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Abstrat

In stohasti optimization models, the optimal solution heavily depends on the hosen model

for the senarios. However, the senario models are hosen on the basis of statistial estimates

and are therefore subjet to model error. We demonstrate here how the model unertainty

an be inorporated into the deision making proess. We use a nonparametri approah for

quantifying the model unertainty and a minimax setup to �nd model-robust solutions. The

method is illustrated by a risk management problem involving the optimal design of an insurane

ontrat.
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1. Introdution

Common approah in risk assessment and risk management is to base the risk estimates

on observed data and to use the statistially obtained estimates for �nding the optimal risk

management strategies. However, the fat that statistial estimates an never give preise val-

ues of unknown parameters due to an estimation error, is quite often negleted. Moreover, the

hoie of the probability model, i.e. the lass of possible distributions, is typially hosen by

the statistiian and is not further questioned.

In general, statistial estimation proedures do not allow to single out one spei� probability

model, but only a whole set of models an be determined, in whih the true model lies with a

prespei�ed probability. This on�dene set an be taken as the set of models for a minimax

deision, where the best deision under the worst model in the model set is sought for. We all

suh sets of models ambiguity sets. The minimax solution in this ase is alled distributionally

robust.

Modeling unertainty. Eonomi deisions are made under some assumptions of the dei-

sion relevant parameters. In deterministi optimization, the parameters are onsidered to be

known and �xed. Already in the early days of optimization, this assumption was onsidered as

too narrow. Two possible setups have then been developed: (i) in robust optimization, a set

of possible parameters is determined, while (ii) in stohasti optimization the parameters are

onsidered to follow a ertain probability distribution. In robust optimization, the parameters

are not weighted and one has to use minimax strategies (to �nd the best strategy under the

worst ase). Probability models ome with a lot more of possible strategies: expeted utility

maximization or minimization of risk (shortfall risk, variane risk, tail risk, et.). However,

probability models depend heavily on the hosen probability model, whih is typially based
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on some ad-ho assumptions (e.g. parametri families of distributions) and on statistial es-

timation proedures, whih may ontain estimation error. This dependeny has been ignored

for quite a while, when most researh was put into deision making under a given �xed prob-

ability model. However, if the model is ompletely �xed, only aleatori unertainty, i.e. the

unertainty about the realizations is to be onsidered.

As already notied, the model hoie is typially based on assumptions and estimations, i.e. an

error in model hoie annot be exluded. The ambiguity in model seletion is often referred

to as epistemi unertainty. By inluding the epistemi unertainty into the deision making

proess, we an also to a ertain extent reonile this approah to the pure senario approah.

While in the latter all senarios are in priniple possible, stohasti ambiguity models would

allow senario probabilities to vary in order to aommodate for model unertainty. In the ex-

tremal ase that all probability distributions over the senarios would be theoretially possible,

the ambiguity modeling oinides with pure senario analysis. In most appliation areas we

know the importane or likelihood of senarios at least to a ertain extent, though we typi-

ally do not know the exat ourrene probabilities. This is why model ambiguity beomes

an important issue in deision making. In ambiguous modeling, the possible model error is

inorporated into the deision proess, that allows to �nd robust deisions.

We summarize this as follows:

� If all parameters of an optimization problem are known, we all it deterministi.

� If some parameters are not exatly known, but known to lie in some set, then we have a

robust program

� If for the unknown parameters a random distribution is spei�ed, we all this a stohasti

program.

� If the distribution of the random parameters is not known, but known to lie in some family

of distribution, then the problem is alled ambiguity problem and its minimax solution is

alled distributionally robust.

Bibliographi remarks. The idea of optimal deisions under several stohasti models

(i.e., min-max solutions) appears for the �rst time in Sarf [15℄ in a linear inventory problem

seeking the stokage poliy, whih maximizes the minimum pro�t onsidering all demand dis-

tributions with given mean and given standard deviation. More thorough studies of ambiguous

deision problems than a minimax problems were initiated by Dupaová [3, 4℄ for the lass of

stohasti linear problems with reourse under general assumptions for the ambiguity set. The

formulation is in a game theoreti setup, where the �rst player hooses the deision and the

seond player hooses the probability model. There are alternative names used in literature for

the ambiguity problem, suh as minimax stohasti optimization, model unertainty problem

or distributional robustness problem. Many proposals for ambiguity sets in the two-stage ase

have been made and analyzed. A list of popular lasses of ambiguous models is presented by

Dupaová [5℄.

Literature dealing with ambiguity either from theory or appliation point of view is growing

rapidly. The situation when the ambiguity set onsists of all probabilities with given �rst two

moments was studied by Jagannathan [9℄ for the linear ase. Shapiro and Kleywegt [16℄ de�ne

an ambiguity set as the onvex hull of a �nite olletion of models; Ahmed and Shapiro [17℄ on-

sider sets of models given by moment inequalities; a similar approah is adopted by Edirishinge.

Cala�ore [1℄ uses the Kullbak-Leibler divergene to de�ne neighborhoods of a baseline model

as ambiguity sets. Thiele [18℄ onsiders the L1 balls of densities as ambiguity sets. Delage and

Ye [2℄ onsider ambiguity set given by inequalities for the mean and the ovariane matrix.

Wozabal and P�ug [12℄ use for the �rst time ambiguity sets, whih are balls with respet to the
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Wasserstein distane, see also the reent book by P�ug and Pihler [13℄, whih also deals with

the multistage ase. Hansen and Sargent onsider in their 2007 book [8℄ alternative models of

multistage stohasti optimization problems given by maximal deviation from a baseline model

in Kullbak-Leibler divergene. Goh and Sim [7℄ study multistage ambiguity sets whih are

de�ned by a mean, whih must lie in some onial set, a given ovariane matrix and some

upper bounds on the exponential moments and extend this to multistage.

In this paper, we investigate the problem to determine an optimal insurane portfolio under

model ambiguity. To simplify the approah, we onsider only a single stage deision problem:

A government has to deide about investment in and insurane for infrastruture for the next

budget period. The infrastruture is subjet to natural hazard suh as earthquake, �oods or

tropial storms and the problem is to �nd the best mix between investment and insurane,

i.e. between inreased produtivity and higher protetion. The model is similar to the IIASA

CATSIM model.

2. Model desription

To determine the optimal design of an insurane sheme is a typial problem of stohasti

optimization: Adoption of a robust approah would not make sense, as soon as it would mean

that very rare events would be onsidered as important as quite frequent events and this would

result in an overly pessimisti result. However, the probability model may be subjet to error

and this gives an argument for distributionally robust deisions.

The total insurable infrastruture stok of the ountry under onsideration at time 0 is S0.

We assume that the ountry is under hight risk of natural hazards and we denote by L the

annual loss variable. We further onsider a stop-loss insurane with exit level Y , its payment

funtion is min(L, Y ). It is well known that stop-loss insurane ontrats are "optimal" (see

Raviv [14℄). The stop-loss payment funtion is shown in Figure 1.

damage

payment

exit
level y

Figure 1: The payment funtion
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The infrastruture S1 at the end of the period (typially one year) is given by the previous

amount S1 minus the random damage and the amount obtained as ompensation from the

insurane plus the investment X .

S1 = S0 − L+min(L, Y ) +X

The premium for the stop-loss insurane is denoted by π(L, Y ). There is a budget B available,

whih may be used for investment and for infrastruture protetion by insurane.

The deision problem onsidered here is to �nd the optimal mix between investment X
and insurane with exit level Y for the given budget B, the objetive to be maximised is the

variane-orreted expetation of S1. The omplete (yet unambiguous) model is

max
Y

E(S1)− λVar(S1) (2.1)

s.t. S1 = S0 − L+min(L, Y ) +X

X + π(L, Y ) = B

X ≥ 0, Y ≥ 0.

To summarize, we have introdued the following symbols.

S0 the (deterministi) infrastruture value at the beginning of the period

S1 the (stohasti) infrastruture value at the end of the period

L the stohasti loss variable

B the budget foreseen for investment and insurane

X the investment in infrastruture

Y the exit level for the insurane ontrat

λ the penalty parameter for the variane

π(L, Y ) the premium of an insurane with relative loss variable ξ and exit level Y .

For further use we introdue some relative values

ξ the relative loss variable, ξ = L/S0

y the relative exit level, y = Y/S0

and

πy = π(min(L, yS0)/S0.

The insurane premium. We assume that the insurane premium is alulated aording

to a ombination the distortion and the utility priniple (see [10℄): Suppose that FL
is the

distribution funtion of the loss variable L. Using a distortion funtion g on [0,1℄, whih satis�es
g(u) ≥ u, g(0) = 0, g(1) = 1, the loss distribution is distorted to the new loss distribution

FL
g (u) = 1− g(1− FL(u)).

Under the monotoni and onvex (dis)utility funtion V , the premium for the distorted loss L
is

π(L) = V −1

[
∫ ∞

0

V (u) d[1− g(1− FL(u))]

]

where V −1
is the inverse (dis)utility.

If the overage is apped at Y , then the distribution funtion of the damage variable

min(L, Y ) is

Fmin(L,Y )(u) =

{

FL(u) if u ≤ Y
1 otherwise.
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Assuming that FL has a density fL
, the premium for the loss apped at Y is

π(min(L, Y )) = V −1

[
∫ V

0

(u) g′(1− FL(u))fL(u) du+ V (Y ) · g(1− FL(Y ))

]

with g′(u) = ∂
∂u
g(u).

The relative loss variable ξ = L/S0 has distribution funtion F ξ(w) = FL(w/S0), w ∈ [0, 1]
with density f ξ(w) = 1/S0 f

L(w/S0). For the relative exit level y = Y/S0, one gets for the

premium πy of the ontrat with this exit level

πy(ξ) = π(min(yS0, ξS0) = V −1

[
∫ y

0

V (wS0)g
′(1− F ξ(w))f ξ(w) du

]

+ V (yS0)g(1− F ξ(y))]

= S0V
−1
1

[
∫ y

0

V1(w)g
′(1− F ξ(w))f ξ(w) dw

]

with V1(w) = V (S0w).
For the Example below, we have hosen the power distortion funtion g(u) = ur

for 0 < r < 1
and the (dis)utility funtion V (u) = (a − u/S0)

−q − a−q
, i.e. V1(w) = (a − w)−q − a−q

. With

this hoie, the premium formula an be onretized to

πy(ξ) = a−

[
∫ y

0

[(a− w)−q − a−q] r(1− F ξ(w))r−1 f ξ(w) dw + [(a− y)−q − a−q](1− F ξ(y))r
]−1/q

.

(2.2)

For the Madagasar Example (with a pointmass at 0 and a pieewise onstant density, see

below) and the parameter hoie a = 0.2, q = 1.1, r = 0.95, the funtion y 7→ πy is depited in

Figure 2.
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Figure 2: The relative premium πy as funtion of the relative exit level y. The dashed urve is the expeted

relative loss to be overed by the stop-loss ontrat.

Notie that

S1 = S0(1− ξ) + S0min(ξ, y)− S0πy(ξ) +B.

Sine E[S0(1− ξ+min(ξ, y))] = S0E[1− ξ+min(ξ, y)] and Var(S1) = S2
0Var[1− ξ+min(ξ, y)]

the following program is equivalent to (2.1)

max
y

E[1 − ξ +min(ξ, y)]− πy(ξ)− γVar[1− ξ +min(ξ, y)] (2.3)

s.t. πy(ξ) ≤
B

S0

y ≥ 0
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with γ = λ · S0. Notie, that this is a one-dimensional optimization problem.

For the Madagasar Example, the objetive funtion with the setting γ = 100 and B/S0 =
0.0182 is shown in the Figure 3 below.
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Figure 3: The objetive as funtion of the relative exit level y

For the formulation of the distributionally robust problem, we assume that ξ has a point

mass F1 at z1 = 0 and for z ∈ (0, 1] a density whih is onstant in the intervals (zi, zi+1) for
i = 1, . . . , k − 1. The distribution funtion is a linear interpolation between the points (zi, Fi),
i = 1, . . . , k, where Fi are the umulative probabilities. Notie, that Fk = 1.

3. Alternative models

As we have introdued it, the baseline damage distribution is given by a disrete list of

breakpoints z1, . . . , zk together with a list of umulative probabilities F̂1, . . . , F̂k. The alternative

models will have the same interval boundaries zi and di�er only in the umulative probabilities

Fi. A simple ambiguity set P is given by

P = {F :
∑

i

|Fi − F ∗
i | ≤ ǫ}

or

P = {F : |Fi − F ∗
i | ≤ ǫ ∀i}

However, suh a neighborhoods do not take into aount the values zi and are therefore not

appropriate.

We use the Wasserstein distane as the basi metri for loss distributions. It has not only

the advantage of taking the values zi into aount, but it is based on a distane on the real

line, whih may be adapted to the needs of the problem at hand. For instane, we may use the

basi distane

dist(z, w) = |zs − ws| (3.1)

for some s > 1, meaning that the higher relative damages get higher distanes, beause they

are more relevant for the insurane pries. However, in this paper we have set s = 1.
The Wasserstein distane between the two relative loss variables ξ resp. ξ̂ with distribution

funtions F resp. F̂ is de�ned as the optimal value of the (seemingly in�nite) linear program

minE[dist(ξ, ξ̂)] (3.2)

s.t. ξ ∼ F (3.3)

ξ̂ ∼ F̂ (3.4)
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The minimum is taken over all joint distributions with given marginals F resp. F̂ . Denote the
optimal value of this program by d(F, F̂ ). If the distane is hosen as in (3.1), then

d(F, F̂ ) =

∫

|F (t)− F̂ (t)|sts−1 dt

whih is a slight extension of a result by Vallander (iteVall74). If the two distribution funtions

are pieewise linear with the same breakpoints zi, then one �nds after some alulation that

the Wasserstein distane is given by

d(F, F̂ ) =
1

2

k−1
∑

i=1

(z(i+ 1)− z(i)) · h(Fi − F̂i, Fi+1 − F̂i+1)

where

h(a, b) =















a+ b, if a ≥ 0, b ≥ 0
(a2 + b2)/(a− b), if a ≥ 0, b < 0
(a2 + b2)/(b− a), if a < 0, b ≥ 0
−a− b, if a < 0, b < 0

Notie that h is a onvex funtion and that the sets {Fi : d(F, F̂ ) ≤ ǫ} are onvex in the

parameters Fi's.

The distributionally robust solution of our optimal insurane problem is the solution of

max
y

min
{F :d(F,F̂ )≤ǫ}

EF [1− ξ +min(ξ, y)]− πy(ξ)− γVarF [1− ξ +min(ξ, y)] (3.5)

s.t. ξ ∼ F (3.6)

F has a density in (0, 1], whih is pieewise onstant in [zi, zi+1] (3.7)

π(y) ≤ B/S0

y ≥ 0.

Here EF resp. VarF denote the expetation resp. the variane, when the distribution funtion

of ξ is F .

4. A ase study: Madagasar

Madagasar has one of the highest ylone risks worldwide, espeially the east oast, whih

is loated in the path of destrutive ylones oming from the Indian Oean (NOAA 2012).
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The publi setor plays an important role in �naning losses after destrutive ylone events

but usually falls short in providing adequate resoures. Consequently, there is a keen interest in

possible insurane mehanism (or a regional insurane pool) that ould help �naning disasters

in a proative manner. However, for suh kind of assessment an annual loss distribution for

ylone events on the ountry level has to be estimated �rst. To estimate the damage potential

of ylones, di�erent tehniques an be used, e.g. stohasti or engineering approahes for

estimating physial vulnerability of the assets exposed and ombining them with hazard impats

and orresponding probabilities of given events (see Woo 2012 for a detailed disussion on

atastrophe modeling approahes). However, as this kind of detailed information is not yet

available yet historial losses have to be used for the risk assessment instead. There are two

databases available that an be used for suh kind of analysis. One is the open-soure EMDAT

disaster database (EM-DAT, 2012) maintained by the Centre for Researh on the Epidemiology

of Disasters at the Université Catholique de Louvain. EMDAT urrently lists information on

people killed, made homeless, and a�eted as well as overall �nanial losses for more than 16,000

sudden-onset (suh as �oods, storms, earthquakes) and slow-onset (drought) events from 1900

to present. Data are ompiled from various soures, inluding UN agenies, non-governmental

organizations, insurane ompanies, researh institutes and press agenies. The seond one

is the newly produed time-series loss data by Malagasy o�ials based on the "Damage and

losses assessment methodology" (from now on alled MLoss). It onsists of past publi setor

loss estimates for the Analanjirofo region from 1980 to 2012 separated into di�erent setorial

impats. Furthermore, the results for the Analanjirofo were upsaled to the national level by

assuming the same exposure and vulnerability levels in other areas. The estimates are based on

the assumption that losses belong to the maximum domain of attration of an extreme value

distribution (and as losses are always a downside risk) the Frehet type distribution was hosen

as the basi loss distribution. For estimating the shape as well as the loation parameter,

a non-linear optimization model was built, whih best �ts the urve with the data at hand.

Furthermore, to inrease the robustness of the results, other models - suh as the Generalized

Pareto model - were tested and improved in a step-based manner to satisfatory levels (based on

graphial tests suh as P-P plots and Q-Q plots, see Embrehts et al. 1997 for more information

on these tehniques). The parameters obtained with this method were used to alulate annual

loss return periods.

The same approah was used for the MLoss dataset. This dataset inludes losses of the publi

setor, whih are separated into di�erent dimensions inluding damages to shools, hospitals,

the teleommuniations system, the environment, and transportation from 1980 to 2012. In

total 4 di�erent loss distributions were estimated all with di�erent assumptions as well as

di�erent estimation tehniques or datasets used, see Table 1.

For these loss distributions, extreme value distributions were �tted and then the relative

losses were approximated by pieewise linear df's with knots at

z = [0, 0.0018, 0.0027, 0.0036, 0.0055, 0.0091, 0.0137, 0.0182, 0.0365, 0.0547,

0.0730, 0.0912, 0.1095, 0.1460, 0.1825].
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Senario Maximum Baseline Minimum MLoss

No loss 0.406 0.607 0.406 0.406

20 2655 114 372 149.0

50 3991 409 510 204.2

80 4773 775 581 232.5

100 5172 1046 614 245.9

150 5943 1802 676 270.4

200 6530 2646 719 287.7

250 7010 3562 752 301.1

300 7419 4541 780 312.1

400 8097 6657 823 329.4

500 8651 8954 857 342.9

Table 1: Soure: Based on Hohrainer 2014. Estimated loss return periods for publi ylone risk based on

di�erent estimation methods. Losses (onstant 2000) in million USD, publi setor losses

5. Solving the Madagasar problem

If we onsider the EMDAT model as the one and only model, we are faed with a standard

stohasti optimization problem with just one real deision variable y. The pertaining objetive
funtion is shown in the Figure 4 below. The optimal exit level is y∗ = 0.1188, i.e. to ap the

insurane at 6510 mill. USD with a premium of 92.0 mill. The expeted insured losses are 51.6

mill.
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Figure 4: The objetive funtion.

If F (j), j = 1, . . . , ℓ is a �nite set of di�erent possible loss distributions, we solve

max
y

min
j=1,...,ℓ

EF (j)[1− ξ +min(ξ, y)]− πy(ξ)− γVarF (j)[1− ξ +min(ξ, y)]

s.t. π(ξ1, y) ≤ B/S0

y ≥ 0.

Notie that F (1)
is the basi model, on the basis of whih all insurane premia are alulated.

In the Madagasar ase, there are 3 possible loss distribution whih are plotted in Figure 5

below

It turns out that the inlusion of the alternative models does not hange the optimal exit points

(y∗ = 0.1188), sine the EMDAT loss distribution dominates the other models. The minimal

objetive funtion is the objetive funtion of the EMDAT ase.

However, we solved the full maximin problem for di�erent radius of the ambiguity set, we

found the following dependeny of the optimal exit point in on the size of the ambiguity set.
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Figure 5: Loss distributions.

ambiguity radius ǫ optimal exit level in mill.

0 6,510

0.001 6,788

0.005 6,943

0.01 7,073

0.03 7,471

0.05 7,774

0.07 8,044

0.1 8,711

0.15 9,221

0.2 9,331

The relative values of optimal exit points are shown in Figure 6 and the pertaining worst

ase models are depited in Figure 7. Together with the optimal solutions, they desribe the

saddlepoints of our problem.
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Figure 6: Dependeny of the optimal exit point on the size of the ambiguity set.

The worst ase models are ordered in the �rst order stohasti dominane sense.
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Figure 7: The worst ase distribution funtions for radii ǫ = 0.001, 0.005, 0.005, 0.01
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Appendix

Convexity of h. If h is a nonnegative 1-homogeneous funtion on R
n
(i.e. h(λx) = λh(x)

for λ > 0 suh that its level sets are losed onvex. Then h is onvex.

Let C be the epigraph of h. C is a one. For eah element (x, h(x)) 6= (0, 0) on the boundary

of C, let (proj(x), 1) be the element ( 1
h(x)

x, 1) on the 1-level set. Suppose that (x, h(x)) and

(y, h(y)) are in the boundary of C, but an element (z, α) on the line segment joining them is

not in C. Then also (proj(z), 1) is not in C, but it is on the line segment joining (proj(x), 1)
and (proj(y), 1). But sine these points are in the same level set, this is a ontradition to the

assumption.

The solution algorithm.

Notie that the objetive funtion

EP [1− ξ +min(ξ, y)]− πy(ξ)− γVarP [1− ξ +min(ξ, y)]

is onvex in the probability measure P and hene the inner problem

minEF [1− ξ +min(ξ, y)]− πy(ξ)− γVarF [1− ξ +min(ξ, y)]

F has a density in (0, 1], whih is pieewise onstant in [zi, zi+1]

d(F, (̂F )) ≤ ǫ

is a onvex optimization problem in R
k
.

The minimax problem is solved in a stepwise manner, for the details of see Algorithm 7.2

on page 221 in [13℄.
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