

Computer programs for the IIASA health care resource allocation submodel, MARK 1- a user's guide

Gibbs, R.J.

IIASA Working Paper

WP-78-015

May 1978

Gibbs, R.J. (1978) Computer programs for the IIASA health care resource allocation sub-model, MARK 1- a user's guide. IIASA Working Paper. IIASA, Laxenburg, Austria, WP-78-015 Copyright © 1978 by the author(s). http://pure.iiasa.ac.at/13368/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

DI - BASIS COPY

COMPUTER PROGRAMS FOR THE IIASA HEALTH CARE RESOURCE ALLOCATION SUB-MODEL, MARK 1--A USER'S GUIDE

Richard J. Gibbs

May 1978

WP-78-15

Working Papers are internal publications intended for circulation within the Institute only. Opinions or views contained herein are solely those of the author.

2361 Laxenburg Austria

International Institute for Applied Systems Analysis

Preface

The aim of the IIASA Modeling Health Care Systems Task is to build a National Health Care System model and apply it in collaboration with national research centers as an aid to Health Service planners. The modeling work is proceeding along the lines proposed in earlier papers by Venedictov and Shigan [1] among others. It involves the construction of linked sub-models dealing with population, disease prevalence, resource need, resource supply and resource allocation.

A preliminary version of the resource allocation sub-model has already been built. It has been called DRAM Mark 1 and has been described in previous papers--Gibbs [2] and Gibbs [3]. (DRAM is an acronym for Disaggregated Resource Allocation Model.) This paper provides a user's guide to the computer programs that have been written for DRAM Mark 1. It should be read in conjunction with the description of the model given in Gibbs [3]. This guide provides all the information needed for the reader to be able to install and run the computer programs and use the sub-model, DRAM Mark 1, on its own.

Recent publications of the Modeling Health Care Systems Task are listed on the back pages of this Paper. By consulting them the reader will be able to learn how DRAM can be used in conjunction with the other sub-models of the Task.

> Evgenii N. Shigan Task Leader April 1978

Abstract

The functions of the different files used in running DRAM Mark 1 are described. The definitions of the variables used in the programs are listed in a dictionary. Flow diagrams and listings of the programs are displayed. Some guidance is given on suitable values for the input data. Input and output for some illustrative runs of the programs are displayed. Finally a description is given of the error messages that can be encountered and appropriate remedial action is presented.

Contents

1.	PURPOSE AND LAYOUT OF THE PAPER	1
2.	ORGANISATION OF FILES	2
3.	DICTIONARY OF VARIABLES USED IN MAIN PROGRAMS	5
4.	MAIN PROGRAMSFLOW DIAGRAMS AND LISTINGS	9
5.	DESCRIPTION OF SUBROUTINES	29
6.	SUITABLE VALUES FOR INPUT DATA	34
7.	CASE 1 ILLUSTRATIVE INPUT/OUTPUT	38
8.	CASE 2 ILLUSTRATIVE INPUT/OUTPUT	45
9.	CASE 3 ILLUSTRATIVE INPUT/OUTPUT	55
0.	ERROR MESSAGES	71
	REFERENCES	72
	PAPERS OF THE MODELING HEALTH CARE SYSTEMS STUDY	73

1. PURPOSE AND LAYOUT OF THE PAPER

This paper has been written for the reader who wishes to learn how to use the computer programs for the Mark 1 version of the resource allocation sub-model of the IIASA National Health Care System (HCS) Model. The sub-model is called DRAM (disaggregated resource allocation model). An earlier paper, Gibbs [2], described the function of DRAM within the IIASA HCS model. Another paper, Gibbs [3], describes the formulation, solution and parameter estimation procedure for DRAM and displays some illustrative model runs. It will be assumed here that the reader is familiar with at least the second paper, Gibbs [3].

The function of the model DRAM is to simulate the allocation of an HCS resource whose availability is limited. For example it can be used to simulate the allocation by the HCS of a limited number, B, of bed-days between admission rates and lengths of stay for a number of patient categories. The model contains parameters describing ideal admission rates and lengths of stay and power factors of the corresponding terms of the HCS utility function. In Gibbs [3] three possible data situations were envisaged:

- Case 1: exogenous estimates available for all parameters.
- Case 2: no exogenous estimates available for the parameters--parameters to be estimated endogenously from data on past allocations and elasticities of past allocations with respect to bed supply.
- Case 3: exogenous data available for ideal admission rates and lengths of stay but power factors to be estimated endogenously from data on elasticities of past allocations.

This paper describes the files for computer programs, and the input and output data that have been designed for each of these three cases. The organisation of the files is described in Section 2. A dictionary of the Fortran variables is given in Section 3. Section 4 provides flow diagrams and listings of the main programs for each of the three cases. Section 5 describes the subroutines, which are common to all three cases. Section 6 describes suitable values and restrictions on the input data. Section 7 lists input and output files for an illustrative model run for Case 1. Sections 8 and 9 provide input/output listings for Cases 2 and 3. Finally Section 10 describes the error messages that can be encountered and the appropriate remedies.

.2. ORGANISATION OF FILES

The following files are used in running the model DRAM:

- Main Fortran program,
- Fortran subroutines 'EF' and 'STEP',
- Input files 'AUXPA' and 'INIDA' and
- Output files 'OUTPUT' and 'CALCNS'.

The use of these files is described below in terms of operation on the PDP-11 computer at IIASA, taking advantage of the UNIX operating system. However it should be possible to run the programs with little alteration on any computer with a Fortran IV compiler.

MAIN PROGRAM

There is a different main program for each of the three cases envisaged in Gibbs [3]. The main program reads auxiliary input data from file 'AUXPA' (unit 5) and main input data from file 'INIDA' (unit 7). It then writes the input data (and computed column totals) to the terminal (unit 6) and to the main output file 'OUTPUT'. It checks the main input data; if any errors are detected the appropriate error messages are written in the terminal, as described in Section 10, and the program stops. program then computes values of the model parameters (for Cases 2 and 3) and then performs a simulation of resource allocation in which the final outputs are computed. In each of these computations--parameter estimation and simulation--the iterative Newton-Raphson procedure is used to solve the equation $f(\lambda) = 0$; for each iteration the subroutines 'EF' and 'STEP' are called and their results written to the auxiliary output file 'CALCNS'. The Newton-Raphson procedure is terminated when the computed value of $f(\lambda)$ is within a specified criterion of zero; at this point a message is written to the terminal and to the file 'OUTPUT'. If errors are encountered or the number of iterations exceeds the maximum specified in the file 'AUXPA' a message is written to the terminal and the program stops. Finally the final computed parameter values and final output results of the simulation are written to the file 'OUTPUT'.

SUBROUTINES

The subroutines 'EF' and 'STEP' are identical for each of the three cases. They are called for each iteration of the Newton-Raphson procedure. The main purpose of 'EF' is to evaluate the function $f(\lambda)$ for a given value of λ . 'STEP' then evaluates the derivative $f'(\lambda)$ and computes a new value for λ as follows:

$$\lambda_{t+1} = \lambda_t - f(\lambda_t)/f'(\lambda_t) , \qquad (1)$$

where λ_{t} is the value of λ at iteration t.

For reasons given in Gibbs [3] we are searching for a value of λ greater than unity and the Newton-Raphson procedure can only be guaranteed to converge if the value of λ at each iteration is also greater than unity. Let us now consider the case where, at iteration t, $f(\lambda_t)/f'(\lambda_t) > \lambda_{t-1}$. In this case the application of (1) would lead to a value of λ_{t+1} less than unity. Accordingly, for these cases only, the new value of λ is computed as follows:

$$\lambda_{t+1} = (\lambda_t + 1) \quad . \tag{2}$$

FILE 'AUXPA'

The contents of this file are listed in full in a separate section of the dictionary given in the next section. They consist of auxiliary input data which would not normally need to be altered during a new series of model runs:

- unit numbers for files 'OUTPUT' and 'CALCNS',
- iteration maximum,
- criteria for checking main input data and for convergence of Newton-Raphson procedure,
- initial values for λ and (Cases 2 and 3 only) C and the value of \overline{B} .

Suitable values for these data are suggested in Section 6.

FILE 'INIDA'

This contains the main input data for a model run. It includes, for each category:

- the name of the patient category,
- values for admission rate and length of stay--ideal values for Cases 1 and 3, observed mean regional values for Case 2, and

- elasticities for admission rate and length of stay for Cases 2 and 3, values of the α_i and β_i parameters for Case 1.

It also contains the corresponding total admission rate (all categories) and the average length of stay (all categories, weighted by admission rate) to serve as checks on the category-specific data on admission rate and length of stay. Finally it contains the value of B, the supply of bed-days whose allocation is to be simulated, and a name for the model run.

FILE 'OUTPUT'

This is the main output file created by a run of the model. It contains:

- a list of the input data,
- information about each completed Newton-Raphson procedure,
- final computed parameter values (Cases 2 and 3),
- final simulation results--for each category the values of the x_i, the u_i, and their product (bed-days used by category) both in absolute terms and as fractions of the corresponding ideal values, and the corresponding figures for all categories.

FILE 'CALCNS'

This is the auxiliary output file created by a run of the model. It contains the values of the quantities computed in each execution of the subroutines 'EF' and 'STEP' and, for Cases 2 and 3, the values of parameters computed for each iteration of the parameter estimation procedure. This information will usually be of interest only in situations where the user suspects that the program is not working normally, e.g. when the parameter estimation procedure fails to converge.

3. DICTIONARY OF VARIABLES USED IN MAIN PROGRAMS

MAIN MODEL PARAMETERS AND VARIABLES USED IN MAIN PROGRAMS

Symbol	Fortran Name	Description	
		Subscript	
i	I	Patient category	
	Main Pa	arameters and Variables	
x _i	XBIG[I]	Ideal admission rate for category i	Cases 1 and
Ui	UBIG[I]	Ideal average length of stay for category i	Computed parameters in Case 2.
α _i	ALPHA[I]	Power factor for patient numbers	Input data in Case 1.
β _i	BETA[I]	Power factor for length of stay	Computed parameters i Cases 2 and
Ŷi	GAMHAT[I]	Elasticity of admission rate for category i with respect to aggregate bed supply	Input data,
η̂i	ETAHAT[I]	Elasticity of length of stay for category i with respect to aggregate bed supply	used in Cases 2 and
x _i	XBAR[I]	Observed admission rate for category i	Input data,
<u>u</u> i	UBAR[1]	Observed mean length of stay for category i	used in Case 2 only.
В	BAVAIL	Number of bed-days availaged	ble for

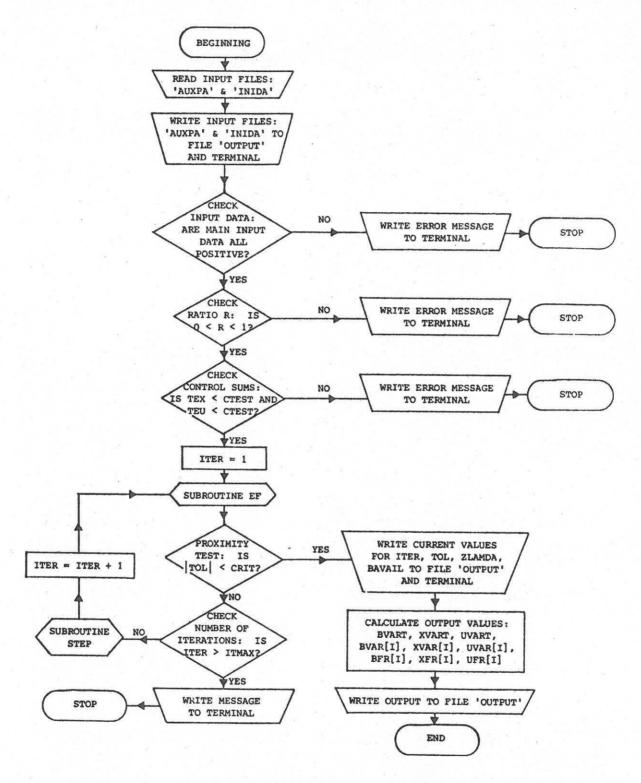
a _i	A[I]	Factor weighting patient numbers relative to length of stay*
×i	XVAR[I]	Computed admission rate for category i
ui	UVAR[I]	Computed average length of stay for category i
λ	ZLAMDA	The Lagrange Multiplier

AUXILIARY PARAMETERS FOR MAIN PROGRAM

Fortran Name	Description	
	Read from File 'AUXPA'	,
IPRINT	Identifier of intermediate calculat: 'CALCNS'	ions file
KPRINT	Identifier of output file 'OUTPUT'	
ITMAX	Maximum permitted number of iteration Newton-Raphson procedure	ons for the
IR	Number of patient categories	
CTEST	Criterion for testing accuracy of in admission rates and length of stay	nput data on in file 'INIDA
CRIT	Criterion for convergence in solving by the Newton-Raphson procedure	$f(\lambda) = 0$
ZLAMDA	Starting value of the Lagrange Multi	iplier (λ)
BCALIB	Bed supply for which input data is strictly valid (= \overline{B})	Not
CRITAL	Criterion for convergence in parameter estimation process	required for DRAM
С	Starting value for ratio $-\overline{B}/\lambda f'(\lambda)$	Case 1.

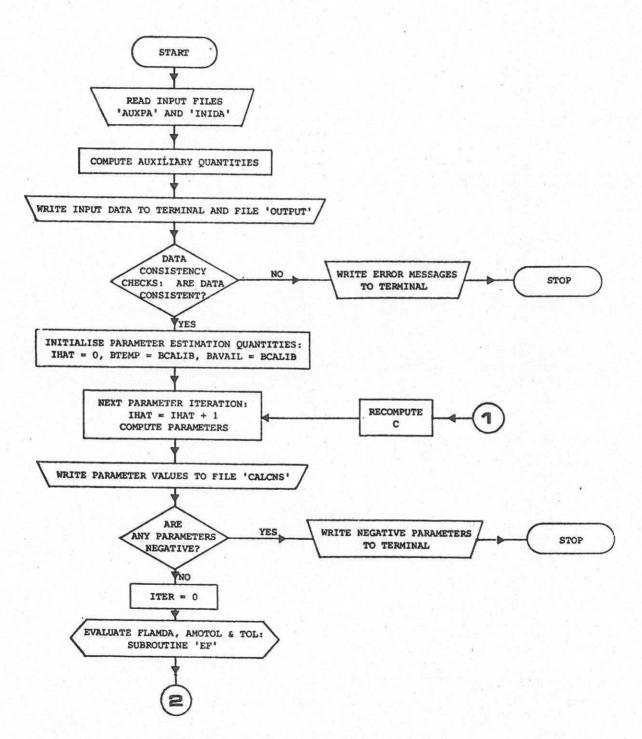
^{*}For reasons given in Gibbs [3], $a_i = U_i$ in the current version of DRAM and this value is assigned in the main program. As explained in Gibbs [3], it is hoped to develop the model further to represent the allocation of more than one resource in which case a different value will need to be assigned to a_i .

Read	from File 'INIDA' ('INIDA' also Contains Input Data as Described on Page 5)
RUNAME	Label for model run (4 alphameric characters)
XTOTA	Column total for input data on admission rates
UBARA	Column total for input data on length of stay weighted by input data on admission rates
CATEG[I,J]	Part j of label for patient category i (4 alphameric characters); complete label is CATEG[I,1], CATEG[I,2], CATEG[I,3] (12 alphameric characters

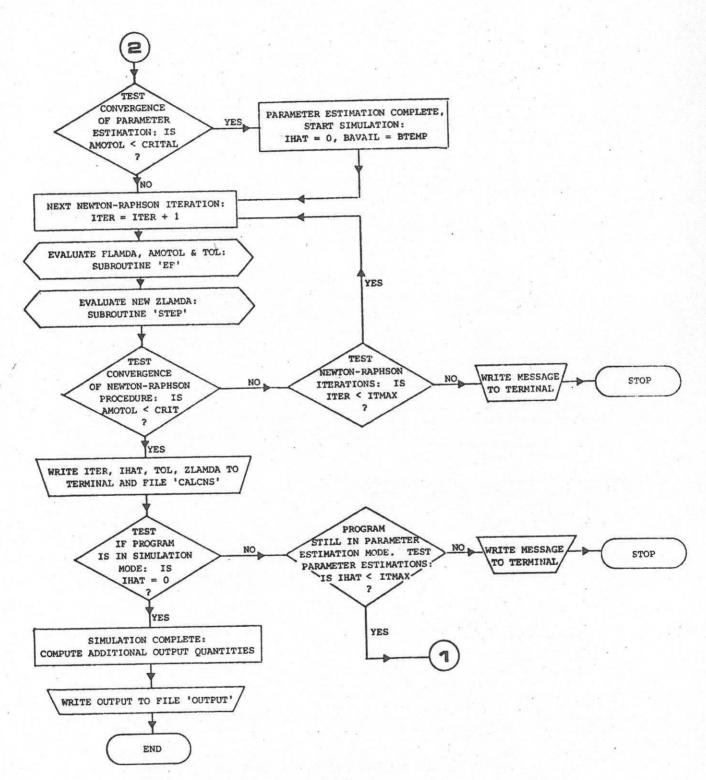

AUXILIARY QUANTITIES COMPUTED IN MAIN PROGRAM

Fortran Name	Description
AMOTOL	Absolute value of TOL
BFR[I]	Computed bed-days used by patients in category i, BVAR[I], as fraction of BNEED[I]
BNEED[I]	Bed-days needed for patients in category i at ideal admission rate and ideal length of stay $(=X_1U_1)$
BNEEDT	Total bed-days needed for patients in all categories at ideal admission rates and ideal lengths of stay $(=\sum_{i} X_{i}U_{i})$
BTEMP	Temporary storage of the value of BAVAIL
BVAR[I]	Computed bed-days used by patients in category i (= x _i u _i)
BVART	Computed total bed-days usedall categories (= \(\) X_iU_i)
IERR	Error count
IHAT	Iteration count.for parameter estimation process in Cases 2 and 3
ITER	Iteration count for Newton-Raphson procedure
KERR	Error count
PWR	Power factor $(= -\beta_i/(\beta_i+1))$
R	Ratio of bed-days available, BAVAIL, to BNEEDT

RED	Quantity used for scaling value of C in second and subsequent iterations of parameter estimation process for Case 3 (= $\sum_{i} X_{i}U_{i}(\hat{\gamma}_{i} + \hat{\eta}_{i})$
SCALE	Quantity used to scale input elasticity data for Case 2 (= $\overline{B}/\sum_{i} \overline{u}_{i} (\hat{\gamma}_{i} + \hat{\eta}_{i})$
TESTU	Percentage difference between computed and input values for the weighted column totals of the input data on length of stay
TESTX	Percentage difference between computed and input values for the weighted column totals of the input data on admission rates
TEU	Absolute value of TESTU
TEX	Absolute value of TESTX
UBARB	Computed value for weighted column total of input data on length of stay
UFR[I]	Computed length of stay of patients in category i, UVAR[I], as fraction of ideal, UBIG[I] (= u_i/U_i)
UVART	Overall computed average length of stayall categories (= $\sum_{i} x_{i} u_{i} / \sum_{i} x_{i}$)
XFR[I]	Computed number of patients in category i admitted to hospital, XVAR[I], as fraction of total number of individuals in category i, XBIG[I] (= x_i/X_i)
ХТОТВ	Computed value for the column total of input data on admission rates
XVART	Overall computed admission rateall categories $(= \sum_{i} x_{i})$


4. MAIN PROGRAMS--FLOW DIAGRAMS AND LISTINGS

In this section flow diagrams and listings are given for the main programs for each of the three cases. The programs for Cases 2 and 3 have a common flow diagram.



Main Program for Case 1*

^{*}For definitions of variables and parameters used in the diagram see Section 3.

Main Program for Cases 2 and 3

Main Program for Cases 2 and 3 (continued)

MAIN PROGRAM FOR CASE 1

```
this is the main programme for the model 'dram' case 1.
    it simulates the allocation of health care resources
C
C
    using data on power parameters and ideal allocations.
C
    it uses 2 subroutines 'ef.f' and 'step.f' iteratively to solve
C
    the equation flamda = 0 , using the newton-raphson procedure,
C
    to within a criterion, crit.
      dimension xfr(20), ufr(20), bfr(20), categ(20,3)
      common /cbl/ a(20)
      common /cb2/ alpha(20), beta(20)

common /cb3/ xbig(20), ubig(20)

common /cb4/ q(20), d(20)

common /cb5/ xvar(20), uvar(20), bvar(20)
      common /cb6/ bneed (20)
    read auxiliary parameters from file 5 = 'auxpa'.
       read(5,20) iprint, kprint, itmax, ir, crit, zlamda, ctest
       write (6,20) iprint, kprint, itmax, ir, crit, zlamda, ctest
C
    read input data from file 7 = 'inida'.
       read(7,21) runame, xtota, ubara, bavail,
      -((categ(i,j),j=1,3),xbig(i),ubig(i),
     -alpha(i),beta(i),i=1,ir)
C
       write (6,21) runame, xtota, ubara, bavail,
C
      -((categ(i,j),j=1,3),xbig(i),ubig(i),alpha(i),
     -beta(i), i=1, ir)
    write input data and auxiliary parameters
C
     to file 6 (= terminal' ) and file kprint (= 'output' )
       write(6,141) runame, iprint, kprint, itmax, ir, crit, zlamda, ctest
       write(6,30) runame,(i,(categ(i,j),j=1,3),xbig(i),
      -ubig(i),alpha(i),beta(i),i=1,ir)
       write(6,140) xtota, ubara, bavail
       write(6,142)
       write(kprint,141)runame, iprint, kprint, itmax, ir, crit, zlamda, ctest
       write(kprint,30) runame,(i,(categ(i,j),j=1,3),xbig(i),
      -ubig(i),alpha(i),beta(i),i=1,ir)
       write(kprint,140) xtota,ubara,bavail
       write(kprint, 142)
     auxiliary quantities
       bneedt=.0
       ubarb=.0
       xtotb=.0
       do 70 i=1,ir
         xtotb=xtotb+xbig(i)
```

C

```
bneed(i)=xbig(i)*ubig(i)
      bneedt=bneedt+bneed(i)
    a(i) = ubiq(i)
 70 continue
    ubarb=bneedt/xtotb
    r=bavail/bneedt
  3 checks of internal consistency of data in file 'inida'.
  programme stops if any answer is 'yes'.
  check 1- is any power parameter non-positive
    kerr=0
    do 71 i=1, ir
    ierr=0
    if(alpha(i).le.0.0)ierr=ierr+l
    if (beta(i).le.0.0) ierr=ierr+l
    kerr=kerr+ierr
    if (ierr.gt.0) write (6,22) ierr, i
 71 continue
    if (kerr.gt.0) stop
  check 2- is r non-positive or greater than unity.
    if(r) 132,132,133
132 write(6,23) r
    stop
133 if(r-1.) 134,132,132
  cneck 3- is either of the computed values xtotb and ubarb
  different from the values xtota and ubara
  by more than ctest percent.
134 testx=((xtota-xtotb)/xtotb)*100.
    testu=((ubara-ubarb)/ubarb)*100.
    tex=abs(testx)
    teu=abs(testu)
    kerr=0
    if(tex.gt.ctest)kerr=1
    if (teu.gt.ctest) kerr=kerr+l
    if (kerr) 135, 135, 136
136 write (6,24) kerr
    stop
  initialise iteration count, iter
135 iter=1
  compute flamda and, for all i, xvar(i), uvar(i), d(i), and q(i).
139 call ef(zlamda, bavail, ir, iter, itmax, flamda, tol, amotol
   -, iprint)
```

```
convergence test for newton-raphson procedure.
    if test suceeds go to c3
C
C
    if test fails proceed to next iteration at c2 unless iterations
    exceed maximum in which case stop.
      if (amotol-crit) 137,138,138
      if(iter-itmax)138,138,131
  131 write(6,157)
      stop
c2 compute fdash and new lamda and return to cl
  138 call step (zlamda, flamda, ir, iter, fdash, iprint)
      iter=iter+l
      go to 139
    write information on final iteration to file 6 (=terminal)
    and kprint (=output)
  137 write(kprint, 126) iter, tol, zlamda, bavail
      write(6,126)iter,tol,zlamda,bavail
    compute additional output quantities
      bvart=0.0
      xvart=0.0
      do 80 i=1, ir
        xfr(i)=xvar(i)/xbig(i)
        ufr(i) = uvar(i) / ubig(i)
        bfr(i) = xfr(i) * ufr(i)
        bvart=bvart+bvar(i)
        xvart=xvart+xvar(i)
   80 continue
      uvart=bvart/xvart
      xvartf=xvart/xtotb
      uvartf=uvart/ubarb
      bvartf=bvart/bneedt
    write output
      write(kprint, 29) runame
      write(kprint,27)(i,(categ(i,j),j=1,3),xvar(i),xfr(i),
     -uvar(i),ufr(i),bvar(i)
     -,bfr(i),i=1,ir)
      write(kprint,28) xvart,xvartf,uvart,uvartf,bvart,bvartf
   20 format(////4il0/////3fl2.1)
   21 format(////lx,a4,8x,3f9.0////(1x,3a4,4f9.0))
   22 format(lx,il,' negative values for power parameter for',
```

```
-i2,' type of patient')
 23 format(' ratio beds available : beds needed = ',fl2.2/
   -' no allocation problem !')
 24 format(lx,il,' errors in xbig, ubig data')
 27 format(//6x,'patient',12x,'actually',9x,'actual aver.',9x,
   -'beddays'/6x,'category',llx,'treated',l0x,'length of stay',7x,
-'actually used'/21x,'(number/fract.)',5x,'(number/fract.)',
   -6x,'(number/fract.)'//20(1x,i2,1x,3a4,5x,f7.1,'/',f7.4,5x,f7.3,
   -'/',f7.4,6x,f7.1,'/',f7.4//))
 28 format(/' all categories',5x,f8.1,'/',f7.4,5x
   -,f7.3,'/',f7.4,5x,f8.1,'/',f7.4/)
 29 format(lhl,15x,'simulation results',6x,'for run ',a4//)
 30 format(//126('*')/20x,'file =inida= for run ',a4
   -//' patient category', 6x, 'total sick',
   -5x, 'ideal length of stay', 3x, 'alpha', 5x, 'beta'/
   -23x,'xbig(i)',llx,'ubig(i)',llx,'alpha(i)',3x,'beta(i)'//
-(20(lx,i2,lx,3a4,5x,f7.1,l2x,f7.3,l2x,f7.4,3x,f7.4//)))
126 format(//2x,'no. iteration',2x,'tolerance',2x,'lambda',
   -2x, beddays avail', /, 6x, i3, 8x, e9. 2, 1x, f7. 3, 1x, f7. 1)
140 format(13x, 'total= ', f8.1, 5x, 'mean= ',
   -f8.3,7x,'bed-days available=',f7.1/126('*'))
141 format(////126('*')/20x,'file=auxpa= for run ',a4//
        identifiers for files
                                   max no. of
                                                  no.of pat.',4x,
   - 'newton-raphson
                          initial value
                                              data'/
       =calcns= and =output=
                                    iterations
                                                   categories',4x,
   -'conv. criterion of lambda', 8x, 'test'/
         iprint',7x,'kprint',7x,'itmax',1lx,'ir',12x,'crit',13x,
   -'zlamda',9x,'ctest'//
   -6x, i1,12x, i1,10x, i3,12x, i2,9x, f9.7,10x, f7.3,6x, f7.1//)
142 format(126('*'))
157 format(/'number of newton-raphson iterations exceeds maximum')
       stop
       end
```

MAIN PROGRAM FOR CASE 2

```
this is the main programme for the model 'dram' mark 1 case 2.
    it simulates the allocation of a health care resource
    using data on elasticities and current mean allocations.
    it uses 2 subroutines 'ef.f' and 'step.f' iteratively to solve
C
    the equation flamda = 0 , using the newton-raphson procedure,
C
C
    to within a given criterion.
      dimension xfr(20), ufr(20), bfr(20), categ(20,3), gamhat(20),
     -etahat(20),xbar(20),ubar(20)
      common /cbl/ a(20)
      common /cb2/ alpha(20), beta(20) common /cb3/ xbig(20), ubig(20)
      common /cb4/q(20),d(20)
      common /cb5/ xvar(20), uvar(20), bvar(20)
      common /cb6/ bneed (20)
    read auxiliary parameters from file 5 = 'auxpa'.
      read(5,20) iprint, kprint, itmax, ir, zlamda, ctest, crit, crital, c,
       write(6,20)iprint,kprint,itmax,ir,zlamda,ctest,crit,crital,c,
C
      -bcalib
    read input data from file 7 = 'inida'.
C
      read(7,21) runame, xtota, ubara, bavail,
     -((categ(i,j),j=1,3),xbar(i),ubar(i),gamhat(i),etahat(i),i=1,ir)
C
       write (6,21) runame, xtota, ubara, bavail,
      -((categ(i,j),j=1,3),xbar(i),ubar(i),gamhat(i),etahat(i),i=1,ir)
    calculate auxiliary quantities.
C
    the variables bneed(i) are used here as temporary stores
C
    for the products xbar(i) *ubar(i) and bneedt for the sum
C
    of products. later in the program they take the values
C
    of the products xbig(i) *ubig(i).
C
      bneedt=0.0
      ubarb=0.0
      xtotb=\emptyset.\emptyset
      scale=0.0
      do 70 i=1, ir
        xtotb=xtotb+xbar(i)
        bneed(i)=xbar(i)*ubar(i)
        scale=scale+(bneed(i)*(gamhat(i)+etahat(i)))
        bneedt=bneedt+bneed(i)
   70 continue
      ubarb=bneedt/xtotb
      r=bavail/bneedt
    write input data and auxiliary parameters
```

```
to file 6 (= terminal') and file kprint (= 'output')
    write(6,141) runame, iprint, kprint, itmax, ir, zlamda
   -,ctest,crit,crital,c,bcalib
    write (6,30) runame, (i,(categ(i,j),j=1,3),xbar(i),
   -ubar(i), gamhat(i), etahat(i), i=1, ir)
    write(6,140) xtotb, ubarb, bavail
    write(6,142)
    write (kprint, 141) runame, iprint, kprint, itmax, ir, zlamda,
   -ctest, crit, crital, c, bcalib
    write(kprint,30) runame,(i,(categ(i,j),j=1,3),xbar(i),
   -ubar(i),gamhat(i),etahat(i),i=1,ir)
    write(kprint, 140) xtotb, ubarb, bavail
    write(kprint,142)
  scale the elasticity data and write scale to terminal.
    scale=bcalib/scale
    do 72 i=1, ir
    gamhat(i) = scale*gamhat(i)
    etahat(i)=scale*etahat(i)
 72 continue
    write(6,551)scale
    write(kprint,551)scale
  2 checks of internal consistency of data .
  programme stops if any answer is 'yes'.
  check 1- are any elasticity data non-positive?
    kerr=0
    do 71 i=1, ir
    ierr=0
    if (gamhat(i).le.0.0) ierr=1
    if (etahat(i).le.Ø.Ø) ierr=ierr+l
    kerr=kerr+ierr
    if (ierr.gt.0) write (6,22) ierr, i
 71 continue
    if (kerr.gt.0)stop
  check 2- do either of the computed xtotb and ubarb differ
  from the input xtota and ubara by more than ctest % ?
134 testx=((xtota-xtotb)/xtotb)*100.
    testu=((ubara-ubarb)/ubarb)*100.
    tex=abs(testx)
    teu=abs(testu)
    kerr=0
    if (tex.gt.ctest) kerr=1
    if (teu.gt.ctest) kerr=kerr+l
    if (kerr) 135, 135, 136
136 write (6,24) kerr
    stop
```

```
initialise parameter iteration count and set bavail=bcalib.
  135 ihat=0
      btemp=bavail
      bavail=bcalib
     perform iteration of parameter estimation procedure
  500 inat=ihat+1
     calculate parameters`xbig(i), ubig(i), alpha(i), beta(i).
     write to file iprint. stop if any are not positive.
C
      kerr=0
      do 502 i=1, ir
      ierr=0
      if(ihat-1)543,543,542
  542 c=(-1.0*bavail)/(zlamda*fdash)
  543 beta(i)=c/etahat(i)-1.0
      pwr=-(beta(i)/(beta(i)+1.0))
      alpha(i)=((c*beta(i))/((beta(i)+1.0-zlamda**pwr)*gamhat(i)))-1.0
      xbig(i) = xbar(i) * (((beta(i)+1.0)*(zlamda**(-pwr))-1.0)/
     -beta(i))**(1.0/(1.0+alpha(i)))
      ubig(i)=ubar(i)*zlamda**(1.0/(1.0+beta(i)))
      a(i) = ubig(i)
      bneed(i)=xbig(i)*ubig(i)
      if(alpha(i).le.0.0)ierr=ierr+l
      if(beta(i).le.0.0)ierr=ierr+1
      if(xbig(i).le.0.0)ierr=ierr+l
      if(ubig(i).le.0.0)ierr=ierr+l
      if(ierr)502,502,501
  501 kerr=kerr+1
      write(6,553) ierr,i
      write(6,552)ihat,i,alpha(i),beta(i),xbig(i),ubig(i)
  502 continue
      write(iprint,552)ihat,(i,alpha(i),beta(i),xbig(i),ubig(i),i=1,ir)
      if (kerr.gt.0) stop
    initialise newton-raphson iteration count , iter, compute flamda.
      iter=0
      if (ihat-1) 540,540,539
  539 call ef(zlamda,bavail,ir,iter,itmax,flamda,tol,amotol,iprint)
    test convergence of parameter estimation . if test succeeds
C
    estimation is complete- commence simulation: set ihat=0, restore
C
    bavail to input value & solve flamda=0 by newto-raphson.
C
    if test fails perform newton-raphson and test again.
      if (amotol-crital) 530,530,540
  530 ihat=0
      bavail=btemp
```

```
perform iteration of newton-raphson procedure
    compute flamda and, for all i, xvar(i), uvar(i), d(i), and q(i)
  540 iter=iter+1
      call ef(zlamda,bavail,ir,iter,itmax,flamda,tol,amotol,iprint)
    compute fdash and new lamda
      call step(zlamda,flamda,ir,iter,fdash,iprint)
    convergence test for newton-raphson procedure.
C
    if test suceeds go to c2.
C
    if test fails proceed to next iteration at cl, unless
C
    iterations exceed maximum in which case stop.
      if (amotol-crit) 537,538,538
  538 if(iter-itmax)540,540,541
  541 write(6,557)
      stop
    write information on final newton-raphson iteration to file 6
    and kprint (=output).if process is in simulation mode ( ihat=0)
    simulation is now completed; go to c3.
  537 write(kprint, 126) ihat, iter, tol, zlamda
      write(6,126)
                         ihat, iter, tol, zlamda
      if(ihat)533,533,532
    if no. of alpha iterations exceeds maximum stop,
    if not perform next alpha iteration at ca
  532 if (ihat-itmax) 500,500,531
  531 write(6,554)
      stop
c3 compute additional output quantities
  533 xvart=0.0
      bvart=0.0
      xtotb=0.0
      bneedt=0.0
      do 80 i=1, ir
        xfr(i)=xvar(i)/xbig(i)
        ufr(i) = uvar(i) / ubiq(i)
        bfr(i) = xfr(i) * ufr(i)
        bvart=bvart+bvar(i)
        xvart=xvart+xvar(i)
        xtotb=xtotb+xbig(i)
        bneedt=bneedt+xbig(i)*ubig(i)
   80 continue
      uvart=bvart/xvart
      xvartf=xvart/xtotb
      ubarb=bneedt/xtotb
```

uvartf=uvart/ubarb
bvartf=bvart/bneedt

```
write output
C
      write(kprint,555) runame,(i,(categ(i,j),j=1,3),
     -alpha(i), beta(i), xbig(i), ubig(i), i=1, ir)
      write(kprint, 29) runame
      write(kprint, 27) (i, (categ(i,j), j=1,3), xvar(i), xfr(i),
     -uvar(i), ufr(i), bvar(i)
     -,bfr(i),i=1,ir)
      write(kprint, 28) xvart, xvartf, uvart, uvartf, bvart, bvartf
   20 format(////4i10/////5f12.6,f12.3)
   21 format(////lx,a4,8x,3fl0.5////(lx,3a4,4fl0.7))
   22 format(lx,il, 'negative values in elasticity data for ',
     -' patient category ',i2)
   24 format(lx,il, errors in xbig, ubig data')
   27 format(//6x,'patient',12x,'actually',9x,'actual aver.',9x,
     -'beddays'/6x,'category',llx,'treated',l0x,'length of stay',7x,
     -'actually used'/21x,'(number/fract.)',5x,'(number/fract.)',
     -6x, '(number/fract.)'//20(1x,i2,1x,3a4,5x,f7.1,'/',f7.4,5x,f7.3,
     -'/',f7.4,6x,f7.1,'/',f7.4//))
   28 format(/' all categories',5x,f8.1,'/',f7.4,5x
     -,f7.3,'/',f7.4,5x,f8.1,'/',f7.4/)
   29 format(lhl,15x,'simulation results',6x,'for run ',a4//)
   30 format(//126('*')/20x,'file =inida= for run ',a4
     -//' patient category', 3x, 'mean admissions',
     -3x, 'mean length of stay', 4x, 'elasticities'/
-23x, 'xbar(i)', llx, 'ubar(i)', llx, 'gamhat(i)', 3x, 'eta(i)'//
     -(20(1x,i2,1x,3a4,5x,f7.1,12x,f7.3,10x,f10.7,4x,f10.7//)))
  126 format(//' parameter iteration ',i2,' completed with ',i2,
      -' newton-raphson iterations'/' tolerance = ',e9.2,'
           lamda = ', f7.3
  140 format(13x, 'total= ',f8.1,5x, 'mean= ',
     -f8.3,7x,'bed-days available=',f7.1/126('*'))
  141 format(////126('*')/20x,'file=auxpa= for run ',a4//
     -' identifiers for files
                                  max no. of
                                                  no.of pat.',4x,
     -'initial value'/
     - | =calcns= and =output=
                                   iterations
                                                   categories',4x,
     -'of lamda'/
     _ 1
           iprint',7x,'kprint',7x,'itmax',llx,'ir',llx,'zlamda'//
     -6x, i1, 12x, i1, 10x, i3, 12x, i2, 9x, f7.3///
     -5x, 'data', 7x, 'newton-raphson', 5x, 'alpha', 9x, 'arbitrary', 5x,
     -'calibration'/
```

```
-5x, 'test', 7x, 'conv. criterion', 3x, 'criterion', 6x, 'constant',
   -6x,'bed point'/
   -5x, 'ctest', 8x, 'crit', 12x, 'crital', 12x, 'c', 12x, 'bcalib'//
   -2x,f10.5,5x,f10.7,5x,f10.7,5x,f10.5,5x,f10.2//
   -126('*'))
142 format(lh1)
551 format(/'elasticity data scaled by ',f8.5)
552 format(//126('*')//
-' clculated parameters at iteration ',i2//
   -' i',3x,'alpha(i)',12x,'beta(i)',14x,'xbig(i)',14x,'ubig(i)'//
   -(1x, i2, 1x, f12.6, 8x, f12.6, 8x, f12.6, 8x, f12.6))
553 format(/i2,' negative values of calculated parameters
   - for category ',i2)
554 foma(/'nmbr f pramte tertion exceeds maximum')
555 format(lhl,5x,'calculated parameter values for run ',a4///
   -2x,'i',4x,'category',7x,'alpha(i)',4x,'beta(i)',5x,
   -'xbig(i)',5x,'ubig(i)'//
   -(1x, i2, 1x, 3a4, 5x, f7.3, 5x, f7.3, 5x, f7.3, 5x, f7.3//))
557 format(/'number of newton-raphson iterations exceeds aximum')
      stop
      end
```

MAIN PROGRAM FOR CASE 3

```
this is the main programme for the model 'dram' mark 1 case 3. it simulates the allocation of a health care resource
C
     using data on elasticities and ideal allocations.
C
C
     it uses 2 subroutines 'ef.f' and 'step.f' iteratively to solve
     the equation flamda = 0 , using the newton-raphson procedure,
C
C
     to within a given criterion.
       dimension xfr(20), ufr(20), bfr(20), categ(20,3), gamhat(20),
     -etahat(20)
       common /cbl/ a(20)
       common /cb2/ alpha(20), beta(20)
      common /cb2/ alpha(20), beta(20)
common /cb3/ xbig(20), ubig(20)
common /cb4/ q(20),d(20)
common /cb5/ xvar(20),uvar(20),bvar(20)
common /cb6/ bneed(20)
C
    read auxiliary parameters from file 5 = 'auxpa'.
       read(5,20) iprint, kprint, itmax, ir, zlamda, ctest, crit, crital, c,
      -bcalib
       write(6,20)iprint,kprint,itmax,ir,zlamda,ctest,crit,crital,c,
C
C
     -bcalib
    read input data from file 7 = 'inida'.
       read(7,21) runame, xtota, ubara, bavail,
     -((categ(i,j),j=1,3),xbig(i),ubig(i),gamhat(i),etahat(i),i=1,ir)
       write (6,21) runame, xtota, ubara, bavail,
      -((categ(i,j),j=1,3),xbig(i),ubig(i),gamhat(i),etahat(i),i=1,ir)
    calculate auxiliary quantities.
       bneedt=0.0
       ubarb=0.0
       xtotb=0.0
       do 70 i=1,ir
         xtotb=xtotb+xbig(i)
         bneed(i) = xbig(i) * ubig(i)
         bneedt=bneedt+bneed(i)
C
        beta(i)=c/etahat(i)-1.0
         a(i) = ubig(i)
   70 continue
       ubarb=bneedt/xtotb
       r=bavail/bneedt
    write input data and auxiliary parameters
C
    to file 6 (= terminal') and file kprint (= 'output')
C
```

write(6,141) runame, iprint, kprint, itmax, ir, zlamda

```
-,ctest,crit,crital,c,bcalib
      write(6,30) runame,(i,(categ(i,j),j=1,3),xbig(i),
    -ubig(i), gamhat(i), etahat(i), i=1, ir)
      write(6,140) xtotb, ubarb, bavail
     write(6,142)
      write (kprint, 141) runame, iprint, kprint, itmax, ir, zlamda,
     -ctest, crit, crital, c, bcalib
     write(kprint,30) runame,(i,(categ(i,j),j=1,3),xbig(i),
     -ubig(i), gamhat(i), etahat(i), i=1, ir)
      write(kprint, 140) xtotb, ubarb, bavail
      write(kprint, 142)
    3 checks of internal consistency of data .
    programme stops if any answer is 'yes'.
C
    check 1- are any elasticity data non-positive?
      kerr=0
      do 71 i=1, ir
      ierr=0
      if(gamhat(i).le.0.0)ierr=1
      if(etahat(i).le.0.0)ierr=ierr+l
      kerr=kerr+ierr
      if(ierr.qt.0)write(6,22)ierr,i
   71 continue
      if (kerr.gt.0) stop
    check 2- is r non-positive or greater than unity ?
C
      if(r) 132,132,133
  132 write(6,23) r
      stop
  133 if(r-1.) 134,132,132
    check 3- do either of the computed xtotb and ubarb differ
    from the input xtota and ubara by more than ctest % ?
  134 testx=((xtota-xtotb)/xtotb)*100.
       testu=((ubara-ubarb)/ubarb)*100.
       tex=abs(testx)
       teu=abs(testu)
       kerr=0
       if(tex.gt.ctest)kerr=1
       if(teu.qt.ctest)kerr=kerr+l
       if(kerr)135,135,136
   136 write(6,24)kerr
       stop
```

initialise parameter iteration count and set bavail=bcalib.

135 ihat=0

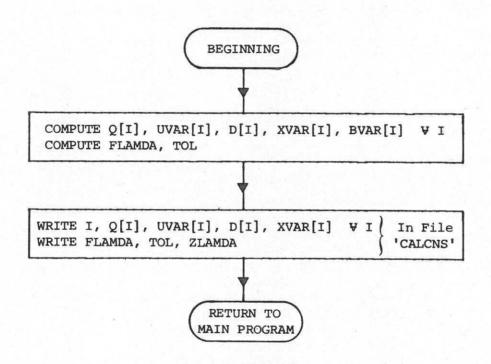
btemp=bavail

```
bavail=bcalib
ca
     perform iteration of parameter estimation procedure
  500 inat=inat+1
     calculate parameters alpha(i) and beta(i) and write them to
     file inprint and stop if any are not positive.
0
      red=0.0
      do 544 i=1, ir
      red=red+(xvar(i)*uvar(i)*(qamhat(i)+etahat(i)))
  544 continue
      kerr=0
      do 502 i=1, ir
      ierr=Ø
      if(inat-1)543,543,542
  542 c=(-1.0*red)/(zlamda*fdash)
  543 \text{ beta(i)}=c/\text{etahat(i)}-1.0
      pwr=-(beta(i)/(beta(i)+1.0))
      alpha(i) = ((c*beta(i))/((beta(i)+1.0-zlamda**pwr)*gamhat(i)))-1.0
      if(beta(i).le.0.0)ierr=ierr+l
      if(alpha(i).le.0.0)ierr=ierr+l
      if(ierr)502,502,501
  501 kerr=kerr+ierrr
      write(6,553) i,alpha(i),beta(i)
  502 continue
      write(iprint,552) ihat,(i,alpha(i),beta(i),i=1,ir)
      if(kerr.gt.0)stop
    initialise newton-raphson iteration count , iter, compute flamda.
      iter=0
      if(ihat-1)540,540,539
  539 call ef(zlamda,bavail,ir,iter,itmax,flamda,tol,amotol,iprint)
    test convergence of parameter estimation. if test succeeds
C
    estimation is complete- commence simulation: set ihat=0, restore
C
    bavail to input value & solve flamda=0 by newton-raphson.
    if test fails perform newton-raphson and test again.
      if (amotol-crital) 530,530,540
  530 ihat=0
      bavail=btemp
cl perform iteration of newton-raphson procedure
    compute flamda and, for all i, xvar(i), uvar(i), d(i), and q(i)
  540 iter=iter+1
      call ef(zlamda,bavail,ir,iter,itmax,flamda,tol,amotol,iprint)
    compute fdash and new lamda
      call step(zlamda,flamda,ir,iter,fdash,iprint)
```

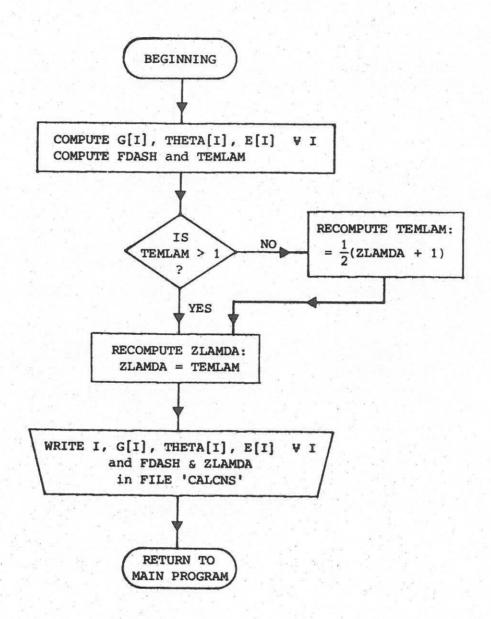
```
convergence test for newton-raphson procedure.
   if test suceeds go to c2.
   if test fails proceed to next iteration at cl, unless
   iterations exceed maximum in which case stop.
     if (amotol-crit) 537,538,538
 538 if(iter-itmax)540,540,541
 541 write (6,557)
     stop
   write information on final newton-raphson iteration to file 6
    and kprint. if process is in simulation mode ( ihat=Ø)
    simulation is now completed; go to c3.
 537 write(kprint, 126) ihat, iter, tol, zlamda
                        ihat, iter, tol, zlamda
     write(6,126)
      if (ihat) 533,533,532
   if no. of alpha iterations exceeds maximum stop,
   if not perform next alpha iteration at ca
 532 if (ihat-itmax) 500,500,531
 531 write (6,554)
      stop
c3 compute additional output quantities
  533 xvart=0.0
      bvart=0.0
      do 80 i=1, ir
        xfr(i)=xvar(i)/xbig(i)
        ufr(i) = uvar(i) / ubig(i)
        bfr(i) = xfr(i) * ufr(i)
        bvart=bvart+bvar(i)
        xvart=xvart+xvar(i)
   80 continue
      uvart=bvart/xvart
      xvartf=xvart/xtotb
      uvartf=uvart/ubarb
      bvartf=bvart/bneedt
  write output
      write (kprint, 555) runame, (i, (categ(i,j), j=1,3),
     -alpha(i),beta(i),i=1,ir)
      write(kprint,29) runame
      write(kprint,27)(i,(categ(i,j),j=1,3),xvar(i),xfr(i),
     -uvar(i), ufr(i), bvar(i)
     -,bfr(i),i=1,ir)
       write(kprint, 28) xvart, xvartf, uvart, uvartf, bvart, bvartf
```

```
20 format(////4il0/////5fl2.6,fl2.3)
21 format(////lx,a4,8x,3f9.2/////(1x,3a4,4f9.3))
22 format(lx,il,' negative values in elasticity data for ',
  -' patient category ',i2)
23 format(' ratio beds available : beds needed = ',f12.2/
  -' no allocation problem !')
24 format(lx,il,' errors in xbig, ubig data')
27 format(//6x,'patient',12x,'actually',9x,'actual aver.',9x,
  -'beddays'/6x,'category',llx,'treated',l0x,'length of stay',7x,
  -'actually used'/21x,'(number/fract.)',5x,'(number/fract.)',
  -6x, '(number/fract.)'//20(lx,i2,lx,3a4,5x,f7.1,'/',f7.4,5x,f7.3,
  -'/',f7.4,6x,f7.1,'/',f7.4//))
28 format(/' all categories',5x,f8.1,'/',f7.4,5x
  -,f7.3,'/',f7.4,5x,f8.1,'/',f7.4/)
29 format(lhl,15x,'simulation results',6x,'for run ',a4//)
30 format(//126('*')/20x,'file =inida= for run ',a4
  -//' patient category', 6x, 'total sick',
  -5x,'ideal length of stay',4x,'elasticities'/
-23x,'xbig(i)',llx,'ubig(i)',llx,'gamhat(i)',3x,'eta(i)'//
   -(20(1x,i2,1x,3a4,5x,f7.1,12x,f7.3,12x,f7.4,3x,f7.4//)))
126 format(//' parameter iteration ',i2,' completed with ',i2,' newt',
   -'on-raphson iterations'/' tolerance = ',e9.2,' lamda = ',f7.3)
140 format(13x, 'total= ', f8.1, 5x, 'mean= ',
   -f8.3,7x,'bed-days available=',f7.1/126('*'))
141 format(////126('*')/20x,'file=auxpa= for run ',a4//
   -' identifiers for files
                                 max no. of
                                                no. of pat.', 4x,
   -'initial value'/
   -' =calcns= and =output=
                                iterations
                                               categories',4x,
   -'of lamda'/
        iprint',7x,'kprint',7x,'itmax',llx,'ir',llx,'zlamda'//
   -6x, i1, 12x, i1, 10x, i3, 12x, i2, 9x, f7.3///
   -5x, 'data', 7x, 'newton-raphson', 5x, 'alpha', 9x, 'arbitrary', 5x,
   -'calibration'
   -5x,'test',7x,'conv. criterion',3x,'criterion',6x,'constant',
   -6x, bed point'/
   -5x,'ctest',8x,'crit',12x,'crital',12x,'c',12x,'bcalib'//
   -2x,f10.5,5x,f10.7,5x,f10.7,5x,f10.5,5x,f10.2//
   -126('*'))
142 format(1h1)
552 format(//126('*')//' parameter iteration number ',i2//
   ' i cacuatd aphai) calculated beta(i)'//
```

-(1x,i2,2x,f12.6,2x,f12.6))


```
553 format(/' negative calculated parameter for category ',i2/
-'alpha(i) = ',f12.6,' beta(i) = ',f12.6)
```

- 554 format(/'number of parameter iterations exceeds maximum')
- 555 format(lhl,5x,'calculated parameter values for run ',a4///
 -2x,'i',4x,'category',7x,'alpha(i)',4x,'beta(i)'//
 -(lx,i2,lx,3a4,5x,f7.3,5x,f7.3//))
- 557 format(/'number of newton-raphson iterations exceeds maximum')


stop end

5. DESCRIPTION OF SUBROUTINES

Flow diagrams, dictionaries for the computed quantities and listings are given below for the two subroutines 'EF' and 'STEP'.

Subroutine 'EF'

Subroutine 'STEP'

QUANTITIES COMPUTED IN SUBROUTINE 'EF'

AMOTOL = Absolute value of TOL

$$D[I] = d_{i} = \frac{U_{i}}{a_{i}\beta_{i}} \left[(\beta_{i} + 1) \lambda^{\beta_{i}/(\beta_{i}+1)} - 1 \right]$$

FLAMDA =
$$f(\lambda) = \sum_{i} x_{i}u_{i} - B$$

$$TOL = f(\lambda)/B$$

$$Q[I] = q_{i} = \lambda^{1/(\beta_{i}+1)}$$

$$UVAR[I] = u_i = U_i/q_i$$

$$XVAR[I] = x_i = x_i / \left[d_i^{1/(\alpha_i + 1)} \right]$$

QUANTITIES COMPUTED IN SUBROUTINE 'STEP'

$$E[I] = e_i = x_i U_i \theta_i / \{ (\alpha_i + 1) g_i^{(\alpha_i + 2) / (\alpha_i + 1)} \}$$

FDASH =
$$f'(\lambda) = -\sum_{i} e_{i}$$

$$G[I] = g_i = d_i q_i^{\alpha_i + 1}$$

TEMLAM =
$$\lambda - f(\lambda)/f'(\lambda)$$

$$\text{THETA[I]} = \Theta_{i} = \frac{U_{i}}{a_{i}\beta_{i}} \left\{ (\alpha_{i} + \beta_{i} + 1) \lambda^{\alpha_{i}/(\beta_{i} + 1)} - \frac{\alpha_{i} + 1}{\beta_{i} + 1} \lambda^{(\alpha_{i} - \beta_{i})/(\beta_{i} + 1)} \right\}$$

$$ZLAMDA = \begin{cases} TEMLAM & \text{if TEMLAM} > 1 \\ \frac{1}{2}(ZLAMDA + 1) & \text{if TEMLAM} \le 1 \end{cases}$$

SUBROUTINE 'EF'

```
this subroutine computes flamda and amotol
C
C
                  and, for all i, xvar(i) uvar(i) d(i) and q(i)
                                  common /cb1/ a(20)
common /cb2/ alpha(20), beta(20)
common /cb3/ xbig(20), ubig(20)
                                   common \frac{d}{d} = \frac{d}{d}
                                   common /cb5/ xvar(20), uvar(20), bvar(20)
                                   flamda = - bavail
                          do 51 i=1, ir
                                   q(i) = z lamda**((1.0/(1.0+beta(i))))
                                   uvar(i) = ubig(i)/q(i)
                                   d(i) = (ubig(i)/(a(i)*beta(i)))*((beta(i)+1.0)*(zlamda**(beta(i)))
                      -/(beta(i)+1.0)))-1.0)
                                   xvar(i) = xbig(i)/(d(i)**(1.0/(alpha(i)+1.0)))
                                   bvar(i) = xvar(i) *uvar(i)
                                   flamda=flamda+bvar(i)
         51
                          continue
                                    tol=flamda/bavail
                                    amotol=abs(tol)
 c write computations on file iprint (= 'calcns')
                                   write(iprint,2) iter
                                    write(iprint,3) (i,q(i),uvar(i),d(i),xvar(i),i=1,ir)
                                    write(iprint,4) flamda,tol,zlamda
                                     format(///l0x,60('*')/' newton-raphson iteration ',i3//
                                        category', 10x, 'q(i)', 13x, 'uvar(i)', 10x, 'd(i)', 13x, 'xvar(i)')
              3
                                     format(4x,i2,llx,el2.5,5x,el2.5,5x,el2.5,5x,el2.5)
                                     format(//' flamda=',e12.5,5x,'to1=',e12.5,3x,'lamda=',e12.5)
                                    return
                                     end
```

SUBROUTINE 'STEP'

end

```
this subroutine computes fdash and new value of zlamda
        common /cbl/ a(20)
        common/cb2/ alpha(20), beta(20)
        common /cb3/ xbig(20), ubig(20)
        common/cb4/ g(20),d(20)
        common/cb6/ bneed(20)
        dimension q(20), theta(20), e(20)
    compute fdash
C
         fdash=0.0
      do 61 i=1, ir
         g(i)=d(i)*(q(i)**(alpha(i)+1.0))
         theta(i) = (q(i) **alpha(i)) * (alpha(i) + beta(i) + 1.0 - ((alpha(i) + 1.0))
     -/(beta(i)+1.0)/(q(i)**beta(i))))*ubig(i)/(a(i)*beta(i))
         e(i) = bneed(i) * theta(i) / ((alpha(i) + 1.0) * (g(i) * * ((alpha(i) + 2.0) / (
     -alpha(i)+1.0)))
         fdash=fdash-e(i)
  61 continue
    compute new zlamda
         temlam=zlamda-(flamda/fdash)
         if(temlam-1.) 116,116,117
         temlam=\emptyset.5+(\emptyset.5*zlamda)
  116
         zlamda=temlam
  117
  write computations on file iprint (= 'calcns')
  111
         write(iprint, 11)
         write (iprint, 12)(i, g(i), theta(i), e(i), i=1, ir)
         write (iprint, 13) fdash, zlamda
  112
         continue
         format(///' category',6x,'g(i)',13x,'theta(i)',9x,'e(i)')
   11
   12
         format(5x, i2,5x,e12.5,5x,e12.5,5x,e12.5)
   13
         format(//2x,'fdash=',e12.5,5x,'zlamda=',e12.5)
         return
```

6. SUITABLE VALUES FOR INPUT DATA

FILE 'AUXPA'

This file contains input values for the following auxiliary parameters (see Section 3 for definitions):

- IPRINT,
- KPRINT,
- IR,
- ITMAX,
- ZLAMDA,
- CTEST,
- CRIT,
- CRITAL, required for Cases 2 and 3 only
- BCALIB.

IPRINT and KPRINT: These define the unit numbers for the output files 'CALCNS' and 'OUTPUT', respectively, which are used in the main program subroutines. The suitable values depend on the computer installation. On the IIASA computer suitable values were 2 and 3, respectively.

IR must be set equal to the number of patient categories
contained in the main input file 'INIDA'.

ITMAX: Computational experience with the test problem described in Gibbs [3] suggests that:

- i. the Newton-Raphson procedure for solving the equation $f(\lambda) = 0$ normally converges to within an acceptable criterion (see below) in less than 10 iterations, and
- ii. the parameter estimation process for Cases 2 and 3 usually converges in two or three iterations.

Thus a suitable value for ITMAX, which is used as an iteration limit for both processes, is $\underline{20}$. If either of these processes fails to converge after 20 iterations there is probably some data error preventing convergence.

ZLAMDA: Any initial value of λ greater than unity will permit convergence but computational experience suggests that the values of λ of the order of $\underline{4}$ usually lead to rapid convergence in the case of Case 1. For Cases 2 and 3 the most suitable value of λ depends upon the value of C. For reasons given in Gibbs [3] a suitable value is given by $\lambda = 2^{\mathbb{C}}$. Since a suitable value for C is usually of the order of 2, see below, this implies a value of λ of the order of $\underline{4}$ for cases 2 and 3 also.

CTEST: The minimum value to which this should be set is an order of magnitude greater than errors arising from rounding. For example if the input data on admissions and length of stay is provided with four-figure accuracy the column totals should be accurate to at least 1 part in 10^3 and a value for CTEST of 0.1 would be appropriate since this will stop the program for errors in column totals greater than 0.1%.

CRIT: Computational experience suggests that with a value for CRIT of 10^{-5} the model output is accurate to 1 part in 10^{4} .

CRITAL: This should be an order of magnitude greater than CRIT otherwise the parameter estimation procedure may never converge. Thus if CRIT is set to 10^{-5} , CRITAL could be set to 10^{-4} .

C: For reasons given in Gibbs [3] the most suitable value of C depends on the values of the elasticities supplied in the input data. A suitable value is given by:

$$C = \max_{i} (\hat{\gamma}_{i} + \hat{\eta}_{i})$$
.

This usually implies a value of C of the order of 2, see Gibbs [3]. If C is set lower than this value there is a risk that negative values will be computed for one or more of the α_i and β_i , in which case an error message will appear and the program will stop (see Section 10).

A complication may arise for Case 2 where the input elasticities are scaled in order that they should be consistent with the equation:

$$\sum_{i} \overline{x}_{i} \overline{u}_{i} (\hat{\gamma}_{i} + \hat{\eta}_{i}) = \overline{B} .$$

The equation for C quoted above applies, strictly speaking, to the scaled values of elasticities. Thus it may be necessary to adjust the input value of C by the scaling factor, which is written to the terminal.

 $\it BCALIB$ should be assigned the value of $\overline{B},$ the mean bed supply from the data from which the elasticities are estimated.

FILE 'INIDA'

This contains the main input data. Its contents are different for each case, as can be seen from the illustrative listings in the following sections.

The first data entered are RUNAME, XBARA, UBARA and B.

RUNAME: Any four-character alphameric value is permitted.

XBARA and UBARA are used to check the data on admission rates and lengths of stay by category which follow. Appropriate values are given by:

Corresponding quantities XBARB and UBARB are computed within the program and if the computed and input values do not agree within CTEST percent an error message is printed and the program is stopped, see Section 10. If in a series of runs the user changes some of the data on category admission rates or lengths of stay without also recomputing XBARA and UBARA then the error will probably be encountered. However since the computed values are written both to the terminal and to the file OUTPUT the user can remedy the situation by substituting these values for XBARA and UBARA in the file INIDA.

B: This is the number of bed-days whose allocation is to be simulated by the model. For Cases 1 and 3 it should lie within the range:

$$0 < B < \sum_{i} x_{i}U_{i}$$
 ,

otherwise an error message will be given (see Section 3). For Case 2, B can take any value in the range given by:

$$0 < \frac{B}{2} < BCALIB$$
 ,

provided that the initial values for C and λ are set in accordance with the suggestions given above.

The data on each category commence with CATEG, the category name, for which any 12 alphameric characters are allowed. This is followed by data on admission rates, lengths of stay and power factors (Case 1) or elasticities (Cases 2 and 3). The only restriction on this data is that each value should be strictly positive although values for elasticities that are much in excess of unity should be regarded with suspicion.

7. CASE 1 ILLUSTRATIVE INPUT/OUTPUT

AUXPA

file max. no. identifiers iterations categories iprint kprint itmax ir 2, 3, 20. 6, newton-raph. initial data conv. crit. lambda test crit zlamda ctest 0.00001 , 4.000 1.0

INIDA

run total overall beds name ideal no ideal available patients av.stay test 98.0 , 22.78 , 1200.0 patient ideal no ideal category patients av.stay alpha(i) beta(i) varic. veins 12.8 , 15.4 , 1.636 , 3.0323 haemorrhoids 7.7 , 13.1 , 2.1138 , 4.6818 ischm. heart 10.4 , 52.1 , 0.5445 , 1.3148 pneumonia 21.0 , 19.7 , 2.2808 , 9.8696 bronchitis 21.3 , 34.2 , 1.1790 , 49.000 appendicitis 24.8 , 10.1 , 44.433 , 7.0645

E	41
-	~ I
-	
P	41
E	4
E	ч І
5	. 1

<pre>=calcns= and =output= iprint</pre>	<pre>=calcns= and =output= iterations iprint kprint itmax</pre>	categories ir	conv. criterion	of lambda zlamda
2 3	2.9	9	0.0000100	4.009
**************************************		**************************************	*****	**************************************
patient category	total sick i xbig(i)	ideal length of ubig(i)	stay alpha alpha(i)	beta beta(i)
l varic. veins	12.8	15.400	1.6360	3.0323
2 haemorrhoids	7.7	13.100	2.1138	4.6318
3 ischm. heart	10.4	52.100	0.5445	1.3148
4 pneumonia	21.0	19.700	2.2808	9.8696
5 bronchitis	21.3	34.200	1.1790 4	49.9362
6 appendicitis	24.8	13.103	44.4330	7.9645

no. iteration tolerance lambda beddays avail 4 -0.76e-07 3.356 1200.0

for run test

<pre>beddays actually used (number/fract.)</pre>	96.5/ 0.4897	56.8/ 2.5632	167.2/ 0.3985	259.5/ 0.6273	409.8/ 9.5626	210.2/ 0.8391	1200.0/ 0.5375
<pre>actual aver. length of stay (number/fract.)</pre>	11.495/ 0.7496	10.536/ 0.8081	30.88%/ 0.5927	17.623/ 9.8946	33.382/ 0.9761	8.692/ 0.8606	17.039/ 0.7430
<pre>actually treated (number/fract.)</pre>	8.5/ 0.6612	5.4/ 0.6970	5.4/ 0.5205	14.7/ 0.7012	12.3/ 0.5764	24.2/ 0.9750	70.4/ 0.7186
patient	l varic. veins	2 naemorrhoids	3 iscnm. heart	4 pneumonia	5 pronchitis	6 appendicitis	all categories

newton-raphson iteration

category	-	ar	d(i)	xvar(i)	
-	33e Ø	.10920e Ø	.34419e	.8008e	
2	63e Ø	.10264e 0	.35898e	.51077e	
3	Ø.18201e 01	Ø.28625e Ø2	0.31086e 01	0.49902e 01	
4	60e 0	.17341e Ø	.37765e	.14006e	
5	31e Ø	.33265e @	.39496e	.11340e	
9	76e Ø	.85048e Ø	.37035e	.24096e	

01							
ଉଉଉଚ						92	01
0.406		-		3	42	518e	84
ii ii		.12	.59	.31	. 22	. 44	.73
lamd		0	63	63	Ø	0	0
-01	(i)	01	01	01	01	01	05
46	a	72	63	32	90	89e	34
.7687		314	-	9	1	.107	14
- 3		ø	8	9		Ø	
tol							
		01	01	01	01	01	94
02		-		4	9	56e	3
9e	_	51	1	783	573	419	912
224		0	ø	0	0	0	
6.0-	ry						
da=_	0	Н	7	m	4	'n	9
flame	cate					é	1,

fdash=-0.12475e 03 zlamda= 0.32605e 01

مد	
×	
*	
*	
水水	
×	
*	
*	8
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
水水	
*	7
*	
*	_
*	ior
*	17
*	ra
*	E.
*	-
*	u
*	SO
*	yc.
1730	g
	Or
	wton-r
	ne

×	.85416e Ø	0.54107e 01	.54873e Ø	.14846e Ø	.12438e Ø	.24195e Ø	
	5	01	0	0	0	0	
d(i	.29045	3009	.26845	.31196	.32289	.30731	
	02	02	02	02	02	01	
uvar	.11488	.1064	.31268	1767	.33401	11	
	01	01	01	01	01	01	
-	96	Ø.12312e	53	49	3	78	
category	Н	2	3	4	S	9	

tol= 0.13423e-01

flamda= 0.16108e 02

lamda= 0.32605e 01

category	ij		u	i)	e(i)		
	.6289	01	.28763	MI	.1702	02	
2	.57339	01	.25160	01	.8112	01	
m	₩.59067e	01	Ø.25292e	01	0.47568e	02	
4	.44568	01	.16940	01	.3039	02	
S	.33996	01	.10737	01	.6921	Ø 2	
9	3949	04	.4811		.9332	01	

fdash=-0.17265e 03 zlamda= 0.33538e 01

**************************************	*************	
**************************************	********	3
	*********	hson iter

var(i)	.84655	3676e	.54149e	.14727e	.12280e	.24181e	
	01	01	01	01	01	01	П
(i)	.29738e	30758e	.27402e	.32032e	.33200e	.31536e	Ø.33538e Ø
		92					lamda=
ar	.11407	587	.30889	.17624	.33382	.8692	0.30008e-03
						01	01=
q(i)	0.13500e	4	.16867	.11178	.1024	0	00 to
>	4						0.36009e
category	7	2	m	4	ഹ	9	flamda=

	Ø2	01	02	82	02	01	
e (i)	.1625	TTTT.	0.44976e	.2921	.5775	.9034	
(i)	01	0.1	01	01	01	04	
thet	.29125	.25441	Ø.25516e	.17044	.10744	.56257	
			01				
I	.6529	.5970	Ø.61437e	.4615	.3499	.2881	
category	-	2	က	4	2	9	

fdash=-0.16503e 03 zlamda= 0.33560e 01

*****************	n iteration 4
***	newton-raphson

ory		uvar(i)		xvar(i)
	0	.11406e 0	.29754e	.84637e
	Ø.12375e Ø1	Ø.10586e 02	0.30776e 01	Ø.53666e Øl
	0	.30880e 0	.27415e	.54133e
	0	.17623e Ø	.3205le	.14724e
	0	.33382e 0	.33222e	.12277e
	0	.8692ge @	.31554e	.24181e

lamda= 0.33560e 01

tol=-0.76294e-07

£lamda=-0.91553e-04

8. CASE 2 ILLUSTRATIVE INPUT/OUTPUT

AUXPA

file max. no.
identifiers iterations categories
iprint kprint itmax ir

2, 3, 20, 6,

initial data newton-raph. alpha arbitrary calibration lamda test conv. crit. est. crit. constant bed point zlamda ctest crit crital C bcalib 4.000 , 1.0 , 0.00001 , 0.00010 , 2.2200, 1094.2

INIDA

run total overall beds

name mean no. mean available

patients av.stay

test 63.9 ,17.123000, 1200.0

patient mea no mean elasticities category patients av.stay gamhat(i) etahat(i)

varic. veins 6.3 , 11.3 ,0.78 ,0.62 haemorrhoids 4.1 , 13.1 .0.70 ,0.44 ischm. heart 4.6 , 40.2 ,1.14 ,1.08 pneumonia 12.3 , 14.7 ,0.71 bronchitis 11.8 , 27.4 ,1.13 ,0.23 ,0.05 appendicitis 24.8 , 11.3 ,0.05 ,0.31

OUTPUT

* * *					* * * *	* * *								***
**************************************			ation int ib	.20	***************************************	**************************************	ties eta(i)	0.6200000	3.4400990	1.0800000	0.230000	0.0500000	0.3100000	9 mean= 17.123 bed-days available= 1200.0 **********************************
****	initial value of lamda zlamda	4.000	y calibration bed point bcalib	1094.20	****	***	elasticities gamhat(i) et	0.7899999	0.7000000	1.1400000	9.7100000	1.1300000	0.0500000	-days available= ********
***	at. ies		arbitrary constant c	2.22000	***	***	h of stay							Ped ********
******* n test	no.of p categor	9	alpha criterion crital	1000	***	r******** run test	mean length ubar(i)	11.300	13.100	40.200	14.700	27.400	11.300	17.123
********** xpa= for run	max no. of iterations itmax	20		0.9061000	***	********* nida= for r								mean=
******* file=auxp			newton-raphson conv. criterion crit	0.0000100	****	******** file =ini	mean admissions xbar(i)	6.3	4.1	4.6	12.3	11.8	24.8	63.0
**************************************	ers for and =ou				**********	**************************************	category	veins	haemorrhoids	heart	nia	nitis	appendicitis	total= 63.
***	identifiers =calcns= and iprint	7	data test ctest	1.06389	****	***	patient c	l varic.	2 haemor	3 ischm.	4 pneumonia	5 bronchitis	6 append	***

elasticity data scaled by Ø.89411

iterations	
1 completed with 1 newton-raphson iterations	
with 1	4.000
completed	lamda =
parameter iteration 1	tolerance = $-0.91e-05$
parameter	tolerance

parameter iteration \emptyset completed with 4 newton-raphson iterations tolerance = $\emptyset.51e-\emptyset6$ lamda = $3.27\emptyset$

calculated parameter values for run test

ubig(i)	15.974	16.748	73.468	16.714	28.176	13.435
xbig(i)	10.995	6.196	9.616	18.490	22.259	25.530
peta(i)	3.005	4.643	1.299	9.795	48.659	7.010
alpha(i)	1.629	2.094	0.536	2.259	1.164	44.134
category	l varic. veins	2 haemorrhoids	3 ischm. heart	4 pneumonia	5 bronchitis	6 appendicitis
٠.	Н	7	က	4	2	(0

1	
for	
results	
simulation	

*							
<pre>beddays actually used (number/fract.)</pre>	79.8/ 0.4948	58.9/ 0.5679	221.7/ 0.3138	195.2/ 0.6315	355.8/ 0.5574	288.6/ 0.8413	1200.0/ 0.5332
<pre>actual aver. length of stay (number/fract.)</pre>	11.883/ 0.7439	13.576/ 0.8106	43.882/ 0.5973	14.977/ 0.8961	27.511/ 0.9764	11.588/ 0.8625	17.917/ 0.7339
actually treated (number/fract.)	6.7/ 0.6652	4.3/ 0.7906	5.1/ 0.5254	13.0/ 0.7048	12.9/ 0.5811	24.9/ 0.9754	67.0/ 0.7265
patient category	varic. veins	haemorrhoids	ischm. heart	pneumonia	bronchitis	appendicitis	categories

all

CALCNS

*					000000	
***************************************		ubig(i)	15.974129 16.748011 73.469368 16.714296 28.175692 13.435315		xvar(i 0.63000e 0.41000e 0.46000e 0.12300e 0.11800e	
* *			* * *		01 01 01 01 01 01	
* *			* * *		85e 72e 37e 93e 93e 16e	222212
* * * *			823 897 684 796 155 669		d(i.343388.3188.337877788888888888888888888888	33 e e e e e e e e e e e e e e e e e e
**		g(i)	601094 61054 7259 830 84		ତ୍ରତ୍ତ୍ର ଓ	e(i) 1003 1003 4133 4133 1711 1711
* * *		xbi	100 100 * * 222 * * 255 *		2 2 2 2 2 amda=	000000
*			* * * *		i) 6 02 6 02 6 02 6 02 1 1 a	
* * *			* *		3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(i) (91 (91 (91 (91 (91 (93
* * *	П		74000W * * * *		uvv 0.11 0.13 0.14 0.27 0.27 0.27	8 4 4 2 e t a 8 3 9 e 6 6 6 8 9 9 6 e 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
* * *	cion	i)	# * # # # # # # # # # # # # # # # # # #		606	th .314 .272 .269 .176 .176
* *	teration	eta(84-1987 * 80-17-08 *	П	=-8	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
*	at it	pe	* * *	п	66	
* *	Ø		* * * * * * * * * * * * * * * * * * * *	ation	q(i) 1413 1278 1827 1137 1137 1189	e 6 01 e 6 01 e 6 01 6 01
* *	eter		*	iter		(i) 149 706 336 336 415
* * *	parameter	_	4 7 9 4 H H *		487e	9 6.76 6.78 7.8 6.57 8.91
*		la (i	619 619 535 74 133 * * *	aphson	٧ 96.9	
* * * *	late	alpha	H 20 21 4		0	9 ory 1 2 2 3 3 3 4 4 6 6
**************	calculated	-н	128459	newton-r	categ	cate
*	ິບ			Ċ	¥ ·	

zlamda= 0.39999e 31

fdasn=-0.12322e 03

*********	iteration 2
******	d parameters at
****	calculated

ubig(i)	15.973933 16.747871 73.467857 16.714222 28.175667 13.435233
xbig(i)	10.094648 6.195804 9.616409 18.489527 22.258663 25.529646
beta(i)	3.004773 4.643088 1.299036 9.795473 48.659180 7.009545
alpha(i)	1.619582 2.093741 0.535903 2.258996 1.164265
	H 2 W 4 i 1 2 0

************************ newton-raphson iteration

xvar	.63000e	0.41000e 01	.46000e	.1239@e	.11800e	.24800e
d(i)	.34384e 0	Ø.35872e Øl	.31037e 0	.37749e Ø	.39492e 0	.37015e Ø
uvar(i)	0.11330e 32	0.13133e 02	3.40203e 02	2.14798e 02	0.27400e 02	0.11300e 02
g(i)	369 0	35e Ø	769 9	70e 0	338 8	Ø.11890e 01
000	, -	10	1 m	0 4	11 *	n vo

ilamda=-0.10010e-01 tol=-0.91480e-05

lamda= 0.39999e 01

4	
*	
*	
. 如果我们我们的我们的我们的的,我们们们的的,我们们的我们的的话,我们们的我们的的话,我们们的人们的,我们们的我们的我们的,我们们们们们们们们们们们们们们们们们们们	hson iteration 1
*	newton-rap

xvar(i)	.63000e	.41000e	0.46000e 01	.12300e	.11800e	.24800e
d(i)	.34384e	.35872e	0.31037e 01	.37749e	.39492e	.37015e
_	.11300e 0	.13100e 0	0.40200e 02	.14700e 0	.27400e 0	.11300e 0
q(i)	e e	5e	0.18276e 01	ge	3e	ge.
category	1	2	3	4	2	9

Н.	
Ø	
Ø.39999e	
lamda=	
tol=-0.88175e-01	
flamda=-0.1058le 03	

92	01	02	02	02	02
.10035	.61651	.41335	.17113	.38414	.10158
01	01	01	01	01	05
.3144	.2723	.2690	.1769	.1078	.1495
01	01	01	01	01	04
.85147	.76704	.78359	.57367	.41951	.91405
-	2	က	4	2	9
	0.85147e 01 0.31442e 01 0.10035e 0	0.85147e 01 0.31442e 01 0.10035e 0 0.76704e 01 0.27239e 01 0.61651e 0	0.85147e 01 0.31442e 01 0.10035e 0 0.76704e 01 0.27239e 01 0.61651e 0 0.78359e 01 0.26902e 01 0.41335e 0	0.85147e 01 0.31442e 01 0.10035e 0 0.76704e 01 0.27239e 01 0.61651e 0 0.78359e 01 0.26902e 01 0.41335e 0 0.57367e 01 0.17695e 01 0.17113e 0	31442e 01 0 27239e 01 0 26902e 01 0 17695e 01 0

fdash=-0.12322e 03 zlamda= 0.31412e 01

****	newton-raphson iteration 2

xvar(i)	0.68918e 01	.43910e 0	.51502e 0	.13183e Ø	.13173e	.24922e Ø
i.)	.28130e	.29015e	.26093e	.30115e	31122e	.2968
uvar(i)	.12003e	.13673e	.44656e	.15033e		.1164
q(i)	38e Ø	19e Ø	6452e Ø	.11119e Ø	.10233e Ø	Ø.11536e Øl
category	٦,	2	. ~	0 4	י וכ	0

91							
(I)						02	02
lamda= 0.314120	e (i	.1481	.88476	.66727	.24005	g.54946e	.13414
-01	(i)	01	01	01	01	01	04
tol= 0.18980e-	theta	.28272e	.24776	.2498	.16795	0	.3917
tol=							
		10	01	01	01	01	04
22776e 02	i.	947	.54343	.56056	.42546	.32714	Ø.18782e
flamda= 0.2	catedory		10	1 60	4	. 70	9

fdash=-0.18275e 03 zlamda= 0.32658e 01

*	
*	
*	
*	
*	
*	
+1	
*	
**	
44	
*	
×	

女女	
*	
* *	
*	
*	
**	
女	
* * *	
**	
*	
*	
-14	3
*	
女女	_
20	on
*	L.
*	a
***	er
*	it
*	_
-14	O
*	hs
×	Q
	ra
	on-r
	O
	₹ T
	Je
	1

q(i)	ar (d(i)	
01	.11887e	.29062e 0	.67177e Ø
01	.13579e	.30029e 0	.43425e Ø
П	0.43906e 02	0.26844e 01	0.50559e 01
П	.14979e	.31234e 0	.13036e 0
7	.27512e	.32339e Ø	.12941e g
_	.11590e	.30765e	.24902e 0

lamda= Ø.32658e Øl

tol= 0.59881e-03

flamda= 0.71857e 00

	02	01	02	02	02	02	
e(i)	.1391	.8346	.6174	.2272	5	.1282	
i)	01	01	01	01	01	04	
theta(.28763	.25158	.25284	.16937	Ø.10736e	.48612	
	01	01	01	01	01	04	
(i	.63029	.57455	.59188	.44648	0.3405le	.24235	
category	-	7	e	4	2	9	
10							

fdash=-0.17142e 03 zlamda= 0.32700e 01

*	
* * *	

* *	
*	
*	

* * *	
*	
*	
*	

*	
*	
*	
**	4
*	
*	uc
*	t i (
*	era
**	ite
*	n
*	hsc
*	ap
	1-r
	wtor
	Je W
	7

category	q(i)	uvar(i)	d(i)	xvar(i)	
,_	.13443e Ø	.11883e Ø	.29094e	.67149e Ø	
7	.12336e Ø	.13576e Ø	.30063e	.43409e 0	
ım	.16742e Ø	.43882e Ø	.26869e	.50528e Ø	
4	.11160e 0	0.14977e 02	.31272e	0.13031e 02	01
י ער	.10241e Ø	.27511e Ø	.32380e	.12934e Ø	01
9	Ø.11594e Øl	.11588e Ø	0.3080le 01	.249ale 0	01

lamda= 0.32700e 01

tol= 0.50863e-06

flamda= 0.61035e-03

	92	01	02	02	02	02
-1	∞	.8330	.6158	.2268	0.51769e	.1280
(i)	01	01	01	01	01	04
theta (.28779	.25171	.25294	.16942	Ø.1Ø736e	.48959
	01	01	01	01	01	04
g(i)	.63150	5756	.59294	.44719	.34096	.2443
category	-	7	m	4	Ŋ	9

fdash=-0.17106e 03 zlamda= 0.32700e 01

9. CASE 3 ILLUSTRATIVE INPUT/OUTPUT

AUXPA

file max. no. iterations categories identifiers iprint kprint itmax ir 6, 2. 20, 3, calibration arbitrary initial data newton-raph. alpha conv. crit. est. crit. constant bed point lamda test

lamda test conv. crit. est. crit. constant bed point crital c bcalib

INIDA

run total overall beds name ideal no ideal available patients av.stay

test 98.0 , 22.78 , 1200.0

patient ideal no ideal elasticities
category patients av.stay gamhat(i) etahat(i)

, 0.7800 , 0.6200 , 15.4 varic. veins 12.8 , 13.1 , 0.7000 , 0.4400 haemorrhoids 7.7 , 1.1400 , 1.0800 ischm. heart 10.4 , 52.1 , 0.7100 , 0.2300 , 19.7 21.0 pneumonia , 1.1300 , 0.0500 , 34.2 21.3 pronchitis , 10.1 , 0.0500 , 0.3100 appendicitis 24.8

OUTPUT

iterations	
parameter iteration 1 completed with 4 newton-raphson iterations	
4	39
with	3.489
completed	tolerance = 0.14e-06 lamda =
Н	9
iteration	= 0.14e - 0
Z	9
paramete	toleranc

iterations	
2 completed with 2 newton-raphson iterations	
with 2	3.490
completed	lamda =
parameter iteration 2	
parameter	tolerance =

parameter iteration \emptyset completed with 4 mewton-raphson iterations tolerance = 0.18e-06 lamda = 2.915

calculated parameter values for run test

beta(i)	2.576	4.039	1.053	8.639	43.342	6.152
alpha(i)	1.310	1.738	0.342	1.897	0.931	39.053
category	l varic, veins	2 haemorrhoids	ischm. heart	4 pneumonia	5 bronchitis	appendicitis
•н	-	7	n	4	Ŋ	9

4	101
+	COTRCUT
notte lumber	1

beddays actually used (number/fract.)	96.5/ 0.4893	56.8/ 0.5632	166.3/ 0.3068	259.7/ 0.6276	410.5/0.5636	210.3/ 0.8395	מינים מין מי ממני
actual aver. length of stay (number/fract.)	11.418/ 0.7414	10.594/ 0.8087	30.939/ 0.5938	17.631/ 0.8950	33.385/ 0.9762	8.697/ 0.8611	0000
actually a treated 1 (number/fract.) (n	8.4/ 0.6599	5.4/ 0.6964	5.4/ 0.5167	14.7/ 0.7013	12.3/ 0.5773	24.2/ 0.9750	
patient category (varic. veins	haemorrhoids	ischm, heart	pneumonia	pronchitis	appendicitis	

CALCNS

parameter iteration number 1

i calculated alpha(i) calculated beta(i)

2.592903	27	93	18	02	10	
59	27	25	52	20	58	
69	96	96	89	5	8	
	. 8	3		17)		
CA	4	П	æ	43	0	
1.296010	4	0	4	0	ထ	
31	35	86	39	30	000	
99	316	6	366	30	1	
25	73	33	8	93	24	
Η.	i.	Ö	i.	0	9	
					n	
Н	2	m	4	S	Q	

***************** newton-raphson iteration

category	q(i)		ar		d(i)				
	4789	91	.1047	Ø	.3382	01		83	01
2	Ø.13150e	01	0.9962le		5444	01	9	.48447e	01
n	.19584	91	.2660	0	.30236	01		77	01
4	1539	01	.1707	Ø	.3750	01		112	92
2	0316	01	.3315	0	.39435	01		94	02
. 9	2128	01	.8327	0	.36697	01		08	02
flamda=-0.72339e	Ø2 to	1=-0.6	6111e-01	lamda=	0.40000e	01			

tegory	q(i)		theta	(i)	e(i)	
	82035	01	.29	01	.1238	02
10	748	01	.26	01	.6174	01
ı ~	.73422	01	Ø.24146e	01	Ø.29812e	82
4	.56801	01	.17	01	.2397	02
יעי	.41887	01	.10	01	.4607	02
9	Ø.83079e	04	.13	92	.8077	01

fdash=-0.12650e 03 zlamda= 0.34281e 01

*****************	newton-raphson iteration 2

category			d(1)	3 L	
, ,	.14090e 0	.10929e Ø	.29856e	.79490e	_
2	.12755e Ø	.10270e Ø	.31031e	.50865e	_
	0	.28670e 0	Ø.27207e Ø1	0.48722e 01	_
4	.11357e Ø	.17347e Ø	.3251le	.13985e	2
5.	.10280e Ø	.33267e Ø	.33883e	.11349e	2
9	Ø.11870e Øl	0.85087e 01	.31932e	.2409le	2

01
0.3428le
lamda=
0.88892e-02
tol= 0.8
0.97266e 01
flamda=

(i)			.41159e Ø2				
			0.41		Ø.58		
(i)	01	01	01	01	01	94	
T	.27	.24	Ø.23280e	.16	.10	.57	
	0	0	01	0	01	04	
g (1	.65609	.60315	Ø.59855e	47015	.35	602	
category	1	2	က	4	S	9	

fdash=-0.16308e 03 zlamda= 0.34878e 01

*	
3	
2	
75	
*	
*	
-K	
*	
-k	
de	
14	
7	
*	
*	
*	
k	
4	
2	
70	
*	
*	
*	
*	
* * *	
-10	
7	
7	
*	
×	
*	
*	
k	
+k	
*	
4	
2	
7	
75	
*	
*	
*	
-kc	
-14	
*	
~	~
*	(,)
-K	
*	
*	
*	
×	0
20	
30	- 11
-	
*	:0
*	7
*	W
×	W
*	
2	
-	-
7.	7
*	0
×	Ø
*	.0
*	Ω
	a
	-raph
	1
	_
	0
	newton-r
	3
	a
	C
	-

		The state of the s		•			
q(1)		uvar(i)		[]		IL	
58e	1	.13877e	12	.3027	01	.7998	01
.12799e	7	.10235e	12	.3149	61	.5058	01
.18325e	ı	.28431e	12	.2753	01	.4828	01
.11377e	7	.17316e	12	.3303	0.1	.1390	32
0.10284e 0	1	0.33254e 8	32	g.34453e	61	Ø.11250e	32
.11899e	-	.84883e	11	.3243	01	.2498	M2

tol= 0.12595e-03
- 1

03	01	02	20	02	01
.1558	.7635	.3969	.2922	.5686	.9478
01	61	103	01	21	04
.28019	.24836	.23377	.16899	.10729	.63536
01	01	01	01	01	04
.6727	.6179	.6124	.4802	.3638	.3421
٦	2	3	4	2	0
	0.67274e 01 0.28019e 01 0.15588e	0.67274e 01 0.28019e 01 0.15588e 0.61794e 01 0.24836e 01 0.75354e	0.67274e 01 0.28019e 01 0.15588e 0.61794e 01 0.24886e 01 0.76354e 0.61247e 01 0.23377e 01 0.39694e	0.67274e 01 0.28019e 01 0.15588e 0.61794e 01 0.24836e 01 0.75354e 0.61247e 01 0.23377e 01 0.39694e 0.48021e 01 0.16899e 01 0.29225e	0.67274e 01 0.28019e 01 0 0.61794e 01 0.24836e 01 0 0.61247e 01 0.23377e 01 0 0.48021e 01 0.16899e 01 0

zlamda= 9.34887e 01

fdash=-0.15849e 03

*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
+<	
*	
*	
*	
*	
40	
-14	
-10	
4	
40	
*	
4	
30	
4	
2	
7	
2	
7	
75	
*	
*	
-14	
*	
*	
-74	
*	
*	
-74	
-14	
*	4
-14	
*	
*	
*	=
-14	0
*	-
*	u
*	a
-1×	7
水	a
*	4
*	
*	
*	5
40	C
*	U
*	_
*	0
010	6
	L
	- ī
	ċ
	-
	7
	2
	4
	-

	0	0	0	0	02	0
xvar(i)	Ø.78998e	0.50583e	0.48277e	0.13907e	9.11249e	Ø.24082e
	01	01	01	01	01	01
ص ص	.302	,315	.275	.330	0.34471e	.324
	02	02	02	32	02	01
Var	.1087	.1023	.2842	.1731	Ø.33254e	.8488
	01	01	91	91	01	01
q(i)	S	.1279	N	.1137	0.10284e	.1189
tegory	1	2	3	4	2	9

91								1
887e							02	
9.348		7	58	324	67	215	843	191
ii ii		a	.15	.76	.39	.29	.56	.94
lamd			0	6	8	120	0	83
90-		(i)	01	01	01	01	01	94
45e		O	22	89	78	00	21e	23
.139		th	∞	248	3	9	.107	63
0			0	Ø	ය	8	0	
tol=								
			01	01	01	01	01	94
03	Ta j	(i	9	0	-	9	397e	4
-96-		9	1	618	-	∞	.363	4
525			8	Ø.			8	
0.1		ry						
da=		0	-	7	3	4	S	9
lam		cate						
41								

fdash=-0.15842e 03 zlamda= 0.34887e 01

2 parameter iteration number

i calculated alpha(i) calculated beta(i)

2.575888	.03875	.05282	8.63935	.34101	.15177
.31013	.73825	.34177	.89672	0.930581	.05278
П	7	3	4	5	v

newton-raphson iteration

xvar(i)	.79254e	0.50648e 01	.48919e	.1390le	.11220e	32e
	9266e	1489e	2751le	3035e	4469e	CA
c(i)	.10858e M2	0.10223e 02 0	.28346e Ø2	.17305e 02	.33250e 02	.84809e 01
q(i)	4183e Øl	12814e Øl	1838Øe Øl	1384e Ø1	10286e 01	1909e 01
category	٦,	7	ım	4	יינח	9

lamda= 0.34887e 01 tol= 0.15779e-03 flamda= 0.17265e 00

*	
*	
*	
*	
×	
*	
*	
K	
*	
*	
*	
*	
*	100
7	
de	
40	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
TK.	
7	
40	
44	
-14	
*	
*	
*	
-	
*	
×	
*	-
-14	
*	
*K	_
7	~
40	atio
-k	1
-10	C
*	2
*	Q.
*	لب
*	
*	
*	2
*	C
*	V.
*	5
-14	phsor
	10
	1
	1
	_
	,
	2
	newto
	7
	3.00

q(i)	\ \ \	7	var (1)
01		.30266e	.792
	.102	1489	50648e
	.28346e Ø	.2751le	.48919e
	.17305e Ø	.33035e	.1390le
	33250e M	.34469e	.11220e
	.84809e Ø	.32431e	.24082e

01	
Ø.34887e	e(i)
lamda=	8
0.15779e-03	theta(i)
tol=	5
1.17265e 00	g (i)
flamda= 0.1	category

	0	0	0	02	0	0	
0)	.15577	.76315	.39801	Ø.29236e	.56916	.95062	
(1)	01	01	91	01	01	04	
5	.283	.250	.239	Ø.16930e	.107	.661	
	01	01	01	01	01	04	
מ	.67846	.62097	.62258	0.48089e	.36396	.35487	
category	. –	2	m	4	S	O	

fdash=-0.15867e 03 zlamda= 0.34898e 01

*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
×	
*	

*	
*	
+c	

*	
*	
*	
*	
*	
水水	
*	
*	
***	7
*	
*	
×	ŭ
***	-
44	T
*	ra
**	te
*	7.
×	
***	uc
*	S
*	, u
	rag
	7
	'n
	0
	ewton-raph
	e

category	q(i)	ar	d(i)	var(i)
, _	84e Ø	.10857e 0	.30273e Ø	.79245e
2	15e Ø	.10222e @	.31498e Ø	.50643e
3	83e Ø	.28342e Ø	.27517e Ø	.48911e
4	84e Ø	.17304e 0	.33044e Ø	.13900e
5.	86e Ø	Ø.33249e Ø2	0.34480e 01	Ø.11218e Ø2
0	0.11910e 01	.84806e 0	.32440e 0	.24082e

01	
lamda= 0.34898e	
lamda=	
tol= 0.41835e-07	
tol=	
flamda= 0.45776e-04	
flamda=	

	0	0	0	0	01
.15569	.76278	.39775	.29223	.56889	.95027
01	01	01	01	01	94
.283	.258	.239	169	.107	.662
01	91	01	01	61	04
.678	.621	.622	.481	.364	.355
	2	e.	4	2	9
	Ø.67877e Øl Ø.28373e Øl Ø.15569	0.67877e 01 0.28373e 01 0.15569 0.62124e 01 0.25065e 01 0.76278	0.62124e 01 0.25065e 01 0.15569 0.62284e 01 0.23979e 01 0.39775	Ø.67877e Ø.15569 Ø.62124e Ø.25Ø65e Ø.1578 Ø.62284e Ø.39775 Ø.481Ø8e Ø.16931e Ø.29223	0.67877e 01 0.28373e 0 0.62124e 01 0.25065e 0 0.62284e 01 0.23979e 0 0.48108e 01 0.16931e 0

fdash=-0.15859e 03 zlamda= 0.34898e 01

*	
*	
*	
*	
*	
*	
*	
×	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
+	
*	
*	
水	
*	
*	
×	
*	
*	
*	
*	
*	
*	
*	
*	
*	
*	
水水	
*	
-k	
*	
×	
*	
*	
-Je	
×	
*	
*	
·k	
*	
-k	
*	
*	
*	
*	
-14	
*	
*	
*	
*	
*	
*	
-k	
*	
*	
*	
×	
*	
*	
*	
*	
*	
*	
*	
*	
ヤヤ	
*	

parameter iteration number

i calculated alpha(i) calculated beta(i)

(+) maga						
רמורמומרכת	593	.038	05284	.63946	.34154	6.15186
Tearacea arkma(t	.31010	1.738240	.34172	.89673	.93060	277
4	П	2	m	4	N	9

newton-raphson iteration

w	.79244e 0	0.50643e 01	.48910e Ø	.13900e 0	.11219e Ø	.24Ø82e Ø
	.3Ø273e	0.31498e 01	.27517e	.33044e	.34480e	.32440e
	.10857e Ø	0.10222e 02	.28342e Ø	.17304e 0	.33249e 0	.84806e 0
q(i)	4184e	Ø.12815e Ø1	3383e	.11384e	7286e	.11918
category	1	2	m	4	2	9

lamda= 0.34898e 01

tol= 0.13945e-07

flamda= 0.15259e-04

-k
*
de
~
*
20
*
*
20
74
-14
75
-80
*
20
*
20
-1%
-14
-14
20
-
*
-be
30
*
-14
*
*
40
-10
*
-14
20
7
*
20
*
-14
Bet .
本本本
44
44
-34
-14
40

*
*
30
*
30
-
4
40
-36
40
-
*
20
*
20
+
20
30
*
-No
42

-75
20
7
*
*
*
*
*
*
*
*
*

	_
	C
	ion
33	ti
	1 1
	rat
	4
	iter
	T
	-1
	aphson
	S
	L
	0
	Q
	H
	1
	2
	0
	newto
	3
	a

gory		uvar(i)	d(i)	var (1)	
7	4184e	.10857e Ø	.30273e Ø	.79244e	31
	2815e	.10222e 0	.31498e	.50643e	11
	383e	.28342e Ø	.27517e Ø	.48913e	10
	1384e	.17394e 0	.33044e	.13990e	32
	0286e	.33249e Ø	.34480e 0	.11219e	32
	Ø.11910e 01	0.84806e 01	440e 0	24982e	62

lamda= 0.34898e 01 tol=-0.83167e-01 flamda=-0.10580e 03

category g(i) theta(i) e(i) 1 0.67875e 01 0.28372e 01 0.15569e 02 2 0.62123e 01 0.25064e 01 0.75278e 01 3 0.62282e 01 0.23977e 01 0.39774e 02 4 0.48108e 01 0.10720e 01 0.56889e 02 5 0.3555e 04 0.66262e 04 0.95326e 01		2	_	2	2	2	_	
ategory g(i) theta(i) e(i 2 0.67375e 01 0.28372e 01 0.1556 2 0.62123e 01 0.25064e 01 0.7627 3 0.62282e 01 0.23977e 01 0.3977 4 0.43108e 01 0.16931e 01 0.2922 5 0.36408e 01 0.10720e 01 0.5688 6 0.3555e 04 0.66262e 04 0.9532								
ategory g(i) theta(i 2 0.67875e 01 0.28372e 0 2 0.62123e 01 0.25064e 0 3 0.62282e 01 0.23977e 0 4 0.43108e 01 0.16931e 0 5 0.3555e 04 0.66262e 0	e(i)	.1556	.7527	.3977	.2922	.5633	.9532	
ategory 9(i) thet. 1 0.67875e 01 0.28372. 2 0.62123e 01 0.25064. 3 0.62282e 01 0.23977. 4 0.43108e 01 0.16931. 5 0.35408e 01 0.10720.	i)	01	01	01	01	91	64	
ategory g(i) 1 0.67875e 0 2 0.62123e 0 3 0.62282e 0 4 0.43108e 0 5 0.35408e 0 6 0.3555e 0	het	.28372	.25864	.23977	.16931	.10720	.66262	
ategory 9(i) 2 0.6737 2 0.62323 3 0.6223 4 0.4810 5 0.3555 6 0.3555		91	01	01	01	01	64	
ategor 1 2 3 3 4 6		.6737	.6212	.6223	.4810	.3640	.3555	
	ategor		2	m	7	5	9	

fdash=-0.15859e 03 zlamda= 0.28226e 01

******	newton-raphson iteration 2

13367e Ø1 Ø.11521e Ø2 Ø .12287e Ø1 Ø.10662e Ø2	Val.	
1 0.13367e 01 0.11521e 02 0.25432e 01 2 0.12287e 01 0.10662e 02 0.26185e 01		1
0.12287e 01 0.10662e 02 0.26185e 01	Ø.85453e	
רם יסמרכני ב יים יסנדיני ב	Ø.54178e	01
0.165/86 01 0.314288 02 0.23/00E 01	0.54667e	01
0.11137e 01 0.17690e 02 0.27122e 01	0.14881e	
0.10237e 01 0.33409e 02 0.27979e 01	9.1250le	02
0.1156le 01 0.87359e 01 0.26757e 01	Ø.24198e	

GOLV	q(i)		a	i)		
	49	0	.26904e	01	.22291	02
	.46	0	.23164e	01	.10618	202
	.46	0	.22699e	01	.62241	22
	.37	0	.16209e	01	.39761	02
	Ø.29272e	01	Ø.10672e	01	Ø.78866e	02
	89	0	.20622e	94	.12178	02

fdash=-0.22596e 03 zlamda= 0.29124e 01

40	
2	
7	
34	
30	
7	
74	
*	
*	
*	
*	
*	
*	
-14	
*	
*	
×	
*	
+	
-100	
*	
*	
*	
*	
*	
+	
-k	
*	
*	
+	
+	
*	
*	
40	
-k	
+c	
-14	
*	
*	
-14	
40	
-	
*	~
***	~
***	3
***	3
****	3
****	3
****	ion 3
*****	tion 3
****	ation 3
*******	ration 3
********	ration 3
******	eration 3
*****	iteration 3
*****	iteration 3
****	iteration 3
*****	in iteration 3
****	on iteration 3
************	son iteration 3
***************************************	bson iteration 3
****	phson iteration 3
**********	aphson iteration 3
**********	raphson iteration 3
***********	-raphson iteration 3
***********	n-raphson iteration 3
******	on-raphson iteration 3
******	ton-raphson iteration 3
*****	wton-raphson iteration 3
*****	ewton-raphson iteration 3
*****	newton-raphson iteration 3

	01	01	01	02	02	02
Va	.844	.536	.537	0.14732e	.123	.24181
	01	91	01	01	01	10
d (1	.2610	.2691	.2423	0.27927e	.2885	.2753
	02	02	02	02	02	01
<u> </u>	.11421	.10596	.30952	Ø.17632e	.33385	.86978
				01		
q(i)	Ø.13484e	Ø.12363e	Ø.16833e	Ø.11173e	0.10244e	Ø.11612e
category	7	2	m	4	2	. 9

lamda= 0.29124e 01

tol= 3.44036e-03

flamda= 0.52843e 00

	202	0,2	92	02	02	02	
e(i)				.,		0.11740e	
(i)	01	01	01	91	01	24	
	.26	.23	.22	.16	.12	Ø.24502e	
	01	01	01	01	01	64	
] (j	.5206	.4811	.4874	.3850	.3023	Ø.10959e	
category		2	e	4	5	9	

fdash=-0.21436e 03 zlamda= 0.29149e vl

مد	
-	
*	
*	
*	
*	
*	
4	
~	
*	
*	
*	
*	
*	
20	
7	
*	
*	
*	
40	
4	
-	
7	
*	
*	
- x	
*	
20	
٠,	
7	
7	
*	
*	
-14	
*	
de	
4	
-	
-74	
*	
*	
*	
*	
*	
**	

***	4
****	4
****	4
*****	4
*****	4
******	2n 4
******	on 4
*******	ion 4
********	tion 4
*****	ation 4
*********	ration 4
*********	eration 4
**********	reration 4
**********	iteration 4
***********	iteration 4
************	iteration 4
************	n iteration 4
*************	on iteration 4
*************	son iteration 4
*************	nson iteration 4
**************	obson iteration 4
**************	uphson iteration 4
*************	aphson iteration 4
********	raphson iteration 4
***************	-raphson iteration 4
********	-raphson iteration 4
******	n-raphson iteration 4
*****	on-raphson iteration 4
******	ton-raphson iteration 4
*****	wton-raphson iteration 4
*****	ewton-raphson iteration 4
*****	Aparton-raphson iteration 4

xvar(i)	e Øl Ø.84472e	e Ø1 Ø.53623e	e 01 0.53737	e Ø1 Ø.14727e	e 01 0.12297e	e Ø1 Ø.2418Øe
(i)	.26119	.26933	1252	.27949	.28879	.27553
uvar(i)	Ø.11418e Ø2	.10594e 0	939e 0	.1763le Ø	.33385e Ø	.86967e Ø
g(i)	0.13487e 01	0	Ø.16839e Øl	0	0	0
category	1	2	3	4	5	9

lamda= 0.29149e 01

tol= 0.17802e-06

flamda= 0.21362e-03

	0	02	Ø	0	0	0
e(i)		Ø.10097e				-
(i)	01	01	01	01	01	04
theta	.26353e	444e	.22892e	.16317e	.10679e	.24617e
	01	01	01	01	01	04
(i)	5	48170	.48	.38546	.30256	.11020
ategory	Н	2	m	4	2	9

fdash=-0.21406e 03 zlamda= 0.29149e 01

10. ERROR MESSAGES

The following error messages may be encountered, after any of which the program stops (** or ## denote a number supplied in the message):

- i. Case 1: 'negative value of alpha or beta parameter
 for category **'.

 Cases 2 and 3: 'negative value of elasticity data
 for category **'.
- ii. Cases 1 and 3: 'ratio beds available/beds needed is **; no allocation problem'. This message is generated if the ratio $r = B/\sum_{i} X_{i}U_{i}$ lies outside the range given by 0 < r < 1.
- iii. Cases 1 and 3: '## errors in xbig, ubig data for category **'.
 - Case 2: '## errors in xbar, ubar data for category **'. This message occurs if one or both of the computed column totals, XBARB and UBARB, of the input data does not lie within CTEST percent of the input values, XBARA and UBARA. An error in the length of stay data (UBIG(I) or UBAR(I)) will cause the number 1 to appear at ##, whereas an error in the admission data (XBIG(I) or XBAR(I)) may cause either 1 or 2 to appear.
 - iv. Cases 2 and 3: 'negative values of calculated
 parameters for category **'.
 - v. All cases: 'number of newton-raphson iterations exceeds maximum'.
 - vi. Cases 2 and 3: 'number of parameter iterations exceeds maximum'.

Errors (i), (ii) and (iii) occur as the result of data errors in the file 'INIDA'. Errors (iv), (v) and (vi) are usually caused by inappropriate values of parameters in the file 'AUXPA'. The reader should refer to Section 6 for guidance on suitable values for the data in these files.

Note that the computed column totals, XBARB and UBARB, are written to the terminal and to the file OUTPUT along with the input data rather than the input values XBARA and UBARA. In case of error (iii) this facilitates location of the error.

Indeed if, in a sequence of model runs, the user changes the values of the input quantities \overline{x}_i and \overline{u}_i in Mark 2 or X_i and U_i in Mark 3 without also changing the input values of the column totals then this error is likely to be encountered; in this case the correct values for the column totals will be those written to the terminal and to the file OUTPUT and these can be inserted to obtain a successful run.

REFERENCES

- [1] Venedictov, D.D., and E.N. Shigan, The IIASA Health Care System Model, paper presented at IIASA Conference on Modeling Health Care Systems, Laxenburg, Austria, November 22-24, 1977.
- [2] Gibbs, R.J., A Disaggregated Health Care Resource Allocation Model, RM-78-1, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1978.
- [3] Gibbs, R.J., The IIASA Health Care Resource Allocation Sub-Model: Mark 1, Research Report, International Institute for Applied Systems Analysis, Laxenburg, Austria (forthcoming).

Papers of the Modeling Health Care Systems Study

April 1978

- Venedictov, D.D., Modeling of Health Care Systems, in <u>IIASA</u>
 <u>Conference '76</u>, Vol.2, International Institute for Applied
 Systems Analysis, Laxenburg, Austria, 1976.
- Kiselev, A., A Systems Approach to Health Care, RM-75-31, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1975.
- Fleissner, P., Comparing Health Care Systems by Socio-Economic Accounting, RM-76-19, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1976.
- Klementiev, A.A., <u>A Computer Method for Projecting a Population Sex-Age Structure</u>, RM-76-36, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1976.
- Klementiev, A.A., Mathematical Approach to Developing a Simulation Model of a Health Care System, RM-76-65, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1976.
- Kaihara, S., et al., An Approach to Building a Universal Health Care Model: Morbidity Model of Degenerative Diseases, RM-77-06, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1976.
- Shigan, E.N., Alternative Analysis of Different Methods for Estimating Prevalence Rate, RM-77-40, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1977.
- Klementiev, A.A., On the Estimation of Morbidity, RM-77-43, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1977.
- Fleissner, P., and A. Klementiev, <u>Health Care System Models</u>:

 <u>A Review</u>, RM-77-49, International Institute for Applied

 <u>Systems Analysis</u>, Laxenburg, Austria, 1977.
- Gibbs, R.J., Health Care Resource Allocation Models A Critical Review, RM-77-53, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1977.
- Gibbs, R.J., <u>A Disaggregated Health Care Resource Allocation</u>
 <u>Model</u>, <u>RM-78-1</u>, <u>International Institute for Applied</u>
 <u>Systems Analysis</u>, <u>Laxenburg</u>, <u>Austria</u>, 1978.

- Kaihara, S., et al., Analysis and Future Estimation of Medical Demands Using a Health Care Simulation Model: A Case Study of Japan, RM-77-3, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1978.
- Fujimasa, I., S. Kaihara, and K. Atsumi, <u>A Morbidity Submodel</u> of <u>Infectious Diseases</u>, RM-78-10, <u>International Institute</u> for Applied Systems Analysis, Laxenburg, Austria, 1978.