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Abstra
t

In sto
hasti
 optimization models, the optimal solution heavily depends on the 
hosen model

for the s
enarios. However, the s
enario models are 
hosen on the basis of statisti
al estimates

and are therefore subje
t to model error. We demonstrate here how the model un
ertainty


an be in
orporated into the de
ision making pro
ess. We use a nonparametri
 approa
h for

quantifying the model un
ertainty and a minimax setup to �nd model-robust solutions. The

method is illustrated by a risk management problem involving the optimal design of an insuran
e


ontra
t.
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1. Introdu
tion

Common approa
h in risk assessment and risk management is to base the risk estimates

on observed data and to use the statisti
ally obtained estimates for �nding the optimal risk

management strategies. However, the fa
t that statisti
al estimates 
an never give pre
ise val-

ues of unknown parameters due to an estimation error, is quite often negle
ted. Moreover, the


hoi
e of the probability model, i.e. the 
lass of possible distributions, is typi
ally 
hosen by

the statisti
ian and is not further questioned.

In general, statisti
al estimation pro
edures do not allow to single out one spe
i�
 probability

model, but only a whole set of models 
an be determined, in whi
h the true model lies with a

prespe
i�ed probability. This 
on�den
e set 
an be taken as the set of models for a minimax

de
ision, where the best de
ision under the worst model in the model set is sought for. We 
all

su
h sets of models ambiguity sets. The minimax solution in this 
ase is 
alled distributionally

robust.

Modeling un
ertainty. E
onomi
 de
isions are made under some assumptions of the de
i-

sion relevant parameters. In deterministi
 optimization, the parameters are 
onsidered to be

known and �xed. Already in the early days of optimization, this assumption was 
onsidered as

too narrow. Two possible setups have then been developed: (i) in robust optimization, a set

of possible parameters is determined, while (ii) in sto
hasti
 optimization the parameters are


onsidered to follow a 
ertain probability distribution. In robust optimization, the parameters

are not weighted and one has to use minimax strategies (to �nd the best strategy under the

worst 
ase). Probability models 
ome with a lot more of possible strategies: expe
ted utility

maximization or minimization of risk (shortfall risk, varian
e risk, tail risk, et
.). However,

probability models depend heavily on the 
hosen probability model, whi
h is typi
ally based
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on some ad-ho
 assumptions (e.g. parametri
 families of distributions) and on statisti
al es-

timation pro
edures, whi
h may 
ontain estimation error. This dependen
y has been ignored

for quite a while, when most resear
h was put into de
ision making under a given �xed prob-

ability model. However, if the model is 
ompletely �xed, only aleatori
 un
ertainty, i.e. the

un
ertainty about the realizations is to be 
onsidered.

As already noti
ed, the model 
hoi
e is typi
ally based on assumptions and estimations, i.e. an

error in model 
hoi
e 
annot be ex
luded. The ambiguity in model sele
tion is often referred

to as epistemi
 un
ertainty. By in
luding the epistemi
 un
ertainty into the de
ision making

pro
ess, we 
an also to a 
ertain extent re
on
ile this approa
h to the pure s
enario approa
h.

While in the latter all s
enarios are in prin
iple possible, sto
hasti
 ambiguity models would

allow s
enario probabilities to vary in order to a

ommodate for model un
ertainty. In the ex-

tremal 
ase that all probability distributions over the s
enarios would be theoreti
ally possible,

the ambiguity modeling 
oin
ides with pure s
enario analysis. In most appli
ation areas we

know the importan
e or likelihood of s
enarios at least to a 
ertain extent, though we typi-


ally do not know the exa
t o

urren
e probabilities. This is why model ambiguity be
omes

an important issue in de
ision making. In ambiguous modeling, the possible model error is

in
orporated into the de
ision pro
ess, that allows to �nd robust de
isions.

We summarize this as follows:

� If all parameters of an optimization problem are known, we 
all it deterministi
.

� If some parameters are not exa
tly known, but known to lie in some set, then we have a

robust program

� If for the unknown parameters a random distribution is spe
i�ed, we 
all this a sto
hasti


program.

� If the distribution of the random parameters is not known, but known to lie in some family

of distribution, then the problem is 
alled ambiguity problem and its minimax solution is


alled distributionally robust.

Bibliographi
 remarks. The idea of optimal de
isions under several sto
hasti
 models

(i.e., min-max solutions) appears for the �rst time in S
arf [15℄ in a linear inventory problem

seeking the sto
kage poli
y, whi
h maximizes the minimum pro�t 
onsidering all demand dis-

tributions with given mean and given standard deviation. More thorough studies of ambiguous

de
ision problems than a minimax problems were initiated by Dupa
ová [3, 4℄ for the 
lass of

sto
hasti
 linear problems with re
ourse under general assumptions for the ambiguity set. The

formulation is in a game theoreti
 setup, where the �rst player 
hooses the de
ision and the

se
ond player 
hooses the probability model. There are alternative names used in literature for

the ambiguity problem, su
h as minimax sto
hasti
 optimization, model un
ertainty problem

or distributional robustness problem. Many proposals for ambiguity sets in the two-stage 
ase

have been made and analyzed. A list of popular 
lasses of ambiguous models is presented by

Dupa
ová [5℄.

Literature dealing with ambiguity either from theory or appli
ation point of view is growing

rapidly. The situation when the ambiguity set 
onsists of all probabilities with given �rst two

moments was studied by Jagannathan [9℄ for the linear 
ase. Shapiro and Kleywegt [16℄ de�ne

an ambiguity set as the 
onvex hull of a �nite 
olle
tion of models; Ahmed and Shapiro [17℄ 
on-

sider sets of models given by moment inequalities; a similar approa
h is adopted by Edirishinge.

Cala�ore [1℄ uses the Kullba
k-Leibler divergen
e to de�ne neighborhoods of a baseline model

as ambiguity sets. Thiele [18℄ 
onsiders the L1 balls of densities as ambiguity sets. Delage and

Ye [2℄ 
onsider ambiguity set given by inequalities for the mean and the 
ovarian
e matrix.

Wozabal and P�ug [12℄ use for the �rst time ambiguity sets, whi
h are balls with respe
t to the
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Wasserstein distan
e, see also the re
ent book by P�ug and Pi
hler [13℄, whi
h also deals with

the multistage 
ase. Hansen and Sargent 
onsider in their 2007 book [8℄ alternative models of

multistage sto
hasti
 optimization problems given by maximal deviation from a baseline model

in Kullba
k-Leibler divergen
e. Goh and Sim [7℄ study multistage ambiguity sets whi
h are

de�ned by a mean, whi
h must lie in some 
oni
al set, a given 
ovarian
e matrix and some

upper bounds on the exponential moments and extend this to multistage.

In this paper, we investigate the problem to determine an optimal insuran
e portfolio under

model ambiguity. To simplify the approa
h, we 
onsider only a single stage de
ision problem:

A government has to de
ide about investment in and insuran
e for infrastru
ture for the next

budget period. The infrastru
ture is subje
t to natural hazard su
h as earthquake, �oods or

tropi
al storms and the problem is to �nd the best mix between investment and insuran
e,

i.e. between in
reased produ
tivity and higher prote
tion. The model is similar to the IIASA

CATSIM model.

2. Model des
ription

To determine the optimal design of an insuran
e s
heme is a typi
al problem of sto
hasti


optimization: Adoption of a robust approa
h would not make sense, as soon as it would mean

that very rare events would be 
onsidered as important as quite frequent events and this would

result in an overly pessimisti
 result. However, the probability model may be subje
t to error

and this gives an argument for distributionally robust de
isions.

The total insurable infrastru
ture sto
k of the 
ountry under 
onsideration at time 0 is S0.

We assume that the 
ountry is under hight risk of natural hazards and we denote by L the

annual loss variable. We further 
onsider a stop-loss insuran
e with exit level Y , its payment

fun
tion is min(L, Y ). It is well known that stop-loss insuran
e 
ontra
ts are "optimal" (see

Raviv [14℄). The stop-loss payment fun
tion is shown in Figure 1.

damage

payment

exit
level y

Figure 1: The payment fun
tion
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The infrastru
ture S1 at the end of the period (typi
ally one year) is given by the previous

amount S1 minus the random damage and the amount obtained as 
ompensation from the

insuran
e plus the investment X .

S1 = S0 − L+min(L, Y ) +X

The premium for the stop-loss insuran
e is denoted by π(L, Y ). There is a budget B available,

whi
h may be used for investment and for infrastru
ture prote
tion by insuran
e.

The de
ision problem 
onsidered here is to �nd the optimal mix between investment X
and insuran
e with exit level Y for the given budget B, the obje
tive to be maximised is the

varian
e-
orre
ted expe
tation of S1. The 
omplete (yet unambiguous) model is

max
Y

E(S1)− λVar(S1) (2.1)

s.t. S1 = S0 − L+min(L, Y ) +X

X + π(L, Y ) = B

X ≥ 0, Y ≥ 0.

To summarize, we have introdu
ed the following symbols.

S0 the (deterministi
) infrastru
ture value at the beginning of the period

S1 the (sto
hasti
) infrastru
ture value at the end of the period

L the sto
hasti
 loss variable

B the budget foreseen for investment and insuran
e

X the investment in infrastru
ture

Y the exit level for the insuran
e 
ontra
t

λ the penalty parameter for the varian
e

π(L, Y ) the premium of an insuran
e with relative loss variable ξ and exit level Y .

For further use we introdu
e some relative values

ξ the relative loss variable, ξ = L/S0

y the relative exit level, y = Y/S0

and

πy = π(min(L, yS0)/S0.

The insuran
e premium. We assume that the insuran
e premium is 
al
ulated a

ording

to a 
ombination the distortion and the utility prin
iple (see [10℄): Suppose that FL
is the

distribution fun
tion of the loss variable L. Using a distortion fun
tion g on [0,1℄, whi
h satis�es
g(u) ≥ u, g(0) = 0, g(1) = 1, the loss distribution is distorted to the new loss distribution

FL
g (u) = 1− g(1− FL(u)).

Under the monotoni
 and 
onvex (dis)utility fun
tion V , the premium for the distorted loss L
is

π(L) = V −1

[
∫ ∞

0

V (u) d[1− g(1− FL(u))]

]

where V −1
is the inverse (dis)utility.

If the 
overage is 
apped at Y , then the distribution fun
tion of the damage variable

min(L, Y ) is

Fmin(L,Y )(u) =

{

FL(u) if u ≤ Y
1 otherwise.
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Assuming that FL has a density fL
, the premium for the loss 
apped at Y is

π(min(L, Y )) = V −1

[
∫ V

0

(u) g′(1− FL(u))fL(u) du+ V (Y ) · g(1− FL(Y ))

]

with g′(u) = ∂
∂u
g(u).

The relative loss variable ξ = L/S0 has distribution fun
tion F ξ(w) = FL(w/S0), w ∈ [0, 1]
with density f ξ(w) = 1/S0 f

L(w/S0). For the relative exit level y = Y/S0, one gets for the

premium πy of the 
ontra
t with this exit level

πy(ξ) = π(min(yS0, ξS0) = V −1

[
∫ y

0

V (wS0)g
′(1− F ξ(w))f ξ(w) du

]

+ V (yS0)g(1− F ξ(y))]

= S0V
−1
1

[
∫ y

0

V1(w)g
′(1− F ξ(w))f ξ(w) dw

]

with V1(w) = V (S0w).
For the Example below, we have 
hosen the power distortion fun
tion g(u) = ur

for 0 < r < 1
and the (dis)utility fun
tion V (u) = (a − u/S0)

−q − a−q
, i.e. V1(w) = (a − w)−q − a−q

. With

this 
hoi
e, the premium formula 
an be 
on
retized to

πy(ξ) = a−

[
∫ y

0

[(a− w)−q − a−q] r(1− F ξ(w))r−1 f ξ(w) dw + [(a− y)−q − a−q](1− F ξ(y))r
]−1/q

.

(2.2)

For the Madagas
ar Example (with a pointmass at 0 and a pie
ewise 
onstant density, see

below) and the parameter 
hoi
e a = 0.2, q = 1.1, r = 0.95, the fun
tion y 7→ πy is depi
ted in

Figure 2.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

Figure 2: The relative premium πy as fun
tion of the relative exit level y. The dashed 
urve is the expe
ted

relative loss to be 
overed by the stop-loss 
ontra
t.

Noti
e that

S1 = S0(1− ξ) + S0min(ξ, y)− S0πy(ξ) +B.

Sin
e E[S0(1− ξ+min(ξ, y))] = S0E[1− ξ+min(ξ, y)] and Var(S1) = S2
0Var[1− ξ+min(ξ, y)]

the following program is equivalent to (2.1)

max
y

E[1 − ξ +min(ξ, y)]− πy(ξ)− γVar[1− ξ +min(ξ, y)] (2.3)

s.t. πy(ξ) ≤
B

S0

y ≥ 0
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with γ = λ · S0. Noti
e, that this is a one-dimensional optimization problem.

For the Madagas
ar Example, the obje
tive fun
tion with the setting γ = 100 and B/S0 =
0.0182 is shown in the Figure 3 below.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.996

0.9965

0.997

0.9975

0.998

0.9985

relative exit level

ob
je

ct
iv

e 
fu

nc
tio

n

Figure 3: The obje
tive as fun
tion of the relative exit level y

For the formulation of the distributionally robust problem, we assume that ξ has a point

mass F1 at z1 = 0 and for z ∈ (0, 1] a density whi
h is 
onstant in the intervals (zi, zi+1) for
i = 1, . . . , k − 1. The distribution fun
tion is a linear interpolation between the points (zi, Fi),
i = 1, . . . , k, where Fi are the 
umulative probabilities. Noti
e, that Fk = 1.

3. Alternative models

As we have introdu
ed it, the baseline damage distribution is given by a dis
rete list of

breakpoints z1, . . . , zk together with a list of 
umulative probabilities F̂1, . . . , F̂k. The alternative

models will have the same interval boundaries zi and di�er only in the 
umulative probabilities

Fi. A simple ambiguity set P is given by

P = {F :
∑

i

|Fi − F ∗
i | ≤ ǫ}

or

P = {F : |Fi − F ∗
i | ≤ ǫ ∀i}

However, su
h a neighborhoods do not take into a

ount the values zi and are therefore not

appropriate.

We use the Wasserstein distan
e as the basi
 metri
 for loss distributions. It has not only

the advantage of taking the values zi into a

ount, but it is based on a distan
e on the real

line, whi
h may be adapted to the needs of the problem at hand. For instan
e, we may use the

basi
 distan
e

dist(z, w) = |zs − ws| (3.1)

for some s > 1, meaning that the higher relative damages get higher distan
es, be
ause they

are more relevant for the insuran
e pri
es. However, in this paper we have set s = 1.
The Wasserstein distan
e between the two relative loss variables ξ resp. ξ̂ with distribution

fun
tions F resp. F̂ is de�ned as the optimal value of the (seemingly in�nite) linear program

minE[dist(ξ, ξ̂)] (3.2)

s.t. ξ ∼ F (3.3)

ξ̂ ∼ F̂ (3.4)
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The level sets of the fun
tion h.

The minimum is taken over all joint distributions with given marginals F resp. F̂ . Denote the
optimal value of this program by d(F, F̂ ). If the distan
e is 
hosen as in (3.1), then

d(F, F̂ ) =

∫

|F (t)− F̂ (t)|sts−1 dt

whi
h is a slight extension of a result by Vallander (
iteVall74). If the two distribution fun
tions

are pie
ewise linear with the same breakpoints zi, then one �nds after some 
al
ulation that

the Wasserstein distan
e is given by

d(F, F̂ ) =
1

2

k−1
∑

i=1

(z(i+ 1)− z(i)) · h(Fi − F̂i, Fi+1 − F̂i+1)

where

h(a, b) =















a+ b, if a ≥ 0, b ≥ 0
(a2 + b2)/(a− b), if a ≥ 0, b < 0
(a2 + b2)/(b− a), if a < 0, b ≥ 0
−a− b, if a < 0, b < 0

Noti
e that h is a 
onvex fun
tion and that the sets {Fi : d(F, F̂ ) ≤ ǫ} are 
onvex in the

parameters Fi's.

The distributionally robust solution of our optimal insuran
e problem is the solution of

max
y

min
{F :d(F,F̂ )≤ǫ}

EF [1− ξ +min(ξ, y)]− πy(ξ)− γVarF [1− ξ +min(ξ, y)] (3.5)

s.t. ξ ∼ F (3.6)

F has a density in (0, 1], whi
h is pie
ewise 
onstant in [zi, zi+1] (3.7)

π(y) ≤ B/S0

y ≥ 0.

Here EF resp. VarF denote the expe
tation resp. the varian
e, when the distribution fun
tion

of ξ is F .

4. A 
ase study: Madagas
ar

Madagas
ar has one of the highest 
y
lone risks worldwide, espe
ially the east 
oast, whi
h

is lo
ated in the path of destru
tive 
y
lones 
oming from the Indian O
ean (NOAA 2012).

7



The publi
 se
tor plays an important role in �nan
ing losses after destru
tive 
y
lone events

but usually falls short in providing adequate resour
es. Consequently, there is a keen interest in

possible insuran
e me
hanism (or a regional insuran
e pool) that 
ould help �nan
ing disasters

in a proa
tive manner. However, for su
h kind of assessment an annual loss distribution for


y
lone events on the 
ountry level has to be estimated �rst. To estimate the damage potential

of 
y
lones, di�erent te
hniques 
an be used, e.g. sto
hasti
 or engineering approa
hes for

estimating physi
al vulnerability of the assets exposed and 
ombining them with hazard impa
ts

and 
orresponding probabilities of given events (see Woo 2012 for a detailed dis
ussion on


atastrophe modeling approa
hes). However, as this kind of detailed information is not yet

available yet histori
al losses have to be used for the risk assessment instead. There are two

databases available that 
an be used for su
h kind of analysis. One is the open-sour
e EMDAT

disaster database (EM-DAT, 2012) maintained by the Centre for Resear
h on the Epidemiology

of Disasters at the Université Catholique de Louvain. EMDAT 
urrently lists information on

people killed, made homeless, and a�e
ted as well as overall �nan
ial losses for more than 16,000

sudden-onset (su
h as �oods, storms, earthquakes) and slow-onset (drought) events from 1900

to present. Data are 
ompiled from various sour
es, in
luding UN agen
ies, non-governmental

organizations, insuran
e 
ompanies, resear
h institutes and press agen
ies. The se
ond one

is the newly produ
ed time-series loss data by Malagasy o�
ials based on the "Damage and

losses assessment methodology" (from now on 
alled MLoss). It 
onsists of past publi
 se
tor

loss estimates for the Analanjirofo region from 1980 to 2012 separated into di�erent se
torial

impa
ts. Furthermore, the results for the Analanjirofo were ups
aled to the national level by

assuming the same exposure and vulnerability levels in other areas. The estimates are based on

the assumption that losses belong to the maximum domain of attra
tion of an extreme value

distribution (and as losses are always a downside risk) the Fre
het type distribution was 
hosen

as the basi
 loss distribution. For estimating the shape as well as the lo
ation parameter,

a non-linear optimization model was built, whi
h best �ts the 
urve with the data at hand.

Furthermore, to in
rease the robustness of the results, other models - su
h as the Generalized

Pareto model - were tested and improved in a step-based manner to satisfa
tory levels (based on

graphi
al tests su
h as P-P plots and Q-Q plots, see Embre
hts et al. 1997 for more information

on these te
hniques). The parameters obtained with this method were used to 
al
ulate annual

loss return periods.

The same approa
h was used for the MLoss dataset. This dataset in
ludes losses of the publi


se
tor, whi
h are separated into di�erent dimensions in
luding damages to s
hools, hospitals,

the tele
ommuni
ations system, the environment, and transportation from 1980 to 2012. In

total 4 di�erent loss distributions were estimated all with di�erent assumptions as well as

di�erent estimation te
hniques or datasets used, see Table 1.

For these loss distributions, extreme value distributions were �tted and then the relative

losses were approximated by pie
ewise linear df's with knots at

z = [0, 0.0018, 0.0027, 0.0036, 0.0055, 0.0091, 0.0137, 0.0182, 0.0365, 0.0547,

0.0730, 0.0912, 0.1095, 0.1460, 0.1825].
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S
enario Maximum Baseline Minimum MLoss

No loss 0.406 0.607 0.406 0.406

20 2655 114 372 149.0

50 3991 409 510 204.2

80 4773 775 581 232.5

100 5172 1046 614 245.9

150 5943 1802 676 270.4

200 6530 2646 719 287.7

250 7010 3562 752 301.1

300 7419 4541 780 312.1

400 8097 6657 823 329.4

500 8651 8954 857 342.9

Table 1: Sour
e: Based on Ho
hrainer 2014. Estimated loss return periods for publi
 
y
lone risk based on

di�erent estimation methods. Losses (
onstant 2000) in million USD, publi
 se
tor losses

5. Solving the Madagas
ar problem

If we 
onsider the EMDAT model as the one and only model, we are fa
ed with a standard

sto
hasti
 optimization problem with just one real de
ision variable y. The pertaining obje
tive
fun
tion is shown in the Figure 4 below. The optimal exit level is y∗ = 0.1188, i.e. to 
ap the

insuran
e at 6510 mill. USD with a premium of 92.0 mill. The expe
ted insured losses are 51.6

mill.
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Figure 4: The obje
tive fun
tion.

If F (j), j = 1, . . . , ℓ is a �nite set of di�erent possible loss distributions, we solve

max
y

min
j=1,...,ℓ

EF (j)[1− ξ +min(ξ, y)]− πy(ξ)− γVarF (j)[1− ξ +min(ξ, y)]

s.t. π(ξ1, y) ≤ B/S0

y ≥ 0.

Noti
e that F (1)
is the basi
 model, on the basis of whi
h all insuran
e premia are 
al
ulated.

In the Madagas
ar 
ase, there are 3 possible loss distribution whi
h are plotted in Figure 5

below

It turns out that the in
lusion of the alternative models does not 
hange the optimal exit points

(y∗ = 0.1188), sin
e the EMDAT loss distribution dominates the other models. The minimal

obje
tive fun
tion is the obje
tive fun
tion of the EMDAT 
ase.

However, we solved the full maximin problem for di�erent radius of the ambiguity set, we

found the following dependen
y of the optimal exit point in on the size of the ambiguity set.
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Figure 5: Loss distributions.

ambiguity radius ǫ optimal exit level in mill.

0 6,510

0.001 6,788

0.005 6,943

0.01 7,073

0.03 7,471

0.05 7,774

0.07 8,044

0.1 8,711

0.15 9,221

0.2 9,331

The relative values of optimal exit points are shown in Figure 6 and the pertaining worst


ase models are depi
ted in Figure 7. Together with the optimal solutions, they des
ribe the

saddlepoints of our problem.
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Figure 6: Dependen
y of the optimal exit point on the size of the ambiguity set.

The worst 
ase models are ordered in the �rst order sto
hasti
 dominan
e sense.
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Figure 7: The worst 
ase distribution fun
tions for radii ǫ = 0.001, 0.005, 0.005, 0.01
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Appendix

Convexity of h. If h is a nonnegative 1-homogeneous fun
tion on R
n
(i.e. h(λx) = λh(x)

for λ > 0 su
h that its level sets are 
losed 
onvex. Then h is 
onvex.

Let C be the epigraph of h. C is a 
one. For ea
h element (x, h(x)) 6= (0, 0) on the boundary

of C, let (proj(x), 1) be the element ( 1
h(x)

x, 1) on the 1-level set. Suppose that (x, h(x)) and

(y, h(y)) are in the boundary of C, but an element (z, α) on the line segment joining them is

not in C. Then also (proj(z), 1) is not in C, but it is on the line segment joining (proj(x), 1)
and (proj(y), 1). But sin
e these points are in the same level set, this is a 
ontradi
tion to the

assumption.

The solution algorithm.

Noti
e that the obje
tive fun
tion

EP [1− ξ +min(ξ, y)]− πy(ξ)− γVarP [1− ξ +min(ξ, y)]

is 
onvex in the probability measure P and hen
e the inner problem

minEF [1− ξ +min(ξ, y)]− πy(ξ)− γVarF [1− ξ +min(ξ, y)]

F has a density in (0, 1], whi
h is pie
ewise 
onstant in [zi, zi+1]

d(F, (̂F )) ≤ ǫ

is a 
onvex optimization problem in R
k
.

The minimax problem is solved in a stepwise manner, for the details of see Algorithm 7.2

on page 221 in [13℄.
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