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Abstract:  11 

Currently there exists no generally accepted reference technique to measure the ventilation rate 12 

through naturally ventilated (NV) vents. This has an impact on the reliability of airflow rate control 13 

techniques and emission rate measurements in NV animal houses. As an attempt to address this issue a 14 

NV test facility was built to develop new airflow rate measurement techniques for both side wall and 15 

ridge vents. Three set-ups were used that differed in vent configuration, i.e. one cross ventilated set-up 16 

and two ridge ventilated set-ups with different vent sizes.  17 

The airflow through the side vents was measured with a technique based on an automatic traverse 18 

movement of a 3D ultrasonic anemometer. In the ridge, 7 static 2D ultrasonic anemometers were 19 

installed. The methods were validated by applying the air mass conservation principle, i.e. the inflow 20 

rates must equal the outflow rates.  21 

The calculated in- and outflow rates agreed within (5 ± 8)%, (8 ± 5)% and (-9 ± 7)% for the three 22 

different set-ups respectively, over a large range of wind incidence angles. It was found that the side 23 

vent configuration was of large importance for the distribution of the airflow rates through the vents. 24 

The ridge proved to be a constant outlet, whilst side vents could change from outlet to inlet depending 25 

on the wind incidence angle. The range of wind incidence angles in which this transition occurred 26 

could be clearly visualised.  27 
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1 Introduction  28 

In Europe, agriculture is considered to be responsible for the contribution of 93% and 18% of 29 

ammonia and methane emissions, respectively [1]. The negative effects on the environment such as 30 

acidification, eutrophication and ozone pollution have brought about international legislation [2,3].  31 

In Flanders and the Netherlands the quantity of this contribution to pollution has an effect on the 32 

authorisation to renew environmental permits. This entailed a large need for effective abatement 33 

techniques with reliable and proven reduction potentials applicable in animal houses. For the 34 

quantification of  both the emission rates and reduction potentials accurate measuring techniques are 35 

essential.  36 

In general the emission rate of a gas is estimated by multiplying the ventilation rate by the pollutant’s 37 

concentration at the outlet opening (corrected for background) [4]. In mechanically ventilated animal 38 

houses the ventilation rate is relatively easily determined by using e.g. free running impellers [5,6]. 39 

Furthermore, the outlet opening is fixed, delivering a clear and unchanging measuring location for the 40 

gas concentrations. However, at European level virtually all dairy farms and a significant part of pig 41 

houses are naturally ventilated. Determining the emission rate in such buildings is considerably more 42 

complex as both the ventilation rate and the outlet locations are unknown or at least constantly 43 

changing throughout time [7]. This variability is mainly due to the fluctuating outdoor conditions such 44 

as wind direction, wind speed and temperature differences which result in a complex interaction 45 

between wind and stack effect [8].  46 

Many different approaches exist to study the ventilation rate from naturally ventilated buildings, i.e. 47 

wind  tunnel set-ups [9–13], modelling [14,15], CFD [16–18] and full scale measurements [19–21]. 48 

For full scale measurements the tracer gas technique, more in particular the constant injection rate 49 

method, is the most commonly used method. Other tracer techniques such as the constant 50 

concentration method and tracer gas decay method exist but are less applicable in naturally ventilated 51 

buildings [22]. In the constant injection rate technique a tracer gas is injected into the animal house at 52 

a fixed and known rate. The relation between injection rate and the measured concentrations of the 53 

tracer gives an estimate of the ventilation rate [23]. Although the application of such techniques is 54 
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widespread it has some important disadvantages. It should be noted that accurately measuring a gas 55 

concentration at a certain location in itself is not the main challenge as many reliable gas analysing 56 

systems exist. However, it is finding a representative location for these measurements that poses 57 

problems as the indoor climate in a naturally ventilated animal house is often heterogeneous [18]. 58 

Hence, choosing a less representative location could lead to large errors [24]. Furthermore, due to the 59 

constantly changing flow patterns the optimal measuring location, i.e. at the outlets, will vary as the 60 

inlet vents can become outlets and vice versa resulting from changes in outdoor conditions. 61 

Inaccuracies for tracer gas tests have been reported to vary from 10% to 230% [6]. Other techniques, 62 

including tracer gas techniques have been discussed in detail by Ogink et al [22]. where it is stated that 63 

none of the existing techniques can be considered as  a reference technique. Therefore, the reduction 64 

potential of the existing and new emission abatement techniques are uncertain and prone to discussion 65 

[22,25,26]. It is thus clear that to construct an unambiguous regulatory framework aiding farmers, 66 

constructers, legislators and researchers, a reference measuring technique for the emission rate in 67 

naturally ventilated animal houses is necessary.  68 

The basis for an accurate determination of the emission rate lies within a reliable technique to 69 

accurately measure the ventilation rate. Van Overbeke et al. [27] developed a new measuring method 70 

for the ventilation rate in naturally ventilated buildings. The method is based on a 3D ultrasonic 71 

anemometer that automatically traverses the whole of the ventilation opening through the aid of a 72 

linear guidance system. Driven by a programmable logical controller (PLC), the sensor stopped at pre-73 

defined locations in the ventilation opening to measure the air velocity after which it moved to the 74 

next location. The data collected at these different locations were then combined to determine the 75 

airflow rate. This method was validated against a reference technique for mechanical ventilation 76 

[28,29] as no reference for naturally ventilated flows exists. In those studies, the ability of the method 77 

to accurately measure heterogeneous velocity profiles was evidenced. Subsequently, a naturally 78 

ventilated test facility was built where the methods’ ability of coping with the continuously changing 79 

velocity profiles in the vents was examined [27]. Although satisfying results were obtained, the 80 

method has so far been applied to small openings only (0.5 m × 1.0 m ), in a cross ventilated section of 81 

the test facility. However, cross ventilation alone rarely occurs in naturally ventilated buildings, which 82 
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usually feature a ridge vent. The ridge plays an important role in the airflow patterns and might 83 

significantly affect the ventilation rate as well [30,31]. 84 

Therefore the objective of this research was to examine the applicability of the previously developed 85 

method in situations more representative of commercial animal houses, i.e. cross and ridge ventilation. 86 

The method was applied to and validated on larger vent openings (0.5 × 3.0 m) and an additional 87 

measuring technique for the ventilation rate through the ridge was developed and validated. Also, the 88 

in- and outlet character of all vents was examined. The longer term objective of this research is to 89 

obtain a test facility in which the velocity profiles in each vent are characterised under a large range of 90 

wind incidence angles and speeds through the aid of the method developed in this paper. This test 91 

facility could then be an important benchmark in the development of accurate ventilation rate 92 

measurement techniques transferable to commercial naturally ventilated animal houses.  93 

2 Materials and Methods 94 

2.1 Test facility 95 

A full scale section of a pig house was built at the Institute for Agricultural and Fisheries Research in 96 

Merelbeke, Belgium (+50° 58' 38.56" N, +3° 46' 45.68" E). This building, further referred to as the 97 

test facility (See Fig. 1), was also used by Van Overbeke et al. [27] with a test chamber built inside the 98 

facility. However, this chamber was removed for the experiments described in this paper. The test 99 

facility has internal dimensions of 12.0 × 5.3 × 4.9 m (length x width x ridge height) yielding a volume 100 

of  251 m³. Both concrete sidewalls have ventilation openings of 0.5 × 4.5 m with a depth of 0.2 m. 101 

The width of these vents can be changed by placing wooden boards that cover parts of the opening 102 

area. The ridge of 0.3 × 4.0 m has upright flanges of 0.3 m and can be sealed completely (see Fig. 2). 103 

During the monitoring period, no large obstructions were present in the area surrounding the test 104 

facility, within a radius of 40 m. Following the rule of good practice, the side vents are oriented SW 105 

[32], which is the prevailing wind direction in Flanders. To visualize leakages, all vents were closed 106 

and a fan was installed at vent A to induce an internal pressure of 100Pa. All major leaks were 107 

visualized with smoke tests and sealed where possible until no more smoke was observed to escape 108 
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from the building. Furthermore, Etheridge [33] states that with the larger openings adventitious 109 

leakage can be neglected. 110 

 111 

 112 

Fig. 1: 3D drawing and picture of the test facility built at the Institute for Agricultural and Fisheries Research. Sketch: Top view of the test 113 

facility with the X-Y coordinate system of the anemometers compared to the wind rose. �: moving 3D ultrasonic anemometer in side vent; 114 

��: static 2D ultrasonic anemometer in ridge. 115 

2.2 Hardware configurations 116 

An automatic sensor frame developed and described in detail by Van Overbeke et al. [28] was used. 117 

This frame was used to perform an automated traverse movement by a 3D ultrasonic anemometer or 118 

3DS (Thies® 4.3830.22.300, Göttingen, Germany) across the in- or outlet area of a vent. The sensor 119 

frame consisted of a connected horizontal (4.5 m) and vertical (0.7 m) linear guiding system. On top of 120 

the vertical guiding system a 3DS was installed. The movement of the guiding systems and therefore 121 
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the sensor itself were driven by two PLC controlled servomotors. Air velocity data logged whilst the 122 

sensor movement was carried out were not accounted for in further calculations. Two of these frames 123 

were positioned on the inner walls of the test facility beneath Vents A and B (Fig. 1). 124 

In the experimental set-ups where the ridge was kept open (see 2.4), 8 2D ultrasonic anemometers or 125 

2DS (Thies® 4.3820.02.300, Göttingen, Germany) were fixed inside the ridge. The positioning of 126 

these sensors can be seen in Fig. 2. Holes were cut in the purlins in order to house the sensors. 127 

However, due to a lack of depth, the sensor heads were not located in the centre of the ridge but 2 cm 128 

further away. This was the only feasible sensor set-up without causing larger flow disturbances in the 129 

ridge. A calibration conducted by Deutsche WindGuard Wind Tunnel Services GmbH showed a 130 

standard uncertainty of max. 0.05 m/s in a range of 0.557–5.470 m/s for both the 2DS and 3DS. 131 

In order to acquire more detailed information on the cross-sectioned air velocity profile through the 132 

ridge, 1D hotwire anemometers were used. A total of 9 hotwire anemometers were fixed across the 133 

width of the ridge (Fig. 2:B) (in the centre: TSI®, Air Velocity Transducer Model 8455, USA, 134 

Shoreview, and remaining hotwires:  E+E Elektronic®, EE66-VC5K1000, Germany, Engerwitsdorf). 135 

According to the manual the 8455 hotwire has an accuracy of ± 2.0% of the reading or ± 0.5% of full 136 

scale of selected range. The selected range was 0.0 - 5.0 m/s. The EE66 model has an accuracy of ± 137 

0.06m/s + 2 % of the measured value. All hotwire anemometers were recently calibrated. 138 

A meteorological tower (meteomast) equipped with one 2DS at a height of 10 m was installed South-139 

East of the test facility. All sensors were connected to a datalogger (dataTaker® DT85M, Australia) 140 

through a serial interface (RS422). This allowed for a simultaneous readout of all sensors. The data 141 

was collected at 50 Hz and 33 Hz for the 2DS and 3DS, respectively, and stored as 1s averages. 142 

Hotwire anemometers were logged at 1 Hz.  143 
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 144 

Fig. 2: A: Cross section of the ridge with an installed 2D ultrasonic anemometer. B: Green circles represent measurement locations of the 145 

1D  hotwire anemometers (not to scale). They are located beneath 2D sensor 6. One of the hotwires malfunctioned and is marked with an 146 

�. C: Top view of the ridge with 8 2D ultrasonic anemometers and their allocated outflow areas. Dotted red lines represent the measuring 147 

path of the 2D ultrasonic anemometer. 2D sensor 7 malfunctioned and was removed. 148 

2.3 Ventilation rate measurement method                                                                                                                                                                                                           149 

2.3.1 Data collection at side and ridge vents  150 

Gathering the air velocity data at side vents was performed by the method developed by Van Overbeke 151 

et al. [27].  The method consisted of dividing the volume immediately downstream of the vent opening 152 

into cuboids with the size of the measuring head of the 3DS (0.25 × 0.25 × 0.125 m, L × B × H), 153 

further referred to as measuring volumes. Each volume was sampled consecutively for 10 s by a 3DS. 154 

The time it took to move the sensor to the next volume and start measuring was 2 s on average. Fig. 3 155 
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illustrates how this method was applied to an opening of size 0.5 × 3.0 m. To capture the time 156 

dependent velocity profile, the complete vent was consecutively traversed 10 times. Hence each 157 

measuring volume was sampled for a total of 100 s. Each measuring cycle was repeated cyclically. For 158 

more details the reader is referred to Van Overbeke et al. [27]. 159 

For the ridge (Vent C) all measuring points were monitored simultaneously. Air velocity data at the 160 

ridge was collected over the same time period in which the side vents were traversed 10 times. 2D 161 

sensor number 7 was removed from the ridge due to software errors and could not be replaced during 162 

further experiments. The in- or outlet areas related to sensors 6 and 8 were widened to fill this gap (see 163 

Fig. 2C). The width of the ridge was taken at the centre of the 2DS measuring path. Therefore the 164 

elementary surface area per 2DS was considered to be 0.35 × 0.50 m for sensors 1 to 5 and 0.35 × 0.75 165 

m for sensors 6 and 8. Only the velocity component normal to these areas was utilized in the 166 

calculations.  167 

 168 

 169 

Fig. 3: Top sketch: Impression of a velocity profile measured in Side Vent B with North-Western winds (not an actual measurement). In 170 

which the vent is divided into 48 measuring volumes or 88 elementary surfaces, arrows represent the velocity components sampled at 171 

each surface. Grey and white areas represents air flowing out of and into the building, respectively. Airflow through grey surfaces is added 172 

to the total outflow rate (Qout) airflow through white surfaces to the total inflow rate (Qin). Bottom sketch: Names of the different planes and 173 
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the velocity components related to these planes. Picture partly shows the 3D ultrasonic sensor on the automatic sensorframe in the 3m 174 

wide vent.  175 

2.3.2 Determination of the ridge pipe factor 176 

An additional consideration had to be made in view of the calculation of the in- and outflow rates 177 

through the ridge. As can be seen from Fig. 3 and Fig. 2C the area related to a velocity measurement 178 

in the ridge is almost 6 times larger than that in the side vents. Therefore a different data processing 179 

method was needed for the ridge.  180 

When the velocity profile in a vent is known, the average velocity (Vavg) can be found and multiplied 181 

by its related outlet area to obtain the airflow rate. However, only the velocity in the longitudinal 182 

central axis (Vc) of the ridge was measured in this set-up. Assuming Vc to be representative of the total 183 

outflow area can lead to large inaccuracies of the airflow rate [6]. The ratio between Vavg and Vc  is 184 

represented by the pipe factor (PF = Vavg/ Vc ). For instance, the PF for a laminar flow through a wide 185 

rectangular channel is 2/3 [34]. However for a turbulent flow, which is more likely in the ridge, 186 

determination of the PF is more complex and is dependent on the Reynolds number and roughness 187 

coefficient of the duct. A PF of 0.91 is given for a Reynolds number of 106. Although the ridge is not a 188 

truly “smooth rectangular duct”, the expected value of the PF is situated between 0.66 and 0.91 [34]. 189 

Hotwire anemometer measurements in the ridge were carried out to give an estimate of the general 190 

shape of the velocity profile. The measurements were taken directly beneath sensor 6 (see Fig. 2B). 191 

Sensors were positioned at the centre and at 0.03, 0.06, 0.12 and 0.14 m to the left and right of the 192 

centre. The hotwire located at 0,03 cm to the left of the sensor malfunctioned and no valid data could 193 

be retrieved. All hotwires measured simultaneously at a frequency of 1Hz and results were based on 5 194 

minutes averages. From these point measurements, a velocity profile was composed from which the 195 

Vavg was calculated. In this velocity profile, the velocity at the borders was considered zero. Vc was 196 

measured by the hotwire in the centre. A PF was calculated for each 5 minute measurement interval. 197 

2.3.3 Calculation of the ventilation rate  198 

The method for calculating the ventilation rate used in Van Overbeke et al. [27] delivered satisfactory 199 

results for a small cross ventilated chamber with vents of 0.5 × 1.0 m. The agreement between the 200 
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airflow rates measured in both vents was in the range of (-1 ± 11)%. However, when in a vent the 201 

average air velocity was lower than 0.05m/s or winds were parallel to the vents, the relative 202 

measurement error increased.  203 

With a wind incidence angle parallel to the vents, the vents acted partly as an inlet and partly as an 204 

outlet [35]. Therefore, when the average airflow over the total vent area was taken, a result was found 205 

close to zero, which yielded  large relative errors. To account for these situations, the in- and outflow 206 

rates through a vent should not be averaged, and for this reason, the data analysis procedure had to be 207 

slightly modified.   208 

Fig. 3 clarifies that the velocity components that are accounted for depend on the location of the 209 

measuring volume. In each volume the air velocity components were allocated to their related 210 

elementary surfaces. Each elementary surface was characterized by a set of 100 air velocity data points 211 

obtained through the data gathering method described in 2.3.1. Such a set was subdivided into positive 212 

and negative air velocities. A time weighted average was taken of the positive and negative subsets 213 

separately and multiplied by the related elementary surface areas to obtain the airflow rate flowing in 214 

and out of the building through that area, respectively. The same procedure was followed in the ridge 215 

vent but all measured air velocities were multiplied by the PF (see 2.3.2). As a final step, all 216 

elementary in- and outflow rates of all vents were summed into a total building inflow (Qin ) and 217 

outflow rate (Qout ), respectively (Formula 1) 218 

 219 

��� = ∑ ∑ ����	 ∙ �� ∙ 3600��				
�
���

�
���         [1] 220 

 221 

Where: 222 

Qin: the total building inflow rate (m³/h); m: the number of vents (2 or 3 depending on whether or not 223 

the ridge is open);  n: number of elementary surfaces in the vent (varying between 7 and 88 depending 224 

on the related vent and set-up); vi+: the time weighted average of the velocity component contributing 225 

to the inflow rate through elementary surface “i” (m/s); Ai: the area of the elementary surface “i” for 226 

which the velocity component was measured (m²).  227 

 228 
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Formula 1 was used to calculate the total building outflow (Qout, m
3/h ) by substituting vi+ to vi-, which 229 

is the time weighted average velocity component contributing to the outflow rate through an 230 

elementary surface “i”. 231 

According to the law of mass conservation, applied to an incompressible medium, the inflow rate 232 

should equal the outflow rate. Therefore the relative measuring error  (Eq ) between Qin and Qout 233 

(Formula 2) was used as a measure for the accuracy of the method. Throughout the experiments the 234 

average value between Qin and Qout was taken as the reference (Qavg = (Qin + Qout)/2). The method was 235 

considered to be sufficiently accurate when the Eq remained under 20% under a large variety of 236 

external wind conditions. This was based on studies, also using ultrasonic anemometer measurements 237 

to measure the airflow rate, where the relative measurement errors between the in- and outfluxes 238 

ranged from -34% to 37%  [36–39]. 239 

�� =
��������

����
100									          [2] 240 

2.4  Imposed measurement conditions  241 

In Van Overbeke et al. [27] a ventilation rate measuring method was validated for naturally ventilated 242 

openings of 0.5 × 1.0 m in a cross ventilated room. In this current study, the final goal was to 243 

determine the airflow rates through the test facility featuring an open ridge and side vents of 0.5 × 244 

3.0m, rendering the test facility more representative for conditions in commercial animal houses. 245 

Therefore, three different set-ups of the test facility were examined.  246 

In set-up 1 the opening areas of Vents A and B were 0.5 × 3.0 m and 0.5 × 1.0 m, respectively, and the 247 

ridge was closed. Here Vent B was taken as the reference against Vent A, which allowed the 248 

validation of the measuring method applied to a wider vent (see 3.2.1). Vent B was bordered with a 249 

flange measuring 1.14 × 0.64 × 0.30 m, to simulate the conditions of the measurements made by Van 250 

Overbeke et al. [27]. This flange was built to allow for a more unidirectional flow pattern. No flange 251 

was present around Vent A. Van Overbeke et al. [27] concluded that measuring the X- and Z- 252 

components at the borders of the 0.5 × 1.0 m vent was necessary to obtain the most accurate 253 

measuring method. In set-up 1 this was re-evaluated with a 0.5 × 3.0 m vent.  254 
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In set-up 2 the opening areas of Vents A and B were 0.5 × 3.0 m and the ridge was kept open. This 255 

allowed the validation of the measurement method in the ridge (see 3.2.2). No flange was present 256 

around Vents A or B. 257 

In set-up 3 the ridge was open along with vents A and B. However, the width of Vent B  was set to 1.0 258 

m in order to force more air towards the ridge in conditions when Vent A was the inlet. This increased 259 

the ridge’s relative contribution to the outflow rate. Vent B was again bordered with the flange. Set-up 260 

3 was built to test the effect on the Eq of a predominantly ridge ventilated set-up as compared to set-up 261 

2. This allowed for an additional check of the ridge measurement method.  262 

 263 

2.5 Experimental conditions 264 

In Fig. 4 an overview is given of the wind conditions for set-ups 1, 2 and 3. The distribution of the 265 

wind incidence angles are given in the polar plots together with the relative and cumulative wind 266 

speed frequencies. These parameters were measured at the meteomast and were based on the averages 267 

taken from a total of 443, 833 and 710 airflow rate measurements in set-up 1, 2 and 3, respectively. 268 

Because of the building orientation, the angle of 180° corresponds to the south-west direction. This 269 

allowed a clearer representation of the wind incidence influences. In set-up 1, all directions except for 270 

south-east incidence angles were covered (Fig. 4 A). While, in set-ups 2 and 3, only a relatively 271 

limited amount of data is coming from wind directions other than south to southwest. All 272 

measurements were made between December 2014 and March 2015. The proposed measuring method 273 

does not differentiate between the source of the airflow, i.e. originating from the stack or wind effect. 274 

There were no heat sources in the test facility and the relatively large vents were permanently opened 275 

to allow continuous renewal of the internal air volume. Therefore, the difference in temperature 276 

between the in- and outdoor climate was assumed to be minimal. Hence, the influence of the stack 277 

effect on the distribution of the flows through side- or ridge vents was not examined and all airflows 278 

were attributed to the wind effect.  279 
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 280 

Fig. 4: A, B and C: Relative and cumulative wind frequencies and polar plot of the wind direction measured at the meteomast during 281 

measurement periods with (A) set-up 1 from 04/2014 to 08/2014, (B) set-up 2 from 12/2014 to 03/2015 and (C) set-up 3 from 08/2014 to 282 

12/2014. 283 

  284 
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3 Results and Discussion 285 

3.1 Evaluation and validation of the measurement method 286 

3.1.1 Conditions of cross ventilation with closed ridge (set-up 1) 287 

Relative measurement error 288 

In Fig. 5:A the relative measurement error of the ventilation rate (Eq ) as a function of wind incidence 289 

angle is shown. The Eq remained between (5 ± 8)% and in none of the wind incidence ranges the 290 

established tolerance level of ± 20% was surpassed.  291 

Therefore, it can be seen that the method developed by Van Overbeke et al. [27] was successfully 292 

adapted and transferred to the larger vent of 0.5 × 3.0 m.  293 

In Table 1 the relative contributions of Vents A and B to the total in- or outflow rates, classified 294 

amongst 4 ranges of wind incidence angles are shown. In the wind direction ranges of 135° to 225° 295 

and 315° to 45° a relatively stable distribution is found. Higher percentages suggest fixed in- and 296 

outlets in these situations. However, the distribution changes entirely in the ranges of 45° to 135° and 297 

225° to 315°. These ranges contain wind directions parallel to the vents. The relative contribution to 298 

the inflow rate ranging from 34 to 69% for both Vents A and B indicates that these vents acted 299 

simultaneously as both in- and outlets. Nevertheless, even in these complex situations Eq remained 300 

between ± 20% (Fig. 5:A), it can be stated that the measurement method and data analysis were 301 

robust. In Fig. 6:A the change in relative in- or outflow contribution as a function of the wind 302 

incidence angle can be seen. From approximately 50° onward, the relative contributions begin to shift 303 

drastically to become stable again at around 120°. The amount of data from these wind directions was 304 

too low to see a clear start and end of this unstable region. However, the same trend is much clearer in 305 

the range of 225° to 315°, due to the larger amount of measuring points. There, the range in which the 306 

side vents shift from inlet to outlet and vice versa is approximately 250° to 300°.  307 

 308 

 309 

 310 
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Table 1: Relative contribution (%) of  Vents A and B to the total in- or outflow rate through the test facility for set up 1, classified into 4 311 

different ranges of wind incidence angles. 312 

 
0 - 45° and 315 - 360° 45 - 135° 135 - 225° 225 - 315° 

Vent Ain (%) 11 ± 15 58 ± 32 96 ± 7 69 ± 34 

Vent Bin (%) 92 ± 16 41 ± 34 5 ± 5 34 ± 33 

Vent Aout (%) -82 ± 8 -53 ± 23 -19 ± 11 -44 ± 26 

Vent Bout (%) -15 ± 9 -48 ± 25 -79 ± 9 -53 ± 24 

n 111 28 173 131 

 313 
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 314 

Fig. 5: Boxplots of relative measurement error as a function of wind incidence angle for set-ups 1 (A), 2 (B) and 3 (C). The red lines in the 315 

boxes are averages, the black medians.  316 
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 317 

Fig. 6: Relative contributions of Vent A, B and C to the in- or outflow rate for set-ups 1 (A), 2 (B) and 3 (C), with �: flow through Vent A 318 

(blue); �: flow through Vent B (red); �: flow through Vent C (green); positive and negative values are relative inflow and outflow 319 
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contributions, respectively. 320 

 321 

Need of 3D measurements 322 

In Fig. 7: Eq values as a function of the wind incidence angle are shown, averaged over wind direction 323 

intervals of 30o. The in- and outflow rates measured in Vent A that are added to Qin and Qout, 324 

respectively, are calculated in 4 different ways. Namely, by accounting for different velocity 325 

components: (a) only the Y-components; (b) the Y- and X-components; (c) the Y- and Z-components 326 

and finally (d) all three components. Fig. 3 clarifies where these components were measured. The 327 

opening areas related to the Y- and Z- components (Y: front plane, Z: top and bottom plane) were 328 

considerably larger than that of the X-components (left and right plane). The in- and outflow rates in 329 

Vent B were calculated accounting for all components, as was recommended for this type of vent in 330 

Van Overbeke et al. [27]. In Fig. 7 it can be seen that only accounting for the Y-components in Vent A 331 

resulted in larger relative measurement errors, in the range of (11 ± 35)%. Highest errors were found 332 

in cases where the wind was blowing perpendicular to the vents. Adding the Z-components to the 333 

calculation lowered the range of Eq to (5 ± 8)%. As seen in Fig. 7, this result is approximately equal to 334 

the result obtained by including all components. Therefore, including the Z-components was an 335 

essential part of the measuring method for this set-up. The X-component on the other hand, did not 336 

add a considerable improvement to the relative measurement error and, in the conditions of this study, 337 

could be omitted. However, for future study of flow patterns around the vents, all components deliver 338 

valuable information. Therefore, none of the components are omitted in further measurements 339 

throughout this paper.  340 

It must be noted that the large influence of the Z-components is partly attributable to the top and 341 

bottom plane being of almost equal area as the front plane (see Fig.3). The larger the vent, the higher 342 

the influence of the front plane will be compared to that of the top and bottom plane. Therefore in very 343 

large vents, such as those found in cattle houses, measuring only the Y-component could be sufficient. 344 

This outcome seems to be in agreement with other studies where the ventilation rate in NV buildings 345 

is determined via anemometer measurement data multiplied by vent area. Also there, only the velocity 346 

component normal to the vent opening is usually considered [38–40]. However, compared to the 347 
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present study, the applied vent areas related to the sampling points are much larger in these studies e.g. 348 

from 0.9 m² [36] and 2.1 m² [38] up to 110 m² [39]. Also measurements close to the vent’s borders are 349 

mostly avoided in these studies. Air velocities are generally highest in the centre of the openings [41] 350 

as there is little influence of the vent’s borders. Therefore these velocities can overestimate the in- and 351 

outflow rates when multiplied by the vent area. It is in such cases that applying mass conservation as a 352 

validation tool can be misleading as this overestimation cannot be identified. This might explain why, 353 

even when applying a relatively lower measurement density, the in- and outflow rates can still agree 354 

fairly well, e.g. 12 to 19% [39], 1 to 28% [37], -3 to 37% [38] and -34% to 8% [36]  (percentages are 355 

calculated similar to equation [2]). Therefore, when the measurement set-up does not sufficiently 356 

account for the spatial variability of the velocity profile, errors can occur which could remain 357 

undetected when validating with the mass conservation principle. 358 

Although the present study also relies on this principle, the reliability of our results was increased by 359 

the high measurement density and the large range of measurement conditions under which the method 360 

was validated.  361 

 362 

  363 

Fig. 7: The relative measurement error (Eq, %) as a function of wind incidence angle. The in- and outflow rates through Vent A are 364 

calculated with four different methods: �: only accounting for the Y- velocity component (red); �: accounting for the Y- and Z- velocity 365 
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components (green); �: accounting for the Y- and X- velocity components (purple); �: accounting for all velocity components (blue). The 366 

in- and outflow rates through Vent B (needed for the calculation of Eq) were calculated accounting for all components. For each method the 367 

relative measurement errors (%) were calculated and averaged within intervals of wind incidence angles of 30°.  368 

3.1.2 Conditions of cross and ridge ventilation (Set-up 2)  369 

Pipe factor 370 

In order to establish a PF value of the ridge, a total of 186 velocity profiles were determined with 371 

measurements carried out over a period of 4 days. In Table 2 the velocity profiles were subdivided into 372 

8 centre speed ranges, i.e. the wind velocity measured by the hotwire anemometer at the centre of the 373 

velocity profile in the ridge (Fig. 2:B). In Table 2 it can be seen that an increasing centre speed 374 

resulted in a slight decrease in PF. Linear regression analysis indicated a rather weak, but present, 375 

correlation between the centre speed and the associated PF’s (R²=0.42, P<0.001). In Fig. 8, where 7 of 376 

these velocity profiles are shown, it can be seen that higher centre speeds resulted in profiles with a 377 

more “bullet shaped” profile. Such profiles suggest laminar flows, which are characterised by lower 378 

PF values [34]. The lower centre speeds had a more homogenous distribution of the air velocity, and 379 

suggest turbulent profiles with a higher PF value. Although the profiles were not symmetrical, the 380 

centre speed mostly remained the highest value. 381 

The wind incidence angle during the tests varied between 105° and 168° (N= 152) and between 284° 382 

and 314° (N=22), however only the 105 – 168° range was considered. Linear regression analysis 383 

showed a relatively weak correlation between wind incidence angle and the associated PF’s (R²=0.27, 384 

P<0.001). Nevertheless, one may notice that larger variations in wind incidence angles might have a 385 

significant effect on the shape of the velocity profile.  386 

The ridge experiments indicated that the PF might be dependent on wind incidence angle and air 387 

velocity in the ridge. However within the ranges of our measurements the correlations were weak. 388 

Hence, under the conditions met here, the PF was considered to be constant. Based on the average 389 

taken of all velocity profile measurements, a PF of 0.78 was withheld to calculate the airflow rates in 390 

set-ups 2 and 3.     391 

 392 

 393 
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 394 

 395 

Table 2: Pipe factors (PF, dimensionless) related to wind speeds at the centre of the velocity profile measured in the ridge. 396 

Centre speed range (m/s)  PF ± SD* n 

0.50 to 0.74 0.79 ± 0.03 11 

0.75 to 0.99 0.81 ± 0.04 46 

1.00 to 1.24 0.79 ± 0.02 13 

1.25 to 1.49 0.79 ± 0.02 14 

1.50 to 1.74 0.77 ± 0.02 31 

1.75 to 1.99 0.76 ± 0.02 21 

2.00 to 2.24 0.75 ± 0.02 34 

2.25 to 2.65 0.75 ± 0.02 16 

*SD: standard deviation of the mean 397 

 398 

 399 

Fig. 8: Velocity profiles with different centre speeds measured in the ridge with �: 0.50 m/s (light blue); �: 0.75 m/s (orange); �: 1.00 m/s 400 

(blue); �: 1.50 m/s (purple); �:1.75 m/s (green); �:2.00 m/s (red); �:2.25 m/s (dark blue). The velocities at the borders, i.e. at 0 and 401 

30cm were assumed zero and do not represent measured values. 402 

Relative measurement error  403 

Values of Eq varied in the range of (8 ± 5)% for the measurements in set-up 2, successfully remaining 404 

below the ± 20% limit for each separate wind incidence angle range (Fig. 5:B). As this is in agreement 405 
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to what was found in Set-up 1, the measurement method applied to the ridge was considered to be 406 

effective. 407 

Although in this set-up  Eq seems to reach lower values at wind incidence angles parallel to the vents, 408 

it presented an increased variability, as compared to set-up 1.  409 

In Fig. 6:B the relative contributions to the total inflow and outflow are shown. For all wind directions 410 

the contribution of the ridge to the inflow was nearly non-existent (0 ± 1) %. This means that the ridge 411 

can be considered a full and permanent outlet, independent of the wind incidence angle. A wind tunnel 412 

study by [42]) showed that at wind incidence angles close to 270° or 90° part of the ridge opening 413 

function fluctuated between in- and outlet. In present study it was assumed that the short length of the 414 

test facility’s ridge compared to those found in commercial animal houses diminished this effect. The 415 

contribution of the ridge to the total outflow rate was relatively constant and therefore also 416 

independent of the wind incidence angle. The outflow contribution of the ridge varied in the range of 417 

(46 ± 7)%. Vents A and B showed a similar behaviour as in set-up 1 where the in- or outlet character 418 

of the vents were determined by the wind incidence angle. Again the wind incidence ranges in which 419 

the inlets completely changed into outlets and vice versa are 50° to 120° and 250° to 300°. At 420 

approximately 90° and 270° there were cases in which both Vents A and B accounted for 50% of the 421 

inflow rate. The closer the wind incidence angle was to 180° or 360°, the higher the contribution to the 422 

inflow of Vent A or B, respectively. Fig. 6:B is summarised in  4 ranges of 90°. 423 

Table 3 where the data is classified amongst 4 ranges of 90°. 424 

Table 3: Relative contribution (%) of  Vents A, B and C to the total in- or outflow rate through the test facility for set up 2, classified into 4 425 

different ranges of wind incidence angles 426 

 0 - 45° and 315 - 360° 45 - 135° 135 - 225° 225 - 315° 

Vent Ain (%) 3 ± 7 69 ± 37 103 ± 5 70 ± 37 

Vent Bin (%) 101 ± 9 32 ± 37  2 ± 4 32 ± 36  

Vent Cin (%) 0 ± 0 0 ± 0 0 ± 0 1 ± 1 

Vent Aout (%) -46 ± 8 -15 ±13 -3 ± 2 -18 ± 15 

Vent Bout (%) -4 ± 2 -28 ± 13 -48 ± 6 -33 ± 14 
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Vent Cout (%) -46 ± 9 -55 ± 8 -44 ± 6 -46 ± 6  

n 82 57 579 115 

 427 

3.1.3 Conditions of cross and adapted ridge ventilation (Set-up 3) 428 

In Table 4 and Fig. 6: C it can be seen that the relative outflow rate contribution of the ridge was 20 to 429 

30% higher than in set-up 2. This effectively increased the contribution of the measurement method of 430 

the ridge on the relative measurement error. Values for Eq of (-9 ± 7)% were found for the 431 

measurements in set-up 3, again remaining under the 20% limit for all wind incidence range (Fig. 5: 432 

C). However, compared to Set-ups 1 and 2, a shift towards more negative values of Eq can be seen. In 433 

the ranges 45°-75°, 75°-105° and 275°-315° the values of Eq average around -20%. Although it is to 434 

be expected that in these ranges the measurement errors increase due to the more complex airflow 435 

patterns, it is not clear why this particular set-up seems to increase this effect. To determine whether 436 

the asymmetry of the side vent sizes was one of the influencing parameters, a more detailed view on 437 

velocity profiles and related indoor airflow patterns is necessary. It cannot be determined whether 438 

these negative values were due to an under- or overestimation of the inflow or outflow rate, 439 

respectively.  440 

It should be noticed that the increase in the ridge’s relative outflow contribution was only expected in 441 

situations where Vents A and B were full inlet and outlet, respectively. In such cases the outlet area 442 

through Vent B was smaller than that of the ridge by a 3-fold.  However, the increase in relative 443 

outflow contribution seemed to be approximatelly constant over all wind directions, and was in the 444 

range of (77 ± 7)%. Combined with the results found for set-up 2, it can be infered that the relative 445 

outlet contribution of the ridge is independent from the wind incidence angle, but strongly dependent 446 

on the side vents configuration. Experiments with more varied vent configurations should allow to 447 

derive the relation between the ridge’s relative outlet contribution and the vent configuration.  448 

In the range of 315 – 45°, it was expected that Vent A would be completely an outlet with a relative 449 

inflow contribution of nearly 0%. However an inflow contribution of (20 ± 14)% was found (see Table 450 

4). This effect can also be seen in Fig. 6:C. There, the ranges in which Vents A and B changed from 451 
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approximatly 0 to 100% outlet contribution widened considerably towards 360° as compared to Fig. 452 

6:A and B. This means that even with wind incidence angles near to 360°, there existed cases where 453 

Vents A and B were still partially in- and outlet. These situations are more challenging for the 454 

measurement method and could be a partial explanation for the lower calculated Eq. This also suggests 455 

that the wind incidence angles in which a side vent can be considered a full in- or outlet is dependent 456 

on vent size configuration. Therefore, studies that rely on the assumption that a vent is  a permanent 457 

outlet, e.g. for emission rate measurements, should account for this effect. In such cases, special care 458 

should be taken when the vent has a variable area, as when curtains are used.  459 

Table 4: Relative contribution (%) of  Vents A, B and C to the total in- or outflow rate through the test facility for set up 2, classified into 4 460 

different ranges of wind incidence angles 461 

  0 - 45° and 315 - 360° 45 - 135° 135 - 225° 225 - 315° 

Vent Ain (%) 20 ± 14 66 ± 24 96 ± 3 81 ± 21 

Vent Bin (%) 74 ± 15 25 ± 23  2 ± 2 14 ± 17  

Vent Cin (%) 0 ± 0 1 ± 1 0 ± 0 1 ± 2 

Vent Aout (%) -17 ± 6 -13 ± 4 -5 ± 3 -12 ± 6 

Vent Bout (%) -7 ± 3 -14 ± 5 -25 ± 4 -20 ± 5 

Vent Cout (%) -82 ± 7 -82 ± 7 -73 ± 4 -72 ± 6  

n 125 188 360 37 

  462 
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4 Conclusions 463 

A naturally ventilated test facility was adapted for cross and ridge ventilation schemes, to which an 464 

automated airflow rate measuring technique was applied. For the side vents, a technique developed by 465 

Van Overbeke et al. [27] was successfully adapted to larger vents (0.5 × 3.0 m) and a new airflow rate 466 

measurement set-up for the ridge was validated. A pipe factor of 0.78 was determined and attributed to 467 

the ridge. Detailed measurements of the velocity profiles in the vents were possible and the in- and 468 

outflow rates in each vent were processed separately.  469 

It was found that the method for the side vents should account for all air velocity components, while 470 

the vertical component at the top and bottom vent borders and the component normal to the vent 471 

opening were essential to the calculations. 472 

When side and ridge vents were fully opened, a relative measurement error between the building’s 473 

total in- and outflow rate of (8 ± 5)% was found, successfully remaining below the self-imposed limit 474 

of 20%.  475 

The relative contribution of a side vent to the building’s total in- or outflow rate was dependent on the 476 

wind incidence angle. The range of wind incidence angles in which side vents were completely in- or 477 

outlet depended on the size of the vents. Outside these ranges, the vents gradually changed from outlet 478 

into inlet or vice versa, as a function of wind incidence angle.  479 

The ridge had no considerable contribution to the inflow rate and was considered as a full and 480 

permanent outlet, independent of wind direction. Moreover, the relative contribution of the ridge to the 481 

total outflow rate was relatively constant since a standard deviation of only 7% was found throughout 482 

all measured wind incidence angles. However, measurements in 2 different set-ups showed that the 483 

ridge’s relative outflow contribution was dependent on the side vents configuration.  484 

Due to the complexity of the measuring technique it is practically and economically unfeasible to 485 

transfer the technique to a full size animal house. However, as the developed test facility is equipped 486 

with a validated measuring technique, it can be used for comparison with new and existing airflow rate 487 

measuring techniques for the use in naturally ventilated buildings. The design of these new techniques 488 

should be focussed on the possible transfer to very large vent sizes such as those found in cattle 489 
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houses. Modelling is a possible way to reduce the complexity of the measuring technique. The test 490 

facility can be used to develop, validate and test such models. Although these models will probably 491 

not be directly transferable to other buildings, proving that certain modelling approaches work in the 492 

test facility can provide useful information to guide the research on full scale animal houses. 493 
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Highlights 

- A naturally cross and ridge ventilated test facility was built. 

- An airflow rate measuring method for side vents and ridge was developed. 

- The method was successfully validated through the law of mass conservation. 

- Experiments were conducted under a large range of wind incidence angles and speeds. 

 


