced to the mean expression level of non-metastatic, radial growth phase (RGP) melanoma cell lines (WM35, WM1552, WM3211, SBCL2). Primary

and metastatic melanoma cell lines are indicated by the horizontal brackets. The mutation status of BRAF and NRAS for each cell line is given below the diagram

(open squares and filled squares denote wild-type and mutated, respectively). More information about the cell lines is given in Table S1. Data were analyzed in

triplicates and are presented as mean ± SD (n = 3).

(B) Immunohistochemical detection of cGKI (brown) in humanmelanoma sections. Representative photomicrographs of a cGKI-positive primary tumor (left panel)

and a cGKI-negative metastasis (right panel) of the same patient; scale bars, 100 mm. The insets show overviews of the respective sections; scale bars, 250 mm.

Note that the well-known expression of cGKI in blood vessels is also detected, which serves as a positive control for successful immunostaining of the sections.

(C) cGMP levels in WM3211 (black bars) and 1205Lu (gray bars) humanmelanoma cells. Cells were incubated for 10 min in PBS or in PBS with 1 mMCNP or 1 mM

CNP plus 100 mM sildenafil (SIL). Then, cells were lysed, and cGMP levels were determined in cell extracts by an enzyme immunoassay. Data are presented as

mean ± SEM (n = 3); ***p < 0.001 compared to PBS.

(D) WM3211 or 1205Lu human melanoma cells were incubated for 10 min under control condition (PBS) or in the presence of 100 mM 8-Br-cGMP (cG) or 1 mM

CNP. Then, cell lysates (10 mg) were analyzed by western blot with the indicated antibodies. GAPDH was used as a loading control. Values below the panels

represent fold increase in p44/42 phosphorylation as determined by densitometric analysis of the p-p44/42 to GAPDH ratio and normalization to control con-

ditions (cells incubated with PBS). Representative data from one of two independent experiments are shown.

(E) WM3211 (black bars) and 1205Lu (gray bars) cells were grown for 48 hr under control conditions or in the presence of 1 mM 8-Br-cGMP, 1 mMCNP, or 1 mM

CNP plus 100 mM sildenafil (SIL). Then, cell growth was determined by the MTS assay. Data were normalized to growth under control conditions, which was set

to 1, and presented as mean ± SEM (n = 4); *p < 0.05 and **p < 0.01 compared to control.

See also Figures S2, S3, S4, and S5.
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effector of cGMP in melanoma cells. Taken together, the results

from the present study and from Arozarena et al. (2011) may

reflect the well-known heterogeneity of melanoma cells and sug-
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gest that the functional outcome of increased cGMP in mela-

noma cells may in fact depend on the availability of cGKI or alter-

native cGMP effectors, which have yet to be identified. Indeed,
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the survival of melanoma patients correlates with the expression

level of cGKI in their tumors, with a dramatically shorter median

survival time for patients with high cGKI expression (Figure S3).

Based on the present study and previous findings (Arozarena

et al., 2011; Schönrath et al., 2011), we suggest a model in which

a bidirectional crosstalk of cGMP and MAPK signaling promotes

the switch of non-metastatic cells in primary melanomas to inva-

sive/metastatic cells. In this model (Figure S5), CNP via GC-B

stimulates cGMP generation in melanoma cells of primary tu-

mors resulting in activation of cGKIa and p44/42MAPK, resulting

in cells with increased potential for growth, migration, and inva-

siveness to develop. Degradation of cGMP via PDE5 acts as a

brake in this switching process. However, a persistent increase

in MAPK signaling, for instance, by sustained activity of the

cGMP-cGKI cascade and/or by somatic gain-of-function muta-

tion of BRAF, results in downregulation of PDE5. This releases

the PDE5 brake, thus establishing a feedforward, self-reinforcing

loop that further enhances the aggressiveness of the melanoma

cells. Importantly, the PDE5 brake can also be released pharma-

cologically by sildenafil, thus explaining the pro-melanoma ef-

fects of this drug (Figure S5). Since primary melanomas appear

to express substantially higher levels of cGKI (Figure 7B; data

not shown) and PDE5 (Arozarena et al., 2011) than metastases,

it is likely that CNP and sildenafil act primarily on cells of primary

tumors and promote their metastatic potential. Cancer metas-

tasis requires multiple steps including resistance to anoikis,

which is defined as induction of apoptosis due to detachment

from the extracellular matrix (Buchheit et al., 2014). Indeed, we

have shown previously that in vascular smooth muscle cells acti-

vation of cGKI promotes cell adhesion and survival (Weinmeister

et al., 2008; Wolfsgruber et al., 2003) leading us to propose that

cGMP-cGKI signaling can protect cells from anoikis (Weinmeis-

ter et al., 2008). A similar mechanism may contribute to cGMP-

mediated growth of melanoma cells and tumor progression.

Finally, it is important to note that cGMP generation inmelanoma

cells is initially triggered by CNP and that a basal CNP tonus

would also be required for an increase in cGMP after PDE5

downregulation/inhibition. It is well known that CNP can be

secreted by endothelial cells, particularly in the presence of cy-

tokines (Potter et al., 2006). Thus, it is likely that the pro-melano-

magenic CNP is released by the tumor vasculature, particularly

under inflammatory conditions, also providing a link between

inflammation and melanoma (Figure S5).

Our data together with the findings of Arozarena et al. (2011)

raise concerns that the use of sildenafil (Viagra) or other PDE5 in-

hibitors like vardenafil (Levitra) or tadalafil (Cialis) could promote

melanoma in humans. These drugs are the first-line therapy for

most men with erectile dysfunction. Indeed, a recent long-term

cohort study that included 14,912 men in the United States indi-

cated that men who used sildenafil for erectile dysfunction had a

significantly elevated risk of melanoma (Li et al., 2014). The link

between sildenafil and melanoma development is further sup-

ported by the finding that PDE5 inhibitors promote melanin syn-

thesis (Zhang et al., 2012), which may exacerbate melanoma

development (Noonan et al., 2012). PDE5 inhibitors are also

used for the treatment of benign prostate hyperplasia and pul-

monary arterial hypertension, and there is a tremendous growth

of preclinical and clinical studies exploring new applications of
PDE5 inhibitors, such as the management of cardiovascular dis-

eases, diabetes, and even cancer (Das et al., 2015; Ghofrani

et al., 2006; Shi et al., 2011). In principle, pharmacological mod-

ulation of cGMP signaling can affect both the tumor cells and the

tumormicroenvironment. For example, sildenafil was reported to

have anti-inflammatory effects and to augment endogenous

antitumor immunity in several mouse tumor models (Serafini

et al., 2006) including melanoma (Meyer et al., 2011). There are

also studies indicating that PDE5 inhibition can directly induce

apoptosis and growth inhibition of tumor cells in vitro (Sarfati

et al., 2003; Tinsley et al., 2009; Zhu et al., 2005). A recent report

suggested that activation of the 67-kDa laminin receptor on can-

cer cells by a green tea polyphenol increases cGMP and induces

cancer-selective apoptosis (Kumazoe et al., 2013). In a mouse

breast cancer model, PDE5 inhibition by vardenafil potentiated

the anticancer effect of the green tea polyphenol. Interestingly,

however, when vardenafil was given alone, tumor growth ap-

peared to increase compared to control animals that did not

receive drugs (Kumazoe et al., 2013). Thus, the effects of

cGMP signaling and its pharmacological stimulation by PDE5

inhibitors on tumorigenesis are complex and might depend on

tumor type and context. Although it is not clear whether the sil-

denafil concentration used in our experiments is also reached

in patients, the results of the preclinical melanoma models ob-

tained in the present study and elsewhere (Arozarena et al.,

2011; Noonan et al., 2012; Zhang et al., 2012) combined with

the recent finding of increased melanoma risk in men using sil-

denafil (Li et al., 2014) suggest that possible skin adverse effects

of PDE5 inhibitors should be considered at least in patients with

melanoma.

Taken together, this study has uncovered a previously un-

known cGMP-cGKI signaling cascade inmurine and humanmel-

anoma cells. Activation of this pathway promotes tumor cell

growth in vitro and in vivo. This pathway also provides a mecha-

nism for the reported pro-melanoma effects of sildenafil and it

could be an interesting therapeutic target in melanoma. Our find-

ings in melanoma cells also support the general notion that

signaling via cGMP and cGKI promotes phenotypic modulation,

growth, and survival of various cell types when they are exposed

to inflammation and/or stress, such as vascular smooth muscle

cells (Wolfsgruber et al., 2003), bone marrow progenitor cells

(Aicher et al., 2009), cardiomyocytes (Fiedler et al., 2006), eryth-

rocytes (Föller et al., 2008), cochlear hair cells (Jaumann et al.,

2012), and bone cells (Marathe et al., 2012).

EXPERIMENTAL PROCEDURES

For detailed procedures and reagents, see Supplemental Experimental

Procedures.

Analysis of Gene Expression, Signaling Pathways, Cell Growth, and

Cell Migration

Murine B16 melanoma cells were grown in DMEM (Life Technologies) and

human melanoma cells were grown in RPMI 1640medium (Life Technologies).

Media were supplemented with 10% fetal calf serum, 100 U/ml penicillin, and

100 mg/ml streptomycin. Cells were grown at 37�C and 6% CO2 in a humidi-

fied incubator. Further information on the human melanoma cell lines is pro-

vided in Table S1.

For RT-PCR analysis, total RNA was isolated from serum-starved (3 hr) cells

or from mouse tissues, reverse transcribed, and then amplified using the
Cell Reports 14, 1–12, March 22, 2016 ª2016 The Authors 9
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primer pairs indicated in Supplemental Experimental Procedures and Table

S2. For western blot analysis, serum-starved (3 hr) cells were treated for

10 min with test substances in PBS at 37�C in a 6%CO2 incubator. Then, cells

were lysed in SDS-containing lysis buffer, and protein lysates were subjected

to western blot analysis as described (M€uller et al., 2012). Primary antibodies

are listed in Supplemental Experimental Procedures. For immunofluorescence

staining, formalin-fixed cells were incubated with cGKI antibody (1:1,000)

(Valtcheva et al., 2009) for 1 hr. For immunohistochemical staining of human

tissue sections, paraffin sections were incubated with cGKI antibody (1:500)

(Valtcheva et al., 2009) for 12 hr. Archived tissue samples of melanomas be-

tween the years 2001 and 2006 from patients of the Department of Derma-

tology, Inselspital, Bern, Switzerland, were included in this study. The study

was approved by the Internal Review Board of the Inselspital.

To measure the levels of cGMP and cAMP, cells were grown in 6-well plates

and serum starved for 3 hr. Then, they were incubated with various drugs at

37�C. For cGMP/cAMP immunoassays (Cyclic GMP EIA Kit, Cyclic AMP EIA

Kit; Cayman Chemical), cells or tissues were extracted with ice-cold ethanol,

and cyclic nucleotide levels were determined as described (M€uller et al.,

2012). Alternatively, intracellular cGMP signals were monitored in living

cells that had been transfectedwith a plasmid encoding the fluorescence reso-

nance energy transfer (FRET)-based cGMP sensor, cGi500 (Russwurm et al.,

2007). FRET/cGMP imaging of the cells was performed 48 hr after transfection

as described previously (Thunemann et al., 2013a, 2013b).

To determine cell growth, cells that had been serum starved for 18 hr were

grown in the absence or presence of drugs in medium containing 10% FCS.

Cell growth was analyzed by an MTS assay (CellTiter 96 AQueous Non-Radio-

active Cell Proliferation Assay, Promega) or, alternatively, by using an

xCELLigence Real Time Cell Analyzer Dual Plate (RTCA DP, Roche) with 16-

well plates (E-plate, Roche). The RTCA uses a unitless parameter termed cell

index (CI) to measure relative changes in electrical impedance and cell status.

To monitor cell migration, cells were serum starved for 18 hr. Then, a scratch

assaywas performed using m-DishCulture-Inserts (35mm, high, Ibidi). Alterna-

tively, cell migration through a membrane with 8 mm-pores was monitored in

real time by using the RTCA with modified 16-well plates (CIM-16, Roche).

In Vivo Tumor Growth Model

B16F10 melanoma cells were exposed to adenovirus (MOI = 100) encoding

EGFP (Ad-EGFP) or EGFP and bovine cGKIa (Ad-cGKIa) in serum-free me-

dium for 15 min followed by the addition of medium containing 10% FCS for

48 hr. Then, cells were injected intracutaneously (i.c.) into the dorsal skin of

anesthetized 5- to 6-week-old female C57BL/6 mice (23 75,000 cells per

mouse). For PDE5 inhibition, sildenafil citrate (Molekula, kindly provided by

R. Lukowski, T€ubingen) was given orally in the drinking water to a subgroup

of mice (200 mg kg–1day–1). Administration of sildenafil started 2 days before

injection of B16 melanoma cells and was continued for the whole course of

the experiment. Tumor size was measured by caliper every 2–3 days, and,

on day 13 or 14, animals were sacrificed and tumors were removed by surgery.

All animal experiments were approved by the local authority (Regierungspräsi-

dium T€ubingen, HT11/13).

Statistics

Data are expressed asmean ±SEM, if not otherwise stated. Independent sam-

ples were compared with unpaired Student’s t test and differences between

groups of mice were analyzed by repeated-measures ANOVA followed by a

Bonferroni t test. p values <0.05 were considered to be significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2016.02.028.
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