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Abstract

This paper deals with the issue of reconciling competing stochastic estprateted

by independent sources. We employ an integration method based on a principle of
mutual compatibility of prior estimates The method does not take into account
credibility of the sources of the estimates, including their past peafaren The quality

of integration is evaluated in terms of change in the probability distribution. We use the
method to integrate two types of estimates of the annual Net Primary Product®n (NP
of the forest ecosystemdan seven bioclimatic zones in Russia. The estimates are
generated based on an empirical landse&gosystem approach and on an ensemble of
dynamic global vegetation modelsiet gas in thé estimateseach23%. Elimination

of the gaps may helpetterquantify the input of the terrestrial ecosystems to the global
carbon cycle. The main result of this paper is the evidence of applicability ofdéthod

for selection a set of candidates for credible integrated estimates of uncertagicato
parameters (like fore$tPP) integratingprior estimates.

Keywords: net primary production of forest, multi-model ensembles, Bayesian approach



Acknowledgment s

The first and second authors acknowledge DG research for funding through G3MPL
project #308601ywww.complex.ac.uk

Work of the first author was partially supported by the Russian Foundation for Basic
Research, projects #18-00685 and #13-01-12446 ofi_m2.


http://www.complex.ac.uk/

About the Authors

Arkady Kryazhimskiy T wasa Principal Research Scholar at the Steklov Institute of
Mathematics of the Russian Academy of Sciences, Russi®rofessor at the
Lomonosov Moscow State University, Faculty of Computational Btattics and
Cybernetics, Russiagnd a Senior Research Scholar at the International Institute for
Applied Systems Analysis, Austria. Measa Full Member of the Russian Ademy of
Sciences. His research interests inctudames theory, optimization, and-fplbsed
problems.

Elena Rovenskayas Program Director of the Advanced Systems Analysis Program at
the International Institute for Applied Systems Analysis; and a Res8artafiar at the
Lomonosov Moscow State University, Faculty of Computational Mathematics and
Cybernetics, Russia. Her research interests include ecomowironmental modeling
and optimization.

Anatoly Shvidenko is a Senior Research Scholar at the Intgwnal Institute for
Applied Systems Analysis, Austria. His main fields of interest are foreshioxy,
monitoring, mathematical modeling, global change, and boreal forests.



Towards harmonizing competing models:
Russianforests’ net primary production case study

Arkady Kryazhimskij*¢ Elena Rovenska§d, Victoria Veshchinskaya Mykola Gust¢
Dmitry Shchepashchenkb and Anatoly Shvidenkd

a|nternational Institute for Applied Systems Analysis,
Schlossplatz 1, A-2361, Laxenburg, Austria

®|_omonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics,
2"d Educational Building, Leninskie Gory, 119991, Moscow, Russia

¢ Seklov Mathematical Institute, 8 Gubkina str., 119991, Moscow, Russia

d qukachev Institute of Forest, Sberian Branch RAS,
Akademgorodok, 660036, Krasnoyarsk, Russia

¢ Department of International Information, Lviv Polytechnic National University,
12 Bandera str., 79013, Lviv, Ukraine

" Moscow State Forest University, 1 Institutskaya str., 141005, Mytischi, Moscow region, Russia

1 Introduction

Complex socieenvironmental systems are at the focus of systems analysis nowadays. Such
systems are usually undenderstood and are seen by researchers as fuzzy and highlawncert
Due to a high complexity of the underlying process, any model designed tibeésdas bound

to capture part of its critical elements and ignore the others. In the absenomaifgrocedures
prescribing a modeller how to select “important” aspeict be included in the moddhe
modeller bases his/her choice anmixture oftheory, intuition,individud preferences and
personal expertise. In this context, it is not surprising that ihale-century history of systems
analysis competing modelsave been created to describe the same phenomena. As a rule, the
modeling results for such systems cannot be verified/validated in a solid foepgNational
Research Council, 2012). Known approaches to revealing the models’ akillzased on
assessnm of the models’ abilities to reproduce the past and the present states of the upderlyin
systems; however, it has been reported that different assessment mefripoduze different,
sometimes contradictory, results and, consequently, provide diffexekings of the models
(Gleckleret al., 2008).



Uncertainty in ranking the models has, to some extent, motivated development &f a mul
model approach in system analysis. Instead of aiming at constructing thé fibedel,
researchers tend more and maegjfiently to use mukinodel ensembles. Climate changé¢his
research field, in which recognition of the value of the use of the-maolfiel approach has
pioneered. For example, the Fourth IPCC Report relies on the results of 23chfobsd models
(Rardall et al., 2007) considering their means; for the Fifth IPCC Report, the IPCC tEoaip
developed recommendations on good practice in assessingmodil climate projections and
combining those with advanced statistical approaches (Knutti, 2010a).

Each model taken from a muttiodel ensemble relies on its particular set of assumptions
and modeling tools, and views the underlying phenomenon from a specific angle. Each model is
usually attributed with its intrinsic uncertainties, often grouped intcemainties in initial
conditions, uncertainties in boundary conditions, parameter uncertainties and dtructura
uncertainties (Tebaldi and Knutti, 2007). For that reason, each model's outcooranmsonly
represented as a random variable (or a random ookssystems analyst deals then with a
family of probability distributions providing alternative descriptions to theesalject.

In particular applications, researchers facing such phenomena employcdpatifres of
the systems under investigation teconcile alternative pieces of information and generate
integrated knowledge (see, e.g., Nilssbml., 2007). However, the subjectivity of the experts’
experiences involved in such research efforts makes those research effoeisblelrfor
criticism. Development of a weljustified tool for integration of different viewpoints into a
single picture becomes a challengasystems analysis.

There have been several impressive attempts undertaken to create arfethwalology
for integration of alternative modelmsed results. To our knowledge, such attempts concentrate,
primarily, on the question of weighting (in an appropriate way) resultseshodels that form a
multi-model ensemble, based on assessment of the maaefsrmance for the past andeth
present (Rajagopalaat al., 2002, Robertsoet al., 2004, Tibaldi and Knutti, 2007); the weights
may also incorporate information on the degree of the models’ interdependencey(sKeudi,
2010b for an overview of currently available approaches). Knutti (2010a) pointing out serious
difficulties in weighting the models, claims that “a robust approach to assigniigiptsveo
individual model projections of climate change has yet to be identified. ... Studies should
employ formal statistical frameworksither than using ad hoc techniques.” In this paper we
present an illustrative example of a unified formal approach to posterioratoegof prior
random estimates (probability distributions) provided by independent stéifysiitaccurate
observation methods.

Some attempts have been made to develop approaches to weighting models with no use
of information on their performance in the past and the present. For example, @uafjan
(2011) suggest weighting prior Gaussian estimates inverse proportionatlheit variances
within the Bayesian approach; this results in a posterior Gaussian estimatehdemms with
higher uncertainty (variance) contribute less that those whiamare certain.
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As opposed to the abovementioned techniques, Kryazhimskiy (2013) suggests an
approach which does not employ the weighting paradigm and does not use imioromathe
models’ performance in the past and in the present. Therefore, it caedeisituations, where
eitherthe modelsperformance in the past and in the present is hard (or impossible) to estimate,
or the future systems dynamics is anticipated to be radically different frombigetved in the
past and in the present. The core element of the methodology is the posterior event fonmed in t
product of the probability spaces associated with the prior stochastiaesti We use mutually
compatible realizations of the prior random estimates to build a probabilitjodisin on he
posterior event. The Bayesian probability conditioned to the posterior event dragab
projections onto the coordinate spaces; its common projection is defined to be themposteri
integrated random estimate.

The illustrative case study presentedths paper focuses on assessment of the Net
Primary Production (NPP) of the Russian terrestrial ecosystems. Aldhgheterotrophic
respiration, the NPP represents the main flux of carbon exchange betweeneetosysd the
atmosphere and determines the degree of impact of vegetation on the global carbon budget. The
NPP governed by climate and site conditions is an unbiased quantitative index of atestesys
response to climatic changes. Forests of the boreal zone (including Russegnepre of the
main stabilizing elements in the planetary climatic system functioning at high latitudes.

Due to a high complexity of the phenomenon, its intrinsic uncertainty, diffesen the
credibility of background information and diversification in methodologies, the mxisti
estimates of the NPP of the Russian terrestrial ecosystems, obtainediffevent sources vary
by more than 100% from 204 to 614 g C/fper year (Bazilevich, 1993; Zamolodchikov and
Utkin, 2000; Moiseev and Alyabina, 2007p@er et al., 2001). Each of the estimation methods
used has scientific and methodological advantages and disadvantages. In this pajperdee
integrated estimates of the NPP of the Russian terrestrial ecosystems, @duokile the
estimates generatéxy two alternative methods.

The paper is organized as follows. In section 2 we briefly describe the tidegra
methodology we use in owtudy Section 3 supplies information on data of the NPP of the
Russian terrestrial ecosystems specified for severctlimnatic zones. Section 4 presents the
results of integration of the NPP of the Russian terrestrial ecosystemavér kieclimatic
zones. In Section 5 we conclude and discuss.

2 Methodology

To reconcile (integrate) random estimates provided by atteenabservation (modeling)
methods, we use the methodology suggested by Kryazhimskiy (2013). The methodology is based
on construction of a posterior event in the product of the probability spaces assaiiiatthe

prior random estimates. A brief desc¢igm of the methodology is as follows. Suppose an
unknown elementz’of a finite set of elementary events, is observed (modeled) using
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alternative independent observation (modeling) methpdsn . Each method;, is inaccurate in
a statistical sense, namely, methoddescribesz® as a probability distributiom; on Z. The
probability distributionst,, ..., m, serve agprior random estimates for z°.We consider a ptarior
situation that occurs after the use of methads,n . In the posterior situation elements
74, ., Zy € Z resulting fromn independent random tests from methods, n are true if and only

if z0=z, =...=z,. Sincez® is unknown,z; =...=z, is a necessary posterior consistency
condition in the product probability spac&® P) = (Z m;) X ..x (Z,m,).. The posterior
consistency condition determines @osterior eventEs = {(zq,...,z,) € 2™z, =..=z,} =

{(z,..,2):z € Z} which is necessarily realized {@", P) in the posterior situation. We have

P(E+) = Y2z ™1 (2) .. Ty (2).

If P(E+) =0, methodsli,...,n are in contradiction in the sense that for everyZ there
is a method,i , which evaluates the observed elem&atsz with a zero probabilitys;(z) = 0.
SupposeP(E+) > 0, implying that methods, ..., n are not in contradiction in the sense that there
exists az € Z such that all the methods give rRpero probabilities for the fact that = z . The
Bayesian conditional probability distributioR(- |E«) onE-« is given by

P((z,...,2)|E,) = —”1(?(';;"(2)

for everyz € Z . We define a probability distributian - ...- m, on Z by setting

(my o) (2) = Pz, ..., 2)|E,)

for everyz € Z. In the probability spac€z, n; - ...- m,) for every z € Z the probability ofz° = z is
proportional tor, (z) - ... m,(z) — the probability of the fact that all the methods admit tRat z.
The latter probability is a measure of a 'consensus’ of methods: in conjecturing that?® = z.
All the methods contribute to the value of the 'consensus measy®* ...- w,(z) equally, and
each methodi, has a 'power of veto’ in the sense that the 'consensus measure&/amiishes if
m;(z) = 0. Thus, probability distributiom, - ...- m, provides an integrated knowledge oh
which results from a posterior analysis of the use of methbdsn . According to
Kryazhimskiy (2013); - ...- m, is theposterior integrated random estimate resulting from the
prior random estimates,...,t,. The transformation ofr,,...,m, into m, -..-m, is called
integration ofry, ..., ,.

Often, the observed element is a real number. In that dases, a finite set of reals
numbers, and every probability distributian,on Z describes a discrete random variable taking
values inz. The variance ofhat random variabl&,(m), is a standard measure of informativeness
of m. If V(my:..-m,) <V(m) for all i=1,...,n, the posterior random estimats,- ...- , , IS
more informative than everprior random estimater;. A straightforward interpretation is that
the prior random estimates enhance each other through integration and aceetbeuvefurally
compatible. If, conversely, V(m;-..-m,) >V(y) for all i=1,..,n, the posterior random
estimate, - ...- w, , IS less informative than every prior random estimgteThen all the prior
random estimates astructurally incompatible; consequently, some of them are misleading. In
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an intermediate situation, wheng(m;) < V(m, - ...-m,) > V(m;) for somei and j, there is no
clear agreement among the prior random estimates.

3 Uncertainties in NPP estimates

3.1 NPP estimation methods and associated uncertainties

Large uncertainties in estimates of the contribution of the terrestrial ecosysighes global
carbon cycle (see, e.gShvidenkoet al. 2003,2013) hinderscientific understanding of the
problem of reduction of greenhouse gas emissions (see, e.g., Schulze 2002) and hamakr politic
and economic decision making (see, e.g., Jangahs2005). The full carbon account (FCA)
approach $hvidenkoet al., 201(,b) is aimed at providing a reliable andngehensive (to a
possible extent) account for carbon cycling uncertainties. The FCA exalsgiatial and
temporal uncertainties the complex fuzzy dynamic system of carbon cycling. The result of
application ofevery specific CA methodncludes both a ethodspecific uncertainty and the
structural, “true” uncertainty. The latter, however, is inseparable fr@mwhole uncertainty,
especially if the FCA is applied at a national or continental scale.

A natural way to extract “true” uncertainty and eliminate the influence efmbthod
might be the use of several specific independent FCA methods, including their hatroaniz
and identification of mutual constrainits intermediate and final estimateShividenkoet al.,
2010a). Such kind of analysis requires a formal methodology for integrating uncetitagtes
provided by eithealternativecarbon cycling assessment methods, or by alternative approaches
to assessment of the ecosystems’ major biophlsidicators.

The NPP is among the most important forest ecosystems biophysical FCA indicators
Methods for estimating the terrestrial ecosystems’ NPP include statistical mets®tk dn
directin situ measurements; dynamic vegetation modes; ecophysiological carbon flow jmodels
remote sensing methods; production efficiency models; and others. Each methad has
advantages and shortcomings (Goetz, 1997; Mokronosov, 1999; Shvigealko2007b) and
evaluates the NPP with uncertainty, which often redulta biased estimate. The sources of
methodspecific uncertainties include inconsistency of the background definition of thaiNPP
field measurements; a dynamic character of the NPP; oversimplification of thelsmed;
problems with adequate descriptions of numerous interacting drivers; and rnarsy ot

Below we give short descriptions of two independent forest ecosysteedihation
methods —the landscape-ecosystem approach (LEA) and the ensemble afynamic global
vegetation models (DGVMSs). In Section 4 we use NPP estimates provided by those two
alternative methods to demonstrate the applicability of the model integrationigieeh
presentedn Section 2 in assessment of the NPP of the Russian forests as a promisinghapproac
to reconciling the esults and their uncertainties obtained by different models in diverse
ecological applications.



3.2 Thelandscape-ecosystem approach

The landscape-ecosystem approach (LEA) suggests a methodology for aggegairical and
semiempirical methods for studying terrestrial ecosystems carbon cyclegLEA postulates
that, firstly, an ecosystem (understood as a set of vegetatibersembles of various scales) is a
primary unit for scientific descriptions, modeling efforts and interpaetatiand, secondly, the
processes of energy and matter exchange within ecosystems are stronglycedflbgnthe
properties of landscapes. The LEAcamulates all relevant empirical knowledge and all
available semempirical aggregations for a region under investigation. It comprises ground
based quantitative descriptions of the regional ecosystems and landsaapeslti-layer and
multi-scale Integred Land Information System (ILIS); remote sensing data; results of
measurements of fluxes and concentrations of gas compositions in the atmospblegcal
models of various types and scales; and auxiliary models. The ILIS inclu8lks taybridland
cover (HLC) representation of a territory, and attributive databases. (D) DBs include
measurementm situ, numerous physical and so@conomic indicators, empirical and “semi
empirical” aggregations, data from relevant surveys and inventorie3het¢dLC is developed
based on a muigensor remote sensing concept and utilizes available reliable ground
information. Detailed descriptions of the structure and features of tiiednd ILIS can be
found in Schepaschenlbal., 2011 and Shvidenket al., 2010a,b.

Within the LEA, forest ecosystems’ NPP is estimated using the (presgmettliased
method described irshvidenkoet al., 2007a. The method employs regally distributed
empirical growth and biproductivity forest models and is based on modeling full productivity
of the forest ecosystems’ live biomass. The annual NPP is estimated fornessfuarekm
pixel based on data on the dominant species, age, site index and relative stockingt of fores
stands.

3.3 Dynamic global vegetation models

Dynamic global vegetation models (DGVMs) describe physiological and biogeadie
processes within ecosystems and play a substantial role in accounting NR¥etite pGVMs,

in spite of a number of shortcomings (the use of aggregated vegetation classeglete
representations of disturbances, operation with ‘potential vegetation’, exclusoon f
consideration of some important vegetation classes, e.g., agricultweglands, etc.) constitute
the only tool for capturing the drivers of the ecosystems functioning.

Crameret al. (1999) presented cros®mparison of the NPP estimates provided by 17
DGVMs combined in three groups: (a) satelbi@sed models whose variablare derived from
remote sensing data, includi@ASA (Potteret al., 1993), GLOPEM (Prince, 1991), SDBM
(Knorr and Heiman, 1995), TURC (Ruing al., 1996), SIB2 $ellerset al., 1996a,b); (b)
models for assessment of biogeochemical fluxes, including HRBM (Esser arshdchiager,
1994), CENTURY (Partomet al., 1993, TEM (McGuireet al., 1995), CARAIB (Warnangt al.,
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1994), FBM (Ludekeet al., 1994), PLAI (Plochl and @mer,1995a,b), SILVAN (Kaduk and
Heimann 1996, BIOME-BGC (Running and Hunt, 1993), KGBM (Kergoat, 1998), and (c)
models for assessment of seasonal biogeochemical fluxes and vegetatturesty including
BIOME3 (Haxeltine and Prentice, 1996), DOLY (Woodwat@dl., 1995) and HYBRID (Friend

et al., 1997). In the crossomparison exercise, the models use standardized input data (climate,
soil texture data and normalized difference vegetation index (NDVI) by 0.5° gaicnainthly
temporal resolution scale), being substantially different in definitafnghe underlying NPP
production processes. The models of group (a) work with the actual land cbeensodels of
group (b) use, primarily, predefined vegetation distributions based on availgigeofnzotential
vegetation; and models of group (c) detere the vegetation types and structures by maximizing
the NPP at a regional basis under observed or predicted climate conditions. Fourn(@&8als
CENTURY, SDBM and HRBM) relate the NPP directly to vegetation chematts —
temperature, solar radiah, precipitation, and others, while the remaining 13 oepsesent the

NPP as the difference between the gross primary production and autotropimatices The
modeled annual global NPP estimates turn out to be rather consistent across theatttoolegh
Crameret al. (1999) state that additional calibration procedures may improve the degree of
consistency.

For the terrestrial ecosystems limited to the territory of Russia all 17 modetsused to
estimate the NPP means and standard deviation9.(3th& estimates were collected as explicit
geographic dafa the data overlap with a bidimatic zone (BCZ) map and forest areas
represented in a land cover (LC) map for Russia (Schepasckeakp 2011). The estimates
were aggregated under an assumption that the NPP estimates provided by ecefgrpaddel
were interdependent across the grid cells and the NPP estimates provided by different models
were independent in every grid cell. For the BCZ and LC categories the agdrddrP values
were efimated as those averaged over the grid cells. The resulting aggregateesstomshe
NPP annual means and standard deviations by the BCZs agree essentially. \&hitlBC2ahe
variability of the aggregate estimates of the NPP across the models feorged3 to 18%
slightly increasing towards the ecotones of the forest zone.

3.4 Comparison of DGVMs- and LEA-based forest NPP estimates for Russia

Table 1 compares the aggregate NPP means and standard deviations averaged over 17 DGVMs
with those provided by the LEA. It should be noted that as only five DGVMs use information on
the actual land covers (the other ones use information on potential vegetatioeypieased that

the averaged DGVMbased aggregate estimates for the NPP means exceed tHzakitlfones.

Table 1 shows that this holds for the total NPP mean and for the NPP means in fivenof seve
BCZs; exceptions are the forests in the tundra and steppe zones with limaedfaferests).

http://islscp2.sesda.com/ISLSCP2 1/html pages/groups/carbon/mogekdeqg.html
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While the LEA results do not have recognized biases, théNIKzoverestimate the “real” NPP;

however, the degree of overestimation is relatively low.

DGVMs-based LEA-based estimates Differences
estimates
BCZs mean st.d. mean st.d. mean mean
NPP, NPP, NPP, NPP, NPP, NPP,
g C/n? g C/n? g C/n? g C/n? g C/me? %
per year per year per year per year per year
Tundra 202 36 225 89 -23 -11
Forest tundra and Northern 269 45 212 85 +57 +21
taiga
Middle taiga 335 58 257 111 +78 +23
Southern taiga 449 62 390 159 +59 +13
Temperate 517 62 454 200 +63 +12
Steppe 390 67 399 190 -9 -2
Semideserts and deserts 423 56 360 182 +63 +15
Total 348 48 282 141 +66 +19

Table 1: Comparison of the DGVMmsed and LEAased estimates of the Russian terrestrial ecosystems’ NPP.

4 Results

4.1 Data processing

The full LEA-based data sets provide frequencies (further interpreted as probalulitides)
forests’ observed NPP values ranging from 35 to 1365 ¢ @ényear for seven bioclimatic
zones in Russia. Due to observation errors, processing errors, and-tespataal
heterogeneities, the frequencies viewed as probabilityitdisons arehighly irregular (see the
left column in Table 2). To smooth out the distributions, we aggregate the originattdadeze
classesWe consider two size classed0 and 90 g C/fper year.

The DGVM-based data semiggestestimates for the forests’” NPP means and standard
deviations for the same seven bioclimatic zones in Russia. Based on those gstiveate
reconstruct Gaussian distributioclmsaccommodate for the entire NPP ranges.



4.2 I ntegration results

We apply the methodology described in Section 2 to integrate, posteriorly, paifiviges
original LEA-based and DGVMsbased Russian forests’ NPP distributions; (ii) the Hia&ed
and DG/Ms-based Russian forests’ NPP distributions aggregated into size classes ofif0 g C
per year; and (iii) the LEAased and DGVMbased Russian forests’ NPP distributions
aggregated into size classes of 90 g {Jger year. Table 2 shows the LEbased anddGVMs-
based forest ecosystem NPP distributions and the integrated posteribetm®gstems NPP
distributions for the BCZs in Russia in cases (i), (ii) and (iii). Tables 3a, 3b and Btasize
statistics on the NPP means and standard deviations oEthéased distributions, DGVMs
based distributions and the corresponding integrated postestabutions in cases (i), (i) and
(ii1), respectively. Tables 3a, 3b and 3c show thatllicases and for all BCZs, the variances of
the integrated posteriorigfibutions are smaller than those of the LEBased and DGVMs
based distributions with two exceptions being cases (i) and (ii) for thedesmits and deserts
BCZ; case (iii) for semdeserts and deserts BCZ demonstrates a boundary situation in which
the variance of the integrated distribution equals the minimum of those of thebaE&d and
DGVMs-based ones.

Following the approach presented in Section 2, we conclude that the integrated posterior
distributions improveboth the prior LEAbased and DGVMbased Russian forests’ NPP
estimates for three cases of data aggregation and for all bioclimatic withe$ie exception of
the semideserts and deserts zone, for which a valid estimate is obtained only for thassze cl
of 90 g C/n per year.
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Table 2: The LEAbased distributions (blue), DGVMsased distributions (red) and integrated posterior distributions
(green) of the forest NPP estimates for RusEie. horizontal axis represents NPP values in @anyear, and the
vertical axis represents frequencies (probabilities).

11



DGVMs-based LEA-based estimates Integrated estimates
estimates
mean NPP| st.d. NPP,| mean NPP| st.d. NPP,, mean
BCZs gCin? |gCintper| gcm? g Cin? NPP, st.d. NPP,
year g C/n? g C/m?
per year per year | per year
per year | per year
Tundra 202 52 225 89 189 43
Forest tundra and Northern 269 57 212 85 245 54
taiga
Middle taiga 335 70 257 111 312 62
Southern taiga 449 82 390 159 438 76
Temperate 513 87 454 200 492 85
Steppe 390 76 399 190 378 72
Semideserts and deserts 423 81 360 182 403 86"
Total 348 71 282 141 327 65

Table 3a (case (i)): The original LEased and DGVMbased and integrated posterior estimafdbe forest NPP
mean values and standard deviations for Russia. The upper star indexheazkceptional situation where the

variance of the integrated posterior distribution is bigger than one bEthébased and DGVMbased

distributions.

DGVMs-based LEA-based estimateg Integrated estimates
estimates
mean NPP| st.d. NPP,| mean NPP| st.d. NPP,, mean
BCZs gCin? |gCintper| gcCin? g Cin? NPP, st.d. NPP,
year g C/m? g C/m?
per year per year | peryear
per year | peryear
Tundra 202 52 224 90 188 43
Forest tundra and Northern 269 57 213 85 244 54
taiga
Middle taiga 335 70 257 111 312 62
Southern taiga 449 82 390 159 438 76
Temperate 513 87 455 201 491 85
Steppe 390 76 400 190 377 72
Semideserts and deserts 423 81 360 183 402 85
Total 348 71 282 141 327 65

Table 3b (case (ii)): The LEAased and DGVMbased aggregated into size classes of 10 g @#myear and the
corresponding integrated posterior estimates of the forest NPP meas &atlistandard deviations for Russia. The
upper star index marks the exceptional situation where the vaoétioe integrated posterior distribution is bigger
thanone of the LEAbased and DGVMbased distributions.
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DGVMs-based LEA-based estimates Integrated estimates
estimates
mean NPP| st.d. NPP,| mean NPP| st.d. NPP,| mean
BCZs gCin? |gCintper| gCint g Cin? NPP, st.d. NPP,
year g C/n¢ g C/m?
per year per year | per year
per year | per year
Tundra 202 58 224 94 184 44
Forest tundra and Northern 269 63 208 93 242 59
taiga
Middle taiga 335 75 258 114 310 66
Southern taiga 449 86 390 162 437 78
Temperate 513 91 456 205 490 86
Steppe 390 80 400 194 380 74
Semideserts and deserts 423 85 364 188 399 85
Total 348 76 282 144 326 69

Table 3c (case (iii)): The LEhAased and DGVMbased aggregated into size classes of 90 g f#myear and the
corresponding integrated posterior estimates of the forest NPP meas &atlistandard deviations for Russia.

5 Discussion and conclusions

In this paper, we demonstrated an application of a theoretical approach to pogesgiation of
alternative prior stochastic models of an unknown “true” biophysical indicator of steoss/
Our study focused on posterior integration of the estimated frequency (fitgpdtstributions

of NPP values for the Russian terrestrial ecosystems, wasthted fromtwo alternative prior
NPP estimation methods the landscapecosystem approactLEA) and the ensemble of
dynamic global vegetation modgIBGVMs). The originalLEA-based and DGVMbased data
and sizeaggregated LEAased and DGVMsbased data were integrated pairwise into a
posterior distribution for each of the seven bioclimatic zones.

Although the mean zonal LEBased and DGVMbased NPP estimates differ for igp23%,
we find out that for the majority of the bioclimatic zones, firstly, the LEA andvBlI&
approaches argtructurally compatible and, secondly, the integrated posterior NPP estara
more credible (namely, have lowriationg than both the por LEA-based and DGVMbased
ones. For every bioclimatic zone, in each of cases (i), (ii) and (iii), the vaiice DGVMs
based NPP distributias lower than that of the LEAased one.
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The LEAbased and DGVMbaseddata underestimate and, respectively, overestimate the
integrated estimates of the NPP means for all bioclimatic zones, except fa, fiondvhich the
integrated estimate for the NPP mésusmaller than both the LEBased and the DGVMsased
ones.

Posterior integration with the DGVMsased data adjusts the LH#ased dataignificantly;
for example, the LEAased estimate of the total NPP megnows, thanks to posterior
integration with the DGVMsbased datapy approximately 16% in each case. Posterior
integration with the LEAbased datadjusts the DGVMbased datdess strongly; for example,
the DGVMsbased estimate of the total NPP mdanreases, thanks to posterior integration with
the LEA-based datdyy approximately 6% in each case.

This example illustrates an additional field of potential applications of the posterior
integration method. If one of available estimates is considered as “tnueh(more certain than
the others), one can use posterior integration to assess applicability of othettisteshiagation
methods more preferable in practical aspects (e.g., requiring the minimoumtaof resources
in practical implementation).

We conclude by stating that the approach presented here is applicable in cases wbere two
more stochastic estimates are used to describe auaality, while errors embedded in these
estimates cause gaps between them and all prior estimates are equally likelgritme des
unknown “true” indicator. Further development of this approach is seen in the direction of
including amountf information associated with each prior estimate thauld differentiate
contributions of those to a posterintegrationbased on some principles.
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