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The relative roles of density dependence and life history evolution
in contributing to rapid fisheries-induced trait changes remain
debated. In the 1930s, northeast Arctic cod (Gadus morhua), cur-
rently the world’s largest cod stock, experienced a shift from a
traditional spawning-ground fishery to an industrial trawl fishery
with elevated exploitation in the stock’s feeding grounds. Since
then, age and length at maturation have declined dramatically, a
trend paralleled in other exploited stocks worldwide. These trends
can be explained by demographic truncation of the population’s
age structure, phenotypic plasticity in maturation arising through
density-dependent growth, fisheries-induced evolution favoring
faster-growing or earlier-maturing fish, or a combination of these
processes. Here, we use a multitrait eco-evolutionary model to
assess the capacity of these processes to reproduce 74 y of histor-
ical data on age and length at maturation in northeast Arctic cod,
while mimicking the stock’s historical harvesting regime. Our results
show that model predictions critically depend on the assumed den-
sity dependence of growth: when this is weak, life history evolution
might be necessary to prevent stock collapse, whereas when a
stronger density dependence estimated from recent data is used,
the role of evolution in explaining fisheries-induced trait changes is
diminished. Our integrative analysis of density-dependent growth,
multitrait evolution, and stock-specific time series data underscores
the importance of jointly considering evolutionary and ecological
processes, enabling a more comprehensive perspective on empiri-
cally observed stock dynamics than previous studies could provide.
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Harvesting is usually selective, differentially targeting and
removing members of a population based on their pheno-

typic attributes (1, 2). Such selective harvesting induces a genetic
response in life history traits when it renders some genotypes
more likely than others to survive and reproduce (3, 4). Even
nonselective harvesting can induce evolutionary change, through
the effects of elevated mortality on the differential survival and
reproduction of individuals with specific genetic attributes (5).
During the last decade, progress has been made in identifying
evolutionary responses to harvest in the wild (6–8), as improved
statistical methods for analyzing field data have become available
(9, 10). Although trends in life history traits have repeatedly been
found to be indicative of genetic adaptations to intense harvest
pressures, their concomitance with phenotypically plastic responses
to changing environmental conditions often complicates the iden-
tification of genetic changes (3, 4, 11–14). An important type of
phenotypic plasticity affects growth rates and maturation schedules
and is known as the compensatory response in fisheries science:
when increased fishing mortality reduces intraspecific competition,
individuals with the same growth genotypes can grow faster and

mature earlier. The difficulty of disentangling such plastic effects
and evolutionary changes in empirical data lies at the heart of the
debate on fisheries-induced evolution (3, 15–19).
Distinguishing between plastic and genetic responses to har-

vesting is of considerable practical importance and consequence,
because genetic responses (i) are often expected to be substan-
tially more difficult and slower to reverse than plastic responses
(20–23), (ii) alter fundamental processes of population dynamics
(24), and (iii) could reduce resilience to other stressors such as
climate change (25, 26). In addition, there could be economic
costs of evolutionary change when fishing mortality is high; al-
ternatively, fisheries-induced evolution can increase profits when
fishing mortality is low and a stock’s abundance remains above
its precautionary level (27). In view of the cumulative and long-
term nature of these effects, and in line with a duly precautionary
approach to resource management, the potential occurrence of
harvest-induced genetic adaptation continues to cause concern
(3, 4, 28–30).
Northeast Arctic (NEA) cod (Gadus morhua) is one of the

world’s most important commercial fish stocks and is distributed
among feeding grounds in the Barents Sea and spawning grounds
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along the Norwegian coast. Beginning in the 1930s, a substantial
increase in fishing intensity and a change in fishing selectivity
occurred as trawlers progressively entered the Barents Sea, ex-
posing smaller immature cod to unprecedented levels of ex-
ploitation (31). Until then, coastal fishing with conventional
gears had dominated the fishery, mainly targeting mature cod in
the spawning grounds (32). In the wake of this striking change in
exploitation pattern, the mean age at maturation in NEA cod
decreased from more than 9 y in the 1930s to 5–6 y in the 2000s
(33–35), a decline far greater than what could be explained by
changes in aging methodology or changes in assessing maturation
(36). One possible explanation of this precipitous decline is a re-
lease from density regulation through reduced biomass levels,
resulting in improved conditions for somatic growth and enabling
earlier maturation through a compensatory response (e.g., refs. 37
and 38). Another, not mutually exclusive, explanation is that the
selective pressures imposed by harvesting have elicited an evolu-
tionary response in the population, causing maturation to be ini-
tiated earlier in life and at smaller body sizes (28, 35). Similar
considerations apply to other fish stocks, including the collapsed
northern cod stock off the east coast of Canada (8). Capitalizing
on the striking shift in fishing selectivity experienced by NEA cod,
and building on a series of systematic long-term data collected
since 1932 (Fig. 1 and Fig. S1A), here we evaluate the differential
contributions and merits of these two explanatory hypotheses.
In addition to a possible genetic response in maturation sched-

ule, harvesting could induce genetic adaptation in numerous other
life history traits (22, 29, 39). For example, evolutionary models
have predicted that growth rates could evolve to become either
faster or slower, depending on the patterns of size selectivity (22,

40, 41). Harvest could also induce genetic changes in reproductive
investment if, for example, intense fishing pressure favors individ-
uals that invest more in current reproduction (5, 22, 42).
In this study, we use an empirically based multitrait simulation

model that integrates ecological and evolutionary dynamics to
examine how density-dependent growth and fisheries-induced
evolution contribute to the maturation trends observed in NEA
cod. Our model enables evolution of key quantitative traits de-
scribing the processes of growth, maturation, and reproductive
investment. The model has already been used to study optimal
harvesting (43) and the bioeconomic consequences of fisheries-
induced evolution (27). Including feedbacks between ecologi-
cal and evolutionary dynamics is a perspective typically missing
in fishery science, despite the implications for management
(44). We address this challenge using extensive time series data
collected for an important marine fish stock (4). Our main ob-
jective and key contribution are to assess the levels of density-
dependent growth and fisheries-induced evolution required for
achieving good agreement between model predictions and a 74-y
time series of age and length at maturation. We extend earlier
work in three key directions. First, although eco-evolutionary
models have included density-dependent growth (24, 45–48),
previous evolutionary models of NEA cod (28, 49–51) did not,
and thus could not assess the differential contributions of phe-
notypic plasticity and trait evolution to the observed maturation
trends in this stock. Second, although some eco-evolutionary
models have allowed simultaneous evolution of multiple traits
(e.g., growth and maturation) (22, 45, 46, 48, 52), most previous
studies restricted attention to the evolution of maturation sched-
ules (51, 53–56); here, we consider an evolving maturation
schedule in conjunction with the potential for fisheries-induced
evolution in two other important life history traits, somatic growth
and reproductive investment. Allowing for the simultaneous evo-
lution of these additional traits might reduce the amount of evo-
lution predicted in the maturation schedule, because the processes
of growth, maturation, and reproductive investment are naturally
intertwined. Third, to our knowledge, previous studies have not
statistically compared stock-specific time series data with model
predictions, as we do here to evaluate the relative roles of fisheries-
induced evolution and density-dependent growth.
To consider the importance of density dependence for the dy-

namics of NEA cod, we investigate two density-dependent growth
models. The first model (the “contemporary growth model”) is
estimated for the later part of the time series for which the data
allow for a direct estimation of the density dependence of growth
(1978–2009), revealing a strong, negative relationship with a high
degree of variation explained (S1. Model Description). Because this
relationship might not be representative of historical conditions,
we also estimate a second model (the “historical growth model”)
for the beginning of the time series (1932–1950) when the pop-
ulation was larger: the earlier data do not allow for the direct
estimation of growth and probably underestimate the strength of
its density dependence, but nevertheless suggests a much weaker
density dependence of growth, albeit with poorer explanatory power
(S1. Model Description). The choice of these two time periods
provides a good contrast between the two corresponding growth
models (i.e., strong versus weak density dependence), enabling us to
evaluate the potential role of density-dependent growth using pa-
rameters empirically derived for a large marine fish stock.
Our simulation model includes four evolving life history traits:

somatic growth capacity, reproductive investment (measured by
the gonadosomatic index, GSI), and the intercept and slope of
the probabilistic maturation reaction norm (PMRN) character-
izing the maturation schedule (10, 12, 34). For both growth
models and all evolving traits, we analyze the effects of different
coefficients of genetic variation (CV), ranging from 0% to 14%
in the initial population. The CV is a measure of the scope for
evolution in a given trait (24, 27). When the CVs for all genetic
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Fig. 1. Comparison of model predictions and observations for age and
length at maturation in NEA cod for (A and B) the historical growth model
and (C and D) the contemporary growth model. Observations are shown
with gray lines; eco-evolutionary model predictions, with thick black lines;
and nonevolutionary model predictions, with thin black lines. The shown
models possess the highest likelihoods among all 16 model variants and
associated CV combinations (Table 1 and S3. Model Selection). In A and B,
the nonevolving population goes extinct at the point indicated by the filled
circles and dashed lines. Model predictions are the mean ages and lengths at
maturation among individuals in the population, averaged over 30 in-
dependent model runs.
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traits are set to 0, the model is nonevolutionary and stock dy-
namics are driven solely by ecological processes including density-
dependent growth. Larger CVs enable a stronger contribution
from fisheries-induced evolution (22). Using the fishing mortal-
ities estimated for NEA cod for 1932–2006 (S1. Model Description
and Fig. S1A), we analyze how the model’s capacity to match the
observed maturation trends varies with these CVs (Table 1 and
Table S1).
Although eco-evolutionary models have been used to investi-

gate fisheries-induced evolution, the present study is unique be-
cause of its tight coupling of long-term time series data for a wild
fish stock with the retrospective simulation of the stock’s dynamics
based on a carefully calibrated model; this is a different approach
from other, more strategic or general, models of life history evo-
lution (22, 23, 51, 57). Crucially, we let the data “decide” on the
most plausible levels of evolution, by determining which values of
CV maximize the fit (measured through the likelihood function)
between the model and the data.

Results
When using the historical growth model (describing weak density
dependence), the nonevolutionary model with all four CVs set to
0 predicts stock collapse (i.e., population extinction) around
1980, which obviously did not happen in reality (Fig. 1 A and B).
Even when considering an alternative maturation schedule
(obtained by pooling the PMRNs of cohorts from 1932 to 2005,
which results in higher survival, earlier maturation, and the
avoidance of stock collapse in the nonevolutionary model), the
match with the empirical maturation trends remains very poor
when evolution is absent and the historical growth model is used
(S4. Alternative Maturation Model, Fig. S2, and Table S2). In
contrast, the best (likelihood maximizing) evolutionary model
variant when using the historical growth model reproduces the
observed trends in age and length at maturation well (Fig. 1 A
and B). These findings support the hypothesis that trait evolution
has contributed to the stock’s dynamics during the 20th century,
assuming that the historic density-dependent growth relationship
is accurate.
When using the contemporary growth model (describing

strong density dependence), a model variant with low CVs per-
forms best (by likelihood), suggesting that, for this growth model,
a good match with the data can be achieved with little fisheries-
induced evolution (Fig. 1 C and D). This is possible because with
stronger density dependence, fishing results in significantly faster
growth, which in turn promotes significantly earlier maturation

via phenotypic plasticity. This greater scope for growth-related
maturation plasticity means that less evolution is required to
explain the observed maturation trends.
The top-ranked model variants are similar when evaluated

using the Akaike information criterion (AIC), which combines a
measure of fit to the data (likelihood) with a penalty (58) for
each positive CV (Table 1). In these model variants, the CVs for
the two maturation traits are consistently low (0% or 2%), and
this also applies to the CVs for reproductive investment (0–4%),
regardless of the applied growth model (Table 1). In the top-
ranked model variants, the CVs for growth are consistently high
(14%) when the historical growth model is used, but consis-
tently low (0–4%) when the contemporary growth model is used
(Table 1). This occurs because more growth evolution is re-
quired to match the observed maturation trends when the density
dependence of growth is weak. For the top-ranked evolutionary
model variants, we can thus conclude as follows. First, the PMRN
intercept shows a slow and steady evolutionary decline from 1950
onward, because selection from the feeding-ground fishery favors
earlier maturation (Fig. S3A). Second, the PMRN slope and GSI
evolve very little, with the GSI showing a tendency to increase over
time (Table 1 and Fig. S3 B and C). Third, growth capacity evolves
more quickly, particularly when the historical growth model is used
(Fig. S3D).
Although the model variants are selected solely based on

matching the empirical time series of age and length at matu-
ration, they perform well in predicting the empirical time series
of other stock characteristics, including length at age (Fig. S4),
phenotypic growth rate (Fig. S5A), and recruitment at age 3 y
(Fig. S5B). However, although the overall qualitative trends are
similar, the total stock biomass estimated from a stock assess-
ment model consistently exceeds that predicted by our model
(Fig. S5C and S6. Comparison with Other Observed Trends).
Also, our model generally matches the spawning stock biomass

estimated from the stock assessment model during the earlier
part of the time series, but less well in recent years (Fig. S5D).

Discussion
The world’s largest cod stock, NEA cod, was recently reported to
be at the highest biomass levels ever recorded (59). Other fish
stocks, like those of northern cod around Newfoundland, have
collapsed due to, among other factors, high fishing pressure (60,
61). However, although NEA cod has historically also experi-
enced high fishing pressures, with a mean fishing probability of
49% per year from 1932 to 2006 (27), it has persisted and even
thrived. There are likely multiple reasons for the continued
success of the NEA cod fishery, but the predictions of our model
suggest, in the case of weakly density-dependent growth, that
evolution has contributed to preventing stock collapse and sus-
taining the substantial fishing pressure the stock has experienced.
However, our analyses show that density-dependent growth is
also critically important for interpreting the observed trends in
life history traits and stock dynamics. This is highlighted by how
predictions differ depending on whether the density dependence
of growth is assumed to be strong or weak. When growth is
strongly density dependent (i.e., for the contemporary growth
model), the performance of the nonevolutionary model and best-
fitting evolutionary model variants are statistically similar. Even
though some of the tested evolutionary model variants fit the
data better (i.e., had a higher likelihood and a lower AIC) than
the corresponding nonevolutionary model, the AIC difference of
0.6 between the nonevolutionary model and the evolutionary
model variant with lowest AIC is small (and in this case, only one
CV was positive, yet small) (Table 1). It is generally accepted
that all models within an AIC difference of 2 of the best-fitting
model have similar empirical support (e.g., ref. 58).
Several other predictions are sensitive to the growth model

used (Table 1 and Fig. S1B). Most importantly, stock collapse

Table 1. Top-ranked model variants with their CVs for the four
considered life history traits (i, PMRN intercept; g, growth
capacity; GSI, gonadosomatic index; s, PMRN slope)

CV

Log-likelihood, ln L AIC differenceCVi CVs CVg CVGSI

i) Historical density-dependent growth model
0.02 0.06 0.14 0.02 −177.74* 1.7
0.02 0 0.14 0.08 −177.88 0

ii) Contemporary density-dependent growth model
0.02 0.1 0.04 0.12 −181.22* 2.9
0.02 0 0 0 −182.75 0

Two alternative density-dependent growth models are considered: (i) the
historical growth model and (ii) the contemporary growth model. The mod-
els are ranked by their log-likelihood ln L (higher is better) and AIC relative
to the model variant with the lowest AIC (lower is better). For each growth
model, the best-fitting model variants are shown (in bold for the maximum
likelihood and in italics for the lowest AIC). For an extended version of this
table, see Table S1.
*Having maximum likelihoods, these model variants are shown in Fig. 1.
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(i.e., population extinction) is predicted when the density de-
pendence in growth is assumed to be as weak as that estimated
for the historical period and there is no concurrent evolution.
Furthermore, the historical growth model predicts much more
growth evolution than the contemporary growth model (Fig.
S3D). The reason is that the historical trends in age and length at
maturation can partly be explained by increased phenotypic
growth, which can arise in two ways: growth is strongly density
dependent (so the reduction in biomass from fishing enables faster
phenotypic growth) or growth evolves to be faster. Therefore, the
best-fitting model variants have a high CV of growth if growth is
weakly density dependent or a low CV of growth if growth is
strongly density dependent.
Although it is not possible to determine with certainty which

growth model is more accurate, the weight of evidence suggests
that the contemporary growth model is more reliable. The con-
temporary growth model has a high explanatory power and enables
a superior fit to the observed trends in length at age (especially for
older ages; Fig. S4), supporting a model with strongly density-
dependent growth and less growth evolution. Importantly, the quality
of the data used to estimate the contemporary growth model is
higher and additional environmental variables could be accounted
for (S1. Model Description), lending good empirical support to this
model and providing evidence for more strongly density-dependent
growth. However, aquaculture studies of Atlantic cod (62, 63)
suggest a high genetic variance in growth, and previous studies of
other species found evidence for harvest-induced evolution of
growth (10, 29, 64, 65), suggesting that weaker density dependence
and more evolution of growth are possible. Another possibility is
that the strength of density-dependent growth has varied over time,
which could happen if, for example, ecosystem conditions have
changed (66, 67).
Our analyses reveal less fisheries-induced evolution in NEA

cod than previous studies of this and other marine fish stocks (3,
8, 35, 68). In particular, our model variants with higher CVs of
the maturation traits produce poorer matches with the time se-
ries data. This could indicate a large contribution from pheno-
typic plasticity in explaining historical dynamics in NEA cod,
with less contribution from evolutionary change than previously
thought (28, 35, 50, 51). As a result of lower CVs, PMRN evo-
lution predicted by our top-ranking model variants is consider-
ably slower and smaller in magnitude than predicted by other
eco-evolutionary models (22–24, 55). However, those previous
models were not specific to NEA cod; for example, two of these
models were for a generic Atlantic cod stock (22, 23) and one
was for smallmouth bass (55). When examining CVs similar to
those assumed in these previous models, we also predict more
PMRN evolution; but by comparing with empirical data, these
higher rates of evolution result in unrealistically low ages and
lengths at maturation for this stock (27) (Fig. S6). The overall
magnitude of change in the PMRN found in our study is also
smaller than what has been previously inferred for NEA cod
(35), as well as for other fish stocks (8, 65, 68–70). It is only by
statistically matching our model predictions with empirical
trends under different scenarios of density dependence that we
come to these different conclusions about the likely magnitude
of fisheries-induced evolution in NEA cod.
The reasons why previous empirical estimates of PMRN dy-

namics differ from our model-predicted PMRN trends are unclear.
However, we can point out several key assumptions that may
contribute. First, the PMRNs of individuals are genetic traits in our
model, whereas empirical estimates of PMRNs are based on phe-
notypic data, which themselves are subject to measurement error
(including unaccounted environmental effects) and other assump-
tions (11). Second, we assume linear PMRNs, whereas empirically
estimated PMRNs can be nonlinear. Because PMRNs can often
be estimated only for a few ages, robust extrapolation of their
shapes beyond the empirically well-covered age range is not

possible, hampering the identification of nonlinearities in their
shapes. Nevertheless, the nonlinearities of empirically estimated
cod PMRNs are not strong (9, 34, 35) and are therefore unlikely
to have a large impact on maturation dynamics. Third, increasing
the CVs of the PMRN intercept and slope—in our current model
implementation—widens the population-level PMRN, and thereby
enables earlier maturation. An alternative way of implementing
increases in these two CVs is to simultaneously reduce the indi-
vidual-level variability in maturation, such that the population-level
variability remains unchanged (S7. Higher Genetic Variances). This
could favor higher CVs of the PMRN intercept and slope among
the best-fitting model variants and result in better agreement with
the estimated PMRN trends, offering an interesting challenge for
future research (S8. Model Limitations).
Our model predicts the evolution of increased growth capac-

ity, a finding that might seem unexpected given earlier experi-
ments (29, 71, 72) but is in agreement with model-based studies
(22, 23, 40, 73) and theory (39). A closer look reveals a logical
explanation for faster growth. In most fish, growing faster causes
maturation earlier in life. By evolving a higher growth capacity,
individuals can thus mature earlier, with a higher probability of
reproducing before being caught by the fishery. Such a response
is expected to occur when the fishery’s minimum-size limit is low
enough that both immature and mature fish are harvested (22,
40), as is the case for NEA cod in the feeding grounds. By
allowing growth capacity to evolve and by including phenotypic
plasticity in maturation, we capture this selection pressure. Our
model predictions are strengthened by their good match with
data on length at age (Fig. S4) and on phenotypic growth (Fig.
S5A). For NEA cod, phenotypic trends toward faster somatic
growth (implying larger lengths at age) have indeed been docu-
mented for older age groups (74, 75). The recognition that
model-predicted maturation evolution is altered by growth evo-
lution strengthens the case for including multiple evolving traits
in life history models.
Although our model predicts a genetically based increase in

reproductive investment (GSI), the magnitude of this evolu-
tionary change is so small that it would be difficult to detect in
the wild. This finding is in accordance with empirical data: liver
weight (standardized for body length) in NEA cod, a possible
proxy of the energy available for reproduction (76), exhibited no
more than a weak overall increase from 1946 to 2001 (75).
Furthermore, no consistent temporal trends in reproductive in-
vestment have been detected (77), and as far as we know, no other
empirical data published to date suggest genetically based changes
in reproductive investment in NEA cod. Previous eco-evolutionary
models have also predicted less fisheries-induced evolution of
reproductive investment than for PMRNs or growth (22).
Although our eco-evolutionary model is not the only one to

address density-dependent growth simultaneously with life his-
tory evolution (24, 47, 57, 78), it quantitatively links model re-
sults to life history changes that have unfolded in a wild fish
population as it was harvested. By mimicking the observed an-
nual fishing mortalities experienced by this stock (Fig. S1A), we
are capturing underlying interactions between the resource and
human behavior, as the historical fishing pattern is the outcome
of how humans (e.g., fishers, managers, and society), among other
factors, have interacted with the stock as it changed over time.
This is an added dimension that, although important, is typically
neglected in most biological models used to predict trends in
exploited populations and is another reason why tight coupling
with empirical data is so powerful.
The model we present succeeds in capturing important aspects

of the NEA cod stock’s response to harvest, highlighting the ne-
cessity of including key feedbacks between ecology and evolution.
For example, the evolution of growth, often left out of models of
fisheries-induced evolution, plays a prominent role in matching
stock dynamics because of its interaction with maturation and
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reproduction. We conclude that it is the simultaneous consider-
ation of ecological and evolutionary dynamics that is required to
explain the full breadth of observed trends. By using an empirically
grounded eco-evolutionary life history model of NEA cod, we
have shown that, although some evolution is needed to prevent
stock collapse and therefore sustain harvest, density-dependent
growth could account for much of the maturation change observed
in this stock. Our approach serves as an example of how the tight
coupling of a calibrated eco-evolutionary model with empirical
time series data can be used as a tool for designing sustainable
harvest regimes as part of an integrated approach to ecosystem-
based management.

Materials and Methods
Our eco-evolutionarymodel describes the life cycle of NEA cod. It is built upon
the model framework described by ref. 22, and a full description of the
model can be found in ref. 27. We therefore only focus on key elements
below and provide additional details in the S1. Model Description. The
model is eco-genetic, containing ecological and genetic details that describe
key features of an individual’s life cycle, including birth and inheritance,
growth of soma and gonads, sexual maturation, reproduction, and natural
and fishing mortality. It is empirically based and has multiple evolving life
history traits that are expressed phenotypically, allowing for environmental
variation and phenotypic plasticity to influence observed trait values. We
model differential mortality regimes experienced by the stock in spawning
and feeding grounds, but include no other spatial structure. The model is
defined by statistical relationships and parameter values derived from empir-
ical data available for NEA cod, including time series of fishing mortalities,
density-dependent growth, and recruitment from 1932 to 2006.

Our model describes quantitative inheritance and evolution of four life
history traits: somatic growth capacity, reproductive investment (measured by
the GSI), and the intercept and slope of the PMRN. Offspring inherit genetic
trait values from their parents assuming normally distributed genetic variation
around the midparental values (with the corresponding variance for each
genetic trait equaling one-half of its genetic variance in the initial population),
describing the effects of recombination, segregation, and mutation (22, 27).
The genetic trait values are expressed by drawing normally distributed phe-
notypic trait values with variances that equal the interindividual environ-
mental variance estimated for each trait. Interannual environmental variation
is included in the model through density-dependent growth. Genotypes that
better enable survival and reproduction will be selected for over time,
changing the stock’s trait distributions. Emergent trait phenotypes of special
interest are the age and length at maturation. If the genetic trait values af-
fecting these phenotypic traits change over time, trends in the stock’s mean
age and length at maturation have an evolutionary component.

Phenotypic plasticity occurs when a genotype is expressed as different
phenotypes as a function of the environment (79). We include phenotypic
plasticity in our model through density-dependent growth and PMRNs.
Density-dependent growth is included to account for the expected increase
in per capita resource availability as population biomass is reduced by fishing
(59). Density-dependent growth has been observed in many species, in-
cluding marine fish stocks (80), and our parameter estimation using time
series data provides empirical support that it also occurs in NEA cod (S1. Model
Description). In our model, an individual’s phenotypically expressed growth

rate is determined by reducing its genetic growth capacity as a function of
population biomass. As phenotypic growth rates change with population bio-
mass, the age and length at maturation shift along the PMRN (11).

The derivation of parameter values is fully described in ref. 27, with themost
pertinent details highlighted here (all model parameters are listed in the S2.
Model Parameterization). The initial population-level mean trait values for the
genetic traits are estimated from empirical data; the resultant genetic trait
distributions of individuals in the population are then free to change through
time depending on selection. A unique feature of this study is the comparison
between two different density-dependent growth models, the parameters of
which are determined empirically (S1. Model Description). For the historical
growth model, we assume a relationship estimated from data for 1932–1950.
As fishing mortalities were lower during this time and because of the aver-
aging that is inherent in estimating this model, the density dependence of
growth inferred for this period is weaker. For the contemporary growth
model, we assume a relationship estimated from data for 1978–2009. The
density dependence of growth inferred for this contemporary period is
stronger. To mimic the fishing pressure experienced by the stock, we use data
on the annual fishing mortalities in the feeding grounds and spawning
grounds from 1932 to 2005 (S1. Model Description).

The CV of a trait directly influences the rate of evolution and is equal to the
genetic SD of the trait divided by the trait’s mean value (22, 55, 81, 82). To
evaluate models with alternative rates of evolution, we vary the CV of each
of the four traits in the initial population (24) independently from 0% to
14% in steps of 2% (ideally, optimization should be performed over the
whole continuous range of CV values; restriction to a discrete set of values
was chosen due to computational costs). Thus, 24 = 16 model variants are
analyzed (resulting from choosing a zero or positive CV value for each of the
four traits) based on 84 = 4,096 CV combinations (resulting from considering
eight CV values for each of the four traits). Consequently, one model variant
and one CV combination describe stock dynamics without any evolution (i.e.,
with all four CVs equaling zero), whereas all others correspond to evolution
being possible in at least one of the traits. Each CV combination is run for 30
independent replicates (resulting in a total of 4,096 × 30 = 122,880 model
runs) and their results are averaged for that CV combination. The perfor-
mances of all model variants and associated CV combinations are statistically
evaluated, using the likelihood function and the AIC, by comparing model
predictions for annual mean ages and lengths at maturation with 74 y of
observations on maturation in NEA cod (S3. Model Selection).
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