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Abstract A number of global hydrological models [GHMs) have been developed in recent decades in
order to understand the impacts of climate variability and human activities on water resources availability.
The spatial resolution of GHMs is mostly constrained at a 0.58 by 0.58 grid [�50km by �50km at the equa-
tor). However, for many of the water-related problems facing society, the current spatial scale of GHMs is
insufficient to provide locally relevant information. Here using the PCR-GLOBWB model we present for the
first time an analysis of human and climate impacts on global water resources at a 0.18 by 0.18 grid [�10km
by �10km at the equator) in order to depict more precisely regional variability in water availability and use.
Most of the model input data (topography, vegetation, soil properties, routing, human water use) have
been parameterized at a 0.18 global grid and feature a distinctively higher resolution. Distinct from many
other GHMs, PCR-GLOBWB includes groundwater representation and simulates groundwater heads and lat-
eral groundwater flows based on MODFLOW with existing geohydrological information. This study shows
that global hydrological simulations at higher spatial resolutions are feasible for multi-decadal to century
periods.

1. Introduction

Over the last 100 years, the global population has more than quadrupled and currently exceeds 7 billion. To
support the rapidly growing population, and their food demands, economic activities and standard of living,
humans have drastically transformed land use and vegetation patterns of the world. Global crop land area
has doubled to �15 million km2, while global irrigated area has increased six-fold from �0.5 million km2 to
�3.0 million km2 over the last 100 years [Freydank and Siebert, 2008]. Increasing population numbers,
expanding areas of irrigated agriculture, and associated economic development have driven an ever-
increasing demand for water worldwide [Falkenmark et al., 1997; Oki and Kanae, 2006; Hanasaki et al.,
2008a, 2008b; Kummu et al., 2010; V€or€osmarty et al., 2010; Wisser et al., 2010; Wada et al., 2011a, 2011b; Pokh-
rel et al., 2012; Elliott et al., 2014; Haddeland et al., 2014]. Global water use (i.e., withdrawal) has increased by
nearly 8 times from �500 km3 yr21 to �4000 km3 yr21 over the last 100 years, with an acute increase at a
rate of �15% per decade between 1960 and 2010. Agriculture, mostly irrigation, is the principal user of
water and accounts for �70% of the global total, with the remaining part attributable to the industrial and
domestic sectors [D€oll and Siebert, 2002; Bondeau et al., 2007; Gerten et al., 2007; Rost et al., 2008; Wisser
et al., 2008; Liu and Yang, 2010; Siebert and D€oll, 2010; Siebert et al., 2010; de Graaf et al., 2014].

To satisfy their needs, humans extract vast amounts of water from surface water and groundwater resour-
ces. To boost surface water availability, tens of thousands of reservoirs have been constructed in many trib-
utaries of the major rivers and their total storage capacities exceed �8000 km3 worldwide [Lehner et al.,
2011]. A number of reservoirs also serve as the source of hydropower generation to supply the energy
needs for industries and to support the increased standard of living over various regions. Nevertheless, soar-
ing human water use has caused conditions of water scarcity in regions including India, Pakistan, Western
and Central United States, Northeast China, Iran, the Middle East and North Africa, and Southern Europe
[Gleick, 2003, 2010; V€or€osmarty et al., 2010; Oki and Kanae, 2006; Hanasaki et al., 2008a, 2008b; Kummu et al.,
2010; Hoekstra et al., 2012; Schewe et al., 2014; Gain and Wada, 2014]. In such regions, the water demand
exceeding the available surface freshwater resources is often supplemented by groundwater resources.
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Excessive groundwater pumping, however, often leads to overexploitation, causing groundwater depletion
[Konikow and Kendy, 2005; Rodell et al., 2009; Tiwari et al., 2009; Famiglietti et al., 2011; Konikow, 2011; D€oll
et al., 2012; Scanlon et al., 2007, 2012a, 2012b; Wada et al., 2012a, 2012b; Taylor et al., 2013] that may have
devastating effects on environmental streamflow, groundwater-fed wetlands and related ecosystems [Glee-
son et al., 2012; Gleeson and Wada, 2013; Wada and Heinrich, 2013] As a result, terrestrial water fluxes have
been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s
water resources are turning up in a diverse range of records and can be seen in surface freshwater (water in
rivers, lakes, reservoirs and wetlands) and groundwater resources alike [Van Dijk et al., 2014].

Multi-decadal climate variability also has substantial impacts on Earth’s water resources. In several parts of
the world (e.g., Asia, Africa), drought is closely associated with the presence of the El Ni~no-Southern Oscilla-
tion (ENSO) that has driven a number of severe drought events [Trenberth et al., 1988; Seager, 2007; Sheffield
and Wood, 2007; Sheffield et al., 2012; Dankers et al., 2014; Prudhomme et al., 2014]. There is a growing con-
cern that the natural patterns of climate have been altered due to increasing anthropogenic forcing (e.g.,
greenhouse gas emission and intense irrigation). Changing climate is in turn expected to alter the water
cycle (e.g., the rate of evapotranspiration and the amount of precipitation), and subsequently impact
regional water resources [Arnell, 1999, 2004; Alcamo et al., 2007; Feyen and Dankers, 2009; Jung et al., 2010;
Dai, 2011, 2013].

To simulate terrestrial water fluxes and storage (water in rivers, lakes, wetlands and reservoirs), consistently
across the globe, a number of land surface models (LSMs) and global hydrological models (GHMs) have
been developed in recent decades. LSMs generally have a simplified treatment of the surface hydrology
and do not include human-induced change, primarily focusing on the interactions of land-atmosphere
processes for climatic simulations in general circulation models (GCMs). Notable examples of LSMs include
VIC [Wood et al., 1992] and Noah [Ek et al., 2003]. GHMs have a detailed representation of terrestrial hydro-
logical processes at long temporal and fine spatial resolutions, and in general include human-induced
change (e.g., human water use and reservoir regulation). Examples of GHMs are H08 [Hanasaki et al., 2008a,
2008b], MATSIRO [Pokhrel et al., 2012], PCR-GLOBWB [Van Beek et al., 2011; Wada et al., 2014], WADMOD-M
[Wid�en-Nilsson et al., 2007], WaterGAP [Alcamo et al., 2007], WGHM [D€oll et al., 2003] and WBMplus [Wisser
et al., 2010]). Distinct from LSMs and GHMs, Dynamic Vegetation Models (DVMs) include a simplified treat-
ment of the surface hydrology but a special treatment on biosphere that enables quantitative assessment
of transient changes in vegetation and land surface hydrology in response to variations in climate and
anthropogenic CO2 increase. LPJmL [Gerten et al., 2007] and DBH [Tang et al., 2007] fall into this category.

GHMs typically simulate the dynamics of soil moisture storage due to changes in precipitation and evapo-
transpiration, the generation of runoff and the discharge through the river network at a 0.58 by 0.58 global
grid (�50km by �50km at the equator) where climate, physiographic, and socio-economic data are most
available. The majority of GHMs are based on the water balance concept and track the transfer of water
through a number of stores with time steps ranging from a month to less than 1 day. Conceptual models
are chosen as they are deemed to be more robust than empirical models and more parsimonious in their
data requirements than fully physically based models, whilst they maintain the ability to translate reliably
the effects of global change on the hydrology in a consistent manner. With their development, the process
descriptions in GHMs have become more physically based and their spatial and temporal resolution have
increased. Nevertheless, for many of the water-related problems facing society, the current spatial scale of
the models is insufficient to provide locally relevant information as well as to better solve the mechanisms
[Wood et al., 2011; Bierkens et al., 2015]. For example, modeling and prediction of effects of human activity
on the water cycle require accurate spatial representation of water extractions, irrigation, and reservoir man-
agement. Modeling the hydrodynamic effects of drought and flood needs a higher resolution modeling
framework. Recent improvement in computational capabilities has outrun the capabilities, and theoretical
underpinnings, of the current generation of models. Higher spatial resolutions are demonstrably feasible for
multi-decadal to century simulations.

Here we present for the first time an analysis of human and climate impacts on global water resources at a
0.18 by 0.18 global grid (�10km by �10km at the equator). This is a finer spatial resolution than those of any
previous global scale assessments, and enables us to depict more precisely regional variability in water
availability and use. Over the period 1960–2010 we use the global hydrological and water resources model
PCR-GLOBWB (version 2.0) [Van Beek et al., 2011; Wada et al., 2014] that runs at a daily temporal resolution
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and has enhanced the spatial resolution of the model globally from 0.58 to 0.18. Most model input data
have been parameterized at a 0.18 global grid and feature a distinctively higher resolution. With the
enhanced spatial resolution of input parameters including topography, vegetation, soil properties and
lithology, the process representations of hydrological fluxes (e.g., runoff generation, infiltration, percolation)
have been substantially improved. Channel characteristics for river routing have also been derived from a
high-resolution drainage direction map. Moreover, human activities such as human water use from agricul-
ture (i.e., livestock and irrigation), industry, households, and reservoir regulation have been parameterized
at a 0.18 grid, using the latest available spatially explicit data of livestock densities, irrigated areas, popula-
tion numbers and the location of reservoirs.

Distinct from many other GHMs, our model considers groundwater representation that is crucial to assess
groundwater resources. To understand groundwater table fluctuations caused by changes in climate and
human water use, lateral groundwater flows and groundwater-surface water interactions such as river infil-
tration should be included in current hydrological modeling efforts, especially at finer resolutions [Wood
et al., 2011]. Although groundwater flows are often slow, they regularly cross topographic and administra-
tive boundaries at applicable rates. These inter-basin groundwater flows increase water availability in water
receiving catchments or aquifers and help to maintain baseflows and shallow groundwater tables during
droughts [de Graaf et al., 2015]. In this study we simulate groundwater heads, lateral groundwater flows and
groundwater-surface water interactions and pioneer with abstractions. The effects of groundwater abstrac-
tions on groundwater heads, base flows, and aquifer’s water budgets are studied. A global scale lateral
groundwater model developed by de Graaf et al. [2015] is coupled to the PCR-GLOBWB model by replacing
the original groundwater store (S3; see Figure 1). The model is based on MODFLOW [Harbaugh et al., 2000]
and describes an upper unconfined aquifer. The aquifer parameterization included geohydrological infor-
mation for the first time (aquifer thickness and transmissivity), however data are sparse and incomplete. To
overcome this lack of data, only global data sets are used, such that the parameterization method can be
expanded to data-poor environments. In this study the model is run at steady state (averaged over 1960–
2010) for pristine and human conditions.

Alternative water resources such as desalinated water use has also been incorporated in our model. The
impact of human-induced change has been dynamically simulated at a daily time step, considering the
feedback among water availability, water extractions, return flow to the river network and soil system, and
evapotranspiration (e.g., from irrigation) [Wada et al., 2014].

Section 2 of this paper presents a brief description of the model and associated model parameterization at
0.18 global grid, and the simulation protocol. Section 3 presents the simulation results. Section 4 evaluates
the model performance by comparing the simulation results to available statistics and satellite information.
Section 5 discusses the advantages and the limitations of the higher-resolution modeling framework and
the associated uncertainties, and provides conclusions from this study.

Figure 1. Schematic diagram of the integrated modeling framework: (a) general PCR-GLOBWB model setup, (b) model structure used to couple the land-surface model PCR-GLOBWB
with the groundwater model MODFLOW: first average annual net recharge and average annual channel discharge is calculated with PCR-GLOBWB. The latter is translated into surface
water levels. Both recharge and surface water levels are used to force MODFLOW, and (c) cross section illustrating the difference between the simulated regional scale groundwater table
and often sampled perched water table.
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2. Models, Data, and Methods

2.1. High-Resolution PCR-GLOBWB Model––Water Balance
Figure 1 shows a schematic diagram of the global hydrological and water resources model PCR-GLOBWB
(version 2.0) that integrates human activities including water use and reservoir regulation into hydrology at
a daily temporal resolution. For the detailed description of the basic hydrologic model structure and associ-
ated calculation, and water use calculation, we refer to Van Beek et al. [2011] and Wada et al. [2014]. Below,
we briefly present the main features of the model, separately for hydrologic and water use calculation, and
the model parameterization at a 0.18 by 0.18 globally over the land excluding the Antarctic (�10km by
�10km at the equator).

PCR-GLOBWB simulates for each grid cell and for each time step (daily) the water storage in two vertically
stacked soil layers and an underlying groundwater layer, as well as the water exchange between the layers
(infiltration, percolation, and capillary rise) and between the top layer and the atmosphere (rainfall, evapo-
transpiration, and snow melt). The model also calculates canopy interception and snow storage. Sub-grid vari-
ability is taken into account by considering separately tall and short vegetation, paddy rice, nonpaddy crops,
rainfed crop, open water (lakes, reservoirs, floodplains and wetlands), different soil types based on the FAO
Digital Soil Map of the World [Food and Agriculture Organization of the United Nations (FAO), 2003], and the
area fraction of saturated soil calculated by Improved ARNO scheme [Todini, 1996; Hagemann and Gates,
2003] as well as the frequency distribution of groundwater depth based on the surface elevations of the
HYDRO1k Elevation Derivative Database (HYDRO1k; U.S. Geological Survey Center for Earth Resources Obser-
vation and Science; https://lta.cr.usgs.gov/HYDRO1K/). Each of the land cover types has different hydrological
fluxes (e.g., runoff, evaporation, transpiration). Particular rock and geological formations like fissures and karsts
are not included in the model. Precipitation is subject to interception, evapotranspiration, and infiltration to
the soil layers. Infiltration rates are determined by soil storage capacity and, the rates of saturated or unsatu-
rated soil hydraulic conductivity. Vapor or thermal conductivity in the soil is not represented in the modeling
framework. The groundwater layer represents the deeper part of the soil that is exempt from any direct influ-
ence of vegetation and constitutes a groundwater reservoir fed by active recharge. The groundwater store is
explicitly parameterized based on lithology and topography. Natural groundwater recharge fed by net precipi-
tation, and additional recharge fluxes from irrigation, i.e., return flow, fed by irrigation water supply and from
industrial and domestic sectors occurs as the net flux from the lowest soil layer to the groundwater layer, i.e.,
deep percolation minus capillary rise. Groundwater recharge interacts with groundwater storage by capillary
rise and baseflow. The model calculates capillary rise if the top of the groundwater level is within 5 m of the
topographical surface (calculated as the height of the groundwater storage over the storage coefficient on
top of the streambed elevation and the sub-grid distribution of elevation). Groundwater storage is fed by
groundwater recharge and drained by a reservoir coefficient that includes information on lithology and
topography (e.g., hydraulic conductivity of the subsoil). The ensuing capillary rise is calculated as the upward
moisture flux that can be sustained when an upward gradient exists and the moisture content of the soil is
below field capacity. Also, it cannot exceed the available storage in the underlying groundwater reservoir. In
this study, an original linear reservoir model [Kraijenhoff van de Leur, 1958] has been replaced by a lateral
groundwater flow model based on MODFLOW [Harbaugh et al., 2000] that was developed by de Graaf et al.
[2015] and Sutanudjaja et al. [2014].

The parameterization of the vegetation relies on the Global Land Cover Characteristics Data Base Version
2.0 (GLCC 2.0; http://edc2.usgs.gov/glcc/globe_int.php/) available at a �0.018 spatial resolution (�1km by
�1km at the equator) and the land surface parameter data set (LSP2) [Hagemann, 2002]. Associated soil
properties are derived from the vector-based FAO Digital Soil Map of the World (DSMW) [FAO, 2003] that is
gridded at a �0.018 spatial resolution, and the WISE data set of global soil properties (ISRIC-WISE) [Batjes,
2005]. These finer spatial resolution data sets have been used to derive the sub-grid variability within each
grid cell. The maximum rooting depth used to obtain root content, the shape parameter b of the improved
Arno scheme, and the fractional vegetation cover and corresponding maximum interception storage
capacity have been derived from the GLCC 2.0 and the LSP2. From the DSMF and the ISRIC-WISE, soil prop-
erties including saturated hydraulic conductivity, saturated and residual (volumetric) water contents, poros-
ity, air entry value, and coefficient b of the soil water retention curve have been derived for each soil class
for two different depths, i.e., from 0 to 30 cm (first soil layer) and from 30 to 150 cm (second soil layer).
These values have been first aggregated at the pedon level, where up to 8 soil classes and their fractional
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cover are specified per pedon at the spatial resolution of 0.18. The two soil layers represent the first and sec-
ond store of the model except in those areas where soil formation is limited by bedrock or impeding layers,
in which the two layers were reduced proportionally. For the third store of infinite capacity, the recession
constant has been estimated on the basis of the lithology and distance to the drainage network derived
from the HYDRO1k, which is also used to determine the slope length (Ls) and slope tan(as).

2.2. High-Resolution PCR-GLOBWB Model––Water Demand and Use
Water demands are calculated for agricultural (livestock and irrigation), industrial and domestic sectors over
the period 1960–2010. The gridded global livestock density for cattle, buffalo, sheep, goats, pigs and poultry
available at a 0.058 spatial resolution (�5km by �5km at the equator) [Food and Agriculture Organization of
the United Nations (FAO), 2007] for the year 2000 have been aggregated to 0.18. We then combine these
with their corresponding daily drinking water requirements [Steinfeld et al., 2006] that are a function of daily
air temperature [Wada et al., 2011a, 2011b]. To consider the historical growth of livestock densities, the
numbers of each livestock type per country (FAOSTAT; http://faostat.fao.org/) have been downscaled to a
grid scale using the distribution of each gridded livestock density of the year 2000. A daily irrigation scheme
has been implemented that separately parameterizes paddy and non-paddy crops and that dynamically
links with hydrological fluxes considering the feedback between the application of irrigation water and the
corresponding changes in surface and soil water balance, and evapotranspiration [Wada et al., 2014]. The
losses (i.e., return flow) during water transport and irrigation application are included in the simulation
based on daily evaporative and percolation losses per unit crop area based on the surface and soil water
balance. Crop-specific calendars, growing season lengths and irrigated areas are obtained from the
MIRCA2000 data set [Portmann et al., 2010] that is available at a �0.18 spatial resolution. The corresponding
crop coefficient per crop development stage and maximum crop rooting depth were additionally obtained
from the Global Crop Water Model [Siebert and D€oll, 2010]. The MIRCA2000 data set accounts for growing
seasons of 26 different crop classes and regional cropping practices under different climatic conditions, but
we have aggregated these to paddy and non-paddy crop classes since distinct flooding irrigation is applied
over most of paddy fields. The crop-specific parameters have been aggregated by weighing the area of
each crop class. Historical growth of irrigated areas is estimated using country-specific statistics of irrigated
areas for �230 countries (FAOSTAT) and by downscaling these to 0.18 using the spatial distribution of the
gridded irrigated areas from the MIRCA2000 data set [Portmann et al., 2010]. This method is unable to repro-
duce changes in the distribution within countries, but it only reflects the large-scale dynamics of the intensi-
fying irrigated areas over the past decades.

For the industrial sector, we calculate country-specific water use intensities on the basis of economic devel-
opment and technological improvement [Wada et al., 2011a]. Economic development is approximated
using four socio-economic variables: Gross Domestic Product (GDP), electricity production, energy con-
sumption, and household consumption. Technological development is then approximated by energy con-
sumption per unit electricity production, which accounts for industrial restructuring or improved water use
efficiency, since an increase in industrial water use slows down after reaching a certain technological
advancement. Reference water demand data for the year 2000 have been obtained from Shiklomanov
[1997], World Resources Institute (WRI) [1998], and V€or€osmarty et al. [2005] and combined with the estimated
water use intensities over the period 1960–2010. Estimated industrial water demand is eventually gridded
to 0.18 using the night-time light intensities that are obtained from the National Oceanic and Atmospheric
Administration (NOAA)’s National Geophysical Data Center (http://www.ngdc.noaa.gov/) available at a
�0.018 spatial resolution. Due to limited available data in order to identify the seasonal trends, daily indus-
trial water demands have been kept constant over the year [Hanasaki et al., 2008a, 2008b; Wada et al.,
2011a, 2011b). Domestic water demand is estimated by multiplying the number of persons in a grid cell
with the country-specific per capita domestic water extraction (FAO AQUASTAT database; http://www.fao.
org/nr/water/aquastat/main/index.stm/). The daily water demand variations are determined using daily air
temperature as a proxy [Wada et al., 2011a]. The country per capita domestic water extraction in 2000 is
multiplied with the estimated water use intensities to account for economic and technological develop-
ment. Gridded global population maps per decade at a 0.18 spatial resolution [Klein Goldewijk and van
Drecht, 2006] have been used to downscale the annual country population data (FAOSTAT) to produce
gridded population maps for each year over 1960–2010.
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2.3. High-Resolution PCR-GLOBWB Model––Routing and Water Allocation
The simulated local direct runoff, interflow, and baseflow are routed along the drainage network based on
channel characteristics at a 0.18 spatial resolution derived from the HydroSHEDS data set (http://hydrosheds.
cr.usgs.gov/index.php/). The drainage network above 60oN has been supplemented using the Simulated Top-
ological Networks [V€or€osmarty et al., 2000] and the topographic data from the HYDRO1k. The routing is based
on the characteristic distances, where volumes of water are transported over a distance [Wada et al., 2014].
Reservoirs are located on the drainage network based on the newly available and extensive Global Reservoir
and Dams Dataset (GRanD) [Lehner et al., 2011] that contains 6,862 reservoirs with a total storage capacity of
6,197 km3. The reservoirs have been placed over the river network based on the years of their construction. If
more than one reservoir fell into the same grid cell, we have aggregated the storage capacities and modeled
a single reservoir. Similar to Hanasaki et al. [2006] and Van Beek et al. [2011], reservoir release is simulated to
satisfy local and downstream water demands that could be reached within �600km (�a week with an aver-
age discharge velocity of 1 m s21) or a next downstream reservoir if present. In case of no water demand, the
reservoir release is simulated as a function of minimum (set to �10% of storage capacity), maximum (set to
�100% of storage capacity), and actual reservoir storage and mean average inflow. Reservoir spills occur
when the reservoir storage exceeds the maximum reservoir storage.

Water demands for livestock, irrigation, industry and households (see section 2.2.) can be met from three water
resources; 1) desalination, 2) groundwater, and/or 3) surface water. Desalinated water use is generally limited to
coastal areas, but provides a stable amount of water supply over water-scarce regions such as the Middle East
and North Africa, where over 70% of the global desalination capacity is installed. We use available country statis-
tics of desalination water withdrawal for the period 1960–2010 from the FAO AQUASTAT database and the WRI
EarthTrends [WRI, 1998, http://www.wri.org/project/earthtrends/] (global total � 15 km3 yr21). We limit desali-
nated water use over a global coastal area of �40km and downscale the country statistics based on the associ-
ated gridded population intensities over the coast. Allocation of surface water and groundwater to satisfy the
remaining water demand (after subtracting desalinated water withdrawal) depends on available surface water
including local and upstream reservoirs and readily extractable groundwater reserves. Since the absolute amount
of available groundwater resources is not known at the global scale, we have used the simulated daily (accumu-
lated) baseflow against the long-term average river discharge as a proxy to infer the readily available amount of
renewable groundwater reserves [Wada et al., 2014]. The remaining water demand is then withdrawn from the
simulated surface water. However, in case reservoirs are present at local or upstream grid cells over the river net-
work, we first allocate surface water rather than groundwater to meet the water demand, and the remaining
water demand is met from available groundwater storage. In case of no outstanding water demand, no ground-
water is abstracted. The unmet water demand is then imposed on (nonrenewable) groundwater (e.g., ground-
water withdrawal in excess of available groundwater storage). The available water is allocated proportionally to
the amount of sectoral water demands. No priority is given to a specific sector, but a competition of water use
among the sectors likely occurs over many water scarce regions, particularly for surface water resources.

After water is withdrawn for the irrigation, industrial and domestic sectors, return flow occurs to the river system.
No return flow to the soil or river system occurs from the livestock sector. For the irrigation sector, return flow
(losses) during water transport and irrigation application are simulated based on daily evaporative and percola-
tion losses based on the surface and soil water balance (see section 2.2.). Irrigation return flow is dominated by
percolation losses to groundwater (>90%), while the return flow to direct runoff is small. After the irrigation
return flow reaches to the groundwater storage, the water is drained to baseflow by a reservoir coefficient (resi-
dence time from days to hundreds’ years; see section 2.1.) that causes delayed response in river discharge. For
the industrial and domestic sectors, return flow occurs on the same day (no retention due to waste water treat-
ment). For the domestic sector, the return flow occurs only from the areas where urban and rural population
have access to water (UNEP; http://www.unep.org/), whereas for the industry sector, the return flow occurs from
all areas where water is withdrawn. For both sectors, the amount of return flow is determined by recycling ratios
developed per country. The country-specific water recycling is calculated according to the method developed
by Wada et al. [2011a, 2011b] who interpolate recycling ratios on the basis of GDP and the level of economic
development, i.e., high income (80%; 20% of water is actually consumed.), middle income (65%; 35% of water is
consumed.), and low income economies (40%; 60% of water is consumed.). A ratio is kept at 80% if a country
reached the high income economy, and the ratio of 40% has been assigned to countries with no GDP data. For
completeness, we note that consumptive water use is equal to water withdrawal minus return flow.
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2.4. High-Resolution PCR-GLOBWB Model––Groundwater Flow Representation
A global-scale lateral groundwater flow model [de Graaf et al., 2015] is coupled to simulated groundwater
heads and lateral flows at the steady state. The linear groundwater store of PCR-GLOBWB (S3 in Figure 1) is
replaced by a one-layer MODFLOW model [Harbaugh et al., 2000]. Aquifer properties are prescribed,
describing an upper unconfined aquifer. The MODFLOW model is forced with recharge and river discharge
outputs from PCR-GLOBWB (Figure 1) averaged over 1960–2010. In case of human water use these inputs
include return flows to groundwater and surface water (i.e., abstracted water that is not consumed).
Groundwater-surface water interactions are incorporated using MODFLOW’s river and drain packages, drain
levels were calculated from river discharges. Three drain levels are distinguished; (1) larger rivers, with a
width greater than 25m, (2) smaller rivers, with a width smaller than 25m, and (3) springs and streams
higher up in the valley (for more details, see de Graaf et al. [2015]). Gross groundwater abstractions were
included in MODFLOW’s well package.

The aquifer parameterization is adopted from de Graaf et al. [2015] that includes geohydrological informa-
tion for the first time. However, data are scarce and incomplete for many regions of the world. Therefore,
the parameterization is fully based on available global data sets on lithology [Hartmann and Moosdorf,
2012] and permeability [Gleeson et al., 2011, 2014] and an estimate of aquifer thickness (Figure 2), such that
the parameterization methods can be expanded to data-poor regions and stay relative simple. Aquifer
thicknesses are estimated using terrain attributes, based on the assumption that productive aquifer coin-
cide with sediment basins below river valleys. The distinction was made between (1) mountain ranges and
(2) sediment basins. The thickest aquifer layers can be found for the world’s major river basins, like Missis-
sippi and Ganges. Corresponding transmissivities (Figure 2).

Figure 2. Estimated aquifer thickness and transmissivities [de Graaf et al., 2015].
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2.5. Model Simulation
To assess the impact of human-induced change (i.e., water use and reservoir regulation) on global water
resources, we perform two separate simulation runs. The first run evaluates global water resources under
natural conditions with climate variability only, thus with no human activities (hereafter, pristine), while the
second run evaluates global water resources under climate variability and with human activities (hereafter,
humans). We thus analyze the transient effect of human water use and reservoir regulation by comparing
the pristine and the humans’ simulation runs over the period 1960–2010.

The model is forced with daily fields of precipitation, reference (potential) evapotranspiration and tempera-
ture. For the period 1960–1978, precipitation and temperature were prescribed by the ERA40 reanalysis
data [Uppala et al., 2005]. Over the same time period, prescribed reference evapotranspiration is calculated
based on the Penman-Monteith equation according to the FAO guidelines [Allen et al., 1998] with relevant
climate fields (e.g., cloud cover, vapor pressure, wind speed) retrieved from the ERA40 reanalysis data. To
extend our historical analysis to the year 2010, we force the model by comparable daily climate fields taken
from the ERA-Interim reanalysis data [Dee et al., 2011]. From the ERA-Interim data set, we obtain daily fields
of temperature and GPCP-corrected precipitation (GPCP: Global Precipitation Climatology Project; http://
www.gewex.org/gpcp.html/), and calculate reference evapotranspiration by the same method retrieving rel-
evant climate fields. For compatibility with our overall analysis, the ERA40 reanalysis data are bias-corrected
on a grid-by-grid basis by scaling the long-term monthly means of the daily climate fields (precipitation,
evapotranspiration and temperature) to those of the ERA-Interim re-analysis data for the overlapping refer-
ence climate 1979–2001. We then further bias-correct the modified climate data set by scaling the long-
term monthly means of the daily climate fields to those from the CRU TS 2.1 data set [Mitchell and Jones,
2005], wherever station coverage by the CRU is adequate for the overlapping period. Otherwise the original
(modified) climate data are returned by default. For the ERA40 reanalysis data, we bias-correct separately
for the 1960s and 1970s to correct the overestimation of precipitation present over the tropics during the
1970s [Uppala et al., 2005]. The resulting bias-corrected transient daily climate fields are used to force the
model over the period 1960–2010. In order to represent the fine transition over 0.18 grid elevation depend-
ent gradients of temperature, 10 elevation zones have been imposed on each grid cell based on the
HYDRO1k, and scaled to the 0.58 grid temperate fields with a lapse rate of 0.658C per 100m.

To test the model performance, simulated groundwater heads are compared to a compilation of reported
data worldwide [Fan et al., 2013]. If more than one observation was available within a 0.18 grid cell, the aver-
age of that cell has been used, resulting in 65,303 cells with observations. Groundwater heads are evaluated
instead of depths as heads measure the potential energy driving flow and are therefore physically more
meaningful. The coefficient of determination (R2) and regression coefficient (a) are calculated for the two
runs (pristine and humans).

[24] Baseflow magnitudes and patterns change due to abstraction and return flows compared to the pris-
tine run. A simple method to analyze the change in base flow magnitude is to calculate the ratio between
base flow and groundwater recharge; Qbase: R. In this study this is done for aquifers of the world (from
WHYMAP; http://www.whymap.org/). For the natural situation if Qbase equals R the ratio is 1, all water
going in is going out over the same area. If more water is drained than recharged (Qbase: R< 1), water is
imported from neighboring areas outside the aquifer. If less water is drained than recharged (Qbase: R> 1)
water is exported to neighboring areas. When abstractions are included, groundwater is consumed from
the groundwater store, groundwater levels drop and baseflow magnitudes decline. Less water is drained
and flow path patterns change. Additional return flows reduce this effect, however the effects can still be
devastating especially during droughts. The degree of deviation from 1 depends on several factors; larger
deviations are found for smaller aquifers, regions with little recharge, and aquifers with thick, more permea-
ble, dipping layers [Schaller and Fan, 2008].

3. Results

3.1. High-Resolution Global Water Use Estimates
3.1.1. Sectoral Water Use
Figures 3–6 show estimated sectoral water use at 0.18 globally over land excluding the Antarctic (�10km by
�10km at the equator). To our knowledge, this is the first time that water use for all sectors is estimated
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globally at this spatial resolution. Compared to previously estimated water use at a 0.58 by 0.58 spatial scale
(�50km by �50km at the equator) [e.g., Wada et al., 2014], detailed regional variations are clearly
delineated at a 0.18 spatial scale. Higher spatial resolution also allows clearer distinction in land use pattern
for agriculture (Figures 3 and 4). Due to much higher water use intensity, urban areas (e.g., New York, Paris,
and Moscow) are noticeable at this scale (Figures 5 and 6). Figure 7 shows a time series estimate of global
water use per sector. Over the period 1960–2010, livestock water use (consumption only) doubled from 10
to 20 km3 yr21. Globally cattle accounts for 70% of the total. Buffaloes and sheep account for 10%, while
goats, pigs and poultry share less than 5% of the total. Irrigation is a dominant water use sector (80%) and
irrigation water use (withdrawal/consumption) has globally increased from 1300/650 to 2800/1400 km3

yr21 over the 50 years, respectively. Industrial and domestic water use (withdrawal/consumption) is growing
rapidly (>300%) over the 50 years. Global total has increased from 350/120 to 950/300 km3 yr21 and from
90/60 to 450/200 km3 yr21 over the period, respectively. As a result, global total water use (withdrawal/
consumption) has more than doubled (>250%) and exceeding 4000/1900 km3 yr21 for the year 2010,
respectively. Water use is increasing particularly in India, Pakistan, China, West and Central United States,
Mexico, South Europe, the Middle East and Central Asia (>50–100% over 1960–2010). More than 90% of the
global irrigated areas are present in India, Pakistan, China, United States, Mexico, southern Europe, North
Iran, and Nile delta. Increasing irrigation water use heightens our dependency on groundwater resources.
Over the period 1960–2010, groundwater abstraction shows a consistent increase and nearly tripled from
350 km3 yr21 to 1000 km3 yr21. For many developed countries (e.g., United States, Canada, Germany,
France, Japan), rising water use is primarily driven by moderate but steady population growth and higher
industrial activities (higher electricity and energy use).

Figure 3. Livestock water use for the year 2010 at a 6 min spatial resolution. Global total equals 20 km3 yr21.
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3.2. Human Impacts on Catchment Total Water Storage
Figure 8 compares for the period 2003–2010 the simulated monthly terrestrial water storage (TWS) anoma-
lies with those from the GRACE observations [Landerer and Swenson, 2012] for a number of major river
basins influenced at different extents by human activities. Simulated TWS has been derived from the sum
of simulated snow, surface water, soil water, and groundwater storage. The TWS anomalies have been calcu-
lated over the overlapping period of 2003–2010 with the GRACE observation.

The comparison shows over all good agreement for the selected basins with the GRACE observations. In
most basins, seasonal and inter-annual TWS signals have been altered by human activities. Human impacts
on simulated TWS signals are particularly large over the Colorado, the Columbia, and the Indus basin, where
the seasonal TWS amplitude slightly decreased, which is due to a combined effect of human water use and
reservoir regulation. The peak TWS signals are reduced due to water extractions from surface water and
groundwater storage, however, more water is released from reservoirs during the low flow period for water
supply downstream. Including human activities in simulated TWS improves the correction (R2) between the
simulated and observed TWS from 0.77 to 0.82 (p-value< 0.0001) for the Columbia, but not for the Colorado
and for the Indus where R2 remains similar (�0.67, p value< 0.001, �0.52, p-value< 0.001, respectively).
Over the Mississippi basin, dominant irrigation water use from groundwater and surface water decreases
the peak TWS signals during the crop growing season. The correlation (R2) improves from 0.76 to 0.80 (p
value< 0.0001) for the Mississippi basin. For the Murray and the Parana basin, TWS is not well reproduced
by our model simulation and the correlations are low (R2< 0.5). The error in climate forcing likely has a large
impact on the poor performance, since the correlation is very high (R2> 0.9) before 2008 for the Murray.

Figure 4. Irrigation water use for the year 2010 at a 6 min spatial resolution. Global total equals 2800 km3 yr21.
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The impact of human activities is limited over these basins. For the Sao Francisco, the seasonal amplitude of
TWS becomes larger when including human activities, primarily due to reservoir operations; however, the
correlation becomes lower from 0.88 to 0.85. Our generic reservoir operation algorithm does not reproduce
well regional reservoir management. Over the Rio Grande and the Rhine basin, human impacts are limited
over simulated TWS and do not substantially change the correlation (R2>�0.75, p value< 0.0001). Over
the Ganges basin, similar to the Sao Francisco, human water use increases the seasonal amplitude of TWS
change due to the fact that the low flow periods coincide with the growing season of irrigated crops
(spring) which require large amounts of water. This improves R2 from 0.85 to 0.90 (p value< 0.001) for the
Ganges basin. Overall, model performance in TWS is adequate for most of the basins.

3.3. Multiscale Estimates of Regional Water Scarcity
In order to characterize the effect of spatial scales, water scarcity is estimated at three different spatial scales.
Water scarcity is estimated with the ratio of water demand (Figures 3–6) to water availability (Figures 9 and 10;
see also the river discharge validation in Tables 1 and 2): the so-called Water Stress Index [Wada et al., 2011a,
2011b]. The latter corresponds to the amount of water in rivers, lakes, reservoirs, and wetlands. Figure 11 shows
estimated water stress calculated at a 0.18 grid. Fine regional variability in the magnitude of water stress is
clearly delineated at this scale (�100km2 at the equator), however, this approach underestimates total water
availability in regions with extensive water supply network including large urban areas (e.g., Los Angeles, New
York, London, Paris, and Moscow). Conventionally, water stress is calculated at a grid scale and a 0.58 grid
(�2500 km2 at the equator) is reasonably large enough to contain water supply network in those major cities.
In Figure 12, water stress is estimated at the scale of subbain (so-called hydrobasin) in order to obtain more

Figure 5. Industrial water use for the year 2010 at a 6 min spatial resolution. Global total equals 950 km3 yr21.
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accurate amount of water available to a region. This generally lowers the magnitude of water stress in many
regions including urban areas. However, water stress remains high for irrigated areas with large water demand
and limited surface water availability. Due to an aggregation of grid cells, this approach overestimates water
stress for many local areas, i.e., part of large hydrobasins (e.g., the Indus, Saudi Arabia, Iran, Western China, and

Figure 6. Domestic water use for the year 2010 at a 6 min spatial resolution. Global total equals 450 km3 yr21.

Figure 7. Global sectoral water use and groundwater abstraction over the period 1900–2010. The model simulation was done from 1960
onward, but earlier results were obtained from Wada et al. [2012b].
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Central Asia). Water stress is then calculated at the scale of small administrative unit (i.e., county) where regional
water supply network is generally managed (Figure 13). The result shows distinct pattern of water stress and
the magnitude of water stress generally becomes much lower for many regions. It should be noted that in
many regions single water supply network is managed not as extensive as county-scale so water availability is
likely overestimated at this scale.

Figure 8. Comparison of simulated TWS under the pristine condition (pristine; blue) and under human influences (humans; red) to
observed TWS derived from GRACE observation data (black). TWS anomaly is calculated over the period 2003–2010 (unit: meter).
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3.4. Human Impacts on Groundwater Resources
3.4.1. Groundwater Depths and Evaluation
Figure 14 shows the steady-state simulated groundwater table depths (meters below the land-surface)
under the natural conditions. General patterns in water table depths can be identified. Throughout the
entire coastal ribbon shallow groundwater tables occur (as the sea level acts as a constant head boundary
condition) and these areas expand where flat coastal plains meet the sea, e.g., for the Mississippi, Indus, and
Ganges. At the regional scale, recharge is the main control together with regional scale topography. Regions
with high recharge rates have shallow groundwater tables, e.g., the tropical swaps of the Amazon. The influ-
ence of the regional scale topography is evident, e.g., for the central Amazon and the flat lowlands of South
America, as these regions receive water from elevated areas. Regions with low recharge rates show deep
groundwater tables where groundwater gets disconnected from the local drainage. The deserts stand out.
Also, deep groundwater tables are simulated for the mountain ranges. For these regions the deeper
regional scale groundwater table is simulated (illustrated in Figure 14), and local valleys in the mountain
ranges with local shallow groundwater tables are likely underestimated due to the grid resolution. The
mountain regions where perched water tables are likely to occur are masked with a transparent layer in Fig-
ure 14.
3.4.2. Groundwater Base Flow Change
The ratio of groundwater base flow to recharge is calculated for the regional scale aquifers of the world for the
pristine and human scenarios. The histogram of Figure 15 gives the global distribution, the maps show the spa-
tial distribution of the ratio for North-America. When the ratio is 1, all water going in also goes out within the

Figure 9. Simulated average total river discharge in the Northern Hemisphere for the period 1960–2010.
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same aquifer. The largest deviations can be found for regions with little recharge. Due to abstractions, less
groundwater will leave the aquifer as discharge and ratios get smaller. This is seen in the histogram, and also
for example over the High Plain aquifer that shows very low ratios when abstractions are included. This shift
shows the effects of groundwater abstractions can be huge, especially for intensively pumped aquifers with
abstractions exceeding recharge by many times. For these areas base flow magnitudes to rivers decrease, and
maintenance of base flows during droughts is mostly likely not secured and critical river flows needed to main-
tain valuable ecosystems are not adequately sustained. The terms importing and exporting refer to the
pristine-run, where groundwater is imported from upstream catchments when more water is drained than
recharged and exported to downstream aquifers when less water is drained than recharged. However, in the
human-run extra water is leaving the aquifer by abstractions and not via more inter-basin groundwater flow at
the aquifer scale. The bottom figure shows aquifers that shifted from importing groundwater to ‘‘exporting’’
groundwater. This shows groundwater pathways and lengths are changed due to abstractions from higher ele-
vated aquifers. No aquifers exist with a shift from exporting to importing groundwater worldwide.

3.5. Groundwater Depletion
Since the effect of groundwater pumping is most obvious at local scales and the impact of overexploitation
is highly localized, groundwater depletion is estimated at a 0.18 grid scale (Figure 16). Groundwater deple-
tion (the year 2010) is calculated from the difference between groundwater abstraction (the year 2010) (Fig-
ure 17) and groundwater recharge (average 1960–2010) (Figure 18). Here groundwater recharge includes
natural groundwater recharge from precipitation (16,500 km3 yr21) return flow from irrigation (1200 km3

Figure 10. Simulated average total river discharge in the Eurasia and the Southern Hemisphere for the period 1960–2010.
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yr21) and return flow from the industrial and domestic sectors (300 km3 yr21). In addition, original ground-
water depletion estimates have been corrected by using a multiplicative correction factor per climate zone
based on aridity (hyper-arid to humid) in order to compensate for increased capture of discharge and
enhance recharge due to pumping that may be significant over semi-arid to sub-humid climate zones. The
correction factors have been derived from a comparison between original depletion estimates to independ-
ent regional estimates of groundwater depletion based on Wada et al. [2012b]. After the correction, global
groundwater depletion estimates become 120 km3 yr21 (originally from 200 km3 yr21). Groundwater deple-
tion is substantial over India, Northeast China, United States, Pakistan, South Europe, South Mexico, North
Iran and Central Saudi Arabia, where irrigation contributes more than 90% to the depletion. Summing
groundwater depletion over these regions amounts to 90% of the global total. Note that we did not use the
groundwater model yet to estimate groundwater depletion. This is mainly because vertical structure of the
aquifers that holds crucial information about accessibility of the groundwater is missing in the used aquifer
parameterization.

4. Validation

4.1. Accuracy of High-Resolution Simulation Results
In order to evaluate the effect of human impacts on surface water and groundwater resources, we compare
simulation results to available observations and statistics. We focus on validating simulated river discharges,
groundwater heads, and sectoral water use. Observed river discharges are available per gauging stations
from the Global Runoff Data Centre; http://www.bafg.de/GRDC/). In earlier work, our modeling approaches
at a 0.58 spatial resolution were extensively validated and showed good agreement with observations for
most regions of the world: simulated runoff and river discharge (average, minimum and maximum) against
GRDC observations [Van Beek et al., 2011], simulated actual evapotranspiration against the ERA-40 reanalysis
data [Van Beek et al., 2011], simulated total terrestrial water storage (TWS) against the GRACE satellite

Table 1. Comparison of Simulated to Observed River Discharge Under the Natural Conditions (N) and Under Human-Induced Change
(Water Use and Reservoir Regulation) (H) for Major Basins of the Worlda

River Basin

Monthly Statistics Annual Statistics

R2 a NSC R2 a NSC

N H N H N H N H N H N H

Amazon 0.98 0.98 1.06 1.06 0.57 0.58 1.00 1.00 1.02 1.02 0.29 0.29
Orinoco 0.97 0.98 0.96 1.01 0.66 0.77 0.99 0.99 1.01 1.01 0.67 0.77
Parana 0.88 0.94 0.74 0.77 22.05 20.54 0.99 0.98 0.78 0.89 0.08 0.10
Congo 0.94 0.98 0.82 0.84 21.44 21.12 1.00 1.00 0.87 0.87 20.62 20.64
Nile 0.79 0.79 0.26 0.32 <210 <210 0.98 0.99 0.29 0.37 <210 <210
Blue Nile 0.75 0.77 0.66 0.71 0.02 0.04 0.97 0.98 0.73 0.71 22.80 22.30
White Nile 0.9 0.92 0.35 0.40 28.8 28.6 0.98 0.99 0.48 0.49 27.5 27.2
Niger 0.63 0.6 0.49 0.50 29.06 28.7 1.00 0.99 0.54 0.53 28.2 28.0
Orange 0.66 0.8 0.58 0.66 0.2 0.32 0.81 0.86 0.65 0.77 24.37 24.19
Zambezi 0.73 0.82 0.53 0.54 21.26 21.2 0.99 0.97 0.67 0.66 20.54 20.53
Murray 0.7 0.86 0.59 0.62 0.19 0.27 0.88 0.96 0.66 0.75 23.89 22.86
Mekong 0.94 0.98 1.13 1.08 0.7 0.74 0.99 1.00 1.08 1.06 0.43 0.52
Brahmaputra 0.8 0.85 1.19 1.20 0.67 0.68 1.00 0.99 1.12 1.11 0.40 0.42
Ganges 0.86 0.89 1.08 1.04 0.73 0.76 1.00 1.00 1.09 1.04 0.71 0.90
Indus 0.75 0.76 0.88 0.96 0.19 0.4 0.97 0.99 0.90 0.97 20.88 0.13
Yangtze 0.93 0.96 1.17 1.11 0.64 0.66 0.99 1.00 1.11 1.06 0.72 0.82
Huang He 0.79 0.73 0.87 0.78 0.28 0.56 0.95 0.97 0.92 0.85 20.53 21.94
Mississippi 0.86 0.93 0.93 1.07 0.61 0.65 0.99 1.00 0.99 1.01 0.82 0.90
Columbia 0.96 0.98 0.93 1.04 0.47 0.52 0.98 1.00 0.98 1.02 0.30 0.55
Mckenzie 0.72 0.74 1.33 1.29 0.35 0.38 0.98 0.98 1.11 1.13 0.18 0.22
Lena 0.8 0.8 1.19 1.19 0.62 0.56 1.00 1.00 1.01 1.01 0.80 0.85
Volga 0.76 0.8 0.95 1.04 0.66 0.68 1.00 1.00 0.93 1.04 0.69 0.75
Dnieper 0.82 0.84 0.80 0.87 0.2 0.25 0.99 1.00 0.87 0.94 20.93 21.26
Danube 0.97 0.98 0.84 0.92 0.56 0.65 0.98 0.99 0.89 0.97 0.40 0.46
Rhine 0.95 0.98 0.95 0.97 0.78 0.82 0.99 1.00 1.02 1.03 0.90 0.92
Elbe 0.88 0.92 0.73 0.77 20.68 20.24 0.98 1.00 0.80 0.88 20.21 20.02

aThe observed river discharge has been taken from the selected GRDC stations closest to outlets based on available records (1960–
2010) for each basin. R2, a, and NSC denote the coefficient of determination, the slope (x-coordinate: simulated discharge; y-coordinate:
observed discharge), and the Nash-Sutcliffe model efficiency coefficient.
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observations [Wada et al., 2012a, 2014], simulated low-flow or drought characteristics against GRDC obser-
vations [Wada et al., 2013], estimated sectoral water withdrawal and consumption for livestock, irrigation,
industry and households against the FAO AQUASTAT database and Shiklomanov [2000a, 2000b] [Wada
et al., 2011a], simulated water use per sector per source (surface water and groundwater) against the FAO
AQUASTAT database, the Eurostat database (http://epp.eurostat.ec.europa.eu/), the U. S. Geological Survey
(http://water.usgs.gov/watuse/) and other national and sub-national statistics including India, China and
Mexico [Wada and Heinrich, 2013; Wada et al., 2014], and simulated water scarcity against country drought
statistics and historical observation [Wada et al., 2011a, 2011b]. Water use statistics are typically available at
a scale of country or state/province, and improvement in spatial resolution of simulated results can hardly
be validated at the corresponding spatial resolution of our high-resolution modeling framework (�0.18).

4.2. Comparison of Simulated to Observed Maximum, Average, and Minimum Discharges
In order to estimate accurate seasonal water availability per region, it is vital to have a correct estimate of
the flow duration curve, i.e., minimum and maximum flow. When peak flow is poorly reproduced, there is
likely a considerable mismatch in simulating low flow events. In Tables 1 and 2, we evaluate simulated
annual and monthly streamflow against available GRDC stations. We consider simulated streamflow both
under pristine conditions and under human influences, and compare average, minimum (low), and maxi-
mum (peak) streamflow derived from observed and simulated monthly streamflow. For the comparisons,
we have selected major basins of the world that cover a wide range of climate and human impacts includ-
ing reservoir regulation. Our simulated streamflow is generally comparable to observed streamflow for
most of the basins, where R2 is over 0.9 except for the Elbe and Zambezi, and NSC (Nash-Sutcliffe model

Figure 11. Water Stress Index for 2010 calculated at a 6 min spatial resolution.
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efficiency coefficient) is over 0.6 except for the Elbe, Congo, and Zambezi. The effect of water consumption
is clearly observable for the rivers crossing major irrigated areas of the world with the number of existing
reservoirs including the Nile, the Orange, the Murray, the Mekong, the Ganges, the Indus, the Yangtze, the
Huang He, the Mississippi, the Columbia, and the Volga. For the other river basins, the impact of water con-
sumption is less obvious, but still noticeable such as for the Orinoco, the Parana, the Brahmaputra, the Dan-
ube, the Rhine, the Dnieper, and the Elbe. For the Amazon, the Congo, the Niger, the Zambezi, the
Mckenzie, and the Lena, the river discharge is hardly affected because of lower water consumption. For
those river basins where water consumption is large including the Orinoco, Parana, Mississippi, Rhine, Dan-
ube, Mekong, and Yangtze, the overall model performance (R2: the coefficient-of-determination, a: slope or
regression coefficient, NSC: the Nash-Sutcliffe model efficiency coefficient) improves when considering
water consumption, except for the Ganges and the Huang He where our general model performance is low.
This improvement is particularly evident for simulated minimum streamflow and for river basins where the
low flow periods coincide with the large seasonal water demands, e.g., the growing season of irrigated
crops (e.g., Orange, Murray, Brahmaputra, Indus, and Huang He). For the Elbe, Congo, and Zambezi, water
consumption has little influence on simulated discharges. When including all available GRDC stations with
long streamflow records (Table 3), the comparison of observed and simulated streamflow also shows
improved performance when including water consumption, but the maximum (peak) streamflow is hardly
affected. Overall, the correlation between the simulated and the observed river discharge is high for most
of the river basins, while the Nash-Sutcliffe model efficiency coefficient is high for some river basins but low

Figure 12. Water Stress Index for 2010 calculated over hydrobasins or subbasins. The subbasin data set was obtained from the FAO AQUASTAT database (http://www.fao.org/nr/water/
aquastat/main/index.stm/) that used the HydroSHEDS to derive the subbasins.
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Figure 14. Simulated groundwater depths for the natural steady state.

Figure 13. Water Stress Index for 2010 calculated over county-scale administrative units. Note county-scale information is not available in some countries.
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for several basins including the Nile, the Niger, and the Orange where the number of observational records
are limited.

4.3. Comparison of Simulated to Observed Groundwater Heads
Simulated groundwater heads of both runs (pristine and human) have been evaluated against measured
data [Fan et al., 2013]. The average of the reported data has been used if more than one observation is avail-
able within a grid cell (0.18), giving a total of 65,303 cells with observations worldwide (of the total
6,480,000 cells). For most regions of the world no observational data are available or are incomplete. While
interpreting the results, note that observations are biased toward river valleys, coastal ribbons, and areas
with productive aquifers. Also, observations are taken at a certain moment in time, and thus are susceptible
to seasonal effects and drawdown as a result of abstraction, while simulated results are steady-state.
Besides, it is likely that for mountain ranges perched water tables are sampled instead of the deeper
regional scale. As stated before, the regional scale groundwater table is simulated as the result of grid reso-
lution. The scatter plot of Figure 19 shows observed heads against simulated heads for the pristine run. Sta-
tistics of both runs, R2 (coefficient of determination) and a (regression coefficient) are given. The scatter
shows that model performance is good. However, is shows a strong underestimation, meaning that simu-
lated groundwater heads are too deep. This underestimation occurs for higher elevated areas, where shal-
low local water tables are sampled but the deeper regional scale groundwater table is simulated [de Graaf
et al., 2015]. Therefore, we evaluated R2 and a for mountain ranges and sediment basins separately. The

Figure 15. (left) Groundwater discharge – recharge ratio, zoomed for North America, and shifts in importer to exporter. (right) Histogram of the ratio, globally. Exporting and importing
refers to the pristine situation, where if less water is drained than recharged water is exported from the aquifer via lateral flows, if more water is drained than recharged water is imported
via lateral flows. For the ‘‘human-run’’ this terminology is somewhat misleading, as the ratio becomes mainly smaller due to the abstractions and not by more exported groundwater. Still,
the smaller fraction illustrates a decline in groundwater flow to the local drainage within the aquifer. The bottom figure shows the shift from importers to ‘‘exporters.’’
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light-blue values give the result when all observations are included, in dark-blue are the result if only obser-
vations in sediment basins are included. The statistics for both runs (Figure 19) show that the model per-
formance is best for sediment basins. The pristine run is slightly better than the human run. This is mainly
due to regional scale groundwater heads in aquifers at higher elevations that decline and increase the bias
between observed and simulated heads.

The global map of simulated groundwater heads shows regions with shallow groundwater depths including
the major river basins and wetlands of the world. For these regions it is important to include lateral flows
and define aquifers, as although groundwater flows are often slow they can be significant and often cross
catchment or aquifer boundaries. The simulated groundwater heads show good agreement with observed
data (R2 5 0.9, a5 0.76). The groundwater discharge-recharge ratio shows the decline in groundwater base
flow due to abstractions, highest for highly abstracted aquifers like the High Plains. Also, water budgets that
are supported by inter-basin groundwater flows are no longer supported when abstractions are included.
These results emphasize the need of including lateral flows and groundwater-surface water interactions in
the current hydrological modeling efforts. Obviously the groundwater model used in this paper still has lim-
itations and must be considered as a first-order attempt toward global groundwater modeling. Also, the
inclusion of abstractions is in its pioneering status. The greatest limitation is that the current groundwater
model runs at steady-state and only an upper unconfined aquifer is parameterized. It does not say anything
about temporal changes in groundwater heads and information on vertical structure of the aquifers should
be included as this holds vital information on the accessibility and quality of the global groundwater
resource. Therefore, the results of the groundwater model have not yet been used to estimate groundwater

Figure 16. Groundwater depletion for the year 2010 at a 6 min spatial resolution. Global total equals 120 km3 yr21.
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depletion. Vertical aquifer structure, head fluctuations and estimating groundwater depletion will be
addressed in future work. It is expected that inclusion of lateral flows in depletion simulations would
improve depletion estimates and fit reported groundwater heads better.

4.4. Comparison of Estimated Water Use to Reported Statistics
Our methodology to reconstruct past water use follows the approach of Wada et al. [2011a, 2011b, 2014]. In
earlier work [Wada et al., 2011a, 2011b, 2014], the methods and outputs used in this study have been exten-
sively validated using available country water use statistics (FAO AQUASTAT) and estimates [Shiklomanov,
2000a, 2000b] for about 200 countries. Here we compare per country the estimated agricultural water with-
drawal with the reported value taken from the FAO AQUASTAT database. Good agreements have been
obtained from 1970 to 2000 for most countries including major agricultural water users such as India, China,
United States, Pakistan and Mexico. But deviations are relatively large for Iraq, Finland, Austria, Central Afri-
can Republic and Trinidad and Tobago. The reported values of the FAO AQUASTAT database are not avail-
able before 1970. Overall, R2 and a range from 0.95 to 0.99 and from 0.88 to 1.10 respectively. Errors in
prescribed irrigated areas, irrigation efficiency, and imprecise calendars of multiple cropping systems may
have large influences on the discrepancy of the results. Irrigated areas and irrigation efficiency tend to be
the two largest sources of the uncertainty simulating irrigation water use [D€oll and Siebert, 2002; Wisser
et al., 2008]. Nevertheless, the deviations of estimated results are rather small for most countries and our
model is generally capable of simulating regional variability of irrigation water use across the globe. Com-
parisons of estimated industrial water withdrawal per country with the reported values also show good cor-
relations. R2 is over 0.98 except for 1995 and a ranges from 0.82 to 0.99. Deviations are large for Argentina,

Figure 17. Groundwater abstraction for the year 2010 at a 6 min spatial resolution. Global total equals 1000 km3 yr21.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000618

WADA ET AL. HIGH-RESOLUTION MODELING OF GLOBAL WATER 23



Ethiopia, Greece, Indonesia, Lebanon, Nicaragua, Panama, Puerto Rico and Turkmenistan where we gener-
ally overestimate the demand. Nevertheless, overall we have good agreements for most countries including
major industrial water users such as United States, China, Germany, Canada and India. Comparison with the
reported value per country also shows good agreement from 1970 to 2000 with R2 being over 0.96. a ranges
from 0.92 to 1.14. Although the correlations are high for most countries, deviations are relatively large for
several countries, e.g., Iraq, Lithuania, Puerto Rico, Mali, Djibouti and Bhutan. Comparison of estimated gross
total water demand with reported total water withdrawal per country shows good agreement, with R2

Figure 18. Long-term groundwater recharge including irrigation return flow over the period 1960–2010 at a 6min spatial resolution. Global total equals 18,000 km3 yr21.

Table 3. Comparison of Observed and Simulated Streamflow Under the Natural Conditions (N) and Under Human-Induced Change
(Water Use and Reservoir Regulation) (H) for All Available GRDC Stationsa

Monthly Discharge Q (m3 s21)

Long-Term Statistics (N52352) Simulation Period 1960–2010 (N52023)

a R2 a R2

N H N H N H N H

Average 0.90 0.92 0.92 0.95 0.92 0.96 0.93 0.96
Minimum 0.82 0.91 0.91 0.96 0.85 0.92 0.90 0.97
Maximum 0.89 0.91 0.82 0.85 0.94 0.95 0.82 0.88

aEvaluated are all long-term statistics from the GRDC inventory and those for stations with matching data (>10 years) over the simu-
lation period 1960–2010. a (slope; x coordinate: simulated streamflow; y coordinate: observed streamflow) and R2 (the coefficient of
determination) have been calculated from comparison between monthly observed and simulated streamflow with the intercept forced
through the origin.
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ranging from 0.97 to 0.99. The deviations observed in the sectoral comparisons become less apparent when
summed over all of the sectoral demands. For Greece and Iraq (150%), and Mali and Turkmenistan (240%),
the deviations remain large. Additional comparisons of estimated total water withdrawal and water con-
sumption to those from Shiklomanov [2000a, 2000b] also show good agreements for most of the countries,
with R2 ranging from 0.94 to 0.98 and a ranging from 0.95 to 1.12.

5. Discussion and Conclusions

5.1. Limitations and Opportunities in Modeling Framework
Our high-resolution modeling framework has several major limitations. The model does not include any arti-
ficial water diversions such as aqueducts and inter-basin water transfer. Increasing water supply through
water diversions tends to be a common response in water scarce regions with intense water use. Such
diversions can supply additional water availability in some regions where extensive diversion works are
present (e.g., India, United States, and China). In this study, human water consumption is subtracted from
simulated streamflow that is routed through natural drainage networks only. This means that in some
regions where extensive diversion works are present (the U.S., India and China) the reduction of streamflow
due to water consumption is likely overestimated. Moreover, the results largely rely on the accuracy of esti-
mated water use. The methods we used to estimate sectoral consumptive water in this study were tested,
and the corresponding results were validated against available statistics and estimates in an earlier study
[Wada et al., 2014]. However, validation of simulated consumptive water use (per sector) remains difficult
due to a lack of reliable information in many regions of the world.

Our high-resolution modeling framework enables more precise depiction of regional variability in water
availability and use globally. This gives an opportunity to connect global assessments to regional and local
scale issues. In this study, regional water scarcity was assessed at three different spatial scales. The grid scale
approach underestimates water availability due to disconnection of water supply network, particularly in
large urban areas (e.g, Paris, New York, Los Angeles, and Moscow), resulting in an overestimation of water
scarcity. Subbasin- and county-scale approaches provide more accurate information of water availability per
region, however, aggregation of grid cells ignores local variability in water use and stress. In addition, a
county may not be a suitable unit for a water supply systems for some regions due to an extensive area.
Further information on local water supply system needs to be integrated into high-resolution modeling
framework in order to obtain more accurate estimate of water availability per region. Such information can
be linked with river discharge and reservoir data in order to depict the overall human regulation in water
supply system.

The improvement of high-performance computing enables running of a global simulation at a finer spatial
scale than before. However, the model simulation can be constrained by data availability at fine spatial
scales. For hydrologic simulation, several key inputs include climate forcings, soil properties, land use,

Figure 19. Scatter plot of observed heads against simulated heads for the pristine run; in dark blue sediments basins, in light blue mountain
ranges. Table presents statistics of both runs. Observed heads are based on a compilation of reported piezometer data [Fan et al., 2013].
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vegetation, elevation, and drainage network. Our modeling framework includes the vegetation, land surface
parameters, and soil property data given originally at a �0.018 spatial resolution. The drainage network and
elevation data are also given at a �0.018 spatial resolution or finer. However, the climate forcings remain at
the coarse resolution of �0.58. In our model simulation, climate forcings have been downscaled to a 0.18

spatial resolution in order to represent finer vertical elevation transitions using lapse rates. This would, how-
ever, still yield large uncertainty in particular for precipitation of large spatial variability. This downscaling
method is not able to resolve well local precipitation extremes. Finer climate forcings would substantially
improve hydrologic model simulation at fine spatial scale (<0.18).

To assess overexploitation of surface freshwater and groundwater resources, a state-of-the-art high-resolu-
tion global modeling framework has been developed. Our analysis of water availability, use and scarcity
was carried out at policy relevant scales, that is at spatial and temporal scales that can indicate which parts
of a region might be most vulnerable to change or in need of institutional attention. Our assessment builds
upon previous modeling efforts and contributes to improve current knowledge that quantifies and distin-
guishes the impacts of human activities and climate variability on surface water and groundwater resources
at the global scale. Despite the limitations, this modeling framework advances an important step beyond
earlier work by attempting to account more accurately for regional variability in water availability and use.
Demographic, socio-economic, technological, and land use change were reflected in growing human water
use over time. Substantial regional variations were observed for the human and climate impacts on surface
freshwater and groundwater resources, with humans having by far the largest impact on the terrestrial
water system in various regions (e.g., India, Pakistan, China, United States, and the Middle East). In future
work, this modeling framework can be further refined to approach more realistically various regional water
issues (e.g., drought, flood, and sustainable water management), combining regional and local water data
into a high-resolution global modeling framework.
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