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Abstract 9 

With 7.5% total nutritional value, pork is a staple food for many members of the Austrian population. Among 10 

members of the general public, little is known about the environmental impacts “from farm to fork” in the 11 

production of pork. This paper identifies three main impact categories for the environmental profile of Austrian 12 

pork using the Life Cycle Assessment (LCA) method.  In a transparent and comprehensive manner, this LCA 13 

studied environmental impacts occurring throughout the production chain of pork, also including the transport 14 

and consumption stages. The results are expressed in terms of the global warming potential (GWP), soil 15 

acidification and eutrophication, specifically in CO2-equivalents, SO2-equivalents and NO3-equivalents 16 

normalized to one kg of fresh Austrian pork (carcass weight) as the functional unit. The main results of the study 17 

indicated that the environmental burden is primarily related to the farming stage: 92.3% of GWP, 98.4% of soil 18 

acidification and 95.4% of eutrophication. The processes taking place after the agriculture stage (i.e., during the 19 

slaughtering stage, retail market and consumption) play a minor role, except for the relative impact of 20 

eutrophication during the slaughtering stage. The transportation that took place between the different life cycle 21 

stages only marginally influenced the emissions analysed, with private transport from the retail market to the 22 

household contributing most of the emissions considered in this part of the life cycle. These results point to the 23 

farming stage as the main focus for future improvements. Due to its high contribution to the GWP, soil 24 

acidification and eutrophication potential, enhancing the efficiency and environmental protection measures 25 

implemented during the farming stage (or improving the choice of commodities used from feed production) 26 

could generate the highest reductions in impacts on soil acidification, eutrophication and potentially on the 27 

global climate.  28 
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1 Introduction 32 

As one of the fastest growing subsectors of the agricultural economy, the production of livestock is a major 33 

contributor to global environmental problems (e.g., through its impact on the world’s water, land and 34 

biodiversity resources). Moreover, livestock production contributes significantly to climate change and is 35 

responsible for about 18% of global anthropogenic greenhouse gas (GHG) emissions. When considering not only 36 

direct, but also indirect, effects such as grazing and the production of feed-crops, the livestock sector occupies 37 

approximately 30% of the ice-free terrestrial surface of the Earth (Steinfeld et al. 2006).  38 

In global livestock production, meat production is an important element. In 2010, 37% of meat was produced 39 

from pigs and 24%, from chickens. The global annual production in 2010 of the three pig systems (backyard, 40 

intermediate and industrial) resulted in emissions of 668 million tonnes CO2-equivalents (eq). The rising 41 

population and escalating demand for pig meat, which is projected to grow by 32% between 2005 and 2030, is 42 

predicted to result in further increases in the corresponding environmental problems (MacLeod et al. 2013). 43 

Many scientific studies have dealt with the environmental effects of nutrition. One approach taken in these 44 

studies is from the context of “footprints”, or the assessment of the environmental consequences of certain 45 

actions beyond the specific process in question. The “nutritional footprint” and “nutrient footprint” have been 46 

analysed in this way recently (Lukas et al. 2015, Grönman et al. 2015). Another approach is through life cycle 47 

assessment (LCA). LCA is a holistic approach that supports the detection of environmental “hotspots” and 48 

allows the analysis of the most environmentally-friendly methods of the various life cycle stages from the 49 

production phase of a certain commodity to the treatment of its remains after use. In this way, the LCA approach 50 

can be used to detect and, as a consequence, avoid problem-shifting between life cycle phases, different 51 

environmental effects or regions (Finnveden et al. 2009).  52 

LCA has been previously applied to the agricultural sector, and several LCA studies and reviews have been 53 

undertaken with regard to the context of this paper, livestock production in general, or specifically pork 54 

production (cf. Dallegaard et al. 2007, de Vries and de Boer 2010, González-García et al. 2015, Kool et al. 2009, 55 

Kral 2011, MacLeod et al. 2013, Nemecek et al. 2005, Nguyen et al. 2010, Nguyen et al. 2011, Roy et al. 2012, 56 

Weidema et al. 2008).  57 

As one common key result of these LCAs, the environmental burden of the agricultural stage has been identified 58 

because it generates the highest share of relevant emissions along the meat supply chain. However, the majority 59 

of pork LCAs only considered the agricultural, slaughtering and transport stages; an exception was Woitowitz 60 

(2007), who also took the trade stage into account. In our “farm-to-fork” approach, we extend this concept to 61 
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include the consumer stage on a national level (including such aspects as packaging materials and electricity for 62 

cooling). Along with literature reviews, the environmental effects of meat production and consumption need to 63 

be assessed in a “bottom-up” manner and, thus, regional and sectoral quantification is necessary. A number of 64 

country-specific pork LCAs have been published. Most of them have dealt with specific European countries, 65 

namely Denmark (Dallegaard et al. 2007, Kool et al. 2009, Nguyen et al. 2011), Germany (de Vries and de Boer 66 

2010, Weidema et al. 2008), Portugal (González-García et al. 2015), Switzerland (Nemecek et al. 2005) and 67 

Austria (Kral 2011). In this paper, the focus is on Austria and on fresh pork. In 2009, 63% of the meat consumed 68 

in Austria was pork, and represented a total consumption of 40 kg per capita (Statistik Austria 2013). To analyse 69 

the environmental impacts of the production of Austrian pork, an LCA was performed that covered the life cycle 70 

stages from “farm to fork”, including the consumer stage as mentioned above, as well as the impacts from soy 71 

bean importation from Latin America. This considerably extends the work of Kral (2011), which was thus far the 72 

only pork LCA undertaken for Austria. 73 

While most of the LCAs mentioned focussed on the climatic impacts of meat production, other impact categories 74 

are also important. Because they were included in some other studies, soil acidification and eutrophication were 75 

also considered during the current study. One chemical element, nitrogen, seems to be an important contributor 76 

to all of these impact categories, and measures on nitrogen abatement could be generally beneficial (Sutton et al. 77 

2011). The formation of particulate matter from livestock NH3 emissions is another, additional nitrogen-related 78 

aspect. Indeed, the abatement of agricultural NH3 emissions has recently been described as an important and 79 

cost-efficient way to reduce pollution with regard to particulate matter in Europe (Amann et al. 2014). Nitrogen 80 

(N) per se is not considered an impact category in an LCA, however, because N is an important factor in food 81 

production, it was also of interest to investigate this parameter in detail (see also Pierer et al. 2014, 2015). 82 

 83 

This paper describes and discusses the first comprehensive LCA of Austrian fresh pork by covering the three key 84 

impact categories, global warming potential (GWP), soil acidification and eutrophication, which have also been 85 

considered by comparable LCAs conducted outside Austria. In order to identify, analyse and describe the main 86 

environmental problems over the entire life cycle of the pork (production, consumption and distribution), the 87 

goal and scope of the LCA are presented first (section 2), followed by a depiction of the life cycle inventory 88 

analysis (LCI) in section 3. Afterwards, the life cycle impact assessment (LCIA) is described in section 4 and, 89 

subsequently, the results are described (section 5) and discussed using a comparative delineation (section 6). 90 

Finally, conclusions are drawn in section 7. 91 
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2 Definition of Goal and Scope 92 

2.1 Goal of the Study 93 

The goal of this study was to identify the environmental profile “from farm to fork” of fresh Austrian pork. Pork 94 

represents 7.5% of the total amount of food consumed in an average Austrian household (Friedl et al. 2007). The 95 

analysis of the process chain was performed using LCA methodology according to the ISO standards 14040 and 96 

14044 (ISO 2009; ISO 2006), with the aim to generate results that can help identify system parts with high levels 97 

of environmental impact. Therefore, the product life cycle was separated into five modules, namely (i) 98 

agriculture, including the feed production, (ii) slaughterhouse, (iii) trade, (iv) consumption and (v) transport.  99 

2.2 System Boundaries  100 

The system boundaries determined which processes were included in the life cycle assessment (ISO 2009). An 101 

overview of the production chain of Austrian pork and the included process is presented in Figure 1. 102 

 103 

Figure 1: System boundaries of the production chain of Austrian pork 104 

 105 

The study included environmental impacts caused by the provision of energy, raw materials and operating 106 

resources as well as transport emissions and waste and wastewater directly generated as a result of these 107 

processes. Not included were the emissions related to waste/wastewater treatment beyond the consumer stage or 108 

emissions caused by setting up infrastructure. Furthermore, the provision, maintenance and disposal of capital 109 

goods were not considered.  110 

The study focused on Austrian pork. Therefore, the geographic border reflects the Austrian border, and imports 111 

and exports of livestock or pig meat were excluded from the life cycle assessment. This assumption seemed 112 

reasonable at a national level of self-sufficiency of 106 % (Statistik Austria 2013). Data derived refer to an 113 

Austrian production system, characterized by a “model pig farm” (see section 3). 114 
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The reference period for the process data covered the time period from 2007 to 2010, as data from different 115 

sources were not always available for identical years. 116 

2.3 Functional Unit 117 

A life cycle assessment for the analysis of the environmental impact of a product involved an evaluation of all 118 

resource flows and emissions within a system that were related to the production and delivery of an entity of a 119 

given magnitude, the “functional unit” (ISO 2006). 120 

The functional unit chosen to best represent the pork production system was “1 kg fresh Austrian pork (carcass 121 

weight)”, which is a common tare weight used in the retail trade. Only fresh pork, directly cut up at the 122 

slaughterhouse, was taken into account. Therefore, a carcass weight of 78% of the live weight of the pigs (ca. 123 

120 kg), which equals an average 94 kg per animal (average value, cp. González-García et al. 2015, Jungbluth 124 

2000, Walter et al. 2008), was used in this study. About 80% of the carcass weight is sold as packaged meat 125 

(Oklahoma State University, n.d., USDA, 2015).  126 

3 Life Cycle Inventory Analysis 127 

A life cycle inventory analysis involves data collection and calculation to quantify the relevant input and outputs 128 

of a product system (ISO 2009). Thus, the first step taken was to identify all appreciable material and energy 129 

flows, following the concept illustrated in Figure 1. For the analysis, MS Excel software was used and all data 130 

was derived from the published literature. All details about the relevant flows within the production chain of 131 

Austrian pork can be found in the supplementary material. 132 

For each of the five modules of the life cycle, an inventory analysis was created and filled with primary and 133 

secondary data. The data was extracted from statistical databases, environmental databases and the scientific and 134 

technical literature.  135 

3.1 Agriculture 136 

We analysed a “model farm” for Austria, rather than integrating a multitude of different individual farms with 137 

their respective differences, in order to hold complexity to a reasonable level. For this purpose, we attempted to 138 

mimic the real situation of farms in Austria as closely as possible. Thus, the reference farm used in this study 139 

contained more than 400 animals, because this reflects the actual situation of 60% of all pigs in Austria (VÖS 140 

2011).This model farm also was considered to use conventional production (as is used on the majority of pig 141 
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farms in Austria), and no specific investigation of organic farming was conducted. The characteristics for the 142 

assessment are summarized in Table 1. 143 

 144 

Table 1: Characteristics of the model pig farm 145 

Characteristics Reference 

Size of the farm more than 400 animals1) 
according to VÖS (2011), also 
using their classification scheme 

Type of production Conventional2) 
according to Anderl et al. 
(2013) 

Type of housing Heated cot3) as suggested by AMA (2013) 

Livestock breeding 
Combined upbringing of piglets, feeding pigs 
and breeding animals; 
Fully slatted floor4) 

according to Statistik Austria 
(2012) 
 

Feed use 
90.5 % on-farm produced feed 
(feed supplements get purchased) 

according to AGT (2009) 

Manure management 
Slurry based system with external storage 
tanks5)  

according to Amon et al. (2007) 
& Anderl et al. (2013) 

Manure utilization On-farm utilization Authors’ assumption 

Manure application Traction engine >80 kW, diesel 
according to Wieser & Kurzweil 
(2004) 

Observation period 1 year6) according to AMA (2013)  

Average live weight 120 kg7) VÖS (2011) 

1) 60% of all pigs in Austria are kept on farms in herds of 400 to 3000 animals 146 
2) Conventional farming, as opposed to organic farming. 147 
3) Heated cots provide optimal and constant temperatures due to heating and ventilation systems. This is required because of the low 148 

winter temperatures in Austria. 149 
4) Slatted floors are floors with slots through which excrement and urine flows. In cots with fully slatted floors, all surface areas 150 

have slots. 151 
5) The manure excreted by the animals in the form of slurry (mixture of liquid and solid particles) is first stored in a pit beneath the 152 

slatted floors for a short interval. Then, the slurry is pumped to an external storage tank, where it is stored for use in field 153 
applications (BMLFUW, 2006). 154 

6) The agriculture database referred to the above-mentioned observation period. Due to the fact that the annual amount of extracted 155 
manure (Pöllinger et al. 2011) and the total feed use (AGT 2009) considers the needs of piglets, feeding pigs and breeding 156 
animals, the observation period includes the following phases: fertilization, gestation period (16-17 weeks), lactation period (3-6 157 
weeks), rearing period (6-8 weeks) and fattening period (17-18) weeks. 158 

7) Average life weight of fully-grown pigs at the farm gate 159 
 160 

Feed use. Pig production is closely linked to the feed supply. An optimal nutritional diet is hypothesized to lead 161 

to a higher production in fresh meat. The energy and protein contents of the feed are particularly important. 162 

Supplements such as vitamins or minerals can be given to support the pig’s immune system. Therefore, a 163 
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balanced diet should include feed rich in energy (e.g., corn and crop), protein (e.g., soy, rapeseed and sunflower) 164 

and minerals, which supplies vitamins and minerals as well as additional amino-acids as required (AMA 2013). 165 

Based on data published by the study group “Gesunde Tierernährung” (AGT 2009), a feed ration of 4 kg is 166 

calculated per functional unit. This ration consists of around 38.0 % corn, 19.0 % wheat, 19.0 % barley, 7.2 % 167 

soy meal, 3.6 % rapeseed meal, 3.6 % sunflower meal and 9.5 % mineral feed. Furthermore, a water 168 

consumption of 12 litres per functional unit has been proposed (Schafzahl 1999). 169 

 170 

Energy use. Pig rearing in heated cots results in heat consummation and the expenditure of electricity for 171 

ventilation and light. Furthermore, energy is needed to pump raw sewage to the plant as part of the manure 172 

management system. Altogether, the production requires 0.35 kWh of electricity and 0.19 kWh of thermal 173 

energy per functional unit (KTBL 2005). Moreover, 1.21 kWh of mechanical energy is generally used for field 174 

manipulation and on-farm transportation (BMU 2012). This data, originally gathered in Germany, is considered 175 

relevant for Austria due to the many similarities in general conditions (e.g., outside temperatures and 176 

technologies used in animal husbandry). 177 

 178 

Enteric fermentation. Enteric fermentation refers to processes in the animals’ intestines that lead to the 179 

emission of methane. To calculate the amount of these emissions, the “Tier 1-Method” developed by the 180 

International Panel on Climate Change (IPCC 2006) has been applied for animals in Austria (Anderl et al. 2013) 181 

and the results are 16.03 g CH4 per functional unit. 182 

 183 

Manure management. Regular (e.g., weekly) removal of manure from the storage pits beneath the slatted floor 184 

and proper storage of manure in outdoor tanks are essential points to support environmentally-friendly manure 185 

management in livestock production. A valuable resource, manure is destined to be used eventually as fertilizer 186 

on the farm. Therefore, it can act as a substitute for synthetic fertilizers to some extent. In this study, the 187 

substitution rates for N, P and K were assumed to be 75 %, 97 % and 100 %. Following the methods in Nguyen 188 

et al. (2011), we allocated all environmental impacts that were related to manure storage and application to pig 189 

production (instead of to the crops produced from manure-fertilized fields), and we specifically accounted for the 190 

reduction in environmental impacts associated with  the avoidance of  synthetic fertilizers. Calculations were 191 

based on the total amount of manure excreted by the animals in the form of slurry in 2008 (Pöllinger et al. 2011), 192 

and allowed us to estimate 10.3 kg slurry ex-animal per functional unit. Further estimates provided the dry 193 
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matter and volatile solids content, as well as the emissions (N, P, K, CH4, NH3, direct and indirect N2O) 194 

involved. The results and references are shown under manure management in Table 2. 195 

The calculated amount of feed and energy input, manure output and on-farm emissions per functional unit are 196 

summarized in Table 2. 197 

 198 

Table 2: Inventory analysis of the agricultural process, normalized to the functional unit (1 kg fresh Austrian pork (carcass 199 
weight)) 200 

Input  Unit  Data Source 

 
Mineral feed1) kg 0.38 

See AGT (2009) 

  Corn kg 1.52 

  Wheat kg 0.76 

  Barley kg 0.76 

  Soy meal kg 0.29 

  Rapeseed meal kg 0.15 

  Sunflower meal kg 0.15 

  Water l 12.02 See Schafzahl (1999) 

  Electricity kWh 0.35 
See KTBL (2005) 

  Heat kWh 0.19 

  Mechanical energy kWh 1.21 See BMU (2012) 

Output Unit Data Source 

 
Livestock (1 kg carcass weight) kg 1.282)  

Enteric Fermentation Unit Data Source 

 
CH4 g 16.03 

See IPCC (2006) & Anderl et al. 
(2013) 

Manure Management Unit Data Source 

 
Slurry ex-animal kg 10.32 

See Nguyen et al. (2011) & Resch 
et al. (2006) 

  Slurry ex-cot kg 10.32 

  Slurry ex-storage kg 11.20 

     
  Dry matter ex-animal kg 0.79 

  Dry matter ex-cot kg 0.75 

  Dry matter ex-storage kg 0.72 

     
  Volatile solids ex-animal kg 0.65 

  Volatile solids ex-cot kg 0.61 

  Volatile solids ex-storage kg 0.57 

  
   

  N g 41.22 

  P g 5.16 

  K g 23.52 

    
 

 
CH4 g 17.10 

derived from IPCC (2006) & 
Anderl et al. (2013) 

 
NH3 g 15.99 See Nguyen et al. (2011) & Resch 
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et al. (2006) 

 
N2O (direct and indirect; in-cot and 
outside storage) 

g 0.07 
See IPCC (2006) & Anderl et al. 
(2013) 

Manure distribution on field Unit Data Source 

 Transport to fields Wh 175.3 

See Nguyen et al. (2011) 

 Application Wh 55.9 

 N2O g 0.4 

 NH3 g 1.1 

    

 
Avoided fertilizer production 
(emission credit)   

 N g -30.9 

 P g -5 

 K g -23.5 

    
 

Avoided fertilizer application 
(emission credit)   

 Application Wh -3.90 

 N2O g -0. 6 

 NH3 g -2.8 
1)  a mixture of vitamins, minerals and additional protein- and energy-rich fodder 201 
2)  It is assumed that the carcass weight is 78% of the animal's live weight and, therefore, 1 kg of carcass weight equals 202 
 1.28 kg live weight. 203 
 204 
At the end of the fattening period, the pigs are brought to the slaughterhouse. Detailed information on transport 205 

emissions is shown in section 3.5. 206 

3.2 Slaughterhouse 207 

A carcass weight of about 93.6 kg is obtained from the live weight of one pig at the time of slaughter, which is 208 

120 kg. In the present study, we assumed that the whole fresh meat was packed and cooled directly after 209 

slaughter and dismembering, without considering further processing steps such as curing or mincing. Different 210 

packaging materials were considered – Expanded Polystyrene (EPS), High Density Polyethylene (HDPE), 211 

Polypropylene (PP) and packaging paper and cardboard. Further details of the slaughtering process are listed in 212 

Table 3. 213 

 214 

Table 3: Inventory analysis of the slaughtering process, normalized to the functional unit (1 kg fresh Austrian pork (carcass 215 
weight)) 216 

Input Unit Data Source 

 
Pig (live weight) kg 1.28  

  Water l 2.56 

See Nguyen et al. (2011) 

  Liquid CO2 g 2.6 

  Solid CO2 g 3.1 

  Electricity kWh 0.14 

  Heat kWh 0.17 
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  EPS  g 4.20 

See Jungbluth (2000) 

  HDPE g 3.60 

 
PP g 4.70 

  Packaging paper g 18.00 

  Packaging cardboard g 25.00 

Output Unit Data Source 

 
Fresh Austrian pork (packaged meat) kg 0.801  

Waste Unit Data Source 

 
Organic waste (bones, bristles, etc.) kg 0.20 See Jungbluth (2000) 

Wastewater Unit Data Source 

 
Wastewater l 2.56 See Nguyen et al. (2011) 

1 80% of the dressed weight are retail cuts and can be sold in the store (this non-functional unit was used for certain parameters) 
(Oklahoma State University n.d., USDA ERS 2015) 

3.3 Trade 217 

The module “Trade” represents the process of keeping packed fresh pork cool in a retail store. This study acts on 218 

the assumption that the meat in shops is offered in open refrigerated units. The consumed amount of electricity is 219 

calculated according Nielsen et al (2003a) and accounted for 0.04 kWh per functional unit.  220 

3.4 Consumption 221 

The module “Consumption” covers the cooling and cooking processes that take place in households, including 222 

the production of emissions and waste. To arrive at the amount of electric energy required for cooling, 0.08 kWh 223 

per functional unit, we employed an equation developed by Nielsen et al (2003b). It was assumed that electric 224 

kitchen stoves are used to cook the fresh pig meat. Pursuant to Jungbluth (2000), the households need 0.20 kWh 225 

per functional unit for the cooking processes. Other commodities required (40.15 l of water for cooking and 226 

cleaning, BMLFUW 2012) or waste streams produced (64 g of organic waste and 56 g of packaging waste) were 227 

not considered in this study.  228 

3.5 Transport 229 

This module includes the transportation connections between the four steps of the life cycle discussed above 230 

(i.e., from “Agriculture” to “Slaughterhouse”, from “Slaughterhouse” to “Trade” and from “Trade” to 231 

“Consumption”) plus the feed transport from Latin America (Brazil and Argentina) to the Austrian farm. The 232 

overseas transport of soy was considered to include transport by ship, train and truck to Europe and accounted 233 

for 243 g CO2-eq/t. For one kg of pork, an estimated 290 g of soy is fed to the animals, resulting in 65.25 g CO2-234 

eq/kg of pork (Castanheira and Freire 2013). In addition, the transport of soy from the harbour to the Austrian 235 

farm needs to be considered. Given the geographical location of Austria we assume a transport distance of about 236 
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1000 km to the farm (Nguyen et al. 2011 assume that soy is transported for about 500 km by trucks to Denmark, 237 

incl. transport in Latin America). When all soy is transported by trucks (worst case), emissions from this action 238 

would add up to 2.4 g CO2/kg of pork resulting in an overall impact from feed transportation of 70.05 g CO2-239 

eq/kg of pork. We are aware of a certain acidification and eutrophication potential of feed transportation from 240 

Latin America to Austria, e.g. regarding the emissions of cross-Atlantic ship transport. However, it is not 241 

considered in this paper due to difficulties in quantifying those data. The main impact from the transport of 242 

livestock and meat is related to energy use expended during the transportation itself and as part of cooling 243 

processes that are necessary during transport. The carcass is cooled from the point it leaves the slaughterhouse or 244 

the retail store.  245 

 246 

In order to reduce stress on the animals, the route of transport between the farm and the slaughterhouse should be 247 

as short as possible. Considering the location of the agricultural and meat-processing businesses, a distance of 248 

50 km was assumed (VÖS 2011), considering that the pigs need to be shipped by a truck with a capacity of 20 t. 249 

This allowed us to estimate the amount of fuel needed per functional unit. Because emission factors are available 250 

for specific distances, we allocated a certain distance to each functional unit, which was mathematically 251 

identical, even if physically less plausible. By doing so, we obtained a distance of 59 m per functional unit for 252 

the transport distance between the farm and the slaughterhouse. 253 

 254 

Refrigerated transport is needed between the slaughterhouse and the retail store. We estimated that a typical 255 

travel distance would be 110 km. Again, at a capacity of 20 t, this results in a calculated distance of 117 m per 256 

functional unit. In order to additionally account for the energy costs related to refrigeration, we used an 257 

incremental factor of 10.4 % based on that published by Nguyen et al. (2011). 258 

 259 

Assuming that the average distance covered during daily shopping is 11.55 km (BMVIT 2007), and assuming 260 

that pork represented 7.5% of the total average food consumption in Austria (7.5 %) (Statistik Austria 2013), we 261 

estimated that a distance of 400 m was travelled by car per functional unit. Thus, this aspect represented the 262 

highest environmental burden, relatively speaking, within the transport stage of this LCA. Furthermore, we 263 

calculated a distance of 6.72 m per functional unit, when public transportation (bus) was used. 264 
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4 Life Cycle Impact Assessment 265 

In its LCIA phase, the LCA considered only the impact categories “global warming potential (GWP)”, 266 

“acidification potential (AP)” and “eutrophication potential (EP)”, the choice of which can be justified as 267 

follows: 268 

(i) The three chosen impact categories are commonly used to draw a picture of the environmental profile of 269 

agricultural products, which is considered to be comprehensive(cf. Perrin et al. (2014), who considered GWP, 270 

AP and EP to be the three crucial impact categories in an analysis of 72 cropping systems in the field of the LCA 271 

of vegetable products).  272 

(ii) Six other relevant studies in the field of life cycle assessment for pork have been conducted, namely Kral 273 

(2011), Nguyen et al. (2011), Kool et al. (2009), Hirschfeld et al. (2008), Koerber et al. (2007) and Woitowitz 274 

(2007) (cf. Table 9 in the discussion (in section 6)). All authors included GWP as an impact category and, thus, a 275 

comparison with the results of this paper is possible. However, only Nguyen et al. (2011) additionally considered 276 

AP and EP. On the other hand, Nguyen et al. (2011) did not consider trade and consumption within the life 277 

cycle. Therefore, this paper is a more comprehensive pork LCA with regard to both life cycle stages and impact 278 

categories. 279 

(iii) Other impact categories, such as land-use change (LUC) or use of energy, which this paper did not take into 280 

account, are indirectly considered because the energy use (e.g., electricity used for cooling, emissions from 281 

transport) is closely related to the emission of CO2. The emissions of CH4 and N2O that are needed to determine 282 

the impact category GWP also cover land-use to a certain extent. However, it is very difficult to include 283 

emissions from LUC in a LCA, as noted by Nemecek et al. (2014): there is a lack of “[…] international 284 

consensus on how to consistently and systematically address LUC in life cycle inventory, despite significant 285 

research in the LCA community.” 286 

 287 

In order to assess GWP, data from the latest IPCC assessment report (IPCC 2013) were used to quantify the 288 

respective contributions of CH4 and N2O with respect to CO2. This yielded the factors of 36 and 298, 289 

respectively, which could be converted into CO2-eq for a 100-year time horizon. For the last two categories, AP, 290 

and EP, emission equivalents according to Klöpffer & Grahl (2011) were used to estimate the environmental 291 

impacts. These characteristic factors reflect stoichiometric relationships between nitrogen and sulphur (AP), and 292 

nitrogen and phosphorous (EP), and their respective derivatives. 293 

 294 
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The respective emission factors needed for the impact assessment were taken from different databases or the 295 

literature. For the input factor, electricity, the Austrian mix according to “ProBas” was used (BMU 2013). The 296 

factors for heat, which were different in the farming and slaughtering stages, were extracted from the literature 297 

(Pölz 2007; Wieser & Kurzweil 2004). The emission factors of wastewater from the slaughtering and 298 

consumption phases also differed, as well as those appearing in the associated literature (Nguyen et al. 2011; 299 

Antranikian 2006). Wieser & Kurzweil (2004) provided emission factors for the different various means of 300 

transportation.  301 

For the input factors feed, synthetic fertilizers and packaging materials, the calculated CO2-, SO2- and NO3-eq 302 

were used (shown in Table 4). The emission factors for feed were based on a study using the SALCA (Swiss 303 

agricultural life cycle assessment) method by Nemecek et al. (2005) and implicitly included GHG emissions 304 

such as N2O. Due to similarities between Swiss and Austrian agriculture, these parameters could be directly 305 

transferred. It is important to consider that these emission factors are much higher than those estimated from 306 

different studies (e.g., Denmark - compare with Nguyen et al. 2011). It can be argued that emission factors from 307 

soy meal are higher in landlocked countries, which have a suboptimal climate for soy planting, than in coastal 308 

lands characterized by soy imports. Furthermore, improved techniques of manure application may result in 309 

different levels of NH3 release (see Bittmann et al. 2014), which may also further explain discrepancies 310 

observed. 311 

 312 

Table 4: Emission factors per kg feed, kg synthetic fertilizer and kg packaging material, expressed as Global Warming 313 
Potential (g CO2-eq), Acidification Potential (g SO2-eq) and Eutrophication Potential (g NO3-eq) 314 

Feed g CO2-eq g SO2-eq g NO3-eq References 

Corn 565 6.44 12.50 

Nemecek et al. (2005) 

Wheat 692 5.10 17.40 

Barley 605 4.80 19.40 

Soy meal 1,532 8.60 25.90 

Rapeseed meal 1,304 14.40 19.70 

Sunflower meal 1,123 7.29 20.31 

Mineral feed  729 6.34 4.43 

Fertilizer g CO2-eq g SO2-eq g NO3-eq References 

Nitrogen fertiliser 4,250 33.20 58.90 

Nguyen et al. (2011) Phosphorous fertiliser 2,690 41.00 26.40 

Potassium fertiliser 804 1.40 1.90 

Packaging material g CO2-eq g SO2-eq g NO3-eq References 

HDPE 1,960 6.39 4.36 

Plastics Europe (2013) EPS 3,672 10.44 6.53 

PP 2,000 6.13 4.44 
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Paper 1,172 6.32 6.93 
BUWAL (1996) 

Cardboard 745 11.42 2.89 

5 Results 315 

Table 5 summarizes the environmental performance of the five modules in the three impact categories 316 

considered per kg fresh Austrian pork (carcass weight). 317 

 318 

Table 5: The total environmental impact per kg fresh Austrian pork (carcass weight) 319 

Life cycle module 
GWP 

 
g CO2-eq 

AP 
 

g SO2-eq 

EP 
 

g NO3-eq 
Agriculture 4,383 60.48 363.82 

Slaughterhouse 142 0.61 16.96 

Trade 8 0.01 0.02 

Consumption 50 0.10 0.13 

Transport 168 0.28* 0.50* 
* does not include feed transport from Latin America to the Austrian farm 320 
 321 

The total impact per functional unit (including credits from manure management) is estimated at 4,751 g CO2-eq, 322 

61.5 g SO2-eq and 381.4 g NO3-eq for the typical Austrian pork production. Table 5 shows that the 323 

environmental impacts are notably related to the agricultural production stage (with a contribution of 92.36% 324 

contribution to GWP, 98.4% to soil acidification and 95.4% to eutrophication) and much less so to the 325 

subsequent modules. The high contribution of agriculture to GHG emissions of Austrian pork production is in 326 

line with the results of similar studies (slightly higher value for Austria: Kral 2011; slightly lower value for 327 

Portugal: González-García 2015). The impact of eutrophication during the slaughtering stage is considerable, 328 

contributing to 4.4% of the total eutrophication, whereas the remaining values in Table 5 represent less than 329 

0.01%. Eutrophication during the slaughtering stage originates from organic pollutants, nitrogenous and 330 

phosphorous compounds in the wastewater. However, the prominent role of agriculture with regard to its 331 

environmental effects is striking and, thus, it is worthwhile to consider this farming stage in more detail. 332 

 333 

Table 6: Environmental profile of the agricultural stage per kg fresh Austrian pork (carcass weight) 334 

Life cycle module for 
the agricultural stage 

GWP 
 

g CO2-eq 

AP 
 

g SO2-eq 

EP 
 

g NO3-eq 
Feed 2,923 25.41 295.66 

Energy use 519 8.01 15.30 

Enteric fermentation 545 0.00 0.00 

Manure management 602 30.06 58,20 
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Credits (mineral fertilizer 
savings) 

-206 -3.00 -5.36 

 335 
 336 

As Table 6 shows, “Feed” is the major contributor during the farming stage (see Nguyen et al. 2011 for 337 

comparable results) when considering all three impact categories analysed, whereas “Manure management” turns 338 

out to be a major contributor in terms of acidification and eutrophication. Energy use and enteric fermentation 339 

are minor contributors with reference to eutrophication and acidification, but along with manure management are 340 

each responsible for 11-12.5% of the GWP. The credits gained due to the substitution of synthetic fertilizers only 341 

slightly alleviated the environmental impacts of the agricultural stage with regard to GHG emissions, 342 

acidification and eutrophication. 343 

 344 

Table 7: Environmental profile of the feed per kg fresh Austrian pork (carcass weight) 345 

Feed 
GWP 

 
g CO2-eq 

AP 
 

g SO2-eq 

EP 
 

g NO3-eq 
Mineral feed  278 2.42 28.16 

Corn 861 9.81 84.34 

Wheat 527 3.88 58.70 

Barley 461 3.66 65.45 

Soy meal 444 2.50 33.29 

Rapeseed meal 189 2.09 12.66 

Sunflower meal 163 1.06 13.05 
 346 
 347 

The environmental burden of the total feed ration per functional unit is estimated at 2,920 g CO2-eq, 348 

25.41 g SO2-eq and 295.66 g NO3-eq. The major contributor was corn with reference to GWP and AP, and corn, 349 

barley and wheat, with reference to EP. We noted that the impact was derived from both the emission factor and 350 

the amount used. The amount of feed and its composition was similar to that described in a comprehensive EU 351 

study (Leip et al. 2010), which described a greater use of corn and soy meal, but less of rapeseed and sunflower 352 

meals. For example, corn has a lower emission factor than rapeseed, but plays a bigger role due to its higher 353 

consumption levels. Using a different recommendation for feed composition by the Austrian organisation of 354 

swine production (VÖS 2011) resulted in a calculated increase in GWP by 1.7%, acidification potential by 1.6% 355 

and eutrophication potential by 1.2% (cp. Table 8). In Austria, around 10% of the total amount of feed for pigs is 356 

not produced by the farmers (AGT 2009) and needs to be bought and/or imported from abroad. One way to 357 

reduce the impact on the environment would be to decrease the amount imported feed. Another way would be to 358 
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alter the dietary composition, for example, by using phase feeding. For example, Pierer et al. (2015) 359 

demonstrated decreases in N-leakages by phase feeding.  360 

Table 8: Comparison of different feed compositions (AGT 2009, VÖS 2011) 361 

Feed 
Assumption in this 

study (kg) 
Recommendation by 

VÖS (2011) (kg) 

Mineral feed 0.38 0.12 

Corn 1.52 1.80 

Wheat 0.76 0.00 

Barley 0.76 1.24 

Soy 0.29 0.42 

Rapeseed 0.15 0.21 

Sunflowers 0.15 0.21 

 362 

When examining manure management during the agricultural LCA stage, the environmental impact was mainly 363 

caused by methane emissions from the manure and, to a lesser extent, by direct and indirect N2O emissions. With 364 

reference to acidification, the environmental impact was related to the on-farm emission of NH3, and the 365 

emissions in the category eutrophication could be attributed to the nitrogen and phosphorus derivatives released.  366 

6 Discussion  367 

The results of our analysis clearly demonstrated that the environmental burden of fresh Austrian pork is 368 

primarily associated with the agriculture stage. Environmental burdens associated with other stages such as 369 

trade, transport or slaughterhouse, have a relatively minor impact. During the agriculture stage, the foremost 370 

source of environmental impacts identified was the production of feed, which was shown to be more important 371 

than manure management or energy use on farms. The proper selection of feed, therefore, may also influence the 372 

environmental impact of pig farming. The result of this LCA allows us to provide recommendations to optimize 373 

the environmental performance of pig farming, especially when considering feed production.   374 

When optimizing feed rations with regard to environmental aspects, animal requirements and animal welfare 375 

aspects cannot be neglected. It is necessary to optimize growth for economic reasons, but a waste of protein 376 

(generally an expensive commodity) should be avoided. Phase feeding allows animal requirements to be more 377 

specifically addressed, while avoiding the addition of excess protein and, at the same time, release of excess 378 

nitrogen into the manure of the animals (Amon et al. 2014). 379 

When compared to other animals (see e.g., Steinfeld et al. 2006, Leip et al. 2010), pigs display similar 380 

environmental impacts as chickens, but clearly have a lower impact than cattle. The environmental impacts of 381 
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enteric fermentation, which are rather low for pigs, play an important role in cattle farming. This fermentation is 382 

a result of symbiotic microbial processes in the rumen of cattle, which allow them to digest grass. The formation 383 

of methane is directly linked with the digestion of a commodity that is per se not accessible to humans: grass. 384 

Pigs, on the other hand, partly compete for the same resources as humans (e.g., corn or wheat). It is necessary to 385 

raise awareness about this fact and, therefore, an efficient mitigation option would be to adjust human diets to 386 

encourage lower meat consumption levels (Stehfest et al. 2009).  387 

Most notably, pig rations in Austria are mostly based on the availability of local products (corn, wheat), in 388 

contrast to many other European countries, where pig production is based on the availability of soybeans, which 389 

are mostly imported from Latin America (see e.g., for Spain, Laselletta et al. 2014). While soybeans and soy 390 

meal are considered a significant cost factor in Austrian production, cheap ship transport allows their use in 391 

coastal regions of Europe. The different environmental footprints associated with soybean vs. other foodstuff 392 

have been discussed by Hörtenhuber et al. (2014), inter alia. The use of soy meal as feed has a significant impact 393 

on the environment as indicated in these LCA results. The range of uncertainty, however, is rather high for 394 

impact of soy as compared to that of other crops. GHG emissions from soy production in South America manly 395 

depend on emissions from land-use change and vary greatly, depending on where the soy is planted. In an LCA 396 

study on soy-bean production in Brazil and Argentina, Castanheira and Freire (2013) showed that the GHG 397 

emission per kg of product varied between 0.3 kg - 17.8 kg CO2-eq (including emissions from cultivation, land-398 

use change and transport). 399 

 400 

Careful and continuous evaluations using LCA or a similar method, on the level of individual countries, are 401 

necessary to monitor the progress of the release of undesired substances. Some mitigation may be technically 402 

feasible (e.g., air pollutants as in Bittman et al. 2014), which then could result in a direct positive response in the 403 

LCA, while in other cases (predominantly greenhouse gas related emissions), structural changes leading to a 404 

production shift may be more appropriate. 405 

 406 

In order to verify the results determined and the robustness of the results, we compared the findings obtained 407 

with those published in other available studies, where the conditions and studied issues mirrored those in 408 

Austria. The following table shows the results of the chosen studies, their respective geographical coverage, and 409 

the references. Only a few studies were available beyond the stage of the farming process.  410 

 411 
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Table 9: Results for the functional unit, 1 kg pork (live and carcass weight) - geographical coverage and references 412 

LCA 
Results 

Geographic 
coverage 

Reference Conventional 
farming 

Organic 
farming 

g CO2eq 

Agriculture 

4,109 4,965 Germany Woitowitz (2007) 

1,870  Germany Koerber et al (2007) 

3,070 2,070 Germany Hirschfeld et al. (2008) 
2,790 1,700 

3,610 4,880 Germany Kool et al. (2009) 

4,950 3,480 Austria  Kral (2011) 

2,882  Denmark Nguyen et al. (2011) 

4,383  Austria This study 

Slaughterhouse 

148 148 Germany Woitowitz (2007) 

30 30 Germany Kool et al. (2009) 

25 23 Austria  Kral (2011) 

179  Denmark Nguyen et al. (2011) 

142  Austria This study 

Trade 
18 18 Germany Woitowitz (2007) 

8  Austria  This study 

Consumption 50  Austria This study 

Transport 

80 80 Germany Woitowitz (2007) 

80 170 Germany Kool et al. (2009) 

61 67 Austria  Kral (2011) 

151  Denmark Nguyen et al. (2011) 

168  Austria This study 

g SO2eq 

Agriculture 
56.15  Denmark Nguyen et al. (2011) 

60.48  Austria This study 

Slaughterhouse 
0.17  Denmark Nguyen et al. (2011) 

0.61  Austria This study 

Transport 
0.97  Denmark Nguyen et al. (2011) 

0.28  Austria This study 

g NO3eq 

Agriculture 
241.08  Denmark Nguyen et al. (2011) 

336,82  Austria This study 

Slaughterhouse 
1.46  Denmark Nguyen et al. (2011) 

16.96  Austria This study 

Transport 
1.46  Denmark Nguyen et al. (2011) 

0.50  Austria This study 

 413 

In general, the conclusions drawn for Austria in this study may widely reflect a situation that has also been 414 

observed in other countries. Deviations are observed, but can be assigned to the varying settings of the goals and 415 

different system boundaries. Basically, the agricultural stage generated the highest emissions (92-99% of GHG 416 

emissions) in all analysed studies, which conforms to the calculated results. In particular, the outcomes of 417 
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Woitowitz (2007), Hirschfeld et al. (2008), Kool et al. (2009), Kral (2011) and Nguyen et al. (2011) generally 418 

supported the results obtained here. A good agreement for acidification and overall eutrophication was found 419 

that is in line with the results of different studies from other European countries. Daalgaard et al. (2007) 420 

provided an additional overview of LCA studies on pork in several European countries (Denmark, Sweden, 421 

France, Great Britain). However, the range of results indicated a high level of variability among environmental 422 

impacts of pork production. GWPs in this overview varied from 2.6 - 5.6 kg CO2-eq, APs ranged from 37 - 290 g 423 

SO2-eq and EPs were assessed between 170 and 760 g NO3-eq per functional unit. The difference between the 424 

EP in slaughtering and transport observed in this study and that published by Nguyen et al. (2011) may be due to 425 

the different assumptions for waste water usage in the slaughterhouse and the absence of shipping in feed 426 

transport. 427 

When we compare the results of this study with those from other LCAs (Table 9 and Daalgaard et al 2007, Leip 428 

et al. 2010), we see that the environmental impact of pork production in Austria is rather average to high. This is 429 

mainly the results of the high emission factors associated with agricultural products (Nemecek et al. 2005), 430 

which are estimated to be much higher than in other LCA studies. However, we argue that this high estimation 431 

makes sense for Austria's pork production due to its geographical characteristics, the different approach taken 432 

during manure application and different dietary assumptions. 433 

7 Conclusions 434 

This investigation of the environmental impacts of pork production allowed us to identify the major contributing 435 

factors and single out the stages of the production process that had only a minor impact. With 1 kg fresh Austrian 436 

pork (carcass weight) as the functional unit and the system boundary defined at the level of the consumer, the 437 

highest impacts are clearly caused by agricultural activities, specifically the feed production. With reference to 438 

eutrophication, the slaughtering stage is also important.  439 

Similar impacts have been observed in comparable studies for greenhouse gas emissions, acidification and 440 

eutrophication. These observations support the general conclusion that aspects of consumption, transport and 441 

food preparation play only minor roles in the overall environmental impact of pork. 442 

Clearly, any mitigation measures need to focus on animal feed production and total production numbers. It is not 443 

possible to single out just one contributor. Feed rations, however, may provide an alternative to explore in order 444 

to reduce the environmental impact. Eutrophication and acidification may potentially be reduced by ammonia 445 

abatement (see Bittman et al., 2014 for the respective options). In the long term, a change in diets is probably the 446 

only way to reduce emissions from pork and meat production in general. Raising awareness on this fact can lead 447 
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to a substantial reduction in GWP, AP and EP. Such behavioural changes have been previously discussed and 448 

advocated in the scientific literature (e.g., Stehfest et al., 2009). 449 

The situation in Austria differs with respect to those seen in the major pork-producing countries in Europe, 450 

especially those situated along the Atlantic coast. Austrian pigs are raised on a diet of about 90% domestically 451 

produced feed (AGT 2009), while many European countries rely on soy meal imports, often from South 452 

America, and the environmental footprints include the respective environmental impacts in the source regions. 453 

As compared results described in other European studies, Austrian pork production shows a tendency toward 454 

higher environmental impact due to the high emission factors of the agricultural crops. Further studies will be 455 

needed to ascertain whether this observed difference exceeds variability observed in data. 456 
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